1
|
Krzyżek P. Helicobacter pylori Efflux Pumps: A Double-Edged Sword in Antibiotic Resistance and Biofilm Formation. Int J Mol Sci 2024; 25:12222. [PMID: 39596287 PMCID: PMC11594842 DOI: 10.3390/ijms252212222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Helicobacter pylori is a major pathogen associated with various gastric diseases. Despite decades of research, the treatment of H. pylori remains challenging. One of the primary mechanisms contributing to failures of therapies targeting this bacterium is genetic mutations in drug target sites, although the growing body of scientific data highlights that efflux pumps may also take part in this process. Efflux pumps are proteinaceous transporters actively expelling antimicrobial agents from the interior of the targeted cells and reducing the intracellular concentration of these compounds. Considering that efflux pumps contribute to both antimicrobial resistance and biofilm formation, an in-depth understanding of their properties may constitute a cornerstone in the development of novel therapeutics against H. pylori. In line with this, the aim of the current review is to describe the multitude of efflux pumps produced by H. pylori and present the data describing the involvement of these proteins in tolerance and/or resistance to various classes of antimicrobial substances.
Collapse
Affiliation(s)
- Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
2
|
Starkova D, Gladyshev N, Polev D, Saitova A, Egorova S, Svarval A. First insight into the whole genome sequence variations in clarithromycin resistant Helicobacter pylori clinical isolates in Russia. Sci Rep 2024; 14:20108. [PMID: 39209935 PMCID: PMC11362316 DOI: 10.1038/s41598-024-70977-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Clarithromycin (CLR) is currently a key antibiotic for Helicobacter pylori infection treatment, however, the data on CLR resistance patterns in Russia are missing. Here, we applied WGS-based approach to H. pylori clinical isolates from Russia to comprehensively investigate sequence variation, identify putative markers of CLR resistance and correlate them with phenotypic susceptibility testing. The phenotypic susceptibility of 44 H. pylori isolates (2014-2022) to CLR was determined by disc diffusion method: 23 isolates were CLR-resistant and 21-CLR-susceptible. All isolates were subjected to WGS and submitted to GenBank. Based on complete sequence analysis, we showed that among all sequence variants, the combination of mutations A2146G/A2147G in the 23S rRNA gene is the most reliable for prediction of phenotypic susceptibility. For the first time, the average number of mutations in 106 virulence-associated genes between resistant and susceptible groups were compared. Moreover, this study presents the first WGS insight into genetic diversity of H. pylori in Russia with a particular focus on the molecular basis of drug resistance: the novel mutations were described as potential markers for the resistance development. Of these, the most prominent was a frameshift deletion (252:CGGGT) in HP0820 coding region, which is a good candidate for further investigation.
Collapse
Affiliation(s)
- Daria Starkova
- Laboratory of Identification of the Pathogens/Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Mira Street, 197101, Russia.
| | - Nikita Gladyshev
- Laboratory of Identification of the Pathogens, St. Petersburg Pasteur Institute, St. Petersburg, Mira Street, 14, 197101, Russia
| | - Dmitrii Polev
- Metagenomics Research Group, St. Petersburg Pasteur Institute, St. Petersburg, Mira Street, 197101, Russia
| | - Alina Saitova
- Metagenomics Research Group, St. Petersburg Pasteur Institute, St. Petersburg, Mira Street, 197101, Russia
| | - Svetlana Egorova
- Laboratory of Identification of the Pathogens, St. Petersburg Pasteur Institute, St. Petersburg, Mira Street, 14, 197101, Russia
| | - Alena Svarval
- Laboratory of Identification of the Pathogens, St. Petersburg Pasteur Institute, St. Petersburg, Mira Street, 14, 197101, Russia
| |
Collapse
|
3
|
Morales-Durán N, León-Buitimea A, Morones-Ramírez JR. Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Heliyon 2024; 10:e27984. [PMID: 38510041 PMCID: PMC10950705 DOI: 10.1016/j.heliyon.2024.e27984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global health threat. Misuse and overuse of antimicrobials are the main drivers in developing drug-resistant bacteria. The emergence of the rapid global spread of multi-resistant bacteria requires urgent multisectoral action to generate novel treatment alternatives. Combination therapy offers the potential to exploit synergistic effects for enhanced antibacterial efficacy of drugs. Understanding the complex dynamics and kinetics of drug interactions in combination therapy is crucial. Therefore, this review outlines the current advances in antibiotic resistance's evolutionary and genetic dynamics in combination therapies-exposed bacteria. Moreover, we also discussed four pivotal future research areas to comprehend better the development of antibiotic resistance in bacteria treated with combination strategies.
Collapse
Affiliation(s)
- Nami Morales-Durán
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| | - José R. Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, 66455, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, 66628, Mexico
| |
Collapse
|
4
|
Yu J, Jia Y, Yu Q, Lin L, Li C, Chen B, Zhong P, Lin X, Li H, Sun Y, Zhong X, He Y, Huang X, Lin S, Pan Y. Deciphering complex antibiotic resistance patterns in Helicobacter pylori through whole genome sequencing and machine learning. Front Cell Infect Microbiol 2024; 13:1306368. [PMID: 38379956 PMCID: PMC10878306 DOI: 10.3389/fcimb.2023.1306368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/06/2023] [Indexed: 02/22/2024] Open
Abstract
Introduction Helicobacter pylori (H.pylori, Hp) affects billions of people worldwide. However, the emerging resistance of Hp to antibiotics challenges the effectiveness of current treatments. Investigating the genotype-phenotype connection for Hp using next-generation sequencing could enhance our understanding of this resistance. Methods In this study, we analyzed 52 Hp strains collected from various hospitals. The susceptibility of these strains to five antibiotics was assessed using the agar dilution assay. Whole-genome sequencing was then performed to screen the antimicrobial resistance (AMR) genotypes of these Hp strains. To model the relationship between drug resistance and genotype, we employed univariate statistical tests, unsupervised machine learning, and supervised machine learning techniques, including the development of support vector machine models. Results Our models for predicting Amoxicillin resistance demonstrated 66% sensitivity and 100% specificity, while those for Clarithromycin resistance showed 100% sensitivity and 100% specificity. These results outperformed the known resistance sites for Amoxicillin (A1834G) and Clarithromycin (A2147), which had sensitivities of 22.2% and 87%, and specificities of 100% and 96%, respectively. Discussion Our study demonstrates that predictive modeling using supervised learning algorithms with feature selection can yield diagnostic models with higher predictive power compared to models relying on single single-nucleotide polymorphism (SNP) sites. This approach significantly contributes to enhancing the precision and effectiveness of antibiotic treatment strategies for Hp infections. The application of whole-genome sequencing for Hp presents a promising pathway for advancing personalized medicine in this context.
Collapse
Affiliation(s)
- Jianwei Yu
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yan Jia
- Department of Gastroenterology, the 7Medical Center of PLA General Hospital, Beijing, China
| | - Qichao Yu
- Center for Systems Biology, Intelliphecy, Main Building, Beishan Industrial Zone, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lan Lin
- Department of Gastroenterology, Xiamen Humanity Hospital, Xiamen, Fujian, China
| | - Chao Li
- Department of Gastroenterology, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Bowang Chen
- Center for Systems Biology, Intelliphecy, Main Building, Beishan Industrial Zone, Shenzhen, Guangdong, China
- Department of Data Science, Intelliphecy, Nanjing, Jiangsu, China
| | - Pingyu Zhong
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Xueqing Lin
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Huilan Li
- Department of Nephrology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yinping Sun
- Department of Gastroenterology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Xuejing Zhong
- Department of Science and Education, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yuqi He
- Department of Gastroenterology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xiaoyun Huang
- Center for Systems Biology, Intelliphecy, Main Building, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Shuangming Lin
- Department of Gastrointestinal Surgery, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
5
|
Ishibashi F, Suzuki S, Nagai M, Mochida K, Morishita T. Optimizing Helicobacter pylori Treatment: An Updated Review of Empirical and Susceptibility Test-Based Treatments. Gut Liver 2023; 17:684-697. [PMID: 36843419 PMCID: PMC10502504 DOI: 10.5009/gnl220429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 02/28/2023] Open
Abstract
As the rate of discovery of drug-resistant Helicobacter pylori cases increases worldwide, the relevant societies have updated their guidelines for primary eradication regimens. A promising strategy against drug-resistant H. pylori is tailored therapy based on the results of an antibiotic susceptibility test; however, it is difficult to apply this strategy to all cases. Although culture-based antibiotic susceptibility tests can assess resistance to any antimicrobial agent, their greatest disadvantage is the time required to draw a conclusion. In contrast, molecular-based methods, such as polymerase chain reaction, can rapidly determine the presence of resistance, although a single test can only test for one type of antimicrobial agent. Additionally, the limited availability of facilities for molecular-based methods has hindered their widespread use. Therefore, low-cost, minimally invasive, simple, and effective primary regimens are needed. Several studies have compared the efficacy of the latest primary eradication regimens against that of tailored therapies, and their results have shaped guidelines. This article reviews the latest research on empirical and tailored treatments for H. pylori infections. Evidence for the superiority of tailored therapy over empirical therapy is still limited and varies by region and treatment regimen. A network meta-analysis comparing different empirical treatment regimens showed that vonoprazan triple therapy provides a superior eradication effect. Recently, favorable results towards vonoprazan dual therapy have been reported, as it reached eradication levels similar to those of vonoprazan triple therapy. Both vonoprazan dual therapy and tailored therapy based on antibiotic susceptibility tests could contribute to future treatment strategies.
