1
|
Osorio JC, Armijo A, Carvajal FJ, Corvalán AH, Castillo A, Fuentes-Pananá EM, Moreno-León C, Romero C, Aguayo F. Epstein-Barr Virus BARF1 Is Expressed in Lung Cancer and Is Associated with Cancer Progression. Cells 2024; 13:1578. [PMID: 39329759 PMCID: PMC11430695 DOI: 10.3390/cells13181578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is involved in the development of lymphomas, nasopharyngeal carcinomas (NPC), and a subgroup of gastric carcinomas (GC), and has also been detected in lung carcinomas, even though the role of the virus in this malignancy has not yet been established. BamH1-A Rightward Frame 1 (BARF1), a suggested exclusive epithelial EBV oncoprotein, is detected in both EBV-associated GCs (EBVaGC) and NPC. The expression and role of BARF1 in lung cancer is unknown. METHODS A total of 158 lung carcinomas including 80 adenocarcinomas (AdCs) and 78 squamous cell carcinomas (SQCs) from Chilean patients were analyzed for EBV presence via polymerase chain reaction (PCR), Immunohistochemistry (IHC), or chromogenic in situ hybridization (CISH). The expression of BARF1 was evaluated using Reverse Transcription Real-Time PCR (RT-qPCR). Additionally, A549 and BEAS-2B lung epithelial cells were transfected with a construct for ectopic BARF1 expression. Cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) were evaluated. RESULTS We found that EBV was present in 37 out of 158 (23%) lung carcinomas using PCR. Considering EBV-positive specimens using PCR, IHC for Epstein-Barr nuclear antigen 1 (EBNA1) detected EBV in 24 out of 30 (80%) cases, while EBERs were detected using CISH in 13 out of 16 (81%) cases. Overall, 13 out of 158 (8%) lung carcinomas were shown to be EBV-positive using PCR/IHC/CISH. BARF1 transcripts were detected in 6 out of 13 (46%) EBV-positive lung carcinomas using RT qPCR. Finally, lung cells ectopically expressing BARF1 showed increased migration, invasion, and EMT. CONCLUSIONS EBV is frequently found in lung carcinomas from Chile with the expression of BARF1 in a significant subset of cases, suggesting that this viral protein may be involved in EBV-associated lung cancer progression.
Collapse
Affiliation(s)
- Julio C. Osorio
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
| | - Alvaro Armijo
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | - Francisco J. Carvajal
- Department of Hematology and Oncology, School of Medicine and Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (F.J.C.); (A.H.C.)
| | - Alejandro H. Corvalán
- Department of Hematology and Oncology, School of Medicine and Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (F.J.C.); (A.H.C.)
| | - Andrés Castillo
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760032, Colombia;
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Carolina Moreno-León
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
| | - Carmen Romero
- Laboratory of Endocrinology and Reproductive Biology, Hospital Clínico Universidad de Chile, Santiago 8380456, Chile
| | - Francisco Aguayo
- Laboratorio de Oncovirología, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile; (J.C.O.); (A.A.); (C.M.-L.)
| |
Collapse
|
2
|
Shadmehri M, Ashrafi-Helan J, Firouzamandi M. Mutation and up-regulation of TP53 in ovine pulmonary adenocarcinoma lung cells as a model of human lung cancer. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2022; 13:349-356. [PMID: 36320308 PMCID: PMC9548218 DOI: 10.30466/vrf.2021.128764.2976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/01/2021] [Indexed: 12/02/2022]
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a model of human lung cancer and fatal viral disease that causes neoplasia in sheep respiratory cells. In the current study, 986 lung samples was inspected in the slaughterhouse, and finally twenty OPA lung organs were clinically diagnosed and five healthy lung organs were assigned as the control sample. Three SSCP patterns were detected for the affected lungs animals in comparison with the healthy lungs. In addition, sequencing results indicated three different single point mutations in exon 4 of TP53 within infected lungs, whereas no mutations were observed in exon 9 of this gene. Real-time PCR results showed up-regulation of the TP53 gene in all the infected lung cells compared to healthy cells. There was significant correlation between the mutations in exon 4 and OPAand can be used as a useful tool in determining the mechanism of lung cancer.
