1
|
Yin C, Chi K, Chen Z, Zhuang S, Ye Y, Zhang B, Cai C. Development and pan-cancer validation of an epigenetics-based random survival forest model for prognosis prediction and drug response in OS. Front Pharmacol 2025; 16:1529525. [PMID: 39925852 PMCID: PMC11803151 DOI: 10.3389/fphar.2025.1529525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Background Osteosarcoma (OS) exhibits significant epigenetic heterogeneity, yet its systematic characterization and clinical implications remain largely unexplored. Methods We analyzed single-cell transcriptomes of five primary OS samples, identifying cell type-specific epigenetic features and their evolutionary trajectories. An epigenetics-based Random Survival Forest (RSF) model was constructed using 801 curated epigenetic factors and validated in multiple independent cohorts. Results Our analysis revealed distinct epigenetic states in the OS microenvironment, with particular activity in OS cells and osteoclasts. The RSF model identified key predictive genes including OLFML2B, ACTB, and C1QB, and demonstrated broad applicability across multiple cancer types. Risk stratification analysis revealed distinct therapeutic response patterns, with low-risk groups showing enhanced sensitivity to traditional chemotherapy drugs while high-risk groups responded better to targeted therapies. Conclusion Our epigenetics-based model demonstrates excellent prognostic accuracy (AUC>0.997 in internal validation, 0.832-0.929 in external cohorts) and provides a practical tool for treatment stratification. These findings establish a clinically applicable framework for personalized therapy selection in OS patients.
Collapse
Affiliation(s)
- Chaoyi Yin
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Kede Chi
- Department One of Spine Surgery, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, China
| | - Zhiqing Chen
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Shabin Zhuang
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Yongsheng Ye
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Binshan Zhang
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| | - Cailiang Cai
- Department of Orthopaedics, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, China
| |
Collapse
|
2
|
Pollin G, Chi YI, Mathison AJ, Zimmermann MT, Lomberk G, Urrutia R. Emergent properties of the lysine methylome reveal regulatory roles via protein interactions and histone mimicry. Epigenomics 2025; 17:5-20. [PMID: 39632680 DOI: 10.1080/17501911.2024.2435244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
AIMS Epigenomics has significantly advanced through the incorporation of Systems Biology approaches. This study aims to investigate the human lysine methylome as a system, using a data-science approach to reveal its emergent properties, particularly focusing on histone mimicry and the broader implications of lysine methylation across the proteome. METHODS We employed a data-science-driven OMICS approach, leveraging high-dimensional proteomic data to study the lysine methylome. The analysis focused on identifying sequence-based recognition motifs of lysine methyltransferases and evaluating the prevalence and distribution of lysine methylation across the human proteome. RESULTS Our analysis revealed that lysine methylation impacts 15% of the known proteome, with a notable bias toward mono-methylation. We identified sequence-based recognition motifs of 13 lysine methyltransferases, highlighting candidates for histone mimicry. These findings suggest that the selective inhibition of individual lysine methyltransferases could have systemic effects rather than merely targeting histone methylation. CONCLUSIONS The lysine methylome has significant mechanistic value and should be considered in the design and testing of therapeutic strategies, particularly in precision oncology. The study underscores the importance of considering non-histone proteins involved in DNA damage and repair, cell signaling, metabolism, and cell cycle pathways when targeting lysine methyltransferases.
Collapse
Affiliation(s)
- Gareth Pollin
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Young-In Chi
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela J Mathison
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen Lomberk
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul Urrutia
- Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine (Mellowes Center), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
3
|
Kim MS, Kim DH, Lee JS. A review of environmental epigenetics in aquatic invertebrates. MARINE POLLUTION BULLETIN 2024; 208:117011. [PMID: 39326327 DOI: 10.1016/j.marpolbul.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Aquatic ecosystems face significant challenges due to increasing human-induced environmental stressors. Recent studies emphasize the role of epigenetic mechanisms in the stress responses and adaptations of organisms to those stressors. Epigenetics influences gene expression, enabling phenotypic plasticity and transgenerational effects. Therefore, understanding the epigenetic responses of aquatic invertebrates to environmental stressors is imperative for aquatic ecosystem research. In this study, we organize the mechanisms of epigenetics in aquatic invertebrates and explore their roles in the responses of aquatic invertebrates to environmental stressors. Furthermore, we discuss the inheritance of epigenetic changes and their influence across generations in aquatic invertebrates. A comprehensive understanding of epigenetic responses is crucial for long-term ecosystem management and conservation strategies in the face of irreversible climate change in aquatic environments. In this review, we synthesize existing knowledge about environmental epigenetics in aquatic invertebrates to provide insights and suggest directions for future research.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
4
|
Zeine F, Jafari N, Baron D, Bowirrat A, Pinhasov A, Norling B, Martinez KC, Nami M, Manavi N, Sunder K, Rabin DM, Bagchi D, Khalsa J, Gold MS, Sipple D, Barzegar M, Bodhanapati J, Khader W, Carney P, Dennen CA, Gupta A, Elman I, Badgaiyan RD, Modestino EJ, Thanos PK, Hanna C, McLaughlin T, Cadet JL, Soni D, Braverman ER, Barh D, Giordano J, Edwards D, Ashford JW, Gondre-Lewis MC, Gilley E, Murphy KT, Lewandrowski KU, Sharafshah A, Makale M, Fuehrlein B, Blum K. Solving the Global Opioid Crisis: Incorporating Genetic Addiction Risk Assessment with Personalized Dopaminergic Homeostatic Therapy and Awareness Integration Therapy. JOURNAL OF ADDICTION PSYCHIATRY 2024; 8:50-95. [PMID: 39635461 PMCID: PMC11615735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Objectives The opioid crisis in the last few decades has mounted to a global level, impacting all areas of socioeconomic, demographic, geographic, and cultural boundaries. Traditional treatments have not been deemed to show the degree of efficacy necessary to address the crisis. The authors of this review paper have set forth an unprecedented and in-depth look into multi-factorial determinants that have contributed to the opioid crisis becoming global and multi-faceted. Methods For this narrative review/opinion article, we searched PsychINFO, PubMed, Google Scholar, and Web of Science databases to identify relevant articles on topics including the "opioid crisis," "opioid mechanisms," "genetics and epigenetics," "neuropharmacology," and "clinical aspects of opioid treatment and prevention." Since this was not a systematic review the articles selected could represent unitential bias. Results Despite some success achieved through Opioid Substitution Therapy (OST) in harm reduction, the annual mortality toll in the US alone surpasses 106,699 individuals, a figure expected to climb to 165,000 by 2025. Data from the Substance Abuse and Mental Health Services Administration's (SAMHSA) National Survey on Drug Abuse and Health (NSDUH) reveals that approximately 21.4% of individuals in the US engaged in illicit drug use in 2020, with 40.3 million individuals aged 12 or older experiencing a Substance Use Disorder (SUD). Provisional figures from the Centers for Disease Control and Prevention (CDC) indicate a troubling 15% increase in overdose deaths in 2021, rising from 93,655 in 2020 to 107,622, with opioids accounting for roughly 80,816 of these deaths. Conclusions We advocate reevaluating the "standard of care" and shifting towards inducing dopamine homeostasis by manipulating key neurotransmitter systems within the brain's reward cascade. We propose a paradigm shift towards a novel "standard of care" that begins with incorporating Genetic Addiction Risk Severity (GARS) testing to assess pre-addiction risk and vulnerability to opioid-induced addiction; emphasis should be placed on inducing dopamine homeostasis through safe and non-addictive alternatives like KB220, and comprehensive treatment approaches that address psychological, spiritual, and societal aspects of addiction through Awareness Integration Therapy (AIT).
