1
|
Wu D, Eugenis I, Hu C, Kim S, Kanugovi A, Yue S, Wheeler JR, Fathali I, Feeley S, Shrager JB, Huang NF, Rando TA. Bioinstructive scaffolds enhance stem cell engraftment for functional tissue regeneration. NATURE MATERIALS 2025:10.1038/s41563-025-02212-y. [PMID: 40247020 DOI: 10.1038/s41563-025-02212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Stem cell therapy is a promising approach for tissue regeneration after traumatic injury, yet current applications are limited by inadequate control over the fate of stem cells after transplantation. Here we introduce a bioconstruct engineered for the staged release of growth factors, tailored to direct different phases of muscle regeneration. The bioconstruct is composed of a decellularized extracellular matrix containing polymeric nanocapsules sequentially releasing basic fibroblast growth factor and insulin-like growth factor 1, which promote the proliferation and differentiation of muscle stem cells, respectively. When applied to a volumetric muscle loss defect in an animal model, the bioconstruct enhances myofibre formation, angiogenesis, innervation and functional restoration. Further, it promotes functional muscle formation with human or aged murine muscle stem cells, highlighting the translational potential of this bioconstruct. Overall, these results highlight the potential of bioconstructs with orchestrated growth factor release for stem cell therapies in traumatic injury.
Collapse
Affiliation(s)
- Di Wu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
| | - Ioannis Eugenis
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Caroline Hu
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Soochi Kim
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology, UCLA, Los Angeles, CA, USA
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Abhijnya Kanugovi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Joshua R Wheeler
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Iman Fathali
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Joseph B Shrager
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Ngan F Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Janczi T, Meier F, Fehrl Y, Kinne RW, Böhm B, Burkhardt H. A Novel Pro-Inflammatory Mechanosensing Pathway Orchestrated by the Disintegrin Metalloproteinase ADAM15 in Synovial Fibroblasts. Cells 2021; 10:cells10102705. [PMID: 34685689 PMCID: PMC8534551 DOI: 10.3390/cells10102705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/16/2022] Open
Abstract
Mechanotransduction is elicited in cells upon the perception of physical forces transmitted via the extracellular matrix in their surroundings and results in signaling events that impact cellular functions. This physiological process is a prerequisite for maintaining the integrity of diarthrodial joints, while excessive loading is a factor promoting the inflammatory mechanisms of joint destruction. Here, we describe a mechanotransduction pathway in synovial fibroblasts (SF) derived from the synovial membrane of inflamed joints. The functionality of this pathway is completely lost in the absence of the disintegrin metalloproteinase ADAM15 strongly upregulated in SF. The mechanosignaling events involve the Ca2+-dependent activation of c-Jun-N-terminal kinases, the subsequent downregulation of long noncoding RNA HOTAIR, and upregulation of the metabolic energy sensor sirtuin-1. This afferent loop of the pathway is facilitated by ADAM15 via promoting the cell membrane density of the constitutively cycling mechanosensitive transient receptor potential vanilloid 4 calcium channels. In addition, ADAM15 reinforces the Src-mediated activation of pannexin-1 channels required for the enhanced release of ATP, a mediator of purinergic inflammation, which is increasingly produced upon sirtuin-1 induction.
Collapse
Affiliation(s)
- Tomasz Janczi
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Florian Meier
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
| | - Yuliya Fehrl
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
| | - Raimund W. Kinne
- Experimental Rheumatology Unit, Department of Orthopedics, Jena University Hospital, Waldkliniken Eisenberg GmbH, 07607 Eisenberg, Germany;
| | - Beate Böhm
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Correspondence: (B.B.); (H.B.)
| | - Harald Burkhardt
- Division of Rheumatology, University Hospital Frankfurt, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany; (T.J.); (F.M.); (Y.F.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60590 Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, 60590 Frankfurt am Main, Germany
- Correspondence: (B.B.); (H.B.)
| |
Collapse
|
3
|
Ermutlu C, Kaleli T, Yalcinkaya U, Cetintas S, Atici T. Efficacy of Single-Dose Radiotherapy in Preventing Posttraumatic Tendon Adhesion. Cureus 2020; 12:e8410. [PMID: 32626625 PMCID: PMC7331782 DOI: 10.7759/cureus.8410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and Aim Posttraumatic peritendinous adhesion is the greatest obstacle to achieve normal tendon function following lacerations of extrinsic flexor tendons of the hand. In this study, we aimed to evaluate whether single-dose radiotherapy (RT) has the potential to modulate intrasynovial tendon adhesions. Materials and Methods A total of 80 tendons from the third to fourth flexor profundus of both hind paws of 20 adult New Zealand rabbits were used in this study. Rabbits in the RT group received 3 Gy of X-irradiation in a single fraction. Histopathological evaluation of longitudinal sections of tendons was made using the Tang grading system for peritendinous adhesions. Intratendinous quality of the healing tissue in the laceration zone was assessed using a modified Movin scale. Results Adhesion and inflammatory response were greater in the RT group (p˂0.001). Tendon healing in the radiation group was found to be more uniform and organized compared with the control group. However, this difference was not statistically significant. The nuclei of the tenocytes in the radiation group showed a closer resemblance to normal tendon tissue when compared with the control group (p=0.007). Conclusions Despite RT’s certain advantages such as extracorporeal use, anti-inflammatory effect, and homogenous tissue penetration, 3-Gy X-irradiation resulted in increased peritendinous posttraumatic adhesion, possibly due to dose imbalance. Increased roundness in the tenocyte nuclei was present in the RT group. Studies with different dosing regimens and a higher number of subjects are necessary to establish an ideal dose suppressing the synovial response without compromising tendon healing.
Collapse
Affiliation(s)
- Cenk Ermutlu
- Orthopaedics, Bursa Uludag University School of Medicine, Bursa, TUR
| | - Tufan Kaleli
- Orthopaedics and Traumatology, Bursa Uludag University School of Medicine, Bursa, TUR
| | | | - Sibel Cetintas
- Radiation Oncology, Bursa Uludag University School of Medicine, Bursa, TUR
| | - Teoman Atici
- Orthopaedics and Traumatology, Bursa Uludag University School of Medicine, Bursa, TUR
| |
Collapse
|
4
|
Sodin-Semrl S, Spagnolo A, Mikus R, Barbaro B, Varga J, Fiore S. Opposing Regulation of Interleukin-8 and NF-kB Responses by Lipoxin A4 and Serum Amyloid a via the Common Lipoxin a Receptor. Int J Immunopathol Pharmacol 2017; 17:145-56. [PMID: 15171815 DOI: 10.1177/039463200401700206] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lipoxin A4 (LXA4) is a potent eicosanoid that inhibits IL-1β-induced activation of human fibroblast-like synoviocytes (FLS) via the LXA4 receptor (ALXR). Serum amyloid A (SAA) is an acute phase reactant with cytokine-like properties. SAA has been shown to bind the same seven transmembrane G protein-coupled receptor ligated by LXA4. Here we compared the inflammatory responses of lipid (LXA4) and peptide (SAA) ligands in human FLS via the shared ALX and characterized their downstream signaling. LXA4 induced stimulation of tissue inhibitors of metalloproteinase-2, whereas SAA induced interleukin-8 and matrix metalloproteinase-3 production. SAA up-regulated NF-kB and AP-1 DNA binding activity, while LXA4 markedly inhibited these responses after IL-1β stimulation. A human IL-8 promoter luciferase construct was transfected into CHO cells stably expressing ALXR in order to determine the role of NF-kB and/or AP-1 in the regulation of IL-8 gene expression. The NF-kB pathway proved to be the preeminent for the biological responses elicited by both ligands. These findings suggest that two endogenous molecules, targeting a common receptor, could participate in the pathogenesis of inflammatory arthritis by differentially regulating inflammatory responses in tissues expressing the ALXR.