Collapse
Affiliation(s)
- Fumiaki Ishibashi
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Japan
| | - Sho Suzuki
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Japan
| | - Mizuki Nagai
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Japan
| | - Kentaro Mochida
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Japan
| | - Tetsuo Morishita
- Department of Gastroenterology, International University of Health and Welfare Ichikawa Hospital, Ichikawa, Japan
| |
Collapse
|
6
|
Fernández-Caso B, Miqueleiz A, Alarcón T. Whole Genome Sequencing for Studying Helicobacter pylori Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:1135. [PMID: 37508231 PMCID: PMC10376898 DOI: 10.3390/antibiotics12071135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance (AMR) is an alarming concern worldwide and Helicobacter pylori, one of the most prevalent bacteria, is not an exception. With antibiotics being its primary therapy, increasing resistance leads to a higher rate of treatment failure. Understanding the genomic mechanisms of resistance to clarithromycin, levofloxacin, metronidazole, amoxicillin, tetracycline, and rifampicin through next-generation sequencing-based molecular tools, such as whole genome sequencing (WGS), can be of great value, not only to direct a patient's treatment, but also to establish and optimize treatment guidelines according to the local epidemiology and to avoid the use of inappropriate antibiotics. WGS approaches allow us to gain insight into the genomic determinants involved in AMR. To this end, different pipelines and platforms are continuously being developed. In this study, we take a more detailed view of the use and progression of WGS for in-depth study of H. pylori's AMR.
Collapse
Affiliation(s)
| | - Ana Miqueleiz
- Department of Microbiology, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Teresa Alarcón
- Department of Microbiology, Hospital Universitario La Princesa, 28006 Madrid, Spain
| |
Collapse
|
7
|
Nista EC, Pellegrino A, Giuli L, Candelli M, Schepis T, De Lucia SS, Ojetti V, Franceschi F, Gasbarrini A. Clinical Implications of Helicobacter pylori Antibiotic Resistance in Italy: A Review of the Literature. Antibiotics (Basel) 2022; 11:1452. [PMID: 36290110 PMCID: PMC9598780 DOI: 10.3390/antibiotics11101452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori (H. pylori) resistance to antibiotics has increased worldwide in recent decades, especially to clarithromycin. As a result, the World Health Organization (WHO) identified clarithromycin-resistant H. pylori as a "high priority" pathogen in 2017. As international guidelines recommend empirical therapy as first-line treatment, it is crucial to know local resistance rates and history of antibiotic use to determine the most appropriate first-line antibiotic treatment. Italy is one of the European countries with the highest prevalence of H. pylori infection and the highest percentage of antibiotic-resistant H. pylori. The aim of this review is to summarize all data on H. pylori antibiotic resistance in Italy in order to quantify the current rate and determine the most effective therapeutic approach. The study confirms an elevated level of resistance to clarithromycin, metronidazole, and levofloxacin in Italy. In addition, our results show a satisfactory eradication rate for a bismuth-based regimen when used as first- or second-line treatment. Naive patients are also successfully treated with clarithromycin-based quadruple therapies. Considering the good results of bismuth-based therapy as recovery therapy, this argues for the potential use of clarithromycin quadruple therapy as a first-line treatment.
Collapse
Affiliation(s)
- Enrico Celestino Nista
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Pellegrino
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Giuli
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Tommaso Schepis
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Sofia De Lucia
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
8
|
Liu M, Zhu P, Zhang L, Gong Y, Wang C, Sun L, Wang L, Chen R, Mao Y, Fu X, Zhang L, Xu T, Ji Y, Dong Q, Ma B, Zhang J, Xu J. Single-Cell Identification, Drug Susceptibility Test, and Whole-genome Sequencing of Helicobacter pylori Directly from Gastric Biopsy by Clinical Antimicrobial Susceptibility Test Ramanometry. Clin Chem 2022; 68:1064-1074. [PMID: 35714147 DOI: 10.1093/clinchem/hvac082] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/27/2022] [Indexed: 02/03/2025]
Abstract
BACKGROUND The battle against Helicobacter pylori (H. pylori) infections demands fast, reliable, and sensitive methods for pathogen identification (ID), antimicrobial susceptibility tests (ASTs) based on metabolic response, and genome-wide mutation profiling that reveals resistance mechanisms. METHODS Here we introduce Clinical Antimicrobial Susceptibility Test Ramanometry for H. pylori (CAST-R-HP), and its validation with clinical samples. This method performs rapid ID, metabolism inhibition-based AST, and high-quality whole-genome sequencing for cells of targeted resistance phenotype, all at precisely 1-cell resolution and directly from biopsy samples. RESULTS In CAST-R-HP, automated acquisition and machine learning of single-cell Raman spectra (SCRS) enable distinguishing individual H. pylori cells directly from a biopsy sample, with 98.5 ± 0.27% accuracy in ID. Moreover, by adding a 48- to72-h D2O feeding and drug exposure step prior to SCRS acquisition, CAST-R-HP reports AST for levofloxacin and clarithromycin with 100% accuracy, based on metabolic inhibition level. Furthermore, CAST-R-HP supports rapid sorting, low-bias DNA amplification, and full genome sequencing of single H. pylori cells with the SCRS defined, targeted drug-susceptibility phenotype, via Raman-activated gravity-driven cell encapsulation and sequencing. The genome-wide mutation map (maximum 99.70% coverage), at precisely 1-cell resolution, not only elucidates the drug-susceptibility phenotypes but also unveils their underlying molecular mechanisms. CONCLUSION The culture independency, shorter turnaround time, high resolution, and comprehensive information output suggest that CAST-R-HP is a powerful tool for diagnosing and treating H. pylori infections.
Collapse
Affiliation(s)
- Min Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhai Gong
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu Sun
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lili Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Rongze Chen
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuli Mao
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoting Fu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lili Zhang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Teng Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao Single-Cell Biotechnology Ltd., Qingdao, Shandong, China
| | - Quanjiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianzhong Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- The Bioland Laboratory, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
A Survey of Helicobacter pylori Antibiotic-Resistant Genotypes and Strain Lineages by Whole-Genome Sequencing in China. Antimicrob Agents Chemother 2022; 66:e0218821. [PMID: 35652644 PMCID: PMC9211431 DOI: 10.1128/aac.02188-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance is the most important factor leading to failed Helicobacter pylori eradication therapy, and personalized treatment based on antibiotic susceptibility is becoming increasingly important. To strengthen the understanding of antibiotic genotypic resistance of H. pylori and identify new antibiotic resistance loci, in this study, we identified phenotypic resistance information for 60 clinical isolates and compared the concordance of phenotypic and genotypic resistance using whole-genome sequencing (WGS). Clarithromycin and levofloxacin genotypic resistance was in almost perfect concordance with phenotypic resistance, with kappa coefficients of 0.867 and 0.833, respectively. All strains with the R16H/C mutation and truncation in rdxA were metronidazole resistant, with 100% specificity. For other genes of concern, at least one phenotypically sensitive strain had a previous mutation related to antibiotic resistance. Moreover, we found that the A1378G mutation of HP0399 and the A149G mutation of FabH might contribute to tetracycline resistance and multidrug resistance, respectively. Overall, the inference of resistance to clarithromycin and levofloxacin from genotypic resistance is reliable, and WGS has been very helpful in discovering novel H. pylori resistance loci. In addition, WGS has also enhanced our study of strain lineages, providing new ways to understand resistance information and mechanisms.
Collapse
|
10
|
Vital JS, Tanoeiro L, Lopes-Oliveira R, Vale FF. Biomarker Characterization and Prediction of Virulence and Antibiotic Resistance from Helicobacter pylori Next Generation Sequencing Data. Biomolecules 2022; 12:691. [PMID: 35625618 PMCID: PMC9138241 DOI: 10.3390/biom12050691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
The Gram-negative bacterium Helicobacter pylori colonizes c.a. 50% of human stomachs worldwide and is the major risk factor for gastric adenocarcinoma. Its high genetic variability makes it difficult to identify biomarkers of early stages of infection that can reliably predict its outcome. Moreover, the increasing antibiotic resistance found in H. pylori defies therapy, constituting a major human health problem. Here, we review H. pylori virulence factors and genes involved in antibiotic resistance, as well as the technologies currently used for their detection. Furthermore, we show that next generation sequencing may lead to faster characterization of virulence factors and prediction of the antibiotic resistance profile, thus contributing to personalized treatment and management of H. pylori-associated infections. With this new approach, more and permanent data will be generated at a lower cost, opening the future to new applications for H. pylori biomarker identification and antibiotic resistance prediction.