Collapse
Affiliation(s)
- Foojan Zeine
- Awareness Integration Institute, San Clemente, USA
- Department of Health Science, California State University, Long Beach, USA
| | - Nicole Jafari
- Department of Applied Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, USA
| | - David Baron
- Center for Exercise and Sport Mental Health, Western University Health Sciences, Pomona, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Brian Norling
- MEMS Precision Technology, Inc., Santa Barbara, USA
- Acies Biomedical, Inc. Santa Barbara, USA
| | - Kathleen Carter Martinez
- Division of General Education-Berkeley College, Paramus Campus, New Jersey, USA
- Chey-Wind Center for Trauma and Healing, Peru, USA
| | - Mohammad Nami
- Brain, Cognition, and Behavior Unit, Brain Hub Academy, Dubai, UAE
| | - Nima Manavi
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, USA
| | - Keerthy Sunder
- Department of Psychiatry, University of California, UC Riverside School of Medicine, Riverside, USA
- Division of Neuromodulation Research, Karma Doctors and Karma TMS, Palm Springs, USA
| | | | - Debasis Bagchi
- Division of Nutrigenomics, Victory Nutrition International, LLC, Bonita Springs, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, USA
| | - Jag Khalsa
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University, School of Medicine, St. Louis, USA
| | - Daniel Sipple
- Minnesota Institute for Pain Management, Minnesota, USA
| | - Mojtaba Barzegar
- Hamad Medical Corporation, National Center for Cancer Care and Research (NCCCR), Doha, Qatar
| | - Jothsna Bodhanapati
- Division of Neuromodulation Research, Karma Doctors and Karma TMS, Palm Springs, USA
| | - Waseem Khader
- Karma Doctors, Palm Springs, USA
- Global Medical Detox Center, Menifee, CA, USA
| | - Paul Carney
- Division of Pediatric Neurology, University of Missouri, School of Medicine, Columbia, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, USA
| | | | - Igor Elman
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Department of Psychiatry, Harvard School of Medicine, Cambridge, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Case Western University School of Medicine, The Metro Health System, Cleveland, USA
- Department of Psychiatry, Mt. Sinai University, Ichan School of Medicine, New York, USA
| | | | - Panayotis K. Thanos
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, USA
| | - Thomas McLaughlin
- Division of Primary Care Research, Reward Deficiency Syndrome Clinics of America, Inc. Austin, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Baltimore, USA
| | - Diwanshu Soni
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, USA
| | - Eric R. Braverman
- Division of Clinical Neurological Research, The Kenneth Blum Neurogenetic and Behavioral Institute, LLC., Austin, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
| | | | | | - J. Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, USA
| | | | | | - Kevin T. Murphy
- Department of Radiation Oncology, University of California, San Diego, La Jolla, USA
| | - Kai-Uwe Lewandrowski
- Division of Personalized Pain Therapy Research, Center for Advanced Spine Care of Southern Arizona, Tucson, USA
- Department of Orthopaedics, Fundación Universitaria Sanitas, Bogotá, D.C., Colombia
- Department of Orthopedics, Hospital Universitário Gaffrée Guinle Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Milan Makale
- Department of Radiation Oncology, University of California, San Diego, La Jolla, USA
| | - Brian Fuehrlein
- Department of Psychiatry, School of Medicine, Yale University, New Haven, USA
| | - Kenneth Blum
- Center for Exercise and Sport Mental Health, Western University Health Sciences, Pomona, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Primary Care Research, Reward Deficiency Syndrome Clinics of America, Inc. Austin, USA
- Division of Clinical Neurological Research, The Kenneth Blum Neurogenetic and Behavioral Institute, LLC., Austin, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- JC’s Recovery and Counseling Center, Hollywood, USA
- Department of Psychiatry, University of Vermont, Burlington, USA
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Center for Advanced Spine Care of Southern Arizona, Tucson, USA
| |
Collapse
|
5
|
Zhao Z, Cai Z, Zhang S, Yin X, Jiang T, Shen C, Yin Y, Sun H, Chen Z, Han J, Zhang B. Activation of the FOXM1/ASF1B/PRDX3 axis confers hyperproliferative and antioxidative stress reactivity to gastric cancer. Cancer Lett 2024; 589:216796. [PMID: 38537775 DOI: 10.1016/j.canlet.2024.216796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Nucleosome assembly during DNA replication is dependent on histone chaperones. Recent studies suggest that dysregulated histone chaperones contribute to cancer progression, including gastric cancer (GC). Further studies are required to explore the prognostic and therapeutic implications of histone chaperones and their mechanisms of action in GC progression. Here we identified histone chaperone ASF1B as a potential biomarker for GC proliferation and prognosis. ASF1B was significantly upregulated in GC, which was associated with poor prognosis. In vitro and in vivo experiments demonstrated that the inhibition of ASF1B suppressed the malignant characteristics of GC, while overexpression of ASF1B had the opposite effect. Mechanistically, transcription factor FOXM1 directly bound to the ASF1B-promoter region, thereby regulating its transcription. Treatment with thiostrepton, a FOXM1 inhibitor, not only suppressed ASF1B expression, but also inhibited GC progression. Furthermore, ASF1B regulated the mitochondrial protein peroxiredoxin 3 (PRDX3) transcription in a FOXM1-dependent manner. The crucial role of ASF1B-regulated PRDX3 in GC cell proliferation and oxidative stress balance was also elucidated. In summary, our study suggests that the FOXM1-ASF1B-PRDX3 axis is a potential therapeutic target for treating GC.
Collapse
Affiliation(s)
- Zhou Zhao
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China; Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhaolun Cai
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Su Zhang
- State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaonan Yin
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Tianxiang Jiang
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyong Shen
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yin
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Sun
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhixin Chen
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Bo Zhang
- Gastric Cancer Center, Department of General Surgery, Research Laboratory of Tumor Epigenetics and Genomics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Chawla B, Csankovszki G. How Chromatin Motor Complexes Influence the Nuclear Architecture: A Review of Chromatin Organization, Cohesins, and Condensins with a Focus on C. elegans. DNA 2024; 4:84-103. [PMID: 39726802 PMCID: PMC11671135 DOI: 10.3390/dna4010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the chromatin organization field, with a special focus on chromatin motor complexes cohesin and condensin. Containing the highly conserved SMC proteins, these complexes are responsible for organizing chromatin during cell division. Additionally, research has demonstrated that condensin and cohesin also have important functions during interphase to shape the organization of chromatin and regulate expression of genes. Using the model organism C. elegans, the authors review the current knowledge of how these complexes perform such diverse roles and what open questions still exist in the field.
Collapse
Affiliation(s)
- Bahaar Chawla
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Gyӧrgyi Csankovszki
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
7
|
Klutstein M, Gonen N. Epigenetic aging of mammalian gametes. Mol Reprod Dev 2023; 90:785-803. [PMID: 37997675 DOI: 10.1002/mrd.23717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA methyltransferases (DNMTs). Histone deacetylases (HDAC) expression is also reduced, and a loss of heterochromatin marks occurs with age. As a consequence of heterochromatin loss, retrotransposon expression is elevated, and aged oocytes suffer from DNA damage. In sperm, aging affects sperm number, motility and fecundity, and epigenetic changes may constitute a part of this process. 5 methyl-cytosine (5mC) methylation is elevated in sperm from aged men, but methylation on Long interspersed nuclear elements (LINE) elements is reduced. Di and trimethylation of histone 3 lysine 9 (H3K9me2/3) is reduced in sperm from aged men and trimethylation of histone 3 lysine 27 (H3K27me3) is elevated. The protamine makeup of sperm from aged men is also changed, with reduced protamine expression and a misbalanced ratio between protamine proteins protamine P1 and protamine P2. The study of epigenetic reproductive aging is recently gaining interest. The current status of the field suggests that many aspects of gamete epigenetic aging are still open for investigation. The clinical applications of these investigations have far-reaching consequences for fertility and sociological human behavior.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
8
|
Kikuchi M, Morita S, Wakamori M, Sato S, Uchikubo-Kamo T, Suzuki T, Dohmae N, Shirouzu M, Umehara T. Epigenetic mechanisms to propagate histone acetylation by p300/CBP. Nat Commun 2023; 14:4103. [PMID: 37460559 DOI: 10.1038/s41467-023-39735-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Histone acetylation is important for the activation of gene transcription but little is known about its direct read/write mechanisms. Here, we report cryogenic electron microscopy structures in which a p300/CREB-binding protein (CBP) multidomain monomer recognizes histone H4 N-terminal tail (NT) acetylation (ac) in a nucleosome and acetylates non-H4 histone NTs within the same nucleosome. p300/CBP not only recognized H4NTac via the bromodomain pocket responsible for reading, but also interacted with the DNA minor grooves via the outside of that pocket. This directed the catalytic center of p300/CBP to one of the non-H4 histone NTs. The primary target that p300 writes by reading H4NTac was H2BNT, and H2BNTac promoted H2A-H2B dissociation from the nucleosome. We propose a model in which p300/CBP replicates histone N-terminal tail acetylation within the H3-H4 tetramer to inherit epigenetic storage, and transcribes it from the H3-H4 tetramer to the H2B-H2A dimers to activate context-dependent gene transcription through local nucleosome destabilization.
Collapse
Affiliation(s)
- Masaki Kikuchi
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Satoshi Morita
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Shin Sato
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomomi Uchikubo-Kamo
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
9
|
Shahraki K, Shahraki K, Ghasemi Boroumand P, Sheervalilou R. Promotor methylation in ocular surface squamous neoplasia development: epigenetics implications in molecular diagnosis. Expert Rev Mol Diagn 2023; 23:753-769. [PMID: 37493058 DOI: 10.1080/14737159.2023.2240238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION Cancer is heavily influenced by epigenetic mechanisms that include DNA methylation, histone modifications, and non-coding RNA. A considerable proportion of human malignancies are believed to be associated with global DNA hypomethylation, with localized hypermethylation at promoters of certain genes. AREA COVERED The present review aims to emphasize on recent investigations on the epigenetic landscape of ocular surface squamous neoplasia, that could be targeted/explored using novel approaches such as personalized medicine. EXPERT OPINION While the former is thought to contribute to genomic instability, promoter-specific hypermethylation might facilitate tumorigenesis by silencing tumor suppressor genes. Ocular surface squamous neoplasia, the most prevalent type of ocular surface malignancy, is suggested to be affected by epigenetic mechanisms, as well. Although the exact role of epigenetics in ocular surface squamous neoplasia has mostly been unexplored, recent findings have greatly contributed to our understanding regarding this pathology of the eye.