Collapse
Affiliation(s)
| | | | - Masoumeh Firouzamandi
- Correspondence Masoumeh Firouzamandi. PhD, Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran. E-mail:
| |
Collapse
|
3
|
Han J, Wu C, Wu Y, Deng H, Gao J, Han H, Xue X. Comparative study of imaging and pathological evaluation of pneumonic mucinous adenocarcinoma. Oncol Lett 2021; 21:125. [PMID: 33552246 PMCID: PMC7798099 DOI: 10.3892/ol.2020.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/12/2020] [Indexed: 01/15/2023] Open
Abstract
Patients with pneumonia-type lung cancer (PTLC) do not exhibit specific clinical features, which makes imaging diagnosis difficult. Therefore, the aetiology of the pathological changes occurring during PTLC remains unclear. The current study aimed to explore the possible mechanism of PTLC formation by CT scans and pathological analysis of the lungs. A retrospective analysis was conducted on the CT and pathological data of 17 cases of PTLC. The diagnosis of lung cancer was confirmed by pathology. The CT scans of nine patients indicated diffuse distribution of lesions in the lungs, whereas those of three patients indicated single-lung multi-leaf distribution, and those of the remaining five patients included single-leaf distribution. All patients demonstrated increased plaque or patchy density in the majority of the lesions located near the heart. The pathological types of the identified tumours were mucinous adenocarcinoma with adherent growth as the main sub-type. A large number of mucus lakes were observed, containing floating tumour cells, as determined by optical microscopy. In addition, a number of tumour cells were located in the residual alveolar wall of the observed mucus lakes. The results of the present study suggested that the mucinous adenocarcinoma tumour cells produced substantial quantities of mucus, and that the cells were scattered and planted along with the mucus through the airway, which led to possible development of pneumonia-type mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Jun Han
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Chongchong Wu
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuxin Wu
- Department of Radiology, The Traditional Chinese Medicine Hospital of Changshou District, Chongqing 401220, P.R. China
| | - Hui Deng
- Department of Respiratory Diseases, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jie Gao
- Department of Pathology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua Han
- Department of Radiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xinying Xue
- Department of Respiratory Diseases, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
4
|
Hu Y, Ren S, He Y, Wang L, Chen C, Tang J, Liu W, Yu F. Possible Oncogenic Viruses Associated with Lung Cancer. Onco Targets Ther 2020; 13:10651-10666. [PMID: 33116642 PMCID: PMC7585805 DOI: 10.2147/ott.s263976] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the most common cause of cancer death worldwide. Tobacco smoking is the most predominant etiology for lung cancer. However, only a small percentage of heavy smokers develop lung cancer, which suggests that other cofactors are required for lung carcinogenesis. Viruses have been central to modern cancer research and provide profound insights into cancer causes. Nevertheless, the role of virus in lung cancer is still unclear. In this article, we reviewed the possible oncogenic viruses associated with lung cancer.
