1
|
Parolini C. Pathophysiology of bone remodelling cycle: Role of immune system and lipids. Biochem Pharmacol 2025; 235:116844. [PMID: 40044049 DOI: 10.1016/j.bcp.2025.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Osteoporosis is the most common skeletal disease worldwide, characterized by low bone mineral density, resulting in weaker bones, and an increased risk of fragility fractures. The maintenance of bone mass relies on the precise balance between bone synthesis and resorption. The close relationship between the immune and skeletal systems, called "osteoimmunology", was coined to identify these overlapping "scientific worlds", and its function resides in the evaluation of the mutual effects of the skeletal and immune systems at the molecular and cellular levels, in both physiological and pathological states. Lipids play an essential role in skeletal metabolism and bone health. Indeed, bone marrow and its skeletal components demand a dramatic amount of daily energy to control hematopoietic turnover, acquire and maintain bone mass, and actively being involved in whole-body metabolism. Statins, the main therapeutic agents in lowering plasma cholesterol levels, are able to promote osteoblastogenesis and inhibit osteoclastogenesis. This review is meant to provide an updated overview of the pathophysiology of bone remodelling cycle, focusing on the interplay between bone, immune system and lipids. Novel therapeutic strategies for the management of osteoporosis are also discussed.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', via Balzaretti 9 - Università degli Studi di Milano 20133 Milano, Italy.
| |
Collapse
|
2
|
Hu G, Whitaker AL, Zhang GF, Karner CM. Divergent Requirements for Glutathione Biosynthesis During Osteoclast Differentiation In Vitro and In Vivo. Antioxidants (Basel) 2025; 14:197. [PMID: 40002383 PMCID: PMC11851466 DOI: 10.3390/antiox14020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Glutathione (GSH) is the most abundant antioxidant in the cell, and it is responsible for neutralizing reactive oxygen species (ROS). ROS can promote osteoclast differentiation and stimulate bone resorption and are some of the primary drivers of bone loss with aging and loss of sex steroids. Despite this, the role of GSH biosynthesis during osteoclastogenesis remains controversial. Here, we show that the requirements for GSH biosynthesis during osteoclastogenesis in vitro and in vivo are unique. Using a metabolomics approach, we discovered that both oxidative stress and GSH biosynthesis increase during osteoclastogenesis. Inhibiting GSH biosynthesis in vitro via the pharmacological or genetic inhibition of glutamate cysteine ligase (GCLC) prevented osteoclast differentiation. Conversely, the genetic ablation of GCLC in myeloid cells using LysMCre resulted in a decrease in bone mass in both male and female mice. The decreased bone mass of the LysMCre;Gclcfl/fl mice was attributed to increased osteoclast numbers and elevated bone resorption. Collectively, our data provide strong genetic evidence that GSH biosynthesis is essential for the regulation of osteoclast differentiation and bone resorption in mice. Moreover, these findings highlight the necessity of complementing in vitro studies with in vivo genetic studies.
Collapse
Affiliation(s)
- Guoli Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amy L. Whitaker
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guo-Fang Zhang
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC 27701, USA;
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, USA
| | - Courtney M. Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Hu G, Yu Y, Ren Y, Tower RJ, Zhang GF, Karner CM. Glutaminolysis provides nucleotides and amino acids to regulate osteoclast differentiation in mice. EMBO Rep 2024; 25:4515-4541. [PMID: 39271775 PMCID: PMC11467445 DOI: 10.1038/s44319-024-00255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoclasts are bone resorbing cells that are essential to maintain skeletal integrity and function. While many of the growth factors and molecular signals that govern osteoclastogenesis are well studied, how the metabolome changes during osteoclastogenesis is unknown. Using a multifaceted approach, we identified a metabolomic signature of osteoclast differentiation consisting of increased amino acid and nucleotide metabolism. Maintenance of the osteoclast metabolic signature is governed by elevated glutaminolysis. Mechanistically, glutaminolysis provides amino acids and nucleotides which are essential for osteoclast differentiation and bone resorption in vitro. Genetic experiments in mice found that glutaminolysis is essential for osteoclastogenesis and bone resorption in vivo. Highlighting the therapeutic implications of these findings, inhibiting glutaminolysis using CB-839 prevented ovariectomy induced bone loss in mice. Collectively, our data provide strong genetic and pharmacological evidence that glutaminolysis is essential to regulate osteoclast metabolism, promote osteoclastogenesis and modulate bone resorption in mice.