Collapse
Affiliation(s)
- Joana S. Vital
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Luís Tanoeiro
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Ricardo Lopes-Oliveira
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| | - Filipa F. Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (J.S.V.); (L.T.); (R.L.-O.)
| |
Collapse
|
11
|
Liu Y, Wang S, Yang F, Chi W, Ding L, Liu T, Zhu F, Ji D, Zhou J, Fang Y, Zhang J, Xiang P, Zhang Y, Zhao H. Antimicrobial resistance patterns and genetic elements associated with the antibiotic resistance of Helicobacter pylori strains from Shanghai. Gut Pathog 2022; 14:14. [PMID: 35354484 PMCID: PMC8966258 DOI: 10.1186/s13099-022-00488-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Shanghai, in east China, has one of the world's highest burdens of Helicobacter pylori infection. While multidrug regimens can effectively eradicate H. pylori, the increasing prevalence of antibiotic resistance (AR) in H. pylori has been recognized by the WHO as 'high priority' for urgent need of new therapies. Moreover, the genetic characteristics of H. pylori AR in Shanghai is under-reported. The purpose of this study was to determine the resistance prevalence, re-substantiate resistance-conferring mutations, and investigate novel genetic elements associated with H. pylori AR. RESULTS We performed whole genome sequencing and antimicrobial susceptibility testing of 112 H. pylori strains isolated from gastric biopsy specimens from Shanghai patients with different gastric diseases. No strains were resistant to amoxicillin. Levofloxacin, metronidazole and clarithromycin resistance was observed in 39 (34.8%), 73 (65.2%) and 18 (16.1%) strains, respectively. There was no association between gastroscopy diagnosis and resistance phenotypes. We reported the presence or absence of several subsystem protein coding genes including hopE, hofF, spaB, cagY and pflA, and a combination of CRISPRs, which were potentially correlated with resistance phenotypes. The H. pylori strains were also annotated for 80 genome-wide AR genes (ARGs). A genome-wide ARG analysis was performed for the three antibiotics by correlating the phenotypes with the genetic variants, which identified the well-known intrinsic mutations conferring resistance to levofloxacin (N87T/I and/or D91G/Y mutations in gyrA), metronidazole (I38V mutation in fdxB), and clarithromycin (A2143G and/or A2142G mutations in 23S rRNA), and added 174 novel variations, including 23 non-synonymous SNPs and 48 frameshift Indels that were significantly enriched in either the antibiotic-resistant or antibiotic-susceptible bacterial populations. The variant-level linkage disequilibrium analysis highlighted variations in a protease Lon with strong co-occurring correlation with a series of resistance-associated variants. CONCLUSION Our study revealed multidrug antibiotic resistance in H. pylori strains from Shanghai, which was characterized by high metronidazole and moderate levofloxacin resistance, and identified specific genomic characteristics in relation to H. pylori AR. Continued surveillance of H. pylori AR in Shanghai is warranted in order to establish appropriate eradication treatment regimens for this population.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Su Wang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
| | - Wenjing Chi
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Li Ding
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Danian Ji
- Department of Endoscopy, Huadong Hospital, Fudan University, Shanghai, China
| | - Jun Zhou
- Department of Endoscopy, Huadong Hospital, Fudan University, Shanghai, China
| | - Yi Fang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Jinghao Zhang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China
| | - Ping Xiang
- Department of Endoscopy, Huadong Hospital, Fudan University, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Gingold-Belfer R, Niv Y, Schmilovitz-Weiss H, Levi Z, Boltin D. Susceptibility-guided versus empirical treatment for Helicobacter pylori infection: A systematic review and meta-analysis. J Gastroenterol Hepatol 2021; 36:2649-2658. [PMID: 34114673 DOI: 10.1111/jgh.15575] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM Empirical therapy for Helicobacter pylori infection is limited by increasing antibiotic resistance and suboptimal eradication rates. Studies of the relative effectiveness of susceptibility-guided therapy have produced conflicting results. We performed a systematic review and meta-analysis of randomized controlled trials (RCTs) to determine whether susceptibility-guided therapy is superior to empirical therapy for H. pylori infection. METHODS We searched articles listed in PubMed, MEDLINE, EMBASE, and Web of Science through May 25, 2020, RCTs comparing susceptibility-guided versus empirical therapy for H. pylori infection. Outcomes, including effectiveness and safety, were analyzed in a meta-analysis. RESULTS Our final analysis included 16 studies, comprising 2374 patients who received susceptibility-guided therapy and 2451 patients who received empirical treatment. In previously untreated subjects, susceptibility-guided therapy was slightly more effective than empirical therapy (intent to treat risk ratio [RR], 1.14; 95% confidence interval [CI], 1.07-1.21; P < 0.0001, I2 = 75%). Susceptibility-guided therapy was superior to first-line clarithromycin-based triple therapy only when clarithromycin resistance exceeded 20% (RR, 1.18; 95% CI, 1.07-1.30; P = 0.001, I2 = 81%). Susceptibility-guided therapy was not more effective than empirical quadruple therapy (RR, 1.02; 95% CI, 0.92-1.13; P = 0.759, I2 = 80%). Three RCTs were performed exclusively among previously treated subjects, and were highly heterogeneous. CONCLUSIONS Our findings suggest that susceptibility-guided treatment may be slightly superior to empirical first line triple therapy. Susceptibility- guided treatment does not appear to be superior to empirical first-line quadruple therapy or empirical rescue therapy.
Collapse
Affiliation(s)
- Rachel Gingold-Belfer
- Division of Gastroenterology, , Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron Niv
- Division of Patient Safety and Quality Improvement, Ministry of Health, Jerusalem, Israel
| | - Hemda Schmilovitz-Weiss
- Division of Gastroenterology, , Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zohar Levi
- Division of Gastroenterology, , Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Doron Boltin
- Division of Gastroenterology, , Rabin Medical Center, Petah Tikva, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Megraud F, Bruyndonckx R, Coenen S, Wittkop L, Huang TD, Hoebeke M, Bénéjat L, Lehours P, Goossens H, Glupczynski Y. Helicobacter pylori resistance to antibiotics in Europe in 2018 and its relationship to antibiotic consumption in the community. Gut 2021; 70:1815-1822. [PMID: 33837118 DOI: 10.1136/gutjnl-2021-324032] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Our aim was to prospectively assess the antibiotic resistance rates in Helicobacter pylori strains in Europe in 2018 and to study the link between antibiotic consumption in the community and H. pylori resistance levels in the different countries. DESIGN The proportion of primary antibiotic resistance cases of H. pylori and their corresponding risk factors were investigated in 24 centres from 18 European countries according to a standardised protocol. Data on antibiotic consumption in the community were collected for the period 2008-2017. The link between antibiotic consumption and resistance data was assessed using generalised linear mixed models. The model with the best fit was selected by means of the Akaike Information Criterion. RESULTS H. pylori resistance rates for the 1211 adult patients included were 21.4% for clarithromycin, 15.8% for levofloxacin and 38.9% for metronidazole and were significantly higher in Central/Western and Southern than in the Northern European countries.The best model fit was obtained for the Poisson distribution using 2013 consumption data. A significant association was found between H. pylori clarithromycin resistance and consumption in the community of macrolides (p=0.0003) and intermediate-acting macrolides (p=0.005), and between levofloxacin resistance and consumption of quinolones (p=0.0002) and second-generation quinolones (p=0.0003). CONCLUSION This study confirms the positive correlation between macrolide and quinolone consumption in the community and corresponding H. pylori resistance in European countries. Hence, H. pylori treatment with clarithromycin and levofloxacin should not be started without susceptibility testing in most European countries.
Collapse
Affiliation(s)
- Francis Megraud
- UMR BaRITOn, INSERM U1053, University of Bordeaux, Bordeaux, France
- National Reference Centre for Helicobacters, Bacteriology Laboratory, Pellegrin University Hospital, Bordeaux, France
| | - Robin Bruyndonckx
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Data Science Institute (DSI), Hasselt University, Hasselt, Belgium
| | - Samuel Coenen
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | | | - Te-Din Huang
- Laboratory of Clinical Microbiology and National Reference Centre for Helicobacter pylori, CHU UCL Namur, Mont-Godinne, Belgium
| | - Martin Hoebeke
- Laboratory of Clinical Microbiology and National Reference Centre for Helicobacter pylori, CHU UCL Namur, Mont-Godinne, Belgium
| | - Lucie Bénéjat
- National Reference Centre for Helicobacters, Bacteriology Laboratory, Pellegrin University Hospital, Bordeaux, France
| | - Philippe Lehours
- UMR BaRITOn, INSERM U1053, University of Bordeaux, Bordeaux, France
- National Reference Centre for Helicobacters, Bacteriology Laboratory, Pellegrin University Hospital, Bordeaux, France
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
- Laboratory of Clinical Microbiology and National Reference Centre for Helicobacter pylori, CHU UCL Namur, Mont-Godinne, Belgium
| |
Collapse
|
14
|
Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10091117. [PMID: 34572699 PMCID: PMC8467137 DOI: 10.3390/antibiotics10091117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Antibiotic efflux is a mechanism that is well-documented in the phenotype of multidrug resistance in bacteria. Efflux is considered as an early facilitating mechanism in the bacterial adaptation face to the concentration of antibiotics at the infectious site, which is involved in the acquirement of complementary efficient mechanisms, such as enzymatic resistance or target mutation. Various efflux pumps have been described in the Gram-negative bacteria most often encountered in infectious diseases and, in healthcare-associated infections. Some are more often involved than others and expel virtually all families of antibiotics and antibacterials. Numerous studies report the contribution of these pumps in resistant strains previously identified from their phenotypes. The authors characterize the pumps involved, the facilitating antibiotics and those mainly concerned by the efflux. However, today no study describes a process for the real-time quantification of efflux in resistant clinical strains. It is currently necessary to have at hospital level a reliable and easy method to quantify the efflux in routine and contribute to a rational choice of antibiotics. This review provides a recent overview of the prevalence of the main efflux pumps observed in clinical practice and provides an idea of the prevalence of this mechanism in the multidrug resistant Gram-negative bacteria. The development of a routine diagnostic tool is now an emergency need for the proper application of current recommendations regarding a rational use of antibiotics.