Collapse
Affiliation(s)
- Kourosh Shahraki
- Ocular Tissue Engineering Research Center, Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kianoush Shahraki
- Department of Ophthalmology, Zahedan University of Medical Sciences, Zahedan, Iran
- Cornea Department, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Paria Ghasemi Boroumand
- ENT, Head and Neck Research Center and Department, Iran University of Medical Science, Tehran, Iran
| | | |
Collapse
|
10
|
Manna S, Mishra J, Baral T, Kirtana R, Nandi P, Roy A, Chakraborty S, Niharika, Patra SK. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics 2023; 15:723-740. [PMID: 37661861 DOI: 10.2217/epi-2023-0235] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Chromatin modifications - including DNA methylation, modification of histones and recruitment of noncoding RNAs - are essential epigenetic events. Multiple sequential modifications converge into a complex epigenetic landscape. For example, promoter DNA methylation is recognized by MeCP2/methyl CpG binding domain proteins which further recruit SETDB1/SUV39 to attain a higher order chromatin structure by propagation of inactive epigenetic marks like H3K9me3. Many studies with new information on different epigenetic modifications and associated factors are available, but clear maps of interconnected pathways are also emerging. This review deals with the salient epigenetic crosstalk mechanisms that cells utilize for different cellular processes and how deregulation or aberrant gene expression leads to disease progression.
Collapse
Affiliation(s)
- Soumen Manna
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Jagdish Mishra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Tirthankar Baral
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - R Kirtana
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Piyasa Nandi
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Roy
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Subhajit Chakraborty
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Niharika
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Samir K Patra
- Epigenetics & Cancer Research Laboratory, Biochemistry & Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India
| |
Collapse
|
11
|
Khan MA, Tania M. Cordycepin and kinase inhibition in cancer. Drug Discov Today 2023; 28:103481. [PMID: 36584876 DOI: 10.1016/j.drudis.2022.103481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Cordycepin, a nucleoside from Cordyceps mushrooms, has many beneficial properties for health, including anticancer activities. In cancer cells, cordycepin targets various signaling molecules. Here, we review the possible anticancer mechanisms of cordycepin involving the targeting of kinases. Abnormal kinase expression is involved in cancer development and progression through different molecular mechanisms, including phosphorylation, amplification, genetic mutations, and epigenetic regulation. Research suggests that kinases, such as the c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK), AMP kinase (AMPK), phosphoinositide 3-kinase (PI3K)/Akt, extracellular signal-regulated kinase (ERK), mammalian target of rapamycin (mTOR), glycogen synthase kinase (GSK)-3β, and focal adhesion kinase (FAK) pathways, can be targeted by cordycepin and disrupting their activity. Given that kinase inhibitors can have crucial roles in cancer treatment, targeting kinases might be one of the molecular mechanisms involved in the anticancer potential of cordycepin.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China; Nature Study Society of Bangladesh, Dhaka, Bangladesh.
| | - Mousumi Tania
- Nature Study Society of Bangladesh, Dhaka, Bangladesh; Division of Molecular Cancer Biology, The Red-Green Research Center, Dhaka, Bangladesh.
| |
Collapse
|
12
|
Soujanya M, Bihani A, Hajirnis N, Pathak RU, Mishra RK. Nuclear architecture and the structural basis of mitotic memory. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:8. [PMID: 36725757 DOI: 10.1007/s10577-023-09714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.
Collapse
Affiliation(s)
- Mamilla Soujanya
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ashish Bihani
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Nikhil Hajirnis
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | - Rashmi U Pathak
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India.
- TIGS - Tata Institute for Genetics and Society, Bangalore, India.
| |
Collapse
|
13
|
Abstract
Dramatic nuclear reorganization occurs during early development to convert terminally differentiated gametes to a totipotent zygote, which then gives rise to an embryo. Aberrant epigenome resetting severely impairs embryo development and even leads to lethality. How the epigenomes are inherited, reprogrammed, and reestablished in this critical developmental period has gradually been unveiled through the rapid development of technologies including ultrasensitive chromatin analysis methods. In this review, we summarize the latest findings on epigenetic reprogramming in gametogenesis and embryogenesis, and how it contributes to gamete maturation and parental-to-zygotic transition. Finally, we highlight the key questions that remain to be answered to fully understand chromatin regulation and nuclear reprogramming in early development.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ke Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
14
|
Mitotic drive in asymmetric epigenetic inheritance. Biochem Soc Trans 2022; 50:675-688. [PMID: 35437581 PMCID: PMC9162470 DOI: 10.1042/bst20200267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/14/2023]
Abstract
Asymmetric cell division (ACD) produces two daughter cells with distinct cell fates. This division mode is widely used during development and by adult stem cells during tissue homeostasis and regeneration, which can be regulated by both extrinsic cues such as signaling molecules and intrinsic factors such as epigenetic information. While the DNA replication process ensures that the sequences of sister chromatids are identical, how epigenetic information is re-distributed during ACD has remained largely unclear in multicellular organisms. Studies of Drosophila male germline stem cells (GSCs) have revealed that sister chromatids incorporate pre-existing and newly synthesized histones differentially and segregate asymmetrically during ACD. To understand the underlying molecular mechanisms of this phenomenon, two key questions must be answered: first, how and when asymmetric histone information is established; and second, how epigenetically distinct sister chromatids are distinguished and segregated. Here, we discuss recent advances which help our understanding of this interesting and important cell division mode.
Collapse
|
15
|
Legartová S, Svobodová Kovaříková A, Běhalová Suchánková J, Polášek-Sedláčková H, Bártová E. Early recruitment of PARP-dependent m 8A RNA methylation at DNA lesions is subsequently accompanied by active DNA demethylation. RNA Biol 2022; 19:1153-1171. [PMID: 36382943 PMCID: PMC9673957 DOI: 10.1080/15476286.2022.2139109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA methylation, especially 6-methyladenosine (m6A)-modified RNAs, plays a specific role in DNA damage response (DDR). Here, we also observe that RNA modified at 8-methyladenosine (m8A) is recruited to UVA-damaged chromatin immediately after microirradiation. Interestingly, the level of m8A RNA at genomic lesions was reduced after inhibition of histone deacetylases and DNA methyltransferases. It appears in later phases of DNA damage response, accompanied by active DNA demethylation. Also, PARP inhibitor (PARPi), Olaparib, prevented adenosine methylation at microirradiated chromatin. PARPi abrogated not only m6A and m8A RNA positivity at genomic lesions, but also XRCC1, the factor of base excision repair (BER), did not recognize lesions in DNA. To this effect, Olaparib enhanced the genome-wide level of γH2AX. This histone modification interacted with m8A RNAs to a similar extent as m8A RNAs with DNA. Pronounced interaction properties we did not observe for m6A RNAs and DNA; however, m6A RNA interacted with XRCC1 with the highest efficiency, especially in microirradiated cells. Together, we show that the recruitment of m6A RNA and m8A RNA to DNA lesions is PARP dependent. We suggest that modified RNAs likely play a role in the BER mechanism accompanied by active DNA demethylation. In this process, γH2AX stabilizes m6A/m8A-positive RNA-DNA hybrid loops via its interaction with m8A RNAs. R-loops could represent basic three-stranded structures recognized by PARP-dependent non-canonical m6A/m8A-mediated DNA repair pathway.
Collapse
Affiliation(s)
- Soňa Legartová
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Alena Svobodová Kovaříková
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jana Běhalová Suchánková
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Hana Polášek-Sedláčková
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic,CONTACT Eva Bártová Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
16
|
Wang X, Wang L, Dou J, Yu T, Cao P, Fan N, Borjigin U, Nashun B. Distinct role of histone chaperone Asf1a and Asf1b during fertilization and pre-implantation embryonic development in mice. Epigenetics Chromatin 2021; 14:55. [PMID: 34906203 PMCID: PMC8670131 DOI: 10.1186/s13072-021-00430-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background Asf1 is a well-conserved histone chaperone that regulates multiple cellular processes in different species. Two paralogous genes, Asf1a and Asf1b exist in mammals, but their role during fertilization and early embryogenesis remains to be investigated further. Methods We analyzed the dynamics of histone chaperone Asf1a and Asf1b in oocytes and pre-implantation embryos in mice by immunofluorescence and real-time quantitative PCR, and further investigated the role of Asf1a and Asf1b during fertilization and pre-implantation development by specific Morpholino oligos-mediated knock down approach. Results Immunofluorescence with specific antibodies revealed that both Asf1a and Asf1b were deposited in the nuclei of fully grown oocytes, accumulated abundantly in zygote and 2-cell embryonic nuclei, but turned low at 4-cell stage embryos. In contrast to the weak but definite nuclear deposition of Asf1a, Asf1b disappeared from embryonic nuclei at morula and blastocyst stages. The knockdown of Asf1a and Asf1b by specific Morpholino oligos revealed that Asf1a but not Asf1b was required for the histone H3.3 assembly in paternal pronucleus. However, knockdown of either Asf1a or Asf1b expression decreased developmental potential of pre-implantation embryos. Furthermore, while Asf1a KD severely reduced H3K56 acetylation level and the expression of Oct4 in blastocyst stage embryos, Asf1b KD almost eliminated nuclear accumulation of proliferating cell marker-PCNA in morula stage embryos. These results suggested that histone chaperone Asf1a and Asf1b play distinct roles during fertilization and pre-implantation development in mice. Conclusions Our data suggested that both Asf1a and Asf1b are required for pre-implantation embryonic development. Asf1a regulates H3K56ac levels and Oct4 expression, while Asf1b safeguards pre-implantation embryo development by regulating cell proliferation. We also showed that Asf1a, but not Asf1b, was necessary for the assembly of histone H3.3 in paternal pronuclei after fertilization. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00430-7.