Collapse
Affiliation(s)
- Guoli Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yilin Yu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yinshi Ren
- Center for Excellence in Hip Disorders, Texas Scottish Rite Hospital for Children, Dallas, TX, 75219, USA
- Department of Orthopedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Robert J Tower
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guo-Fang Zhang
- Department of Medicine, Division of Endocrinology, Metabolism Nutrition, Duke University Medical Center, Durham, NC, 27701, USA
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Courtney M Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Wang Z, Luo W, Zhang G, Li H, Zhou F, Wang D, Feng X, Xiong Y, Wu Y. FoxO1 knockdown inhibits RANKL-induced osteoclastogenesis by blocking NLRP3 inflammasome activation. Oral Dis 2024; 30:3272-3285. [PMID: 37927112 DOI: 10.1111/odi.14800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVES This study aimed to elucidate the connection between osteoclastic forkhead transcription factor O1 (FoxO1) and periodontitis and explore the underlying mechanism by which FoxO1 knockdown regulates osteoclast formation. MATERIALS AND METHODS A conventional ligature-induced periodontitis model was constructed to reveal the alterations in the proportion of osteoclastic FoxO1 in periodontitis via immunofluorescence staining. Additionally, RNA sequencing (RNA-seq) was performed to explore the underlying mechanisms of FoxO1 knockdown-mediated osteoclastogenesis, followed by western blotting, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS FoxO1+ osteoclasts were enriched in the alveolar bone in experimental periodontitis. Moreover, FoxO1 knockdown led to impaired osteoclastogenesis with low expression of osteoclast differentiation-related genes, accompanied by an insufficient osteoclast maturation phenotype. Mechanistically, RNA-seq revealed that the nuclear factor kappa B (NF-κB) and nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling pathways were inhibited in FoxO1-knockdown osteoclasts. Consistent with this, MCC950, an effective inhibitor of the NLRP3 inflammasome, substantially attenuated osteoclast formation. CONCLUSIONS FoxO1 knockdown contributed to the inhibition of osteoclastogenesis by effectively suppressing NF-κB signaling and NLRP3 inflammasome activation. This prospective study reveals the role of FoxO1 in mediating osteoclastogenesis and provides a viable therapeutic target for periodontitis treatment.
Collapse
Affiliation(s)
- Zhanqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenxin Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guorui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuan Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Huang F, Pan H, Tan Z, Chen L, Li T, Liu Y. Prevotella histicola Prevented Particle-Induced Osteolysis via Gut Microbiota-Dependent Modulation of Inflammation in Ti-Treated Mice. Probiotics Antimicrob Proteins 2024; 16:383-393. [PMID: 36897512 DOI: 10.1007/s12602-023-10057-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Wear particles generated from total joint replacements induce chronic osteolysis mediated by inflammatory upregulation, which leads to implant failure. Recent studies have suggested an important role of the gut microbiota in modulating the host's metabolism and immune system, leading to alterations in bone mass. Following gavage with P. histicola, micro-CT and HE staining revealed that osteolysis was significantly reduced in titanium (Ti)-treated mice. Immunofluorescence analysis revealed an increased macrophage (M)1/M2 ratio in the guts of Ti-treated mice, which decreased when P. histicola was added. P. histicola was also found to upregulate the tight junction proteins ZO-1, occludin, claudin-1, and MUC2 in the gut, reduce the levels of inflammatory factors IL-1β, IL-6, IL-8, and TNF-α, primarily in the ileum and colon, and decrease the expression of IL-1β and TNF-α and increase the level of IL-10 in the serum and cranium. Furthermore, P. histicola treatment resulted in a significant downregulation of CTX-1, RANKL, and RANKL/OPG. These findings demonstrate that P. histicola significantly mitigates osteolysis in Ti-treated mice by improving intestinal microbiota that repairs intestinal leakage and reduces systemic and local inflammation which in turn inhibits RANKL expression for bone resorption. P. histicola treatment may thus be therapeutically beneficial for particle-induced osteolysis.