Collapse
|
15
|
Moghadam MT, Chegini Z, Norouzi A, Dousari AS, Shariati A. Three-Decade Failure to the Eradication of Refractory Helicobacter pylori Infection and Recent Efforts to Eradicate the Infection. Curr Pharm Biotechnol 2021; 22:945-959. [PMID: 32767919 DOI: 10.2174/1389201021666200807110849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Helicobacter pylori causes dangerous and deadly diseases such as gastric cancer and duodenal ulcers. Eradication and treatment of this bacterium are very important due to the deadly diseases caused by H. pylori and the high cost of treatment for countries. METHODS Thus, we present a complete list of the most important causes of failure in the treatment and eradication of H. pylori, and address new therapeutic methods that may be effective in controlling this bacterium in the future. RESULTS Many efforts have been made to control and eradicate this bacterium over the years, but no success has been achieved since its eradication is a complex process affected by the bacterial properties and host factors. Previous studies have shown that various factors are involved in the failure to eradicate H. pylori, such as new genotypes of the bacterium with higher pathogenicity, inappropriate patient cooperation, mutations, biofilm formation and dormant forms that cause antibiotic resistance, acidic stomach pH, high bacterial load, smoking, immunosuppressive features and intracellular occurrence of H. pylori. On the other hand, recent studies reported that the use of probiotics, nanoparticles, antimicrobial peptides, natural product and vaccines can be helpful in the treatment and eradication of H. pylori infections. CONCLUSION Eradication of H. pylori is crucial for the treatment of important diseases such as gastric cancer. Therefore, it seems that identifying the failure causes of treating this bacterium can be helpful in controlling the infections. Besides, further studies on new therapeutic strategies may help eradicate H. pylori in the future.
Collapse
Affiliation(s)
- Majid T Moghadam
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Chegini
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Norouzi
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Aref Shariati
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
|
17
|
Saracino IM, Pavoni M, Zullo A, Fiorini G, Lazzarotto T, Borghi C, Vaira D. Next Generation Sequencing for the Prediction of the Antibiotic Resistance in Helicobacter pylori: A Literature Review. Antibiotics (Basel) 2021; 10:437. [PMID: 33919811 PMCID: PMC8070836 DOI: 10.3390/antibiotics10040437] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aims: Only a few antimicrobials are effective against H. pylori, and antibiotic resistance is an increasing problem for eradication therapies. In 2017, the World Health Organization categorized clarithromycin resistant H. pylori as a "high-priority" bacterium. Standard antimicrobial susceptibility testing can be used to prescribe appropriate therapies but is currently recommended only after the second therapeutic failure. H. pylori is, in fact, a "fastidious" microorganism; culture methods are time-consuming and technically challenging. The advent of molecular biology techniques has enabled the identification of molecular mechanisms underlying the observed phenotypic resistance to antibiotics in H. pylori. The aim of this literature review is to summarize the results of original articles published in the last ten years, regarding the use of Next Generation Sequencing, in particular of the whole genome, to predict the antibiotic resistance in H. pylori.Methods: a literature research was made on PubMed. The research was focused on II and III generation sequencing of the whole H. pylori genome. Results: Next Generation Sequencing enabled the detection of novel, rare and complex resistance mechanisms. The prediction of resistance to clarithromycin, levofloxacin and amoxicillin is accurate; for other antimicrobials, such as metronidazole, rifabutin and tetracycline, potential genetic determinants of the resistant status need further investigation.
Collapse
Affiliation(s)
- Ilaria Maria Saracino
- Microbiology Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (T.L.)
| | - Matteo Pavoni
- Department of Medical and Surgical Sciences, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (M.P.); (G.F.); (C.B.)
| | - Angelo Zullo
- Gastroenterology and Digestive Endoscopy, ‘Nuovo Regina Margherita’ Hospital, 00153 Rome, Italy;
| | - Giulia Fiorini
- Department of Medical and Surgical Sciences, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (M.P.); (G.F.); (C.B.)
| | - Tiziana Lazzarotto
- Microbiology Unit, Department of Specialized, Experimental, and Diagnostic Medicine, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (I.M.S.); (T.L.)
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (M.P.); (G.F.); (C.B.)
| | - Dino Vaira
- Department of Medical and Surgical Sciences, IRCCS St. Orsola Polyclinic, University of Bologna, 40138 Bologna, Italy; (M.P.); (G.F.); (C.B.)
| |
Collapse
|
18
|
Alavifard H, Mirzaei N, Yadegar A, Baghaei K, Smith SM, Sadeghi A, Zali MR. Investigation of Clarithromycin Resistance-Associated Mutations and Virulence Genotypes of Helicobacter pylori Isolated from Iranian Population: A Cross-Sectional Study. Curr Microbiol 2021; 78:244-254. [PMID: 33251569 DOI: 10.1007/s00284-020-02295-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Antibiotic resistance has brought into question the efficiency of clarithromycin which is a vital component of eradication therapy for Helicobacter pylori infection. The point mutations within the 23S rRNA sequence of H. pylori isolates which contribute to clarithromycin resistance have yet to be fully characterized. This study was aimed to detect clarithromycin resistance-associated mutations and assess the prevalence of key virulence factors of H. pylori among Iranian patients. Amplification of 16S rRNA and glmM genes were done to identify H. pylori. Minimal inhibitory concentration (MIC) of clarithromycin in 82 H. pylori clinical isolates was determined by agar dilution method. Subsequently, various virulence markers including cagA, vacA, sabA, babA, and dupA of H. pylori were identified by PCR. PCR-sequencing was applied to detect point mutations in the 23S rRNA gene. Based on MIC values, 43.9% of H. pylori isolates showed resistance to clarithromycin. The babA and cagA genes were detected in 92.7% and 82.9% of isolates, assigned to be higher than other virulence factors. No significant relationship was found between the H. pylori virulence genotypes and clarithromycin susceptibility (P > 0.05). Analyzing the 23S rRNA sequences revealed A2143G (4/48, 8.3%) and A2142G (3/48, 6.2%) as the most prevalent mutations in clarithromycin-resistant isolates. Additionally, several novel mutations including G2220T, C2248T, A2624C, G2287A, T2188C, G2710C, C2248T, G2269A, and G2224T were also detected among either resistant or susceptible isolates. Our findings revealed the presence of several point mutations in the 23S rRNA gene of H. pylori isolates which may be associated with resistance to clarithromycin.
Collapse
Affiliation(s)
- Helia Alavifard
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Mirzaei
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sinéad Marian Smith
- School of Medicine & School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Salehi N, Attaran B, Zare-Mirakabad F, Ghadiri B, Esmaeili M, Shakaram M, Tashakoripour M, Eshagh Hosseini M, Mohammadi M. The outward shift of clarithromycin binding to the ribosome in mutant Helicobacter pylori strains. Helicobacter 2020; 25:e12731. [PMID: 32794288 DOI: 10.1111/hel.12731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Disruption of protein synthesis, by drug-mediated restriction of the ribosomal nascent peptide exit tunnel (NPET), may inhibit bacterial growth. Here, we have studied the secondary and tertiary structures of domain V of the 23S rRNA in the wild-type and mutant (resistant) H. pylori strains and their mechanisms of interaction with clarithromycin (CLA). METHODS H pylori strains, isolated from cultured gastric biopsies, underwent CLA susceptibility testing by E test, followed by PCR amplification and sequencing of domain V of 23S rRNA. The homology model of this domain in H pylori, in complex with L4 and L22 accessory proteins, was determined based on the E. coli ribosome 3D structure. The interactions between CLA and 23S rRNA complex were determined by molecular docking studies. RESULTS Of the 70 H pylori strains, isolated from 200 dyspeptic patients, 11 (16%) were CLA-resistant. DNA sequencing identified categories with no (A), A2142G (B), and A2143G (C) mutations. Docking studies of our homology model of 23S rRNA complex with CLA showed deviated positions for categories B and C, in reference to category A, with 12.19 Å and 7.92 Å RMSD values, respectively. In both mutant categories, CLA lost its interactions at positions 2142 and 2587 and gained two new bonds with the L4 accessory protein. CONCLUSION Our data suggest that, in mutant H pylori strains, once the nucleotides at positions 2142 and 2587 are detached from the drug, CLA interacts with and is peeled back by the L4 accessory protein, removing the drug-imposed spatial restriction of the NPET.