Collapse
Affiliation(s)
- Yan Hu
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Siying Ren
- Department of Respiratory Medicine, Hunan Centre for Evidence-Based Medicine, Research Unit of Respiratory Diseases, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Yu He
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Li Wang
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Chen Chen
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Jingqun Tang
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Wenliang Liu
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Thoracic Surgery Research Room, Second Xiangya Hospital, Central South University, Changsha 410011, People's Republic of China
| |
Collapse
|
5
|
Lee H, Joung JG, Shin HT, Kim DH, Kim Y, Kim H, Kwon OJ, Shim YM, Lee HY, Lee KS, Choi YL, Park WY, Hayes DN, Um SW. Genomic alterations of ground-glass nodular lung adenocarcinoma. Sci Rep 2018; 8:7691. [PMID: 29769567 PMCID: PMC5955945 DOI: 10.1038/s41598-018-25800-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
In-depth molecular pathogenesis of ground-glass nodular lung adenocarcinoma has not been well understood. The objectives of this study were to identify genomic alterations in ground-glass nodular lung adenocarcinomas and to investigate whether viral transcripts were detected in these tumors. Nine patients with pure (n = 4) and part-solid (n = 5) ground-glass nodular adenocarcinomas were included. Six were females with a median age of 58 years. We performed targeted exon sequencing and RNA sequencing. EGFR (n = 10), IDH2 (n = 2), TP53 (n = 1), PTEN (n = 1), EPHB4 (n = 1), and BRAF (n = 1) were identified as driver mutations by targeted exon sequencing. Vasculogenesis-associated genes including NOTCH4 and TGFBR3 expression were significantly downregulated in adenocarcinoma tissue versus normal tissue (adjusted P values < 0.001 for both NOTCH4 and TGFBR3). In addition, five novel fusion gene loci were identified in four lung adenocarcinomas. However, no significant virus-associated transcripts were detected in tumors. In conclusions, EGFR, IDH2, TP53, PTEN, EPHB4, and BRAF were identified as putative driver mutations of ground-glass nodular adenocarcinomas. Five novel fusion genes were also identified in four tumors. Viruses do not appear to be involved in the tumorigenesis of ground-glass nodular lung adenocarcinoma.
Collapse
Affiliation(s)
- Hyun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Hyun-Tae Shin
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Yujin Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - O Jung Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Mog Shim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Soo Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - D Neil Hayes
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Miller AD, De las Heras M, Yu J, Zhang F, Liu SL, Vaughan AE, Vaughan TL, Rosadio R, Rocca S, Palmieri G, Goedert JJ, Fujimoto J, Wistuba II. Evidence against a role for jaagsiekte sheep retrovirus in human lung cancer. Retrovirology 2017; 14:3. [PMID: 28107820 PMCID: PMC5248497 DOI: 10.1186/s12977-017-0329-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/22/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Jaagsiekte sheep retrovirus (JSRV) causes a contagious lung cancer in sheep and goats that can be transmitted by aerosols produced by infected animals. Virus entry into cells is initiated by binding of the viral envelope (Env) protein to a specific cell-surface receptor, Hyal2. Unlike almost all other retroviruses, the JSRV Env protein is also a potent oncoprotein and is responsible for lung cancer in animals. Of concern, Hyal2 is a functional receptor for JSRV in humans. RESULTS We show here that JSRV is fully capable of infecting human cells, as measured by its reverse transcription and persistence in the DNA of cultured human cells. Several studies have indicated a role for JSRV in human lung cancer while other studies dispute these results. To further investigate the role of JSRV in human lung cancer, we used highly-specific mouse monoclonal antibodies and a rabbit polyclonal antiserum against JSRV Env to test for JSRV expression in human lung cancer. JSRV Env expression was undetectable in lung cancers from 128 human subjects, including 73 cases of bronchioalveolar carcinoma (BAC; currently reclassified as lung invasive adenocarcinoma with a predominant lepidic component), a lung cancer with histology similar to that found in JSRV-infected sheep. The BAC samples included 8 JSRV DNA-positive samples from subjects residing in Sardinia, Italy, where sheep farming is prevalent and JSRV is present. We also tested for neutralizing antibodies in sera from 138 Peruvians living in an area where sheep farming is prevalent and JSRV is present, 24 of whom were directly exposed to sheep, and found none. CONCLUSIONS We conclude that while JSRV can infect human cells, JSRV plays little if any role in human lung cancer.