Collapse
Affiliation(s)
- Xuemei Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Lu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Jie Dou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Tianjiao Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Pengbo Cao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Na Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Uyunbilig Borjigin
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China
| | - Buhe Nashun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot, 010070, Inner Mongolia, China.
| |
Collapse
|
17
|
Özdemir I, Steiner FA. Transmission of chromatin states across generations in C. elegans. Semin Cell Dev Biol 2021; 127:133-141. [PMID: 34823984 DOI: 10.1016/j.semcdb.2021.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic inheritance refers to the transmission of phenotypes across generations without affecting the genomic DNA sequence. Even though it has been documented in many species in fungi, animals and plants, the mechanisms underlying epigenetic inheritance are not fully uncovered. Epialleles, the heritable units of epigenetic information, can take the form of several biomolecules, including histones and their post-translational modifications (PTMs). Here, we review the recent advances in the understanding of the transmission of histone variants and histone PTM patterns across generations in C. elegans. We provide a general overview of the intergenerational and transgenerational inheritance of histone PTMs and their modifiers and discuss the interplay among different histone PTMs. We also evaluate soma-germ line communication and its impact on the inheritance of epigenetic traits.
Collapse
Affiliation(s)
- Isa Özdemir
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Florian A Steiner
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva, Section of Biology, Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
18
|
Nagata K, Bajo KI, Mitomo H, Fujita R, Uehara R, Ijiro K, Yurimoto H. Visualization of DNA Replication in Single Chromosome by Stable Isotope Labeling. Cell Struct Funct 2021; 46:95-101. [PMID: 34565768 PMCID: PMC10511050 DOI: 10.1247/csf.21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/11/2021] [Indexed: 11/11/2022] Open
Abstract
Among the inheritance of cellular components during cell division, deoxyribonucleic acid (DNA) and its condensate (chromosome) are conventionally visualized using chemical tag-labeled nucleotide analogs. However, associated mutagenesis with nucleotide analogs in the visualization of chromosomes is cause for concern. This study investigated the efficiency of using stable isotope labels in visualizing the replicating cultured human cell-chromosomes, in the absence of analog labels, at a high spatial resolution of 100 nm. The distinct carbon isotope ratio between sister chromatids reflected the semi-conservative replication of individual DNA strands through cell cycles and suggested the renewal of histone molecules in daughter chromosomes. Thus, this study provides a new, powerful approach to trace and visualize cellular components with stable isotope labeling.Key words: stable isotope, chromosome replication, semi-conservative replication, imaging, mass spectrometry.
Collapse
Affiliation(s)
- Kosuke Nagata
- Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| | - Ken-ichi Bajo
- Natural History Sciences, Hokkaido University, Sapporo 001-0021, Japan
| | - Hideyuki Mitomo
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Department of Bioresource Science, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryota Uehara
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science (RIES), Hokkaido University, Sapporo 001-0021, Japan
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | | |
Collapse
|
19
|
Methylation patterns of Tf2 retrotransposons linked to rapid adaptive stress response in the brown planthopper (Nilaparvata lugens). Genomics 2021; 113:4214-4226. [PMID: 34774681 DOI: 10.1016/j.ygeno.2021.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2021] [Accepted: 11/07/2021] [Indexed: 11/23/2022]
Abstract
Transposable elements (TEs) exhibit vast diversity across insect orders and are one of the major factors driving insect evolution and speciation. Presence of TEs can be both beneficial and deleterious to their host. While it is well-established that TEs impact life-history traits, adaptations and survivability of insects under hostile environments, the influence of the ecological niche on TE-landscape remains unclear. Here, we analysed the dynamics of Tf2 retrotransposons in the brown planthopper (BPH), under environmental fluctuations. BPH, a major pest of rice, is found in almost all rice-growing ecosystems. We believe genome plasticity, attributed to TEs, has allowed BPH to adapt and colonise novel ecological niches. Our study revealed bimodal age-distribution for Tf2 elements in BPH, indicating the occurrence of two major transpositional events in its evolutionary history and their contribution in shaping BPH genome. While TEs can provide genome flexibility and facilitate adaptations, they impose massive load on the genome. Hence, we investigated the involvement of methylation in modulating transposition in BPH. We performed comparative analyses of the methylation patterns of Tf2 elements in BPH feeding on resistant- and susceptible-rice varieties, and also under pesticide stress, across different life-stages. Results confirmed that methylation, particularly in non-CG context, is involved in TE regulation and dynamics under stress. Furthermore, we observed differential methylation for BPH adults and nymphs, emphasising the importance of screening juvenile life-stages in understanding adaptive-stress-responses in insects. Collectively, this study enhances our understanding of the role of transposons in influencing the evolutionary trajectory and survival strategies of BPH across generations.
Collapse
|
20
|
Abstract
The field of epigenetics has exploded over the last two decades, revealing an astonishing level of complexity in the way genetic information is stored and accessed in eukaryotes. This expansion of knowledge, which is very much ongoing, has been made possible by the availability of evermore sensitive and precise molecular tools. This review focuses on the increasingly important role that chemistry plays in this burgeoning field. In an effort to make these contributions more accessible to the nonspecialist, we group available chemical approaches into those that allow the covalent structure of the protein and DNA components of chromatin to be manipulated, those that allow the activity of myriad factors that act on chromatin to be controlled, and those that allow the covalent structure and folding of chromatin to be characterized. The application of these tools is illustrated through a series of case studies that highlight how the molecular precision afforded by chemistry is being used to establish causal biochemical relationships at the heart of epigenetic regulation.
Collapse
Affiliation(s)
- John D Bagert
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| | - Tom W Muir
- Frick Chemistry Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA; ,
| |
Collapse
|
21
|
Roth DM, Baddam P, Lin H, Vidal-García M, Aponte JD, De Souza ST, Godziuk D, Watson AES, Footz T, Schachter NF, Egan SE, Hallgrímsson B, Graf D, Voronova A. The Chromatin Regulator Ankrd11 Controls Palate and Cranial Bone Development. Front Cell Dev Biol 2021; 9:645386. [PMID: 33996804 PMCID: PMC8117352 DOI: 10.3389/fcell.2021.645386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/31/2021] [Indexed: 11/19/2022] Open
Abstract
Epigenetic and chromatin regulation of craniofacial development remains poorly understood. Ankyrin Repeat Domain 11 (ANKRD11) is a chromatin regulator that has previously been shown to control neural stem cell fates via modulation of histone acetylation. ANKRD11 gene variants, or microdeletions of the 16q24.3 chromosomal region encompassing the ANKRD11 gene, cause KBG syndrome, a rare autosomal dominant congenital disorder with variable neurodevelopmental and craniofacial involvement. Craniofacial abnormalities include a distinct facial gestalt, delayed bone age, tooth abnormalities, delayed fontanelle closure, and frequently cleft or submucosal palate. Despite this, the dramatic phenotype and precise role of ANKRD11 in embryonic craniofacial development remain unexplored. Quantitative analysis of 3D images of KBG syndromic subjects shows an overall reduction in the size of the middle and lower face. Here, we report that mice with heterozygous deletion of Ankrd11 in neural crest cells (Ankrd11nchet) display a mild midfacial hypoplasia including reduced midfacial width and a persistent open fontanelle, both of which mirror KBG syndrome patient facial phenotypes. Mice with a homozygous Ankrd11 deletion in neural crest cells (Ankrd11ncko) die at birth. They show increased severity of several clinical manifestations described for KBG syndrome, such as cleft palate, retrognathia, midfacial hypoplasia, and reduced calvarial growth. At E14.5, Ankrd11 expression in the craniofacial complex is closely associated with developing bony structures, while expression at birth is markedly decreased. Conditional deletion of Ankrd11 leads to a reduction in ossification of midfacial bones, with several ossification centers failing to expand and/or fuse. Intramembranous bones show features of delayed maturation, with bone remodeling severely curtailed at birth. Palatal shelves remain hypoplastic at all developmental stages, with a local reduction in proliferation at E13.5. Our study identifies Ankrd11 as a critical regulator of intramembranous ossification and palate development and suggests that Ankrd11nchet and Ankrd11ncko mice may serve as pre-clinical models for KBG syndrome in humans.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Haiming Lin
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Marta Vidal-García
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jose David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah-Thea De Souza
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Devyn Godziuk
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Adrianne Eve Scovil Watson
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Nathan F. Schachter
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Sean E. Egan
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Daniel Graf
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Ban H, Sun W, Chen YH, Chen Y, Li F. Dri1 mediates heterochromatin assembly via RNAi and histone deacetylation. Genetics 2021; 218:6162161. [PMID: 33693625 DOI: 10.1093/genetics/iyab032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin, a transcriptionally silenced chromatin domain, is important for genome stability and gene expression. Histone 3 lysine 9 methylation (H3K9me) and histone hypoacetylation are conserved epigenetic hallmarks of heterochromatin. In fission yeast, RNA interference (RNAi) plays a key role in H3K9 methylation and heterochromatin silencing. However, how RNAi machinery and histone deacetylases (HDACs) are coordinated to ensure proper heterochromatin assembly is still unclear. Previously, we showed that Dpb4, a conserved DNA polymerase epsilon subunit, plays a key role in the recruitment of HDACs to heterochromatin during S phase. Here, we identified a novel RNA-binding protein Dri1 that interacts with Dpb4. GFP-tagged Dri1 forms distinct foci mostly in the nucleus, showing a high degree of colocalization with Swi6/Heterochromatin Protein 1. Deletion of dri1+ leads to defects in silencing, H3K9me, and heterochromatic siRNA generation. We also showed that Dri1 physically associates with heterochromatic transcripts, and is required for the recruitment of the RNA-induced transcriptional silencing (RITS) complex via interacting with the complex. Furthermore, loss of Dri1 decreases the association of the Sir2 HDAC with heterochromatin. We further demonstrated that the C-terminus of Dri1 that includes an intrinsically disordered (IDR) region and three zinc fingers is crucial for its role in silencing. Together, our evidences suggest that Dri1 facilitates heterochromatin assembly via the RNAi pathway and HDAC.