Collapse
Affiliation(s)
- Najmeh Salehi
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahareh Attaran
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Fatemeh Zare-Mirakabad
- Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
| | - Bahareh Ghadiri
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohadeseh Shakaram
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Tashakoripour
- Gastroenterology Department, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Eshagh Hosseini
- Gastroenterology Department, Amiralam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Watanabe Y, Oikawa R, Kodaka Y, Sato Y, Ono S, Kenmochi T, Suzuki H, Futagami S, Kato M, Yamamoto H, Itoh F. Cancer-related genetic variants of Helicobacter pylori strains determined using gastric wash-based whole-genome analysis with single-molecule real-time technology. Int J Cancer 2020; 148:178-192. [PMID: 32803883 DOI: 10.1002/ijc.33257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori (H. pylori) are a primary factor in the pathogenesis of gastric cancer (GC); GC ranks third among cancer-related mortality. A clear understanding of the H. pylori genome factors underlying GC is necessary to develop more effective methods to prevent GC. A single-molecule real-time DNA sequencing-based H. pylori genome-wide association study analysis was performed using the H. pylori genome present in five early-stage GC (EGC) and five non-GC clinical DNA samples recovered from gastric washes. A total of 275 genes with 702 nucleotide variants (NVs) were found to be common to three or more patients with EGC but no non-GC patients (single-NV: 654/702, 93.2%; multi-NV: 40/702, 5.7%; deletion: 3/702, 0.4%; insertion: 3/702, 0.7%). Gene ontology analysis of H. pylori revealed that genes involved in the mitochondrial electron transport system, glycolytic processes and the TCA cycle were highly enriched. Cancer-related NVs were most frequently found in a member of the Helicobacter outer membrane protein family, hopL. In particular, one of the NVs in hopL was a novel six-nucleotide insertion (1159095̂1159096, TACTTC); this mutant was detected more frequently in a validation set of 50 additional EGC samples (22/50, 44.0%) than in 18 non-GC samples (3/18, 16.7%, P = .04). These results suggest that the hopL variant is associated with the development of GC and may serve as a genetic biomarker of H. pylori virulence and GC risk. Our assay can serve as a potent tool to expand our understanding of bacteria-associated tumorigenesis.
Collapse
Affiliation(s)
- Yoshiyuki Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan.,Department of Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki, Japan
| | - Ritsuko Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yasuhiro Kodaka
- Division of Gastroenterology, Musashikosugi Hospital, Nippon Medical School, Kawasaki, Japan
| | - Yoshinori Sato
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Shoko Ono
- Department of Gastroenterology, Hokkaido University Hospital, Sapporo, Japan
| | - Takeshi Kenmochi
- Department of Gastroenterology, Saiseikai Kanagawa Hospital, Yokohama, Japan
| | - Hideo Suzuki
- Department of Gastroenterology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiji Futagami
- Division of Gastroenterology, Musashikosugi Hospital, Nippon Medical School, Kawasaki, Japan
| | - Mototsugu Kato
- Department of Gastroenterology, National Hospital Organization Hakodate Hospital, Hakodate, Japan
| | - Hiroyuki Yamamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Fumio Itoh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
21
|
Ye L, Meng F, Mao X, Zhang Y, Wang J, Liu Y, Zhu W, Gu B, Huang Q. Using next-generation sequencing to analyze Helicobacter pylori clones with different levofloxacin resistances from a patient with eradication failure. Medicine (Baltimore) 2020; 99:e20761. [PMID: 32769862 PMCID: PMC7593070 DOI: 10.1097/md.0000000000020761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 01/11/2023] Open
Abstract
The regimens containing levofloxacin (LVX) have been recommended as an alternate to standard triple therapy to treat Helicobacter pylori infections and H pylori mixed infection always lead to H pylori chronic infection. Although the molecular mechanism of LVX resistance with gyrA gene mutation has been clearly understood in H pylori, other genes involved in antibiotic resistance remain unclear. Efflux pump plays an important role in clinically relevant multidrug resistance. Furthermore, the relationship between the strains with different LVX level-resistances from individuals is also unknown.Helicobacter pylori monoclonal strains were isolated from patients with eradication failure. E test was used to detect the minimal inhibitory concentration of LVX. One lower-level LVX-resistant clone and 2 higher-level LVX-resistant clones from the same patient were selected to sequence the complete genomes. Single-nucleotide variants (SNVs) and mutations were extracted and analyzed from gryA and resistance-nodulation-division family efflux genes.Two clones with higher-level resistance had the mutation pattern of Asn87Lys and one lower-level LVX-resistant clone had an Asp91Asn mutation. Compared to clones with higher-level resistance, the higher genetic variations were found in genes belonging to the resistance-nodulation-division family in H pylori strains with lower-level resistance to LVX. There were significantly more SNVs of Hp0970 (hefE) and Hp1329 (hefI) in the lower-level LVX-resistant clone than those in the higher-level LVX-resistant clones (P = .044).The mutation pattern of the Asn87Lys of the gyrA gene confers a higher resistance to LVX than that of the Asp91Asn in H pylori. Increase in the number of SNVs of the Hp0970 (hefE) and Hp1329 (hefI) genes change the resistance to LVX. Twelve mutations verified by Sanger sequencing in Hp0970 (hefE) and Hp1329 (hefI) may decrease resistant levels to LVX.
Collapse
Affiliation(s)
- Liping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
- Department of Gastroenterology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou
| | - Fei Meng
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Yu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Jun Wang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Yunhui Liu
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, China
| | - Wei Zhu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Binbin Gu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| | - Qin Huang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province
| |
Collapse
|
22
|
Cai Y, Wang C, Chen Z, Xu Z, Li H, Li W, Sun Y. Transporters HP0939, HP0497, and HP0471 participate in intrinsic multidrug resistance and biofilm formation in Helicobacter pylori by enhancing drug efflux. Helicobacter 2020; 25:e12715. [PMID: 32548895 DOI: 10.1111/hel.12715] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The multidrug resistance of Helicobacter pylori is becoming an increasingly serious issue. It is therefore necessary to study the mechanism of multidrug resistance of H pylori. We have previously identified that the HP0939, HP0497, and HP0471 transporters affect the efflux of drugs from H pylori. As efflux pumps participate in bacterial multidrug resistance and biofilm formation, we hypothesized that these transporters could be involved in the multidrug resistance and biofilm formation of H pylori. MATERIALS AND METHODS We therefore constructed three knockout strains, Δhp0939, Δhp0497, and Δhp0471, and three high-expression strains, Hp0939he , Hp0497he , and Hp0471he , using the wild-type (WT) 26 695 strain of H pylori as the template. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of wild strains, knockout strains, and high-expression strains to amoxicillin, metronidazole, and other antibiotics were measured. The efflux capacity of high-expression strains and wild strains was compared by Hoechst 33 342 accumulation assay. RESULTS Determination of the MIC and MBC of the antibiotics revealed that the knockout strains were more sensitive to antibiotics, while the high-expression strains were less sensitive to antibiotics, compared to the WT. The ability of the high-expression strains to efflux drugs was significantly higher than that of the WT. We also induced H pylori to form biofilms, and observed that the knockout strains could barely form biofilms and were more sensitive to several antibiotics, compared to the WT. The mRNA expression of hp0939, hp0497, and hp0471 in the clinically sensitive and multidrug-resistant strains was determined, and it was found that these genes were highly expressed in the multidrug-resistant strains that were isolated from the clinics. CONCLUSIONS In this study, we found three transporters involved in intrinsic multidrug resistance of H pylori.
Collapse
Affiliation(s)
- Yuying Cai
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Caixia Wang
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China.,Institute of Pathogen Biology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhenghong Chen
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China
| | - Zhengzheng Xu
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Huanjie Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Wenjuan Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunology of Shandong Province, School of Basic Medicine, Shandong University, Jinan, China
| |
Collapse
|
23
|
HAYASHI HIROKI, INOUE JUN, OYAMA KATSUAKI, MATSUOKA KOKI, NISHIUMI SHIN, YOSHIDA MASARU, YANO YOSHIHIKO, KODAMA YUZO. Detection of Novel Amino Acid Polymorphisms in the East Asian CagA of Helicobacter Pylori with Full Sequencing Data. THE KOBE JOURNAL OF MEDICAL SCIENCES 2020; 66:E22-E31. [PMID: 32814754 PMCID: PMC7447099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Cytotoxin-associated gene A (CagA) is generally accepted to be the most important virulence factor of Helicobacter pylori and increases the risk of developing gastric cancer. East Asian CagA, which includes the EPIYA-D segment at the C-terminal region, has a significantly higher gastric carcinogenic rate than Western CagA including the EPIYA-C segment. Although the amino acid polymorphism surrounding the EPIYA motif in the C-terminal region has been examined in detail, limited information is currently available on the amino acid polymorphism of the N-terminal region of East Asian CagA. In the present study, we analyzed the sequencing data of East Asian CagA that we obtained previously to detect amino acid changes (AACs) in the N-terminal region of East Asian CagA. Four highly frequent AACs in the N-terminal region of East Asian CagA were detected in our datasets, two of which (V356A, Y677F) exhibited reproducible specificity using a validation dataset from the NCBI database, which are candidate AACs related to the pathogenic function of CagA. We examined whether these AACs affect the functions of CagA in silico model. The computational docking simulation model showed that binding affinity between CagA and phosphatidylserine remained unchanged in the model of mutant CagA reflecting both AAC, whereas that between CagA and α5β1 integrin significantly increased. Based on whole genome sequencing data we herein identified novel specific AACs in the N-terminal regions of EPIYA-D that have the potential to change the function of CagA.