Collapse
Affiliation(s)
- A. Dusty Miller
- Fred Hutchinson Cancer Research Center, Seattle, WA USA
- Department of Pathology, University of Washington, Seattle, WA USA
- 17915 Edmundson Rd, Sisters, OR 97759 USA
| | | | - Jingyou Yu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH USA
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Canter, University of Missouri, Columbia, MO USA
| | - Fushun Zhang
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Canter, University of Missouri, Columbia, MO USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH USA
- Department of Molecular Microbiology and Immunology, Bond Life Sciences Canter, University of Missouri, Columbia, MO USA
| | - Andrew E. Vaughan
- Fred Hutchinson Cancer Research Center, Seattle, WA USA
- Department of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Thomas L. Vaughan
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Raul Rosadio
- Veterinary Faculty, National University of San Marcos, Lima, Peru
| | - Stefano Rocca
- Department of Veterinary Medicine, Sassari University, Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - James J. Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
7
|
Walsh SR, Gerpe MCR, Wootton SK. Construction of a molecular clone of ovine enzootic nasal tumor virus. Virol J 2016; 13:209. [PMID: 28038674 PMCID: PMC5203713 DOI: 10.1186/s12985-016-0660-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enzootic nasal tumor virus (ENTV-1) is an ovine betaretrovirus that has been linked to enzootic nasal adenocarcinoma (ENA), a contagious tumor of the ethmoid turbinates of sheep. Transmission experiments performed using virus isolated from cell free nasal tumor homogenates suggest that ENTV-1 is the causative agent of ENA; however, this etiological relationship has not been conclusively proven due to the fact that the virus cannot be propagated in vitro nor is there an infectious molecular clone of the virus. METHODS Here we report construction of a molecular clone of ENTV-1 and demonstrate that transfection of this molecular clone into HEK 293T cells produces mature virus particles. RESULTS Analysis of recombinant virus particles derived from the initial molecular clone revealed a defect in the proteolytic processing of Gag; however, this defect could be corrected by co-expression of the Gag-Pro-Pol polyprotein from the highly related Jaagsiekte sheep retrovirus (JSRV) suggesting that the polyprotein cleavage sites in the ENTV-1 molecular clone were functional. Mutagenesis of the molecular clone to correct amino acid variants identified within the pro gene did not restore proteolytic processing; whereas deletion of one proline residue from a polyproline tract located in variable region 1 (VR1) of the matrix resulted in production of CA protein of the mature (cleaved) size strongly suggesting that normal virion morphogenesis and polyprotein cleavage took place. Finally, electron microscopy revealed the presence of spherical virus particles with an eccentric capsid and an average diameter of about 100 nm. CONCLUSION In summary, we have constructed the first molecular clone of ENTV-1 from which mature virus particles can be produced. Future experiments using virus produced from this molecular clone can now be conducted to fulfill Koch's postulates and demonstrate that ENTV-1 is necessary and sufficient to induce ENA in sheep.
Collapse
Affiliation(s)
- Scott R Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - María Carla Rosales Gerpe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
8
|
Robinson LA, Jaing CJ, Pierce Campbell C, Magliocco A, Xiong Y, Magliocco G, Thissen JB, Antonia S. Molecular evidence of viral DNA in non-small cell lung cancer and non-neoplastic lung. Br J Cancer 2016; 115:497-504. [PMID: 27415011 PMCID: PMC4985355 DOI: 10.1038/bjc.2016.213] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/02/2023] Open
Abstract
Background: Although ∼20% of human cancers are caused by microorganisms, only suspicion exists for a microbial cause of lung cancer. Potential infectious agents were investigated in non-small cell lung cancer (NSCLC) and non-neoplastic lung. Methods: Seventy NSCLC tumours (33 squamous cell carcinomas, 17 adenocarcinomas, 10 adenocarcinomas with lepidic spread, and 10 oligometastases) and 10 non-neoplastic lung specimens were evaluated for molecular evidence of microorganisms. Tissues were subjected to the Lawrence Livermore Microbial Detection Array, an oncovirus panel of the International Agency for Research on Cancer, and human papillomavirus (HPV) genotyping. Associations were examined between microbial prevalence, clinical characteristics, and p16 and EGFR expression. Results: Retroviral DNA was observed in 85% squamous cell carcinomas, 47% adenocarcinomas, and 10% adenocarcinomas with lepidic spread. Human papillomavirus DNA was found in 69% of squamous cell carcinomas with 30% containing high-risk HPV types. No significant viral DNA was detected in non-neoplastic lung. Patients with tumours containing viral DNA experienced improved long-term survival compared with patients with viral DNA-negative tumours. Conclusions: Most squamous cell carcinomas and adenocarcinomas contained retroviral DNA and one-third of squamous cell carcinomas contained high-risk HPV DNA. Viral DNA was absent in non-neoplastic lung. Trial results encourage further study of the viral contribution to lung carcinogenesis.