Collapse
Affiliation(s)
- Furong Huang
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, Wenzhou, 325000, China
| | - Hao Pan
- Key Laboratory of Intelligent Critical Care and Life Support Research of Zhejiang Province, Wenzhou, 325000, China
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zenglin Tan
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Chen
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ting Li
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yangbo Liu
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Ng C, Qin Y, Xia Y, Hu X, Zhao B. Jagged1 Acts as an RBP-J Target and Feedback Suppresses TNF-Mediated Inflammatory Osteoclastogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1340-1347. [PMID: 37756541 PMCID: PMC10693321 DOI: 10.4049/jimmunol.2300317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023]
Abstract
TNF plays a crucial role in inflammation and bone resorption in various inflammatory diseases, including rheumatoid arthritis (RA). However, its direct ability to drive macrophages to differentiate into osteoclasts is limited. Although RBP-J is recognized as a key inhibitor of TNF-mediated osteoclastogenesis, the precise mechanisms that restrain TNF-induced differentiation of macrophages into osteoclasts are not fully elucidated. In this study, we identified that the Notch ligand Jagged1 is a previously unrecognized RBP-J target. The expression of Jagged1 is significantly induced by TNF mainly through RBP-J. The TNF-induced Jagged1 in turn functions as a feedback inhibitory regulator of TNF-mediated osteoclastogenesis. This feedback inhibition of osteoclastogenesis by Jagged1 does not exist in RANKL-induced mouse osteoclast differentiation, as RANKL does not induce Jagged1 expression. The Jagged1 level in peripheral blood monocytes/osteoclast precursors is decreased in RA compared with the nonerosive inflammatory disease systemic lupus erythematosus, suggesting a mechanism that contributes to increased osteoclast formation in RA. Moreover, recombinant Jagged1 suppresses human inflammatory osteoclastogenesis. Our findings identify Jagged1 as an RBP-J direct target that links TNF and Notch signaling pathways and restrains TNF-mediated osteoclastogenesis. Given that Jagged1 has no effect on TNF-induced expression of inflammatory genes, its use may present a new complementary therapeutic approach to mitigate inflammatory bone loss with little impact on the immune response in disease conditions.
Collapse
Affiliation(s)
- Courtney Ng
- Correspondence: Baohong Zhao, Ph.D. Hospital for Special Surgery, Research Institute R804, 535 East 70 Street, New York, NY 10021, 212-774-2772 (Tel), 646-714-6333 (Fax),
| | - Yongli Qin
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Yuhan Xia
- Correspondence: Baohong Zhao, Ph.D. Hospital for Special Surgery, Research Institute R804, 535 East 70 Street, New York, NY 10021, 212-774-2772 (Tel), 646-714-6333 (Fax),
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Baohong Zhao
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
7
|
Zhou P, Zheng T, Zhao B. Cytokine-mediated immunomodulation of osteoclastogenesis. Bone 2022; 164:116540. [PMID: 36031187 PMCID: PMC10657632 DOI: 10.1016/j.bone.2022.116540] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Cytokines are an important set of proteins regulating bone homeostasis. In inflammation induced bone resorption, cytokines, such as RANKL, TNF-α, M-CSF, are indispensable for the differentiation and activation of resorption-driving osteoclasts, the process we know as osteoclastogenesis. On the other hand, immune system produces a number of regulatory cytokines, including IL-4, IL-10 and IFNs, and limits excessive activation of osteoclastogenesis and bone loss during inflammation. These unique properties make cytokines powerful targets as rheostat to maintain bone homeostasis and for potential immunotherapies of inflammatory bone diseases. In this review, we summarize recent advances in cytokine-mediated regulation of osteoclastogenesis and provide insights of potential translational impact of bench-side research into clinical treatment of bone disease.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China; Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Ting Zheng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
8
|