Collapse
Affiliation(s)
- HIROKI HAYASHI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - JUN INOUE
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KATSUAKI OYAMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KOKI MATSUOKA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - SHIN NISHIUMI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - MASARU YOSHIDA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOSHIHIKO YANO
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Molecular Medicine & Medical Genetics, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUZO KODAMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
24
|
Marques AT, Vítor JMB, Santos A, Oleastro M, Vale FF. Trends in Helicobacter pylori resistance to clarithromycin: from phenotypic to genomic approaches. Microb Genom 2020; 6:e000344. [PMID: 32118532 PMCID: PMC7200067 DOI: 10.1099/mgen.0.000344] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/10/2020] [Indexed: 12/15/2022] Open
Abstract
For a long time Helicobacter pylori infections have been treated using the macrolide antibiotic, clarithromycin. Clarithromycin resistance is increasing worldwide and is the most common cause of H. pylori treatment failure. Here we review the mechanisms of antibiotic resistance to clarithromycin, detailing the individual and combinations of point mutations found in the 23S rRNA gene associated with resistance. Additionally, we consider the methods used to detect clarithromycin resistance, emphasizing the use of high-throughput next-generation sequencing methods, which were applied to 17 newly sequenced pairs of H. pylori strains isolated from the antrum and corpus of a recent colonized paediatric population. This set of isolates was composed of six pairs of resistant strains whose phenotype was associated with two point mutations found in the 23S rRNA gene: A2142C and A2143G. Other point mutations were found simultaneously in the same gene, but, according to our results, it is unlikely that they contribute to resistance. Further, among susceptible isolates, genomic variations compatible with mutations previously associated with clarithromycin resistance were detected. Exposure to clarithromycin may select low-frequency variants, resulting in a progressive increase in the resistance rate due to selection pressure.
Collapse
Affiliation(s)
- Andreia T. Marques
- Host–Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Jorge M. B. Vítor
- Host–Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649 003 Lisbon, Portugal
| | - Andrea Santos
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Filipa F. Vale
- Host–Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
In Vitro Activity of Sertraline, an Antidepressant, Against Antibiotic-Susceptible and Antibiotic-Resistant Helicobacter pylori Strains. Pathogens 2019; 8:pathogens8040228. [PMID: 31717683 PMCID: PMC6963513 DOI: 10.3390/pathogens8040228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance of Helicobacter pylori, a spiral bacterium associated with gastric diseases, is a topic that has been intensively discussed in last decades. Recent discoveries indicate promising antimicrobial and antibiotic-potentiating properties of sertraline (SER), an antidepressant substance. The aim of the study, therefore, was to determine the antibacterial activity of SER in relation to antibiotic-sensitive and antibiotic-resistant H. pylori strains. The antimicrobial tests were performed using a diffusion-disk method, microdilution method, and time-killing assay. The interaction between SER and antibiotics (amoxicillin, clarithromycin, tetracycline, and metronidazole) was determined by using a checkerboard method. In addition, the study was expanded to include observations by light, fluorescence, and scanning electron microscopy. The growth inhibition zones were in the range of 19–37 mm for discs impregnated with 2 mg of SER. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) counted for 2–8 µg/mL and 4–8 µg/mL, respectively. The time-killing assay showed the time-dependent and concentration-dependent bactericidal activity of SER. Bacteria exposed to MBCs (but not sub-MICs and MICs ≠ MBCs) underwent morphological transformation into coccoid forms. This mechanism, however, was not protective because these cells after a 24-h incubation had a several-fold reduced green/red fluorescence ratio compared to the control. Using the checkerboard assay, a synergistic/additive interaction of SER with all four antibiotics tested was demonstrated. These results indicate that SER may be a promising anti-H. pylori compound.
Collapse
|
26
|
Pohl D, Keller PM, Bordier V, Wagner K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J Gastroenterol 2019; 25:4629-4660. [PMID: 31528091 PMCID: PMC6718044 DOI: 10.3748/wjg.v25.i32.4629] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers, mucosa associated tissue lymphoma and gastric adenocarcinoma. In recent years, an alarming increase in antimicrobial resistance and subsequently failing empiric H. pylori eradication therapies have been noted worldwide, also in many European countries. Therefore, rapid and accurate determination of H. pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important. Traditionally, detection of H. pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time. Recent advances in diagnostics provide new tools, like real-time polymerase chain reaction (PCR) and line probe assays, to diagnose H. pylori infection and antimicrobial resistance to certain antibiotics, directly from clinical specimens. Moreover, high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome, thereby allowing identification of resistance mutations and associated antibiotic resistance. In the first part of this review, we will give an overview on currently available diagnostic methods for detection of H. pylori and its drug resistance and their implementation in H. pylori management. The second part of the review focusses on the use of next generation sequencing technology in H. pylori research. To this end, we conducted a literature search for original research articles in English using the terms “Helicobacter”, “transcriptomic”, “transcriptome”, “next generation sequencing” and “whole genome sequencing”. This review is aimed to bridge the gap between current diagnostic practice (histology, rapid urease test, H. pylori culture, PCR and line probe assays) and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H. pylori management guidelines and subsequently improve public health.
Collapse
Affiliation(s)
- Daniel Pohl
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern 3010, Switzerland
| | - Valentine Bordier
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Karoline Wagner
- Institute of Medical Microbiology, University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
27
|
Chen J, Ye L, Jin L, Xu X, Xu P, Wang X, Li H. Application of next-generation sequencing to characterize novel mutations in clarithromycin-susceptible Helicobacter pylori strains with A2143G of 23S rRNA gene. Ann Clin Microbiol Antimicrob 2018; 17:10. [PMID: 29562911 PMCID: PMC5863438 DOI: 10.1186/s12941-018-0259-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/08/2018] [Indexed: 12/22/2022] Open
Abstract
Background Clarithromycin (CLR) resistance has become a predominant factor for treatment failure of Helicobacter pylori eradication. Although the molecular mechanism of CLR resistance has been clearly understood in H. pylori, it is lack of evidence of other genes involved in drug resistance. Furthermore, the molecular mechanism of phenotype susceptible to CLR while genotype of 23S rRNA is mutant with A2143G is unclear. Here, we characterized the mutations of CLR-resistant and -susceptible H. pylori strains to explore bacterial resistance. Methods In the present study, the whole genomes of twelve clinical isolated H. pylori strains were sequenced, including two CLR-susceptible strains with mutation of A2143G. Single nucleotide variants (SNVs) were extracted and analyzed from multidrug efflux transporter genes. Results We did not find mutations associated with known CLR-resistant sites except for controversial T2182C outside of A2143G in the 23S rRNA gene. Although total SNVs of multidrug efflux transporter gene and the SNVs of HP0605 were significant differences (P ≤ 0.05) between phenotype resistant and susceptible strains. There is no significant difference in SNVs of RND or MFS (HP1181) family. However, the number of mutations in the RND family was significantly higher in the mutant strain (A2143G) than in the wild type. In addition, three special variations from two membrane proteins of mtrC and hefD were identified in both CLR-susceptible strains with A2143G. Conclusions Next-generation sequencing is a practical strategy for analyzing genomic variation associated with antibiotic resistance in H. pylori. The variations of membrane proteins of the RND family may be able to participate in the regulation of clinical isolated H. pylori susceptibility profiles.
Collapse
Affiliation(s)
- Jiaoe Chen
- Department of Gastroenterology, Sanmen People's Hospital, No. 117, Renmin Road, Sanmen, 317100, Zhejiang, People's Republic of China
| | - Liping Ye
- Department of Gastroenterology, Zhejiang Taizhou Hospital, Taizhou, 31700, People's Republic of China
| | - Liangmin Jin
- Department of Gastroenterology, Sanmen People's Hospital, No. 117, Renmin Road, Sanmen, 317100, Zhejiang, People's Republic of China
| | - Xuehua Xu
- Department of Gastroenterology, Sanmen People's Hospital, No. 117, Renmin Road, Sanmen, 317100, Zhejiang, People's Republic of China
| | - Peisong Xu
- Department of Research Service, Zhiyuan Inspection Medical Institute, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xianjun Wang
- Clinical Laboratory, Hangzhou First People's Hospital, Hangzhou, 310006, Zhejiang, People's Republic of China
| | - Hongzhang Li
- Department of Gastroenterology, Sanmen People's Hospital, No. 117, Renmin Road, Sanmen, 317100, Zhejiang, People's Republic of China.
| |
Collapse
|
28
|
Gong Y, Yuan Y. Resistance mechanisms of Helicobacter pylori and its dual target precise therapy. Crit Rev Microbiol 2018; 44:371-392. [PMID: 29293032 DOI: 10.1080/1040841x.2017.1418285] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori drug resistance presents a significant challenge to the successful eradication of this pathogen. To find strategies to improve the eradication efficacy of H. pylori, it is necessary to clarify the resistance mechanisms involved. The mechanisms of H. pylori drug resistance can be investigated from two angles: the pathogen and the host. A comprehensive understanding of the molecular mechanisms of H. pylori resistance based on both pathogen and host would aid the implementation of precise therapy, or ideally "dual target precise therapy" (bacteria and host-specific target therapy). In recent years, with increased understanding of the mechanisms of H. pylori resistance, the focus of eradication has shifted from disease-specific to patient-specific treatment. The implementation of "precision medicine" has also provided a new perspective on the treatment of infectious diseases. In this article, we systematically review current research on H. pylori drug resistance from the perspective of both the pathogen and the host. We also review therapeutic strategies targeted to pathogen and host factors that are aimed at achieving precise treatment of H. pylori.