Collapse
Affiliation(s)
- S Sodin-Semrl
- Section of Rheumatology, Dept Med, COM, University of Illinois, Chicago, IL 60607-7171, USA
| | | | | | | | | | | |
Collapse
|
5
|
Waris V, Sillat T, Waris E, Virkki L, Mandelin J, Takagi M, Konttinen YT. Role and regulation of VEGF and its receptors 1 and 2 in the aseptic loosening of total hip implants. J Orthop Res 2012; 30:1830-6. [PMID: 22528855 DOI: 10.1002/jor.22138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 04/06/2012] [Indexed: 02/04/2023]
Abstract
It was hypothesized that vascular endothelial growth factor (VEGF) in fibroblasts participates in aseptic loosening of total hip replacement (THR) implants. Therefore, osteoarthritic (OA) samples (n = 11) were compared with synovial membrane-like interface tissues from revision THR (n = 10). VEGF-A and its receptors were stained using streptavidin-immunoperoxidase method. Their regulation by hypoxia and cytokines were studied in cultured fibroblasts using quantitative real-time polymerase chain reaction (qRT-PCR). VEGFR1(+) lining cells (p < 0.01), stromal fibroblast-like cells (p = 0.001) and stromal macrophage-like cells (p < 0.05) were more numerous in rTHR than in OA. As to VEGFR2(+), only stromal fibroblast-like cells in rTHR outnumbered those found in OA (p < 0.05). VEGFRs in synovial fibroblasts were not affected by hypoxia, but VEGF increased 2.4-fold (p < 0.05). Interleukin-4 up-regulated VEGFR1 expression 23-fold. This is the first study to describe a difference between rTHR and OA in VEGF receptors, particularly VEGFR1. Hypoxia increased VEGF, but the VEGFR1 increase in the lining and stroma is probably IL-4 driven, in accordance with the M2-type macrophage dominance in interface tissues. VEGF/VEGFR system is also affected by hypoxia and may play a role in angiogenesis and bone pathology in aseptic loosening of total hip implants.
Collapse
Affiliation(s)
- Ville Waris
- Mikkeli Central Hospital, 50100 Mikkeli, Finland
| | | | | | | | | | | | | |
Collapse
|
6
|
Cesaro A, Anceriz N, Plante A, Pagé N, Tardif MR, Tessier PA. An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis. PLoS One 2012; 7:e45478. [PMID: 23029038 PMCID: PMC3445527 DOI: 10.1371/journal.pone.0045478] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 08/21/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The S100A9 and S100A8 proteins are highly expressed by neutrophils and monocytes and are part of a group of damage-associated molecular pattern molecules that trigger inflammatory responses. Sera and synovial fluids of patients with rheumatoid arthritis (RA) contain high concentrations of S100A8/A9 that correlate with disease activity. METHODS In this study, we investigated the importance of S100A9 in RA by using neutralizing antibodies in a murine lipopolysaccharide-synchronized collagen-induced arthritis model. We also used an in vitro model of stimulation of human immune cells to decipher the role played by S100A9 in leukocyte migration and pro-inflammatory cytokine secretion. RESULTS Treatment with anti-S100A9 antibodies improved the clinical score by 50%, diminished immune cell infiltration, reduced inflammatory cytokines, both in serum and in the joints, and preserved bone/collagen integrity. Stimulation of neutrophils with S100A9 protein led to the enhancement of neutrophil transendothelial migration. S100A9 protein also induced the secretion by monocytes of proinflammatory cytokines like TNFα, IL-1β and IL-6, and of chemokines like MIP-1α and MCP-1. CONCLUSION The effects of anti-S100A9 treatment are likely direct consequences of inhibiting the S100A9-mediated promotion of neutrophil transmigration and secretion of pro-inflammatory cytokines from monocytes. Collectively, our results show that treatment with anti-S100A9 may inhibit amplification of the immune response and help preserve tissue integrity. Therefore, S100A9 is a promising potential therapeutic target for inflammatory diseases like rheumatoid arthritis for which alternative therapeutic strategies are needed.
Collapse
Affiliation(s)
- Annabelle Cesaro
- Centre de recherche en Infectiologie, Centre de recherche du Centre Hospitalier Universitaire de Quebec, and Faculty of Medecine, Université Laval, Quebec, Canada
| | - Nadia Anceriz
- Centre de recherche en Infectiologie, Centre de recherche du Centre Hospitalier Universitaire de Quebec, and Faculty of Medecine, Université Laval, Quebec, Canada
| | - Audrey Plante
- Centre de recherche en Infectiologie, Centre de recherche du Centre Hospitalier Universitaire de Quebec, and Faculty of Medecine, Université Laval, Quebec, Canada
| | - Nathalie Pagé
- Centre de recherche en Infectiologie, Centre de recherche du Centre Hospitalier Universitaire de Quebec, and Faculty of Medecine, Université Laval, Quebec, Canada
| | - Mélanie R. Tardif
- Centre de recherche en Infectiologie, Centre de recherche du Centre Hospitalier Universitaire de Quebec, and Faculty of Medecine, Université Laval, Quebec, Canada
| | - Philippe A. Tessier
- Centre de recherche en Infectiologie, Centre de recherche du Centre Hospitalier Universitaire de Quebec, and Faculty of Medecine, Université Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
7
|
Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol 2012; 2012:723419. [PMID: 22505934 PMCID: PMC3299390 DOI: 10.1155/2012/723419] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.