Collapse
Affiliation(s)
- Lary A Robinson
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA.,Center for Infection Research in Cancer (CIRC), Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - Crystal J Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94559-9698, USA
| | - Christine Pierce Campbell
- Center for Infection Research in Cancer (CIRC), Moffitt Cancer Center, Tampa, Florida 33612-9416, USA.,Department of Epidemiology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - Anthony Magliocco
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - Yin Xiong
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - Genevra Magliocco
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| | - James B Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94559-9698, USA
| | - Scott Antonia
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida 33612-9416, USA
| |
Collapse
|
9
|
İlhan F, Vural SA, Yıldırım S, Sözdutmaz İ, Alcigir ME. Expression of p53 protein, Jaagsiekte sheep retrovirus matrix protein, and surfactant protein in the lungs of sheep with pulmonary adenomatosis. J Vet Diagn Invest 2016; 28:249-56. [PMID: 27016721 DOI: 10.1177/1040638716636939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring cancer in sheep that is caused by the Jaagsiekte sheep retrovirus (JSRV). Because the pathologic and epidemiologic features of OPA are similar to those of bronchoalveolar carcinoma in humans, OPA is considered a useful animal model for pulmonary carcinogenesis. In this study, 3,512 lungs from various breeds of sheep were collected and macroscopically examined. OPA was identified in 30 sheep, and samples of these animals were further examined by histologic, immunohistochemical (p53 protein, surfactant protein A [SP-A], proliferating cell nuclear antigen [PCNA], JSRV matrix protein [MA]), and PCR methods. Papillary or acinar adenocarcinomas were detected microscopically in the affected areas. Immunoreactivity for p53 PAb240 was detected in 13 sheep, whereas p53 DO-1 was not detected in any of the OPA animals. PCNA immunoreactivity was recorded in 27 animals. SP-A and JSRV MA protein was immunopositive in all 30. JSRV proviral DNA was detected by PCR analysis in all of the lung samples collected from OPA animals. In addition, the pulmonary SP-A levels were increased in tumor cells. The results of this study suggest that PCNA and p53 protein expression may be useful indicators in monitoring malignancy of pulmonary tumors.