Collapse
Affiliation(s)
- Hyoju Ban
- Department of Biology, New York University, New York, NY 10003, USA
| | - Wenqi Sun
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Hang Chen
- Institute of Genetics and Developmental Biology, CAS Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
23
|
Afrose SS, Junaid M, Akter Y, Tania M, Zheng M, Khan MA. Targeting kinases with thymoquinone: a molecular approach to cancer therapeutics. Drug Discov Today 2020; 25:2294-2306. [PMID: 32721537 DOI: 10.1016/j.drudis.2020.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 01/02/2023]
Abstract
Kinases are enzymes that are important for cellular functions, but their overexpression has strong connections with carcinogenesis, rendering them important targets for anticancer drugs. Thymoquinone (TQ) is a natural compound with proven anticancer activities, at least in preclinical studies. TQ can target several kinases, including phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK/STAT), polo-like kinase 1 (PLK1), and tyrosine kinase in different cancer cells and animal models. Inhibiting the activity of kinases or suppressing their expression might be among the mechanisms of TQ anticancer activity. In this review, we discuss the role of TQ in kinase regulation in different cancer models.
Collapse
Affiliation(s)
| | - Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Meiling Zheng
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
24
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
25
|
Leite ML, Oliveira KBS, Cunha VA, Dias SC, da Cunha NB, Costa FF. Epigenetic Therapies in the Precision Medicine Era. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Michel Lopes Leite
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | | | - Victor Albuquerque Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Simoni Campos Dias
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
- Animal Biology DepartmentUniversidade de Brasília UnB, Campus Darcy Ribeiro. Brasilia DF 70910‐900 Brazil
| | - Nicolau Brito da Cunha
- Genomic Sciences and Biotechnology Program UCB ‐ Brasilia, SgAN 916, Modulo B, Bloco C, 70790‐160 Brasília DF Brazil
| | - Fabricio F. Costa
- Cancer Biology and Epigenomics ProgramAnn & Robert H Lurie Children's Hospital of Chicago Research Center, Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- Northwestern University's Feinberg School of Medicine 2430 N. Halsted St., Box 220 Chicago IL 60611 USA
- MATTER Chicago 222 W. Merchandise Mart Plaza, Suite 12th Floor Chicago IL 60654 USA
- Genomic Enterprise (www.genomicenterprise.com) San Diego, CA 92008 and New York NY 11581 USA
| |
Collapse
|
26
|
Yildirim O, Izgu EC, Damle M, Chalei V, Ji F, Sadreyev RI, Szostak JW, Kingston RE. S-phase Enriched Non-coding RNAs Regulate Gene Expression and Cell Cycle Progression. Cell Rep 2020; 31:107629. [PMID: 32402276 PMCID: PMC7954657 DOI: 10.1016/j.celrep.2020.107629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Many proteins that are needed for progression through S-phase are produced from transcripts that peak in the S-phase, linking temporal expression of those proteins to the time that they are required in cell cycle. Here, we explore the potential roles of long non-coding RNAs in cell cycle progression. We use a sensitive click-chemistry approach to isolate nascent RNAs in a human cell line, and we identify more than 900 long non-coding RNAs (lncRNAs) whose synthesis peaks during the S-phase. More than 200 of these are long intergenic non-coding RNAs (lincRNAs) with S-phase-specific expression. We characterize three of these lincRNAs by knockdown and find that all three lincRNAs are required for appropriate S-phase progression. We infer that non-coding RNAs are key regulatory effectors during the cell cycle, acting on distinct regulatory networks, and herein, we provide a large catalog of candidate cell-cycle regulatory RNAs.
Collapse
Affiliation(s)
- Ozlem Yildirim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Enver C Izgu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Manashree Damle
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vladislava Chalei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jack W Szostak
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Existence, Transition, and Propagation of Intermediate Silencing States in Ribosomal DNA. Mol Cell Biol 2019; 39:MCB.00146-19. [PMID: 31527077 DOI: 10.1128/mcb.00146-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/10/2019] [Indexed: 11/20/2022] Open
Abstract
The MET3 promoter (MET3pr) inserted into the silenced chromosome in budding yeast can overcome Sir2-dependent silencing upon induction and activate transcription in every single cell among a population. Despite the fact that MET3pr is turned on in all the cells, its activity still shows very high cell-to-cell variability. To understand the nature of such "gene expression noise," we followed the dynamics of the MET3pr-GFP expression inserted into ribosomal DNA (rDNA) using time-lapse microscopy. We found that the noisy "on" state is comprised of multiple substable states with discrete expression levels. These intermediate states stochastically transition between each other, with "up" transitions among different activated states occurring exclusively near the mitotic exit and "down" transitions occurring throughout the rest of the cell cycle. Such cell cycle dependence likely reflects the dynamic activity of the rDNA-specific RENT complex, as MET3pr-GFP expression in a telomeric locus does not have the same cell cycle dependence. The MET3pr-GFP expression in rDNA is highly correlated in mother and daughter cells after cell division, indicating that the silenced state in the mother cell is inherited in daughter cells. These states are disrupted by a brief repression and reset upon a second activation. Potential mechanisms behind these observations are further discussed.
Collapse
|
28
|
Abstract
Maintenance of genome integrity is a key process in all organisms. DNA polymerases (Pols) are central players in this process as they are in charge of the faithful reproduction of the genetic information, as well as of DNA repair. Interestingly, all eukaryotes possess a large repertoire of polymerases. Three protein complexes, DNA Pol α, δ, and ε, are in charge of nuclear DNA replication. These enzymes have the fidelity and processivity required to replicate long DNA sequences, but DNA lesions can block their progression. Consequently, eukaryotic genomes also encode a variable number of specialized polymerases (between five and 16 depending on the organism) that are involved in the replication of damaged DNA, DNA repair, and organellar DNA replication. This diversity of enzymes likely stems from their ability to bypass specific types of lesions. In the past 10–15 years, our knowledge regarding plant DNA polymerases dramatically increased. In this review, we discuss these recent findings and compare acquired knowledge in plants to data obtained in other eukaryotes. We also discuss the emerging links between genome and epigenome replication.
Collapse
|
29
|
Tuscher JJ, Day JJ. Multigenerational epigenetic inheritance: One step forward, two generations back. Neurobiol Dis 2019; 132:104591. [PMID: 31470104 DOI: 10.1016/j.nbd.2019.104591] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Modifications to DNA and histone proteins serve a critical regulatory role in the developing and adult brain, and over a decade of research has established the importance of these "epigenetic" modifications in a wide variety of brain functions across the lifespan. Epigenetic patterns orchestrate gene expression programs that establish the phenotypic diversity of various cellular classes in the central nervous system, play a key role in experience-dependent gene regulation in the adult brain, and are commonly implicated in neurodevelopmental, psychiatric, and neurodegenerative disease states. In addition to these established roles, emerging evidence indicates that epigenetic information can potentially be transmitted to offspring, giving rise to inter- and trans-generational epigenetic inheritance phenotypes. However, our understanding of the cellular events that participate in this information transfer is incomplete, and the ability of this transfer to overcome complete epigenetic reprogramming during embryonic development is highly controversial. This review explores the existing literature on multigenerational epigenetic mechanisms in the central nervous system. First, we focus on the cellular mechanisms that may perpetuate or counteract this type of information transfer, and consider how epigenetic modification in germline and somatic cells regulate important aspects of cellular and organismal development. Next, we review the potential phenotypes resulting from ancestral experiences that impact gene regulatory modifications, including how these changes may give rise to unique metabolic phenotypes. Finally, we discuss several caveats and technical limitations that influence multigenerational epigenetic effects. We argue that studies reporting multigenerational epigenetic changes impacting the central nervous system must be interpreted with caution, and provide suggestions for how epigenetic information transfer can be mechanistically disentangled from genetic and environmental influences on brain function.