Collapse
|
8
|
Poduval P, Sillat T, Virtanen I, Dabagh M, Konttinen YT. Immigration check for neutrophils in RA lining: laminin alpha5 low expression regions act as exit points. Scand J Rheumatol 2010; 39:132-40. [PMID: 20059371 DOI: 10.3109/03009740903198980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE A correlation exists between the absence of alpha5-laminin and transit checkpoint fenestrations in vascular basement membranes. We hypothesized that similar laminin alpha5 low expression regions might exist in synovial lining, which, although lacking basement membrane, contains all basement membrane components in its interstitial matrix. METHODS Laminin alpha4 and alpha5 chains and lactoferrin were stained using immunofluorescence and cathepsin G and neutrophil elastase using immunoperoxidase. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure laminin alpha4 and alpha5 mRNA copy numbers in cultured synovial fibroblasts, without/with tumour necrosis factor-alpha (TNFalpha) and interleukin-1beta (IL-1beta). RESULTS Laminin alpha4 and alpha5 chains were found in the intercellular matrix in synovial lining samples of trauma and revision total hip replacements. Laminin alpha5 was weaker in osteoarthritis (OA) and rheumatoid arthritis (RA), and RA synovial lining also contained local low expression areas. Double staining disclosed convergence of lactoferrin-degranulating neutrophils towards these laminin alpha5 low expression regions. In cultured OA synovial fibroblasts, laminin alpha5 mRNA decreased (p < 0.05) at 1 ng/mL TNFalpha and was not found at all in cultured resting or cytokine-stimulated RA fibroblasts. Degranulation of cathepsin G and neutrophil elastase was seen in neutrophils passing through blood vessels or synovial lining. CONCLUSIONS Migrating neutrophils in RA seem to use laminin alpha5 chain low expression regions to exit synovial tissue to enter synovial fluid. Transmigrating neutrophils remodel the intercellular matrix by releasing their proteolytic granular contents to enhance these low expression checkpoints and/or to produce chemotactic stimuli. In RA fibroblasts this is facilitated by cytokine-mediated down-regulation or lack of laminin alpha5 synthesis.
Collapse
Affiliation(s)
- P Poduval
- Department of Medicine, Helsinki University Central Hospital, Finland
| | | | | | | | | |
Collapse
|
9
|
Taylor PC, Feldmann M. Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat Rev Rheumatol 2009; 5:578-82. [PMID: 19798034 DOI: 10.1038/nrrheum.2009.181] [Citation(s) in RCA: 278] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cytokines such as tumor necrosis factor (TNF) are expressed at high levels in rheumatoid joint tissue, where they contribute significantly to inflammation and articular destruction. TNF was the first cytokine to be fully validated as a therapeutic target for rheumatoid arthritis (RA). In nearly a decade since anti-TNF agents-such as infliximab, etanercept and adalimumab-were launched as the first biologic therapies to be licensed for RA, much has been learnt about how and when in the disease course this class of drug can be used to achieve optimal therapeutic benefit. Other cytokine targets, such as interleukin (IL)-6 or IL-1, have also been validated and several are in the process of being tested. However, TNF is likely to remain the preferred target of first-line biologic therapy for the foreseeable future as, in populations with active RA despite ongoing, nonbiologic, DMARD therapy, biologic inhibition of either IL-6 or IL-1 demonstrates no obviously superior outcomes to TNF blockade. Furthermore, new approaches to blockade of signaling mediated by bioactive TNF might have the potential to generate higher-magnitude clinical responses than are currently elicited.
Collapse
Affiliation(s)
- Peter C Taylor
- Kennedy Institute of Rheumatology Division, Imperial College, London, UK.
| | | |
Collapse
|
10
|
Williams-Skipp C, Raman T, Valuck RJ, Watkins H, Palmer BE, Scheinman RI. Unmasking of a protective tumor necrosis factor receptor I-mediated signal in the collagen-induced arthritis model. ACTA ACUST UNITED AC 2009; 60:408-18. [PMID: 19180511 DOI: 10.1002/art.24260] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To examine the relative importance of tumor necrosis factor receptor I (TNFRI) signaling in the hematopoietic tissue compartment in the progression of collagen-induced arthritis (CIA), a model of rheumatoid arthritis (RA). METHODS DBA/1 mice were administered a lethal radiation dose and were then rescued with bone marrow derived from either DBA/1 or TNFRI(-/-) mice. CIA was then induced, and disease progression was characterized. RESULTS Surprisingly, mice with CIA that received TNFRI(-/-) donor marrow developed increased disease severity as compared with control mice with CIA. This could not be attributed to an increased primary response to collagen or to the contribution of a non-DBA genetic background. In mice that received TNFRI(-/-) bone marrow, histologic markers of advanced disease were evident shortly after initiation of the immune response to collagen and long before clinical evidence of disease. Serum TNFalpha was undetectable, whereas serum interleukin-12 p40 levels were increased, at the end point of the study in mice that received TNFRI(-/-) bone marrow. CONCLUSION These data raise the intriguing possibility of the existence of an antiinflammatory, TNFRI-mediated circuit in the hematopoietic compartment. This circuit bears a resemblance to the switch in TNFalpha function that has been observed during the resolution of bacterial infections. These data suggest that TNFRI-mediated signals in the radioresistant tissues contribute to disease progression, whereas TNFRI-mediated signals in the radiosensitive tissues can contribute to protection from disease. We thus put forward the hypothesis that the degree of response to TNFalpha blockade in RA is dependent in part on the relative genetic strengths of these 2 pathways.
Collapse
|
11
|
Zhang S, Muneta T, Morito T, Mochizuki T, Sekiya I. Autologous synovial fluid enhances migration of mesenchymal stem cells from synovium of osteoarthritis patients in tissue culture system. J Orthop Res 2008; 26:1413-8. [PMID: 18418888 DOI: 10.1002/jor.20659] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synovial fluid from osteoarthritic knee contains mesenchymal stem cells (MSCs). One of the possible reservoirs of MSCs in synovial fluid is synovial tissue, and synovial fluid may induce mobilization of MSCs into synovial fluid in osteoarthritis patients. Here, we investigated whether synovial fluid expanded synovial MSCs in a tissue culture system. Human synovium and synovial fluid were obtained from osteoarthritis patients during total knee arthroplasties. In the tissue culture system, autologous synovial fluid expanded synovial cells statistically higher than alpha MEM + FBS, and the addition of TGF beta 3 to alpha MEM + FBS increased expansion to a similar level in all 11 donors. The addition of decorin or anti-TGFbeta neutralizing antibody to synovial fluid partially inhibited synovial cell expansion. In cell culture assay, synovial fluid proliferated synovial cells fewer than alpha MEM + FBS. The expanded synovial cells in synovial fluid retained multipotentiality and showed surface markers similar to those of MSCs. We demonstrated that autologous synovial fluid enhanced expansion of MSCs in tissue culture of synovium from osteoarthritis patients by promoting cell migration. This effect was partially affected by TGFbeta.