Collapse
Affiliation(s)
- Fatma İlhan
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| | - Sevil A Vural
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| | - İbrahim Sözdutmaz
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| | - Mehmet E Alcigir
- Department of Pathology, Faculty of Veterinary Medicine, Yuzuncu Yıl University, Van, Turkey (İlhan, Yıldırım)Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey (Vural, Alcigir)Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey (Sözdutmaz)
| |
Collapse
|
10
|
Youssef G, Wallace WAH, Dagleish MP, Cousens C, Griffiths DJ. Ovine pulmonary adenocarcinoma: a large animal model for human lung cancer. ILAR J 2016; 56:99-115. [PMID: 25991702 DOI: 10.1093/ilar/ilv014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Recent progress in understanding the molecular pathogenesis of this disease has resulted in novel therapeutic strategies targeting specific groups of patients. Further studies are required to provide additional advances in diagnosis and treatment. Animal models are valuable tools for studying oncogenesis in lung cancer, particularly during the early stages of disease where tissues are rarely available from human cases. Mice have traditionally been used for studying lung cancer in vivo, and a variety of spontaneous and transgenic models are available. However, it is recognized that other species may also be informative for studies of cancer. Ovine pulmonary adenocarcinoma (OPA) is a naturally occurring lung cancer of sheep caused by retrovirus infection and has several features in common with adenocarcinoma of humans, including a similar histological appearance and activation of common cell signaling pathways. Additionally, the size and organization of human lungs are much closer to those of sheep lungs than to those of mice, which facilitates experimental approaches in sheep that are not available in mice. Thus OPA presents opportunities for studying lung tumor development that can complement conventional murine models. Here we describe the potential applications of OPA as a model for human lung adenocarcinoma with an emphasis on the various in vivo and in vitro experimental systems available.
Collapse
Affiliation(s)
- Gehad Youssef
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - William A H Wallace
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Mark P Dagleish
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - Chris Cousens
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| | - David J Griffiths
- Gehad Youssef, BSc, is a research scientist at the Moredun Research Institute, Edinburgh, UK. William A. H. Wallace, MBChB(Hons), PhD, FRCPE, FRCPath, is a consultant pathologist at the Royal Infirmary of Edinburgh and Honorary Reader in Pathology, Edinburgh University, UK; Mark P. Dagleish BVM&S, PhD, MRCVS, FRCPath, is Head of Pathology at the Moredun Research Institute, Edinburgh, UK. Chris Cousens, PhD, is a senior research scientist at the Moredun Research Institute, Edinburgh, UK, and David J. Griffiths, PhD, is a principal research scientist at the Moredun Research Institute, Edinburgh, UK
| |
Collapse
|
11
|
Berthet N, Frangeul L, Olaussen KA, Brambilla E, Dorvault N, Girard P, Validire P, Fadel E, Bouchier C, Gessain A, Soria JC. No evidence for viral sequences in five lepidic adenocarcinomas (former "BAC") by a high-throughput sequencing approach. BMC Res Notes 2015; 8:782. [PMID: 26667652 PMCID: PMC4678645 DOI: 10.1186/s13104-015-1669-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/03/2015] [Indexed: 02/06/2023] Open
Abstract
Background The hypothesis of an infectious etiology of the formerly named bronchiolo-alveolar carcinoma (BAC) has raised controversy. We investigated tumor lung tissues from five patients with former BAC histology using high-throughput sequencing technologies to discover potential viruses present in this type of lung cancer. Around 180 million single reads of 100 bases were generated for each BAC sample. Results None of the reads showed a significant similarity for Jaagsiekte sheep retrovirus (JSRV) and no other viruses were found except for endogenous retroviruses. Conclusions In conclusion, we have demonstrated the absence of JSRV and other known human viruses in five samples of well-characterized lepidic adenocarcinoma. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1669-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas Berthet
- Epidemiology and Physiopathology of Oncogenic Viruses Unit, Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France. .,Centre National de la Recherche Scientifique, UMR 3569, 28 rue du Docteur Roux, 75015, Paris, France. .,Département Zoonoses et Maladies Emergentes, Groupe Syndromes Cliniques et Virus Associés, Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.
| | - Lionel Frangeul
- Viruses and RNAi Unit, Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France.
| | - Ken André Olaussen
- INSERM - U981, 94805, Villejuif, France. .,Gustave Roussy, DHU TORINO, 94805, Villejuif, Paris, France. .,Univ Paris-Sud, UMR-S981, 94805, Villejuif, Paris, France.
| | - Elisabeth Brambilla
- INSERM U823, Institut Albert Bonniot-Université Joseph Fourier, Grenoble Cedex 09, France. .,Département d'Anatomie et Cytologie Pathologiques, CHU Albert Michallon, BP 217, 38043, Grenoble Cedex 09, France.