Collapse
Affiliation(s)
- Jennifer J Tuscher
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jeremy J Day
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Roberti A, Valdes AF, Torrecillas R, Fraga MF, Fernandez AF. Epigenetics in cancer therapy and nanomedicine. Clin Epigenetics 2019; 11:81. [PMID: 31097014 PMCID: PMC6524244 DOI: 10.1186/s13148-019-0675-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
The emergence of nanotechnology applied to medicine has revolutionized the treatment of human cancer. As in the case of classic drugs for the treatment of cancer, epigenetic drugs have evolved in terms of their specificity and efficiency, especially because of the possibility of using more effective transport and delivery systems. The use of nanoparticles (NPs) in oncology management offers promising advantages in terms of the efficacy of cancer treatments, but it is still unclear how these NPs may be affecting the epigenome such that safe routine use is ensured. In this work, we summarize the importance of the epigenetic alterations identified in human cancer, which have led to the appearance of biomarkers or epigenetic drugs in precision medicine, and we describe the transport and release systems of the epigenetic drugs that have been developed to date.
Collapse
Affiliation(s)
- Annalisa Roberti
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-FINBA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Adolfo F Valdes
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Ramón Torrecillas
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC)-Universidad de Oviedo-Principado de Asturias, Avenida de Roma, 33011, Oviedo, Asturias, Spain.
| | - Agustin F Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), ISPA-FINBA-Hospital Universitario Central de Asturias HUCA, Universidad de Oviedo, Avenida de Roma, 33011, Oviedo, Asturias, Spain.
| |
Collapse
|
31
|
Primers on nutrigenetics and nutri(epi)genomics: Origins and development of precision nutrition. Biochimie 2019; 160:156-171. [PMID: 30878492 DOI: 10.1016/j.biochi.2019.03.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Understanding the relationship between genotype and phenotype is a central goal not just for genetics but also for medicine and biological sciences. Despite outstanding technological progresses, genetics alone is not able to completely explain phenotypes, in particular for complex diseases. Given the existence of a "missing heritability", growing attention has been given to non-mendelian mechanisms of inheritance and to the role of the environment. The study of interaction between gene and environment represents a challenging but also a promising field with high potential for health prevention, and epigenetics has been suggested as one of the best candidate to mediate environmental effects on the genome. Among environmental factors able to interact with both genome and epigenome, nutrition is one of the most impacting. Not just our genome influences the responsiveness to food and nutrients, but vice versa, nutrition can also modify gene expression through epigenetic mechanisms. In this complex picture, nutrigenetics and nutrigenomics represent appealing disciplines aimed to define new prospectives of personalized nutrition. This review introduces to the study of gene-environment interactions and describes how nutrigenetics and nutrigenomics modulate health, promoting or affecting healthiness through life-style, thus playing a pivotal role in modulating the effect of genetic predispositions.
Collapse
|
32
|
Dark-colored maple syrup treatment induces S-phase cell cycle arrest via reduced proliferating cell nuclear antigen expression in colorectal cancer cells. Oncol Lett 2019; 17:2713-2720. [PMID: 30854045 PMCID: PMC6365951 DOI: 10.3892/ol.2019.9928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/17/2018] [Indexed: 11/05/2022] Open
Abstract
Maple syrup is a natural sweetener that is consumed worldwide. It has been previously reported that dark-colored maple syrup exerts an inhibitory effect on colorectal cancer (CRC) proliferation and invasion. In the present study, the underlying mechanism of CRC cell growth inhibition was examined with dark-colored maple syrup treatment using a shotgun liquid chromatography-tandem mass spectrometry-based global proteomic approach. Applying a semi-quantitative method based on spectral counting, 388 proteins were identified with expression changes of >1.5-fold following dark-colored maple syrup treatment. Gene Ontology analysis revealed that these proteins possessed cell cycle-associated functions. It was also indicated that CRC cells treated with dark-colored maple syrup exhibited decreased proliferating cell nuclear antigen (PCNA) expression and S-phase cell cycle arrest. Dark-colored maple syrup treatment also resulted in altered expression of cell cycle-associated genes, including cyclin-dependent kinase (CDK)4 and CDK6. In conclusion, these data suggested that dark-colored maple syrup induced S-phase cell cycle arrest in CRC cells by reducing the expression of PCNA and regulating cell cycle-associated genes. These findings suggest that dark-colored maple syrup may be a source of compounds for the development of novel drugs for colorectal cancer treatment.
Collapse
|
33
|
Abstract
Plants, when challenged with any unfavorable condition, such as biotic or abiotic stress, adapt to the stress via physiological or structural changes. DNA methylation, an important epigenetic factor, plays an integral role in determining chromatin dynamicity and in turn regulates the process of gene transcription in eukaryotes. DNA methylation resulting in 5-methylcytosine interferes with the transcription process by hindering accessibility of the transcriptional machinery. Transcriptionally active genes are predominantly hypomethylated, whereas repressed genes exhibit hypermethylation. It can thus be interpreted that the presence of methylation in the promoter and upstream regions of loci represses their transcription and vice versa. Chop-PCR is a targeted DNA methylation detection technique that uses partial digestion by methylation-sensitive restriction enzymes (MSREs) followed by PCR amplification. The presence of cytosine methylation at the cleavage sites of the MSREs protects the DNA against digestion and therefore can be amplified using PCR. Enzymatic cleavage occurs unhindered at unmethylated restriction sites and subsequent PCR amplification of the target sequence is not observed.
Collapse
|
34
|
Xu J, Ma H, Jin J, Uttam S, Fu R, Huang Y, Liu Y. Super-Resolution Imaging of Higher-Order Chromatin Structures at Different Epigenomic States in Single Mammalian Cells. Cell Rep 2018; 24:873-882. [PMID: 30044984 PMCID: PMC6154382 DOI: 10.1016/j.celrep.2018.06.085] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/18/2018] [Accepted: 06/20/2018] [Indexed: 01/10/2023] Open
Abstract
Histone modifications influence higher-order chromatin structures at individual epigenomic states and chromatin environments to regulate gene expression. However, genome-wide higher-order chromatin structures shaped by different histone modifications remain poorly characterized. With stochastic optical reconstruction microscopy (STORM), we characterized the higher-order chromatin structures at their epigenomic states, categorized into three major types in interphase: histone acetylation marks form spatially segregated nanoclusters, active histone methylation marks form spatially dispersed larger nanodomains, and repressive histone methylation marks form condensed large aggregates. These distinct structural characteristics are also observed in mitotic chromosomes. Furthermore, active histone marks coincide with less compact chromatin and exhibit a higher degree of co-localization with other active marks and RNA polymerase II (RNAP II), while repressive marks coincide with densely packed chromatin and spatially distant from repressive marks and active RNAP II. Taken together, super-resolution imaging reveals three distinct chromatin structures at various epigenomic states, which may be spatially coordinated to impact transcription.
Collapse
Affiliation(s)
- Jianquan Xu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hongqiang Ma
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jingyi Jin
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing 100084, China
| | - Shikhar Uttam
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rao Fu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; College of Chemical Engineering, Northeast Electric Power University, Jilin City, Jilin Province 132012, China
| | - Yi Huang
- Magee-Women's Research Institute, University of Pittsburgh Cancer Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | - Yang Liu
- Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
35
|
Evidence for the implication of the histone code in building the genome structure. Biosystems 2018; 164:49-59. [DOI: 10.1016/j.biosystems.2017.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
|
36
|
Resetting the Yeast Epigenome with Human Nucleosomes. Cell 2017; 171:1508-1519.e13. [PMID: 29198523 DOI: 10.1016/j.cell.2017.10.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/11/2017] [Accepted: 10/24/2017] [Indexed: 01/23/2023]
Abstract
Humans and yeast are separated by a billion years of evolution, yet their conserved histones retain central roles in gene regulation. Here, we "reset" yeast to use core human nucleosomes in lieu of their own (a rare event taking 20 days), which initially only worked with variant H3.1. The cells adapt by acquiring suppressor mutations in cell-division genes or by acquiring certain aneuploid states. Converting five histone residues to their yeast counterparts restored robust growth. We reveal that humanized nucleosomes are positioned according to endogenous yeast DNA sequence and chromatin-remodeling network, as judged by a yeast-like nucleosome repeat length. However, human nucleosomes have higher DNA occupancy, globally reduce RNA content, and slow adaptation to new conditions by delaying chromatin remodeling. These humanized yeasts (including H3.3) pose fundamental new questions about how chromatin is linked to many cell processes and provide a platform to study histone variants via yeast epigenome reprogramming.