Collapse
Affiliation(s)
- Sheng Zhang
- Section of Orthopedic Surgery, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519 Japan
| | | | | | | | | |
Collapse
|
12
|
Tunyogi-Csapo M, Kis-Toth K, Radacs M, Farkas B, Jacobs JJ, Finnegan A, Mikecz K, Glant TT. Cytokine-controlled RANKL and osteoprotegerin expression by human and mouse synovial fibroblasts: fibroblast-mediated pathologic bone resorption. ACTA ACUST UNITED AC 2008; 58:2397-408. [PMID: 18668542 DOI: 10.1002/art.23653] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine whether proinflammatory cytokine treatment or the complete absence of select cytokines modulates the expression of RANKL and osteoprotegerin (OPG) in synovial fibroblasts. METHODS Fibroblasts were isolated from normal and rheumatoid human synovium and from normal or arthritic joints of wild-type and cytokine gene-deficient (interleukin-4-knockout [IL-4 (-/-)] and interferon-gamma-knockout [IFNgamma (-/-)]) mice. Fibroblasts were stimulated with proinflammatory cytokines (tumor necrosis factor alpha [TNFalpha], IL-1beta, and IL-17) or antiosteoclastogenic cytokines (IL-4 and IFNgamma), alone or in combination, and the expression of RANKL and OPG was measured. RESULTS Proinflammatory cytokine-stimulated fibroblasts from rheumatoid and arthritic mouse joints expressed higher levels of RANKL and OPG than those from normal joints. IL-4 suppressed RANKL expression and increased OPG expression, IFNgamma reduced the production of both RANKL and OPG, and IL-17 had only a modest effect on the expression of RANKL or OPG. Additive effects of combination treatment (TNFalpha/IL-17 or IL-1beta/IL-17) were observed only in the human system. Extensive destruction was observed in the arthritic joints of IL-4 (-/-) mice, with a corresponding upward shift of the RANKL:OPG ratios. However, an IL-17 deficiency did not attenuate arthritis or reduce bone resorption. CONCLUSION Proinflammatory cytokines induce the expression of RANKL and OPG in both human and murine synovial fibroblasts. The RANKL:OPG ratios are shifted in favor of bone protection by IL-4 treatment, and, to a lesser extent, by IFNgamma treatment. Unexpectedly, an IL-17 deficiency alone does not induce reduced inflammatory bone destruction. Our results suggest that synovial fibroblasts may significantly contribute to bone resorption through modulation of RANKL and OPG production in a cytokine-rich milieu of inflamed joints.
Collapse
Affiliation(s)
- Miklos Tunyogi-Csapo
- Department of Orthopedic Surgery, Rush University Medical Center, Cohn Research Building, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nagatani K, Itoh K, Nakajima K, Kuroki H, Katsuragawa Y, Mochizuki M, Aotsuka S, Mimori A. Rheumatoid arthritis fibroblast-like synoviocytes express BCMA and are stimulated by APRIL. ACTA ACUST UNITED AC 2007; 56:3554-63. [PMID: 17968879 DOI: 10.1002/art.22929] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Fibroblast-like synoviocytes (FLS) are among the principal effector cells in the pathogenesis of rheumatoid arthritis (RA). This study was undertaken to examine the variety of stimulating effects of APRIL and its specific effect on FLS in the affected RA synovium. METHODS Synovium and serum samples were obtained from patients with RA, patients with osteoarthritis (OA), and healthy subjects. Soluble APRIL proteins were assayed by enzyme-linked immunosorbent assay. The relative gene expression of APRIL, BCMA, interleukin-6 (IL-6), tumor necrosis factor alpha (TNFalpha), IL-1beta, and RANKL was assessed in RA and OA FLS by polymerase chain reaction. Effects of APRIL on the production of proinflammatory cytokines and RANKL in RA FLS were investigated by flow cytometry and with the use of a BCMA-Fc fusion protein. RESULTS A significantly higher level of soluble APRIL was detected in RA serum compared with normal serum. Among the 3 receptors of APRIL tested, RA FLS expressed only BCMA, whereas OA FLS expressed none of the receptors. APRIL stimulated RA FLS, but not OA FLS, to produce IL-6, TNFalpha, IL-1beta, and APRIL itself. In addition, APRIL increased RA FLS expression of RANKL and also enhanced progression of the cell cycle of RA FLS. Neutralization of APRIL by the BCMA-Fc fusion protein attenuated all of these stimulating effects of APRIL on RA FLS. CONCLUSION RA FLS are stimulated by APRIL and express the APRIL receptor BCMA. These results provide evidence that APRIL is one of the main regulators in the pathogenesis of RA.
Collapse
|
14
|
Vasilopoulos Y, Gkretsi V, Armaka M, Aidinis V, Kollias G. Actin cytoskeleton dynamics linked to synovial fibroblast activation as a novel pathogenic principle in TNF-driven arthritis. Ann Rheum Dis 2007; 66 Suppl 3:iii23-8. [PMID: 17934089 PMCID: PMC2095291 DOI: 10.1136/ard.2007.079822] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2007] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis is a chronic inflammatory disorder whose origin of defect has been the subject of extensive research during the past few decades. While a number of immune and non-immune cell types participate in the development of chronic destructive inflammation in the arthritic joint, synovial fibroblasts have emerged as key effector cells capable of modulating both joint destruction and propagation of inflammation. Ample evidence of aberrant changes in the morphology and biochemical behaviour of rheumatoid arthritis synovial fibroblasts have established the tissue evading and "transformed" character of this cell type. We have recently demonstrated that actin cytoskeletal rearrangements determine the pathogenic activation of synovial fibroblasts in modelled TNF-mediated arthritis, a finding correlating with similar gene expression changes which we observed in human rheumatoid arthritis synovial fibroblasts. Here, we show that pharmacological inhibition of actin cytoskeleton dynamics alters potential pathogenic properties of the arthritogenic synovial fibroblast, such as proliferation, migration and resistance to apoptosis, indicating novel opportunities for therapeutic intervention in arthritis. Recent advances in this field of research are reviewed and discussed.
Collapse
Affiliation(s)
- Y Vasilopoulos
- Institute of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Athens, Greece
| | | | | | | | | |
Collapse
|
15
|
Eklund KK. Mast cells in the pathogenesis of rheumatic diseases and as potential targets for anti-rheumatic therapy. Immunol Rev 2007; 217:38-52. [PMID: 17498050 DOI: 10.1111/j.1600-065x.2007.00504.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Increasing evidence suggests that mast cells (MCs), in addition to acute allergic reactions, are involved in the pathogenesis of chronic inflammatory diseases and in particular in rheumatoid arthritis (RA). MCs reside in connective tissues and in synovial tissue of joints. They produce an array of proinflammatory mediators, tissue destructive proteases, and cytokines, most prominently tumor necrosis factor-alpha, which is one of the key cytokines in the pathogenesis of RA. MCs may also participate in the development of secondary or amyloid A amyloidosis, as the partial degradation of the serum amyloid A (SAA) protein by MCs leads to the generation of a highly amyloidogenic N-terminal fragment of SAA. MCs may contribute to the pathogenesis of connective tissue diseases, scleroderma, vasculitic syndromes, and systemic lupus erythematosus, although the data available are limited. Inhibition of the most important growth factor receptor of human MCs, c-Kit, by the selective tyrosine kinase inhibitor imatinib mesylate, induces apoptosis of synovial tissue MCs. As MCs are long-lived cells, induction of their apoptosis could be a feasible approach to inhibit their functions. Preliminary findings suggest that a drug that inhibits c-Kit could have anti-rheumatic activity in the treatment of patients with RA and spondyloarthropathies.