| | - Nicolas Dorvault
- INSERM - U981, 94805, Villejuif, France. .,Gustave Roussy, DHU TORINO, 94805, Villejuif, Paris, France. .,Univ Paris-Sud, UMR-S981, 94805, Villejuif, Paris, France.
| | - Philippe Girard
- Département thoracique, Institut Mutualiste Montsouris, 42 Boulevard Jourdan, 75014, Paris, France.
| | - Pierre Validire
- Département d'anatomie pathologique, Institut Mutualiste Montsouris, 42 Boulevard Jourdan, 75014, Paris, France.
| | - Elie Fadel
- INSERM, U999, 92350, Le Plessis-Robinson, France. .,Univ Paris-Sud, UMR-S999, 92350, Le Plessis-Robinson, France. .,Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Centre Chirurgical Marie Lannelongue, 92350, Le Plessis-Robinson, France.
| | - Christiane Bouchier
- Plateforme de Génomique, Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France.
| | - Antoine Gessain
- Epidemiology and Physiopathology of Oncogenic Viruses Unit, Institut Pasteur, 28 rue du Docteur Roux, 75015, Paris, France. .,Centre National de la Recherche Scientifique, UMR 3569, 28 rue du Docteur Roux, 75015, Paris, France.
| | - Jean-Charles Soria
- INSERM - U981, 94805, Villejuif, France. .,Gustave Roussy, DHU TORINO, 94805, Villejuif, Paris, France. .,Univ Paris-Sud, UMR-S981, 94805, Villejuif, Paris, France.
| |
Collapse
|
12
|
Monot M, Archer F, Gomes M, Mornex JF, Leroux C. Advances in the study of transmissible respiratory tumours in small ruminants. Vet Microbiol 2015; 181:170-7. [PMID: 26340900 DOI: 10.1016/j.vetmic.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sheep and goats are widely infected by oncogenic retroviruses, namely Jaagsiekte Sheep RetroVirus (JSRV) and Enzootic Nasal Tumour Virus (ENTV). Under field conditions, these viruses induce transformation of differentiated epithelial cells in the lungs for Jaagsiekte Sheep RetroVirus or the nasal cavities for Enzootic Nasal Tumour Virus. As in other vertebrates, a family of endogenous retroviruses named endogenous Jaagsiekte Sheep RetroVirus (enJSRV) and closely related to exogenous Jaagsiekte Sheep RetroVirus is present in domestic and wild small ruminants. Interestingly, Jaagsiekte Sheep RetroVirus and Enzootic Nasal Tumour Virus are able to promote cell transformation, leading to cancer through their envelope glycoproteins. In vitro, it has been demonstrated that the envelope is able to deregulate some of the important signaling pathways that control cell proliferation. The role of the retroviral envelope in cell transformation has attracted considerable attention in the past years, but it appears to be highly dependent of the nature and origin of the cells used. Aside from its health impact in animals, it has been reported for many years that the Jaagsiekte Sheep RetroVirus-induced lung cancer is analogous to a rare, peculiar form of lung adenocarcinoma in humans, namely lepidic pulmonary adenocarcinoma. The implication of a retrovirus related to Jaagsiekte Sheep RetroVirus is still controversial and under investigation, but the identification of an infectious agent associated with the development of lepidic pulmonary adenocarcinomas might help us to understand cancer development. This review explores the mechanisms of induction of respiratory cancers in small ruminants and the possible link between retrovirus and lepidic pulmonary adenocarcinomas in humans.
Collapse
Affiliation(s)
- M Monot
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France
| | - F Archer
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France
| | - M Gomes
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France
| | - J-F Mornex
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France; Hospices Civils de Lyon, France
| | - C Leroux
- INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France.
| |
Collapse
|