Collapse
|
37
|
Coordinated regulation of heterochromatin inheritance by Dpb3-Dpb4 complex. Proc Natl Acad Sci U S A 2017; 114:12524-12529. [PMID: 29109278 DOI: 10.1073/pnas.1712961114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During DNA replication, chromatin is disrupted ahead of the replication fork, and epigenetic information must be restored behind the fork. How epigenetic marks are inherited through DNA replication remains poorly understood. Histone H3 lysine 9 (H3K9) methylation and histone hypoacetylation are conserved hallmarks of heterochromatin. We previously showed that the inheritance of H3K9 methylation during DNA replication depends on the catalytic subunit of DNA polymerase epsilon, Cdc20. Here we show that the histone-fold subunit of Pol epsilon, Dpb4, interacts an uncharacterized small histone-fold protein, SPCC16C4.22, to form a heterodimer in fission yeast. We demonstrate that SPCC16C4.22 is nonessential for viability and corresponds to the true ortholog of Dpb3. We further show that the Dpb3-Dpb4 dimer associates with histone deacetylases, chromatin remodelers, and histones and plays a crucial role in the inheritance of histone hypoacetylation in heterochromatin. We solve the 1.9-Å crystal structure of Dpb3-Dpb4 and reveal that they form the H2A-H2B-like dimer. Disruption of Dpb3-Dpb4 dimerization results in loss of heterochromatin silencing. Our findings reveal a link between histone deacetylation and H3K9 methylation and suggest a mechanism for how two processes are coordinated during replication. We propose that the Dpb3-Dpb4 heterodimer together with Cdc20 serves as a platform for the recruitment of chromatin modifiers and remodelers that mediate heterochromatin assembly during DNA replication, and ensure the faithful inheritance of epigenetic marks in heterochromatin.
Collapse
|
38
|
Bártová E, Suchánková J, Legartová S, Malyšková B, Hornáček M, Skalníková M, Mašata M, Raška I, Kozubek S. PCNA is recruited to irradiated chromatin in late S-phase and is most pronounced in G2 phase of the cell cycle. PROTOPLASMA 2017; 254:2035-2043. [PMID: 28168519 DOI: 10.1007/s00709-017-1076-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
DNA repair is a complex process that prevents genomic instability. Many proteins play fundamental roles in regulating the optimal repair of DNA lesions. Proliferating cell nuclear antigen (PCNA) is a key factor that initiates recombination-associated DNA synthesis after injury. Here, in very early S-phase, we show that the fluorescence intensity of mCherry-tagged PCNA after local micro-irradiation was less than the fluorescence intensity of non-irradiated mCherry-PCNA-positive replication foci. However, PCNA protein accumulated at locally irradiated chromatin in very late S-phase of the cell cycle, and this effect was more pronounced in the following G2 phase. In comparison to the dispersed form of PCNA, a reduced mobile fraction appeared in PCNA-positive replication foci during S-phase, and we observed similar recovery time after photobleaching at locally induced DNA lesions. This diffusion of mCherry-PCNA in micro-irradiated regions was not affected by cell cycle phases. We also studied the link between function of PCNA and A-type lamins in late S-phase. We found that the accumulation of PCNA at micro-irradiated chromatin is identical in wild-type and A-type lamin-deficient cells. Only micro-irradiation of the nuclear interior, and thus the irradiation of internal A-type lamins, caused the fluorescence intensity of mCherry-tagged PCNA to increase. In summary, we showed that PCNA begins to play a role in DNA repair in late S-phase and that PCNA function in repair is maintained during the G2 phase of the cell cycle. However, PCNA mobility is reduced after local micro-irradiation regardless of the cell cycle phase.
Collapse
Affiliation(s)
- Eva Bártová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic.
| | - Jana Suchánková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Soňa Legartová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Barbora Malyšková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| | - Matúš Hornáček
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Magdalena Skalníková
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Martin Mašata
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Ivan Raška
- Institute of Cellular Biology and Pathology, the First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 01, Prague, Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
39
|
Acharya S, Hartmann M, Erhardt S. Chromatin-associated noncoding RNAs in development and inheritance. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28840663 DOI: 10.1002/wrna.1435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022]
Abstract
Noncoding RNAs (ncRNAs) have emerged as crucial players in chromatin regulation. Their diversity allows them to partake in the regulation of numerous cellular processes across species. During development, long and short ncRNAs act in conjunction with each other where long ncRNAs (lncRNAs) are best understood in establishing appropriate gene expression patterns, while short ncRNAs (sRNAs) are known to establish constitutive heterochromatin and suppress mobile elements. Additionally, increasing evidence demonstrates roles of sRNAs in several typically lncRNA-mediated processes such as dosage compensation, indicating a complex regulatory network of noncoding RNAs. Together, various ncRNAs establish many mitotically heritable epigenetic marks during development. Additionally, they participate in mechanisms that regulate maintenance of these epigenetic marks during the lifespan of the organism. Interestingly, some epigenetic traits are transmitted to the next generation(s) via paramutations or transgenerational inheritance mediated by sRNAs. In this review, we give an overview of the various functions and regulations of ncRNAs and the mechanisms they employ in the establishment and maintenance of epigenetic marks and multi-generational transmission of epigenetic traits. WIREs RNA 2017, 8:e1435. doi: 10.1002/wrna.1435 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sreemukta Acharya
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, and CellNetworks, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Mark Hartmann
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sylvia Erhardt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, and CellNetworks, Im Neuenheimer Feld 282, Heidelberg, Germany
| |
Collapse
|
40
|
Zane L, Chapus F, Pegoraro G, Misteli T. HiHiMap: single-cell quantitation of histones and histone posttranslational modifications across the cell cycle by high-throughput imaging. Mol Biol Cell 2017; 28:2290-2302. [PMID: 28615324 PMCID: PMC5555657 DOI: 10.1091/mbc.e16-12-0870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/22/2023] Open
Abstract
High-throughput Histone Mapping (HiHiMap) is an automated high-throughput imaging technique to determine histone and histone PTMs across the cell cycle at the single-cell level in a highly parallel format. The method is widely applicable to the systematic study of histone modifications in physiological and pathological settings. We describe High-throughput Histone Mapping (HiHiMap), a high-throughput imaging method to measure histones and histone posttranslational modifications (PTMs) in single cells. HiHiMap uses imaging-based quantification of DNA and cyclin A to stage individual cells in the cell cycle to determine the levels of histones or histone PTMs in each stage of the cell cycle. As proof of principle, we apply HiHiMap to measure the level of 21 core histones, histone variants, and PTMs in primary, immortalized, and transformed cells. We identify several histone modifications associated with oncogenic transformation. HiHiMap allows the rapid, high-throughput study of histones and histone PTMs across the cell cycle and the study of subpopulations of cells.
Collapse
Affiliation(s)
- Linda Zane
- Cell Biology of Genomes, National Institutes of Health, Bethesda, MD 20892
| | - Fleur Chapus
- Cell Biology of Genomes, National Institutes of Health, Bethesda, MD 20892
| | - Gianluca Pegoraro
- NCI High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tom Misteli
- Cell Biology of Genomes, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
41
|
Andreyeva EN, Bernardo TJ, Kolesnikova TD, Lu X, Yarinich LA, Bartholdy BA, Guo X, Posukh OV, Healton S, Willcockson MA, Pindyurin AV, Zhimulev IF, Skoultchi AI, Fyodorov DV. Regulatory functions and chromatin loading dynamics of linker histone H1 during endoreplication in Drosophila. Genes Dev 2017; 31:603-616. [PMID: 28404631 PMCID: PMC5393055 DOI: 10.1101/gad.295717.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/03/2017] [Indexed: 12/22/2022]
Abstract
Eukaryotic DNA replicates asynchronously, with discrete genomic loci replicating during different stages of S phase. Drosophila larval tissues undergo endoreplication without cell division, and the latest replicating regions occasionally fail to complete endoreplication, resulting in underreplicated domains of polytene chromosomes. Here we show that linker histone H1 is required for the underreplication (UR) phenomenon in Drosophila salivary glands. H1 directly interacts with the Suppressor of UR (SUUR) protein and is required for SUUR binding to chromatin in vivo. These observations implicate H1 as a critical factor in the formation of underreplicated regions and an upstream effector of SUUR. We also demonstrate that the localization of H1 in chromatin changes profoundly during the endocycle. At the onset of endocycle S (endo-S) phase, H1 is heavily and specifically loaded into late replicating genomic regions and is then redistributed during the course of endoreplication. Our data suggest that cell cycle-dependent chromosome occupancy of H1 is governed by several independent processes. In addition to the ubiquitous replication-related disassembly and reassembly of chromatin, H1 is deposited into chromatin through a novel pathway that is replication-independent, rapid, and locus-specific. This cell cycle-directed dynamic localization of H1 in chromatin may play an important role in the regulation of DNA replication timing.