Collapse
Affiliation(s)
- Kari K Eklund
- Division of Rheumatology, Helsinki University Central Hospital, Helsinki, Finland.
| |
Collapse
|
16
|
Moscato S, Mattii L, D'Alessandro D, Cascone MG, Lazzeri L, Serino LP, Dolfi A, Bernardini N. Interaction of human gingival fibroblasts with PVA/gelatine sponges. Micron 2007; 39:569-79. [PMID: 17702585 DOI: 10.1016/j.micron.2007.06.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 06/20/2007] [Indexed: 01/13/2023]
Abstract
Tissue engineering scaffolds should be able to reproduce optimal microenvironments in order to support cell attachment, three-dimensional growth, migration and, regarding fibroblasts, must also promote extracellular matrix production. Various bioactive molecules are employed in the preparation of spongy scaffolds to obtain biomimetic matrices by either surface-coating or introducing them into the bulk composition of the biomaterial. The biomimetic properties of a spongy matrix composed of PVA combined with the natural component gelatine were evaluated by culturing human gingival fibroblasts on the scaffold. Cell adhesion, morphology and distribution within the scaffold were assessed by histology and electron microscopy; viability and metabolic activity as well as extracellular matrix production were analyzed by MTT assay, cytochemistry and immunocytochemistry. Fibroblasts interacted positively with PVA/gelatine. They adhered to the PVA/gelatine matrix in which they had good spreading activity and active metabolism; fibroblasts were also able to produce extracellular matrix molecules (type I collagen, fibronectin and laminin) compared to bi-dimensionally grown cells. The in situ creation of a biological matrix by human fibroblasts together with the ability to produce growth factor TGF-beta1 and the intracellular signal transduction molecule RhoA, suggests that this kind of PVA/gelatine sponge may represent a suitable support for in vitro extracellular matrix production and connective tissue regeneration.
Collapse
Affiliation(s)
- Stefania Moscato
- Department of Human Morphology and Applied Biology, Medical Histology and Embriology Section, Faculty of Medicine, University of Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
von Banchet GS, Richter J, Hückel M, Rose C, Bräuer R, Schaible HG. Fibroblast-like synovial cells from normal and inflamed knee joints differently affect the expression of pain-related receptors in sensory neurones: a co-culture study. Arthritis Res Ther 2007; 9:R6. [PMID: 17254343 PMCID: PMC1860064 DOI: 10.1186/ar2112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/20/2006] [Accepted: 01/25/2007] [Indexed: 01/22/2023] Open
Abstract
Innervation of the joint with thinly myelinated and unmyelinated sensory nerve fibres is crucial for the occurrence of joint pain. During inflammation in the joint, sensory fibres show changes in the expression of receptors that are important for the activation and sensitization of the neurones and the generation of joint pain. We recently reported that both neurokinin 1 receptors and bradykinin 2 receptors are upregulated in dorsal root ganglion (DRG) neurones (the cell bodies of sensory fibres) in the course of acute and chronic antigen-induced arthritis in the rat. In this study, we begin to address mechanisms of the interaction between fibroblast-like synovial (FLS) cells and sensory neurones by establishing a co-culture system of FLS cells and DRG neurones. The proportion of DRG neurones expressing neurokinin 1 receptor-like immunoreactivity was not altered in the co-culture with FLS cells from normal joints but was significantly upregulated using FLS cells from knee joints of rats with antigen-induced arthritis. The proportion of DRG neurones expressing bradykinin 2 receptors was slightly upregulated in the presence of FLS cells from normal joints but upregulation was more pronounced in DRG neurones co-cultured with FLS cells from acutely inflamed joints. In addition, the expression of the transient receptor potential V1 (TRPV1) receptor, which is involved in inflammation-evoked thermal hyperalgesia, was mainly upregulated by co-culturing DRG neurones with FLS cells from chronically inflamed joints. Upregulation of neurokinin 1 receptors but not of bradykinin 2 and TRPV1 receptors was also observed when only the supernatant of FLS cells from acutely inflamed joint was added to DRG neurones. Addition of indomethacin to co-cultures inhibited the effect of FLS cells from acutely inflamed joints on neurokinin 1 receptor expression, suggesting an important role for prostaglandins. Collectively, these data show that FLS cells are able to induce an upregulation of pain-related receptors in sensory neurones and, thus, they could contribute to the generation of joint pain. Importantly, the influence of FLS cells on DRG neurones is dependent on their state of activity, and soluble factors as well as direct cellular contacts are crucial for their interaction with neurones.
Collapse
Affiliation(s)
| | - Jonny Richter
- Institute of Physiology, University of Jena, Teichgraben 8, D-07740 Jena, Germany
| | - Marion Hückel
- Current address: Roche Diagnostics GmbH, D-82377 Penzberg, Germany
- Institute of Pathology, University of Jena, Ziegelmühlenweg, D-07740 Jena, Germany
| | - Christina Rose
- Institute of Pathology, University of Jena, Ziegelmühlenweg, D-07740 Jena, Germany
| | - Rolf Bräuer
- Institute of Pathology, University of Jena, Ziegelmühlenweg, D-07740 Jena, Germany
| | - Hans-Georg Schaible
- Institute of Physiology, University of Jena, Teichgraben 8, D-07740 Jena, Germany
| |
Collapse
|
18
|
Beklen A, Ainola M, Hukkanen M, Gürgan C, Sorsa T, Konttinen YT. MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis. J Dent Res 2007; 86:347-51. [PMID: 17384030 DOI: 10.1177/154405910708600409] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Periodontitis is characterized by periodontal tissue destruction. Since interleukin-17 (IL-17) has been reported to up-regulate IL-1beta and tumor necrosis factor-alpha (TNF-alpha), it was hypothesized that it is increased in periodontitis and up-regulates these cytokines and tissue-destructive matrix metalloproteinases (MMP) in local migrant and resident cells. Immunocytochemistry disclosed elevated IL-1beta, TNF-alpha, and IL-17 levels in periodontitis. These cytokines induced proMMP-1 and especially MMP-3 in gingival fibroblasts, whereas MMP-8 and MMP-9 were not induced. IL-17 was less potent as a direct MMP inducer than IL-1beta and TNF-alpha, but it induced IL-1beta and TNF-alpha production from macrophages, and IL-6 and IL-8 from gingival fibroblasts. In accordance with these findings, immunocytochemistry disclosed that MMP-1 and MMP-3 were increased in periodontitis. Gingival fibroblasts may play an important role in tissue destruction in periodontitis via cytokine-inducible MMP-1 and MMP-3 production, in which IL-17 plays a role as a key regulatory cytokine.