Collapse
Affiliation(s)
- Yuehua Gong
- a Tumor Etiology and Screening Department of Cancer Institute and General Surgery , the First Hospital of China Medical University , Shenyang , China.,b Key Laboratory of Cancer Etiology and Prevention (China Medical University) Liaoning Provincial Education Department , Shenyang , China.,c National Clinical Research Center for Digestive Diseases , Xi'an , China
| | - Yuan Yuan
- a Tumor Etiology and Screening Department of Cancer Institute and General Surgery , the First Hospital of China Medical University , Shenyang , China.,b Key Laboratory of Cancer Etiology and Prevention (China Medical University) Liaoning Provincial Education Department , Shenyang , China.,c National Clinical Research Center for Digestive Diseases , Xi'an , China
| |
Collapse
|
29
|
Dargiene G, Kupcinskas J, Jonaitis L, Vezbavicius M, Kadusevicius E, Kupcinskiene E, Frandsen TH, Kucinskiene R, Kupcinskas L, Andersen LP. Primary antibiotic resistance of Helicobacter pylori strains among adults and children in a tertiary referral centre in Lithuania. APMIS 2018; 126:21-28. [PMID: 29131410 DOI: 10.1111/apm.12752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
The study evaluated primary antibiotic resistance of Helicobacter pylori within the period 2013-2015 and trends of antibiotic consumption over the last decade in Lithuania; 242 adults and 55 children were included in the study. E-tests were performed for amoxicillin, metronidazole, clarithromycin, ciprofloxacin, rifampicin and tetracycline. The presence of H. pylori and clarithromycin resistance was additionally tested by PCR. Helicobacter pylori culture was positive in 67 of 242 (28%) adult and in 12 of 55 (21.8%) children samples. Resistance rates among adults by E-tests were as follows: metronidazole - 32.8% (95% confidence interval (CI): 22.7-44.7%), ciprofloxacin - 7.5% (95% CI: 3.2-16.3%), rifampicin - 7.5% (95% CI: 3.2-16.3%), amoxicillin - 0%, whereas resistance rates in children were as follows: metronidazole - 25% (95% CI: 8.9-53.2%), rifampicin - 8.3% (CI: 1.5-35.4%), amoxicillin and ciprofloxacin - 0%. Accumulated clarithromycin resistance rates by E-tests and PCR were 8.2% (95% CI: 4.1-16.0%) in adults and 17.7% (95% CI: 6.2-41.0%) in children. Total use of macrolides and lincosamides in Lithuania increased from 1.26 to 1.86 defined daily dose (DDD)/1000 inhabitants/day among adults, while it has doubled from 1.10 to 2.22 DDD/1000/children/day in children within 2003-2015. There are no significant changes in the susceptibility of H. pylori to the most widely used antibiotics in adults over the last years in Lithuania; however, clarithromycin resistance among children exceeds 15% and mandates further larger-scale studies in paediatric population.
Collapse
Affiliation(s)
- Gintare Dargiene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Laimas Jonaitis
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Mindaugas Vezbavicius
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Edmundas Kadusevicius
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Eugenija Kupcinskiene
- Department of Biology, Faculty of Nature Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Tove Havnhoj Frandsen
- Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ruta Kucinskiene
- Department of Pediatrics, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Limas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Leif Percival Andersen
- Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
30
|
Dekhnich NN, Ivanchik NV, Kozlov RS. Comparison of in vitro activity of various macrolides against Helicobacter pylori. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2018. [DOI: 10.36488//cmac.2018.3.192-197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Objective.
Compare the in vitro activity of clarithromycin, erythromycin, azithromycin and josamycin against the collection of H. pylori strains isolated in 2010–2017 in Smolensk.
Materials and Methods.
H. pylori strains were collected prospectively from biopsy specimens of the gastric mucosa. Antimicrobial susceptibility testing of H. pylori was performed by the agar dilution method. Interpretation of the results of the susceptibility determination for clarithromycin was carried out in accordance with the recommendations of EUCAST (v 8.0) 2018. The resistance breakpoints for erythromycin, azithromycin, and josamycin were all set at ≥1.0 mg/L. For comparison of the results, the value of the minimal inhibitory concentrations of the tested antibiotic inhibiting the growth of 50% (MIC50) and 90% (MIC90) of H. pylori strains was used.
Results.
A total of 276 H. pylori strains were tested. 90% of the MIC values of clarithromycin were in the range from 0.015 to 0.125 mg/l. The percentages of resistance were as follows: clarithromycin 5.1%, azithromycin 7.5%, erythromycin 8%, josamycin 23.2%. Clarithromycin demonstrated significantly higher activity in suppressing the growth of H. pylori strains than azithromycin, erythromycin, and josamycin.
Conclusions.
Among the tested macrolide antibiotics maximal anti-H. pylori activity in vitro was observed in clarithromycin.
Collapse
Affiliation(s)
| | - Nataly V. Ivanchik
- Smolensk State Medical University (Smolensk, Russia)Smolensk State Medical University (Smolensk, Russia)
| | | |
Collapse
|
31
|
The Bifunctional Enzyme SpoT Is Involved in the Clarithromycin Tolerance of Helicobacter pylori by Upregulating the Transporters HP0939, HP1017, HP0497, and HP0471. Antimicrob Agents Chemother 2017; 61:AAC.02011-16. [PMID: 28242673 PMCID: PMC5404559 DOI: 10.1128/aac.02011-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/21/2017] [Indexed: 01/30/2023] Open
Abstract
Clarithromycin (CLA) is a commonly recommended drug for Helicobacter pylori eradication. However, the prevalence of CLA-resistant H. pylori is increasing. Although point mutations in the 23S rRNA are key factors for CLA resistance, other factors, including efflux pumps and regulation genes, are also involved in the resistance of H. pylori to CLA. Guanosine 3′-diphosphate 5′-triphosphate and guanosine 3′,5′-bispyrophosphate [(p)ppGpp)], which are synthesized by the bifunctional enzyme SpoT in H. pylori, play an important role for some bacteria to adapt to antibiotic pressure. Nevertheless, no related research involving H. pylori has been reported. In addition, transporters have been found to be related to bacterial drug resistance. Therefore, this study investigated the function of SpoT in H. pylori resistance to CLA by examining the shifts in the expression of transporters and explored the role of transporters in the CLA resistance of H. pylori. A ΔspoT strain was constructed in this study, and it was shown that SpoT is involved in H. pylori tolerance of CLA by upregulating the transporters HP0939, HP1017, HP0497, and HP0471. This was assessed using a series of molecular and biochemical experiments and a cDNA microarray. Additionally, the knockout of genes hp0939, hp0471, and hp0497 in the resistant strains caused a reduction or loss (the latter in the Δhp0497 strain) of resistance to CLA. Furthermore, the average expression levels of these four transporters in clinical CLA-resistant strains were considerably higher than those in clinical CLA-sensitive strains. Taken together, our results revealed a novel molecular mechanism of H. pylori adaption to CLA stress.