Collapse
Affiliation(s)
- Evgeniya N Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Travis J Bernardo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Tatyana D Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Xingwu Lu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Lyubov A Yarinich
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Xiaohan Guo
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Olga V Posukh
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Sean Healton
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Michael A Willcockson
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
| | - Igor F Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russian Federation
- Novosibirsk State University, Novosibirsk 630090, Russian Federation
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
42
|
Aladjem MI, Redon CE. Order from clutter: selective interactions at mammalian replication origins. Nat Rev Genet 2017; 18:101-116. [PMID: 27867195 PMCID: PMC6596300 DOI: 10.1038/nrg.2016.141] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian chromosome duplication progresses in a precise order and is subject to constraints that are often relaxed in developmental disorders and malignancies. Molecular information about the regulation of DNA replication at the chromatin level is lacking because protein complexes that initiate replication seem to bind chromatin indiscriminately. High-throughput sequencing and mathematical modelling have yielded detailed genome-wide replication initiation maps. Combining these maps and models with functional genetic analyses suggests that distinct DNA-protein interactions at subgroups of replication initiation sites (replication origins) modulate the ubiquitous replication machinery and supports an emerging model that delineates how indiscriminate DNA-binding patterns translate into a consistent, organized replication programme.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Neuhof M, Levin M, Rechavi O. Vertically- and horizontally-transmitted memories - the fading boundaries between regeneration and inheritance in planaria. Biol Open 2016; 5:1177-88. [PMID: 27565761 PMCID: PMC5051648 DOI: 10.1242/bio.020149] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Weismann barrier postulates that genetic information passes only from the germline to the soma and not in reverse, thus providing an obstacle to the inheritance of acquired traits. Certain organisms such as planaria – flatworms that can reproduce through asymmetric fission – avoid the limitations of this barrier, thus blurring the distinction between the processes of inheritance and development. In this paper, we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria. Biased distribution of epigenetic effects in asymmetrically produced parts of a regenerating organism could increase variation and therefore affect the species' evolution. The maintenance and fixing of somatic experiences, encoded via stable biochemical or physiological states, may contribute to evolutionary processes in the absence of classically defined generations. We discuss different mechanisms that could induce asymmetry between the two organisms that eventually develop from the regenerating parts, including one particularly fascinating source – the potential capacity of the brain to produce long-lasting epigenetic changes. Summary: In this hypothesis paper we re-evaluate canonical ideas about the interaction between developmental, genetic and evolutionary processes through the lens of planaria, an invertebrate model organism which challenges fundamental assumptions regarding reproduction.
Collapse
Affiliation(s)
- Moran Neuhof
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
44
|
Pagliaroli L, Vető B, Arányi T, Barta C. From Genetics to Epigenetics: New Perspectives in Tourette Syndrome Research. Front Neurosci 2016; 10:277. [PMID: 27462201 PMCID: PMC4940402 DOI: 10.3389/fnins.2016.00277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/06/2016] [Indexed: 11/13/2022] Open
Abstract
Gilles de la Tourette Syndrome (TS) is a neurodevelopmental disorder marked by the appearance of multiple involuntary motor and vocal tics. TS presents high comorbidity rates with other disorders such as attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). TS is highly heritable and has a complex polygenic background. However, environmental factors also play a role in the manifestation of symptoms. Different epigenetic mechanisms may represent the link between these two causalities. Epigenetic regulation has been shown to have an impact in the development of many neuropsychiatric disorders, however very little is known about its effects on Tourette Syndrome. This review provides a summary of the recent findings in genetic background of TS, followed by an overview on different epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression. Epigenetic studies in other neurological and psychiatric disorders are discussed along with the TS-related epigenetic findings available in the literature to date. Moreover, we are proposing that some general epigenetic mechanisms seen in other neuropsychiatric disorders may also play a role in the pathogenesis of TS.
Collapse
Affiliation(s)
- Luca Pagliaroli
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis UniversityBudapest, Hungary; Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary
| | - Borbála Vető
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of Sciences Budapest, Hungary
| | - Tamás Arányi
- Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary; Centre National de la Recherche Scientifique UMR 6214, Institut National de la Santé et de la Recherche Médicale U1083, University of AngersAngers, France
| | - Csaba Barta
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University Budapest, Hungary
| |
Collapse
|
45
|
Posukh OV, Maksimov DA, Skvortsova KN, Koryakov DE, Belyakin SN. The effects of SUUR protein suggest its role in repressive chromatin renewal during replication in Drosophila. Nucleus 2016. [PMID: 26211696 DOI: 10.1080/19491034.2015.1074366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Replication of chromosomes is central to heredity. To become available for replication machinery, DNA invariably needs to dissociate from chromatin proteins. Yet, chromatin landscape must be promptly re-established during or soon after replication. Although this process underlies the epigenetic inheritance, little is known about its molecular mechanisms. This mini-review is focused on Drosophila melanogaster SUppressor of UnderReplication (SUUR) protein, which is involved both in replication and chromatin maintenance in polytene tissues. Existing data suggest that it is involved in the regulation of chromatin renewal during replication. According to this model, SUUR protein moves along the chromosomes together with the replication complex. When the replication fork enters the repressed, H3K27me3- or H3K9me3-enriched, chromatin, SUUR-containing complex slows down the replisome until these histone modifications are properly placed on the newly-synthesized DNA strands. Suggested model provides an insight into the mechanism of epigenetic information inheritance. This hypothesis could be tested by further analysis of the interplay between local enrichment of repressive histone modifications and the replication fork progression rate.
Collapse
Affiliation(s)
- Olga V Posukh
- a Institute of Molecular and Cellular Biology SB RAS ; Novosibirsk , Russia
| | | | | | | | | |
Collapse
|
46
|
Moyon S, Liang J, Casaccia P. Epigenetics in NG2 glia cells. Brain Res 2016; 1638:183-198. [PMID: 26092401 PMCID: PMC4683112 DOI: 10.1016/j.brainres.2015.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022]
Abstract
The interplay of transcription and epigenetic marks is essential for oligodendrocyte progenitor cell (OPC) proliferation and differentiation during development. Here, we review the recent advances in this field and highlight mechanisms of transcriptional repression and activation involved in OPC proliferation, differentiation and plasticity. We also describe how dysregulation of these epigenetic events may affect demyelinating disorders, and consider potential ways to manipulate NG2 cell behavior through modulation of the epigenome. This article is part of a Special Issue entitled SI:NG2-glia(Invited only).
Collapse
Affiliation(s)
- Sarah Moyon
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jialiang Liang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrizia Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
47
|
Yildirim O, Kingston RE. Molecular Dissection of Chromatin Maturation via Click Chemistry. ACTA ACUST UNITED AC 2016; 114:21.33.1-21.33.11. [PMID: 27038388 DOI: 10.1002/0471142727.mb2133s114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
DNA synthesis and chromatin assembly are the two most critical processes of eukaryotic cell division. It is well known that their coordination is tightly regulated. Although the interplay between DNA and its higher-order chromatin state is integral for many processes, including cell survival and genome stability, little is known about the re-establishment of chromatin structure during the cell cycle. Moreover, the extent to which the fidelity of the newly synthesized chromatin plays a role in the maintenance of cellular identity is still under debate. Here, we present a novel approach to purify nascent chromatin from the replication fork. In this protocol, we take advantage of click chemistry, a method that allows efficient conjugation of azide-containing biotin molecules to ethynyl-labeled nucleic acids. Using this approach, we selectively enrich biotin-nucleic acid conjugates via streptavidin affinity purification to pull down and assess chromatin states as well as chromatin-bound complexes from newly replicated DNA fragments.
Collapse
Affiliation(s)
- Ozlem Yildirim
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Annunziato AT. The Fork in the Road: Histone Partitioning During DNA Replication. Genes (Basel) 2015; 6:353-71. [PMID: 26110314 PMCID: PMC4488668 DOI: 10.3390/genes6020353] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
In the following discussion the distribution of histones at the replication fork is examined, with specific attention paid to the question of H3/H4 tetramer "splitting." After a presentation of early experiments surrounding this topic, more recent contributions are detailed. The implications of these findings with respect to the transmission of histone modifications and epigenetic models are also addressed.
Collapse
Affiliation(s)
- Anthony T Annunziato
- Biology Department, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
49
|
Bowman GD, Poirier MG. Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 2015; 115:2274-95. [PMID: 25424540 PMCID: PMC4375056 DOI: 10.1021/cr500350x] [Citation(s) in RCA: 349] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Gregory D. Bowman
- T.
C. Jenkins Department of Biophysics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael G. Poirier
- Department of Physics, and Department of
Chemistry and Biochemistry, The Ohio State
University, Columbus, Ohio 43210, United
States
| |
Collapse
|
50
|
Houlihan SL, Feng Y. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation. eLife 2014; 3:e03297. [PMID: 25245017 PMCID: PMC4170211 DOI: 10.7554/elife.03297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Successfully completing the S phase of each cell cycle ensures genome integrity. Impediment of DNA replication can lead to DNA damage and genomic disorders. In this study, we show a novel function for NDE1, whose mutations cause brain developmental disorders, in safeguarding the genome through S phase during early steps of neural progenitor fate restrictive differentiation. Nde1 mutant neural progenitors showed catastrophic DNA double strand breaks concurrent with the DNA replication. This evoked DNA damage responses, led to the activation of p53-dependent apoptosis, and resulted in the reduction of neurons in cortical layer II/III. We discovered a nuclear pool of Nde1, identified the interaction of Nde1 with cohesin and its associated chromatin remodeler, and showed that stalled DNA replication in Nde1 mutants specifically occurred in mid-late S phase at heterochromatin domains. These findings suggest that NDE1-mediated heterochromatin replication is indispensible for neuronal differentiation, and that the loss of NDE1 function may lead to genomic neurological disorders.
Collapse
Affiliation(s)
- Shauna L Houlihan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
- Driskill Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Yuanyi Feng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|