Collapse
Affiliation(s)
- A Beklen
- Department of Medicine/Invärtes medicin, Helsinki University Central Hospital, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
19
|
Nam EJ, Sa KH, You DW, Cho JH, Seo JS, Han SW, Park JY, Kim SI, Kyung HS, Kim IS, Kang YM. Up-regulated transforming growth factor beta-inducible gene h3 in rheumatoid arthritis mediates adhesion and migration of synoviocytes through alpha v beta3 integrin: Regulation by cytokines. ACTA ACUST UNITED AC 2006; 54:2734-44. [PMID: 16947382 DOI: 10.1002/art.22076] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To delineate the expression of transforming growth factor beta-inducible gene h3 (betaIG-H3) in rheumatoid synovitis and to determine the regulatory role of betaIG-H3 in the adhesion and migration of fibroblast-like synoviocytes (FLS). METHODS Synovial tissue was obtained from patients with rheumatoid arthritis (RA) during joint replacement surgery, and FLS were isolated using enzymatic treatment. Immunohistochemical staining was performed to show the expression of betaIG-H3 within rheumatoid synovium. Synthesis of betaIG-H3 from FLS was determined by semiquantitative reverse transcription-polymerase chain reaction, Western blot analysis, and enzyme-linked immunosorbent assay. Cell adhesion and migration assays were performed using the YH18 peptide in the fourth fas-1 domain of betaIG-H3 and function-blocking antibodies to integrins. RESULTS Expression of betaIG-H3 was up-regulated in RA synovial tissue compared with synovial tissue from patients with osteoarthritis. FLS isolated from RA synovial tissue constitutively produced betaIG-H3, which was up-regulated by transforming growth factor beta1, interleukin-1beta, and tumor necrosis factor alpha. Although FLS expressed a variety of integrins, betaIG-H3 mediated adhesion and migration of FLS through interaction with alpha v beta3 integrin. Cytokines failed to affect the betaIG-H3-mediated adhesion. However, migration of FLS guided by betaIG-H3 was enhanced by interferon-gamma and platelet-derived growth factor type BB. The YH18 peptide in the fourth fas-1 domain of betaIG-H3 inhibited adhesion and migration in a dose-dependent manner. CONCLUSION The results suggest that betaIG-H3, which is abundantly expressed in RA synovial tissue, plays a regulatory role in chronic destructive inflammation through the modulation of the adhesion and migration of FLS. This finding indicates the relevance of betaIG-H3 and alpha v beta3 integrin-interacting motifs as potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Eon Jeong Nam
- Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Fox DB, Cook JL, Kuroki K, Cockrell M. Effects of dynamic compressive load on collagen-based scaffolds seeded with fibroblast-like synoviocytes. ACTA ACUST UNITED AC 2006; 12:1527-37. [PMID: 16846349 DOI: 10.1089/ten.2006.12.1527] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Synoviocytes have been speculated to play potential reparative and remodeling roles in vascular meniscal injuries. In addition, synoviocytes may mediate the transformation of intraarticularly placed collagen-based scaffolds into fibrocartilage through exposure to dynamic compressive loads. The objectives of this study were to assess the feasibility of using fibroblast-like synoviocytes (FLS) to engineer meniscal-like fibrocartilage and to better understand the mechanosensitivity of FLS by seeding them onto collagen scaffolds exposed to dynamic compressive loads. Canine FLS were seeded onto disks of four commercially available collagen-based scaffolds (Restore, Permacol, Cuff Patch, and Graff Jacket) and subjected either to one of two levels of intermittent dynamic compressive load or no load. The disks were harvested at 1 and 2 weeks and assessed for cell viability, retention, and infiltration, as well as extracellular matrix production. In general, loading regimens decreased cellularity, and nonloaded Restore grafts retained the most cells across time intervals. Spatial distribution of FLS was optimized in Restore grafts and was overall better in non-crosslinked collagen scaffolds (Restore and Graft Jacket) than cross-linked matrices. Collagen production was noted in association with penetrating FLS clusters in the Restore scaffolds only. The applied biomechanical stimulus did not appear to induce fibrochondrogenesis in any treatment group. These data suggest that Restore scaffolds may foster greater cell retention and infiltration when compared to other commercially available, collagen-based biomatrices.
Collapse
Affiliation(s)
- Derek B Fox
- The Comparative Orthopaedic Laboratory, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|
21
|
Lally F, Smith E, Filer A, Stone MA, Shaw JS, Nash GB, Buckley CD, Rainger GE. A novel mechanism of neutrophil recruitment in a coculture model of the rheumatoid synovium. ACTA ACUST UNITED AC 2005; 52:3460-9. [PMID: 16255036 PMCID: PMC3119436 DOI: 10.1002/art.21394] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is classically thought of as a Th1, T lymphocyte-driven disease of the adaptive immune system. However, cells of the innate immune system, including neutrophils, are prevalent within the diseased joint, and accumulate in large numbers. This study was undertaken to determine whether cells of the rheumatoid stromal microenvironment could establish an inflammatory environment in which endothelial cells are conditioned in a disease-specific manner to support neutrophil recruitment. METHODS Human umbilical vein endothelial cells (ECs) and fibroblasts isolated from the synovium or skin of RA patients were established in coculture on opposite sides of porous transwell filters. After 24 hours of EC conditioning, the membranes were incorporated into a parallel-plate, flow-based adhesion assay and levels of neutrophil adhesion to ECs were measured. RESULTS ECs cocultured with synovial, but not skin, fibroblasts could recruit neutrophils in a manner that was dependent on the number of fibroblasts. Antibody blockade of P-selectin or E-selectin reduced neutrophil adhesion, and an antibody against CD18 (the beta2 integrin) abolished adhesion. Blockade of CXCR2, but not CXCR1, also greatly inhibited neutrophil recruitment. Interleukin-6 (IL-6) was detectable in coculture supernatants, and both IL-6 and neutrophil adhesion were reduced in a dose-dependent manner by hydrocortisone added to cocultures. Antibody blockade of IL-6 also effectively abolished neutrophil adhesion. CONCLUSION Synovial fibroblasts from the rheumatoid joint play an important role in regulating the recruitment of inflammatory leukocytes during active disease. This process may depend on a previously unsuspected route of IL-6-mediated crosstalk between fibroblasts and endothelial cells.