Collapse
|
32
|
Ogawa H, Iwamoto A, Tanahashi T, Okada R, Yamamoto K, Nishiumi S, Yoshida M, Azuma T. Genetic variants of Helicobacter pylori type IV secretion system components CagL and CagI and their association with clinical outcomes. Gut Pathog 2017; 9:21. [PMID: 28439300 PMCID: PMC5399799 DOI: 10.1186/s13099-017-0165-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/25/2017] [Indexed: 12/20/2022] Open
Abstract
Background Helicobacter pylori infection is associated with risk for chronic gastritis (CG), gastric ulcer (GU), duodenal ulcer (DU), and gastric cancer (GC). The H. pylori Cag type IV secretion system (TFSS) translocates the virulence factor cytotoxin-associated gene A protein into host cells and plays an important role in initiating gastric carcinogenesis. The CagL and CagI proteins are components of the TFSS. The Arg-Gly-Asp (RGD) motif of CagL, and the six most distal C-terminal amino acids (Ser-Lys-Ile-Ile-Val-Lys, and Ser-Lys-Val-Ile-Val-Lys) of CagL and CagI are essential for TFSS adhesion to host cells. Additionally, the CagL variant Tyr58Glu59 was previously shown to be associated with GC patients. Results We isolated 43 H. pylori isolates from 17 CG, 8 GU, 8 DU, and 10 GC patients in Southeast Asia. Total DNAs were extracted and sequenced with MiSeq. H. pylori strain ATCC 26695, which was isolated from CG patients, was used as a reference. We examined the full sequences of H. pylori cagL and cagI using whole-genome sequencing (WGS), and analyzed whether single nucleotide variants and amino acid changes (AACs) correlated with adverse clinical outcomes. Three isolates were excluded from the analysis due to cagPAI rearrangements. CagL RGD motifs were conserved in 39 isolates (97.5%). CagL-Glu59 and Ile234 in the C-terminal motif were more common in 10 H. pylori isolates from GC patients (p < 0.001 and p < 0.05, respectively). When 5 Vietnamese isolates from GC patients were excluded, CagL-Glu59 still remains significant (p < 0.05), but not Ile234. CagL-Tyr58 was seen in only one isolate. The CagI C-terminal motif was completely conserved across all 40 isolates, and there were no significant AACs in CagI. Conclusions Using WGS, we analyzed genetic variants in clinical H. pylori isolates and identified putative novel and candidate variants in uncharacterized CagL and CagI sequences that are related to gastric carcinogenesis. In particular, CagL-Glu59 has the possible association with GC. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0165-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hirofumi Ogawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Akira Iwamoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Toshihito Tanahashi
- Local Incorporated Administrative Agency, Tokushima Prefecture Naruto Hospital, 32 Muya-cho, Kurosaki Aza Kotani, Naruto, Tokushima 772-0001 Japan
| | - Rina Okada
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Koji Yamamoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan.,Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan.,AMED-CREST, AMED, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| | - Takeshi Azuma
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017 Japan
| |
Collapse
|
33
|
Attaran B, Falsafi T, Ghorbanmehr N. Effect of biofilm formation by clinical isolates of Helicobacter pylori on the efflux-mediated resistance to commonly used antibiotics. World J Gastroenterol 2017; 23:1163-1170. [PMID: 28275296 PMCID: PMC5323441 DOI: 10.3748/wjg.v23.i7.1163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/11/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the role of biofilm formation on the resistance of Helicobacter pylori (H. pylori) to commonly prescribed antibiotics, the expression rates of resistance genes in biofilm-forming and planktonic cells were compared. METHODS A collection of 33 H. pylori isolates from children and adult patients with chronic infection were taken for the present study. The isolates were screened for biofilm formation ability, as well as for polymerase chain reaction (PCR) reaction with HP1165 and hp1165 efflux pump genes. Susceptibilities of the selected strains to antibiotic and differences between susceptibilities of planktonic and biofilm-forming cell populations were determined. Quantitative real-time PCR (qPCR) analysis was performed using 16S rRNA gene as a H. pylori-specific primer, and two efflux pumps-specific primers, hp1165 and hefA. RESULTS The strains were resistant to amoxicillin, metronidazole, and erythromycin, except for one strain, but they were all susceptible to tetracycline. Minimum bactericidal concentrations of antibiotics in the biofilm-forming cells were significantly higher than those of planktonic cells. qPCR demonstrated that the expression of efflux pump genes was significantly higher in the biofilm-forming cells as compared to the planktonic ones. CONCLUSION The present work demonstrated an association between H. pylori biofilm formation and decreased susceptibility to all the antibiotics tested. This decreased susceptibility to antibiotics was associated with enhanced functional activity of two efflux pumps: hp1165 and hefA.
Collapse
|
34
|
Wang YK, Kuo FC, Liu CJ, Wu MC, Shih HY, Wang SSW, Wu JY, Kuo CH, Huang YK, Wu DC. Diagnosis of Helicobacter pylori infection: Current options and developments. World J Gastroenterol 2016. [PMID: 26523098 DOI: 10.3748/wjg.v21.i40.11221.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2022] Open
Abstract
Accurate diagnosis of Helicobacter pylori (H. pylori) infection is a crucial part in the effective management of many gastroduodenal diseases. Several invasive and non-invasive diagnostic tests are available for the detection of H. pylori and each test has its usefulness and limitations in different clinical situations. Although none can be considered as a single gold standard in clinical practice, several techniques have been developed to give the more reliable results. Invasive tests are performed via endoscopic biopsy specimens and these tests include histology, culture, rapid urease test as well as molecular methods. Developments of endoscopic equipment also contribute to the real-time diagnosis of H. pylori during endoscopy. Urea breathing test and stool antigen test are most widely used non-invasive tests, whereas serology is useful in screening and epidemiological studies. Molecular methods have been used in variable specimens other than gastric mucosa. More than detection of H. pylori infection, several tests are introduced into the evaluation of virulence factors and antibiotic sensitivity of H. pylori, as well as screening precancerous lesions and gastric cancer. The aim of this article is to review the current options and novel developments of diagnostic tests and their applications in different clinical conditions or for specific purposes.
Collapse
Affiliation(s)
- Yao-Kuang Wang
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Fu-Chen Kuo
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Chung-Jung Liu
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Meng-Chieh Wu
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Hsiang-Yao Shih
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Sophie S W Wang
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Jeng-Yih Wu
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Chao-Hung Kuo
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Yao-Kang Huang
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| | - Deng-Chyang Wu
- Yao-Kuang Wang, Department of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung 812, Taiwan
| |
Collapse
|
35
|
Hu B, Zhao F, Wang S, Olszewski MA, Bian H, Wu Y, Kong M, Xu L, Miao Y, Fang Y, Yang C, Zhao H, Zhang Y. A high-throughput multiplex genetic detection system for Helicobacter pylori identification, virulence and resistance analysis. Future Microbiol 2016; 11:1261-1278. [PMID: 27023051 DOI: 10.2217/fmb-2016-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM We established a high-throughput multiplex genetic detection system (HMGS) for identification of Helicobacter pylori with concomitant analysis of virulence and drug resistance. MATERIALS & METHODS Confirmed 132 H. pylori cultures from gastric biopsies were screened by 20-gene site-HMGS, sequencing and E-test. RESULTS HMGS was highly sensitive and specific for H. pylori identification. Concordance rate between HMGS and sequencing averaged 94.5% (virulence genes) and 97.3% (resistance genes). Observed resistance rates to four mainstream antibiotics were high, except for amoxicillin. Significant association between virulence genotype and risks for specific gastrointestinal diseases was found for five genes. Metronidazole resistance in peptic ulcer patients was significantly higher. CONCLUSION HMGS is an effective method for H. pylori identification and analysis of virulence and drug resistance.
Collapse
Affiliation(s)
- Binjie Hu
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 Yanan West Road, Shanghai, 200040, China
| | - Fuju Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 Yanan West Road, Shanghai, 200040, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 Yanan West Road, Shanghai, 200040, China
| | - Michal A Olszewski
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System & Research Service, VA Ann Arbor Health Systems, Ann Arbor, MI, USA
| | - Haipeng Bian
- Department of Gastroenterology, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| | - Yong Wu
- Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Mimi Kong
- Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Lingli Xu
- Shanghai ABSciex Analytical Instrument Trading Co., Ltd., Shanghai, China
| | - Yingxin Miao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 Yanan West Road, Shanghai, 200040, China
| | - Yi Fang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 Yanan West Road, Shanghai, 200040, China
| | - Changqing Yang
- Department of Gastroenterology, Tongji Hospital Affiliated to Shanghai Tongji University, Shanghai, China
| | - Hu Zhao
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 Yanan West Road, Shanghai, 200040, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging & Medicine, Fudan University, Shanghai, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, No. 221 Yanan West Road, Shanghai, 200040, China.,Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.,Research Center on Aging & Medicine, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Wang YK, Kuo FC, Liu CJ, Wu MC, Shih HY, Wang SSW, Wu JY, Kuo CH, Huang YK, Wu DC. Diagnosis of Helicobacter pylori infection: Current options and developments. World J Gastroenterol 2015; 21:11221-11235. [PMID: 26523098 PMCID: PMC4616200 DOI: 10.3748/wjg.v21.i40.11221] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/06/2015] [Accepted: 09/28/2015] [Indexed: 02/06/2023] Open
Abstract
Accurate diagnosis of Helicobacter pylori (H. pylori) infection is a crucial part in the effective management of many gastroduodenal diseases. Several invasive and non-invasive diagnostic tests are available for the detection of H. pylori and each test has its usefulness and limitations in different clinical situations. Although none can be considered as a single gold standard in clinical practice, several techniques have been developed to give the more reliable results. Invasive tests are performed via endoscopic biopsy specimens and these tests include histology, culture, rapid urease test as well as molecular methods. Developments of endoscopic equipment also contribute to the real-time diagnosis of H. pylori during endoscopy. Urea breathing test and stool antigen test are most widely used non-invasive tests, whereas serology is useful in screening and epidemiological studies. Molecular methods have been used in variable specimens other than gastric mucosa. More than detection of H. pylori infection, several tests are introduced into the evaluation of virulence factors and antibiotic sensitivity of H. pylori, as well as screening precancerous lesions and gastric cancer. The aim of this article is to review the current options and novel developments of diagnostic tests and their applications in different clinical conditions or for specific purposes.
Collapse
|
37
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1005] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
38
|
Helicobacter pylori: Genomic Insight into the Host-Pathogen Interaction. Int J Genomics 2015; 2015:386905. [PMID: 25722969 PMCID: PMC4334614 DOI: 10.1155/2015/386905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/09/2015] [Indexed: 12/18/2022] Open
Abstract
The advent of genomic analyses has revolutionized the study of human health. Infectious disease research in particular has experienced an explosion of bacterial genomic, transcriptomic, and proteomic data complementing the phenotypic methods employed in traditional bacteriology. Together, these techniques have revealed novel virulence determinants in numerous pathogens and have provided information for potential chemotherapeutics. The bacterial pathogen, Helicobacter pylori, has been recognized as a class 1 carcinogen and contributes to chronic inflammation within the gastric niche. Genomic analyses have uncovered remarkable coevolution between the human host and H. pylori. Perturbation of this coevolution results in dysregulation of the host-pathogen interaction, leading to oncogenic effects. This review discusses the relationship of H. pylori with the human host and environment and the contribution of each of these factors to disease progression, with an emphasis on features that have been illuminated by genomic tools.
Collapse
|