Collapse
Affiliation(s)
- Frank Lally
- The University of Birmingham, Edgbaston, Birmingham, UK
| | - Emily Smith
- The University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew Filer
- The University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | - G. Ed Rainger
- The University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
22
|
Fiore S, Antico G, Aloman M, Sodin-Semrl S. Lipoxin A4 biology in the human synovium. Role of the ALX signaling pathways in modulation of inflammatory arthritis. Prostaglandins Leukot Essent Fatty Acids 2005; 73:189-96. [PMID: 16125377 DOI: 10.1016/j.plefa.2005.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- S Fiore
- Section of Rheumatology, Department of Medicine, COM, University of Illinois, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Growth factors, including fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-beta) regulate fibroblast function, differentiation and proliferation. S100A8 and S100A9 are members of the S100 family of Ca2+-binding proteins and are now accepted as markers of inflammation. They are expressed by keratinocytes and inflammatory cells in human/murine wounds and by appropriately activated macrophages, endothelial cells, epithelial cells and keratinocytes in vitro. In this study, regulation and expression of S100A8 and S100A9 were examined in fibroblasts. Endotoxin (LPS), interferon gamma (IFNgamma), tumour-necrosis factor (TNF) and TGF-beta did not induce the S100A8 gene in murine fibroblasts whereas FGF-2 induced mRNA maximally after 12 h. The FGF-2 response was strongly enhanced and prolonged by heparin. Interleukin-1beta (IL-1beta) alone, or in synergy with FGF-2/heparin strongly induced the gene in 3T3 fibroblasts. S100A9 mRNA was not induced under any condition. Induction of S100A8 in the absence of S100A9 was confirmed in primary fibroblasts. S100A8 mRNA induction by FGF-2 and IL-1beta was partially dependent on the mitogen-activated-protein-kinase pathway and dependent on new protein synthesis. FGF-2-responsive elements were distinct from the IL-1beta-responsive elements in the S100A8 gene promoter. FGF-2-/heparin-induced, but not IL-1beta-induced responses were significantly suppressed by TGF-beta, possibly mediated by decreased mRNA stability. S100A8 in activated fibroblasts was mainly intracytoplasmic. Rat dermal wounds contained numerous S100A8-positive fibroblast-like cells 2 and 4 days post injury; numbers declined by 7 days. Up-regulation of S100A8 by FGF-2/IL-1beta, down-regulation by TGF-beta, and its time-dependent expression in wound fibroblasts suggest a role in fibroblast differentiation at sites of inflammation and repair.
Collapse
Affiliation(s)
- Farid Rahimi
- Inflammatory Diseases Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
24
|
García-Vicuña R, Gómez-Gaviro MV, Domínguez-Luis MJ, Pec MK, González-Alvaro I, Alvaro-Gracia JM, Díaz-González F. CC and CXC chemokine receptors mediate migration, proliferation, and matrix metalloproteinase production by fibroblast-like synoviocytes from rheumatoid arthritis patients. ACTA ACUST UNITED AC 2004; 50:3866-77. [PMID: 15593223 DOI: 10.1002/art.20615] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To explore the potential involvement of the chemokine system in synoviocyte-mediated tissue destruction in rheumatoid arthritis (RA), we studied the expression profile of chemokine receptors and their function in the migration, proliferation, and matrix metalloproteinase (MMP) production of cultured fibroblast-like synoviocytes (FLS) from RA patients. METHODS The presence of CC and CXC chemokine receptors on cultured FLS was studied at the messenger RNA (mRNA) level by reverse transcriptase-polymerase chain reaction and at the cell surface expression level by flow cytometry. Variations in cytosolic calcium influx induced by chemokine stimulation were assessed by flow cytometry on Fura Red-preloaded FLS. Two-compartment transwell chambers were used for FLS chemotaxis assays. Cell growth was measured by a fluorescence-based proliferation assay. Gelatinase and collagenase activities were determined by a fibril degradation assay and zymography. RESULTS FLS constitutively expressed the receptors CCR2, CCR5, CXCR3, and CXCR4, both at the cell surface and mRNA levels, but failed to express CCR3 and CCR6. Significant intracytosolic calcium influx was observed on FLS challenged with monocyte chemotactic protein 1 (MCP-1), stromal cell-derived factor 1alpha (SDF-1alpha), and interferon-inducible protein 10 (IP-10). Stimulation with MCP-1, SDF-1alpha, IP-10, and monokine induced by interferon-gamma enhanced the migration and proliferation of FLS. These chemokines, in addition to RANTES, increased in a dose- and time-dependent manner the gelatinase and collagenase activities in cell-free supernatants of cultured FLS. Interestingly, the chemokine-mediated up-regulation of MMP activities was significantly abrogated by the presence of anti-interleukin-1beta, but not anti-tumor necrosis factor alpha, blocking antibodies. CONCLUSION These data suggest that through modulation of the migration, proliferation, and MMP production by FLS, the chemokine system may play a more direct role in the destructive phase of RA than is currently suspected, and thus emphasize the relevance of chemokines and their receptors as potential therapeutic targets in this disease.
Collapse
Affiliation(s)
- Rosario García-Vicuña
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Dasuri K, Antonovici M, Chen K, Wong K, Standing K, Ens W, El-Gabalawy H, Wilkins JA. The synovial proteome: analysis of fibroblast-like synoviocytes. Arthritis Res Ther 2004; 6:R161-8. [PMID: 15059280 PMCID: PMC400437 DOI: 10.1186/ar1153] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 01/13/2004] [Accepted: 01/21/2004] [Indexed: 11/10/2022] Open
Abstract
The present studies were initiated to determine the protein expression patterns of fibroblast-like synovial (FLS) cells derived from the synovia of rheumatoid arthritis patients. The cellular proteins were separated by two-dimensional polyacrylamide gel electrophoresis and the in-gel digested proteins were analyzed by matrix-assisted laser desorption ionization mass spectrometry. A total of 368 spots were examined and 254 identifications were made. The studies identified a number of proteins that have been implicated in the normal or pathological FLS function (e.g. uridine diphosphoglucose dehydrogenase, galectin 1 and galectin 3) or that have been characterized as potential autoantigens in rheumatoid arthritis (e.g. BiP, colligin, HC gp-39). A novel uncharacterized protein product of chromosome 19 open reading frame 10 was also detected as an apparently major component of FLS cells. These results demonstrate the utility of high-content proteomic approaches in the analysis of FLS composition.
Collapse
Affiliation(s)
- Kumar Dasuri
- Rheumatic Diseases Research Laboratory, University of Manitoba, Winnipeg, Canada
| | - Mihaela Antonovici
- Manitoba Centre for Proteomics, Department of Medicine, University of Manitoba, Winnipeg, Canada
| | - Keding Chen
- Rheumatic Diseases Research Laboratory, University of Manitoba, Winnipeg, Canada
| | - Ken Wong
- Rheumatic Diseases Research Laboratory, University of Manitoba, Winnipeg, Canada
| | - Kenneth Standing
- Manitoba Centre for Proteomics, Department of Medicine, University of Manitoba, Winnipeg, Canada
- Time of Flight Laboratory, Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Werner Ens
- Manitoba Centre for Proteomics, Department of Medicine, University of Manitoba, Winnipeg, Canada
- Time of Flight Laboratory, Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| | - Hani El-Gabalawy
- Rheumatic Diseases Research Laboratory, University of Manitoba, Winnipeg, Canada
| | - John A Wilkins
- Rheumatic Diseases Research Laboratory, University of Manitoba, Winnipeg, Canada
- Manitoba Centre for Proteomics, Department of Medicine, University of Manitoba, Winnipeg, Canada
- Time of Flight Laboratory, Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
26
|
Rosengren A, Bjursten LM. Pore size in implanted polypropylene filters is critical for tissue organization. ACTA ACUST UNITED AC 2003; 67:918-26. [PMID: 14613240 DOI: 10.1002/jbm.a.10509] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Widely different implant materials induce surprisingly similar tissue reactions in vivo in contrast to their in vitro responses. Increasing attention has recently been given to the surface texture of the material. When both the material composition and the surface topography are varied, the surface topography seems to be the predominant factor for the induced tissue response. The present study addresses differences in the tissue response to commercially available Millipore mesh filters of polypropylene with pore sizes of 0.6, 10.0 or 30.0 microm. The Millipore filters with adjacent tissue were directly sectioned in a cryostat and evaluated via an immunofluorescence technique with double and triple staining, allowing simultaneous analysis of different antigens in tissue sections. These results show that macrophages, total cells, necrotic cells, nitric oxygen distribution, early angiogenesis, and capsule thickness were influenced by the surface structure. Implants with pore sizes of 0.6 microm, where entrance of inflammatory cells was inhibited, induce the most pronounced foreign body capsule formation. The 10- and 30-microm filters, in contrast, had large amounts of macrophages inside the filter structure, although very few inflammatory cells were found outside the filters. The inflammatory cells within the filters appeared not to influence the foreign body capsule induction. The critical factor for the formation of a foreign body capsule seems to be the localization of implant-close macrophages. Whether this is due to differences in cell activation or in signal transduction to collagen-synthesizing fibroblasts remains an open question.
Collapse
Affiliation(s)
- Agneta Rosengren
- Lund University, Department of Experimental Research, Malmö University Hospital, S-205 02 Malmö, Sweden
| | | |
Collapse
|
27
|
Aidinis V, Plows D, Haralambous S, Armaka M, Papadopoulos P, Kanaki MZ, Koczan D, Thiesen HJ, Kollias G. Functional analysis of an arthritogenic synovial fibroblast. Arthritis Res Ther 2003; 5:R140-57. [PMID: 12723986 PMCID: PMC165045 DOI: 10.1186/ar749] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2002] [Revised: 02/13/2003] [Accepted: 02/20/2003] [Indexed: 12/21/2022] Open
Abstract
Increasing attention has been directed towards identifying non-T-cell mechanisms as potential therapeutic targets in rheumatoid arthritis. Synovial fibroblast (SF) activation, a hallmark of rheumatoid arthritis, results in inappropriate production of chemokines and matrix components, which in turn lead to bone and cartilage destruction. We have demonstrated that SFs have an autonomous pathogenic role in the development of the disease, by showing that they have the capacity to migrate throughout the body and cause pathology specifically to the joints. In order to decipher the pathogenic mechanisms that govern SF activation and pathogenic potential, we used the two most prominent methods of differential gene expression analysis, differential display and DNA microarrays, in a search for deregulated cellular pathways in the arthritogenic SF. Functional clustering of differentially expressed genes, validated by dedicated in vitro functional assays, implicated a number of cellular pathways in SF activation. Among them, diminished adhesion to the extracellular matrix was shown to correlate with increased proliferation and migration to this matrix. Our findings support an aggressive role for the SF in the development of the disease and reinforce the perspective of a transformed-like character of the SF.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Animals
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- B-Lymphocytes/physiology
- Cell Line, Transformed
- Cell Movement/immunology
- Cells, Cultured
- Disease Models, Animal
- Fibroblasts/pathology
- Gene Expression Profiling/methods
- Gene Expression Regulation/immunology
- Genes, RAG-1/genetics
- H-2 Antigens/genetics
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Mutant Strains
- Mice, Transgenic
- Synovial Membrane/pathology
- T-Lymphocytes/physiology
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Vassilis Aidinis
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| | - David Plows
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Sylva Haralambous
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Armaka
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| | - Petros Papadopoulos
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| | - Maria Zambia Kanaki
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| | - Dirk Koczan
- Institute of Immunology, University of Rostock, Rostock, Germany
| | | | - George Kollias
- Institute of Immunology, Biomedical Sciences Research Center 'Alexander Fleming', Athens, Greece
| |
Collapse
|
28
|
Nanki T, Nagasaka K, Hayashida K, Saita Y, Miyasaka N. Chemokines regulate IL-6 and IL-8 production by fibroblast-like synoviocytes from patients with rheumatoid arthritis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5381-5. [PMID: 11673556 DOI: 10.4049/jimmunol.167.9.5381] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by proliferation of synoviocytes that produce inflammatory cytokines and chemokines. The expressed chemokines are thought to be involved in the migration of inflammatory cells into the synovium. In this study we show that CCL2/monocyte chemotactic protein-1, CCL5/RANTES, and CXCL12/stromal cell-derived factor-1 enhanced IL-6 and IL-8 production by fibroblast-like synoviocytes (FLS) from patients with RA, and their corresponding receptors, CCR2, CCR5, and CXCR4, respectively, were expressed by RA FLS. The chemokines stimulated RA FLS more effectively than skin fibroblasts. Culture with CCL2 enhanced phosphorylation of extracellular signal-related kinase 1 (ERK1) and ERK2, but not phosphorylation of p38 or Src. Moreover, activation of ERK1/2 was inhibited by pertussis toxin, a G(i)-coupled protein inhibitor, and RS-504393, CCR2 antagonist, suggesting that ERK1/2 was activated by CCL2 via CCR2 and G(i)-coupled protein. On the other hand, CCL2, CCL5, and CXCL12 were expressed on RA FLS, and their production was regulated by TNF-alpha, IL-1beta, and TGF-beta1. Our results indicate that the chemokines not only play a role in inflammatory cell migration, but are also involved in the activation of FLS in RA synovium, possibly in an autocrine or paracrine manner.
Collapse
Affiliation(s)
- T Nanki
- Department of Bioregulatory Medicine and Rheumatology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
29
|
Kontoyiannis D, Kollias G. Fibroblast biology. Synovial fibroblasts in rheumatoid arthritis: leading role or chorus line? ARTHRITIS RESEARCH 2000; 2:342-3. [PMID: 11094445 PMCID: PMC130133 DOI: 10.1186/ar109] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2000] [Accepted: 05/17/2000] [Indexed: 02/01/2023]
Affiliation(s)
- Dimitris Kontoyiannis
- Hellenic Pasteur Institute, Athens and Institute of Immunology, Biomedical Sciences Research Center `Al Fleming', Vari, Greece
| | - George Kollias
- Hellenic Pasteur Institute, Athens and Institute of Immunology, Biomedical Sciences Research Center `Al Fleming', Vari, Greece
| |
Collapse
|