Xia Y, Inoue K, Du Y, Baker SJ, Reddy EP, Greenblatt MB, Zhao B. TGFβ reprograms TNF stimulation of macrophages towards a non-canonical pathway driving inflammatory osteoclastogenesis. Nat Commun 2022; 13:3920. [PMID: 35798734 PMCID: PMC9263175 DOI: 10.1038/s41467-022-31475-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/20/2022] [Indexed: 01/12/2023] Open
Abstract
It is well-established that receptor activator of NF-κB ligand (RANKL) is the inducer of physiological osteoclast differentiation. However, the specific drivers and mechanisms driving inflammatory osteoclast differentiation under pathological conditions remain obscure. This is especially true given that inflammatory cytokines such as tumor necrosis factor (TNF) demonstrate little to no ability to directly drive osteoclast differentiation. Here, we found that transforming growth factor β (TGFβ) priming enables TNF to effectively induce osteoclastogenesis, independently of the canonical RANKL pathway. Lack of TGFβ signaling in macrophages suppresses inflammatory, but not basal, osteoclastogenesis and bone resorption in vivo. Mechanistically, TGFβ priming reprograms the macrophage response to TNF by remodeling chromatin accessibility and histone modifications, and enables TNF to induce a previously unrecognized non-canonical osteoclastogenic program, which includes suppression of the TNF-induced IRF1-IFNβ-IFN-stimulated-gene axis, IRF8 degradation and B-Myb induction. These mechanisms are active in rheumatoid arthritis, in which TGFβ level is elevated and correlates with osteoclast activity. Our findings identify a TGFβ/TNF-driven inflammatory osteoclastogenic program, and may lead to development of selective treatments for inflammatory osteolysis.
Collapse
Affiliation(s)
- Yuhan Xia
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yong Du
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Stacey J Baker
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew B Greenblatt
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
9
|
Vergara-Hernandez FB, Nielsen BD, Colbath AC. Is the Use of Bisphosphonates Putting Horses at Risk? An Osteoclast Perspective. Animals (Basel) 2022; 12:ani12131722. [PMID: 35804621 PMCID: PMC9265010 DOI: 10.3390/ani12131722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Bisphosphonates are a group of drugs that intervene in the bone resorption process, producing cellular death of osteoclasts. These drugs are used for skeletal conditions, such as osteoporosis in humans, and are available for veterinary medical use. Clodronate and tiludronate are bisphosphonates approved for the treatment of navicular syndrome in horses over four years old. However, these drugs are sometimes used in juvenile animals under exercise, where osteoclast activity is higher. Bisphosphonate use in juvenile and/or exercising animals could have adverse effects, including maladaptation to exercise or accumulation of microdamage. Furthermore, bisphosphonates can be bound to the skeleton for several years, resulting in a prolonged effect with no pharmaceutical reversal available. This review presents an overview of osteoclast function and a review of bisphosphonate characteristics, mechanisms of action, and side effects in order to contextualize the potential for adverse/side effects in young or exercising animals. Abstract Osteoclasts are unique and vital bone cells involved in bone turnover. These cells are active throughout the individual’s life and play an intricate role in growth and remodeling. However, extra-label bisphosphonate use may impair osteoclast function, which could result in skeletal microdamage and impaired healing without commonly associated pain, affecting bone remodeling, fracture healing, and growth. These effects could be heightened when administered to growing and exercising animals. Bisphosphonates (BPs) are unevenly distributed in the skeleton; blood supply and bone turnover rate determine BPs uptake in bone. Currently, there is a critical gap in scientific knowledge surrounding the biological impacts of BP use in exercising animals under two years old. This may have significant welfare ramifications for growing and exercising equids. Therefore, future research should investigate the effects of these drugs on skeletally immature horses.
Collapse
Affiliation(s)
- Fernando B. Vergara-Hernandez
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln, East Lansing, MI 48824, USA; (F.B.V.-H.); (B.D.N.)
| | - Brian D. Nielsen
- Department of Animal Science, Michigan State University, 474 S. Shaw Ln, East Lansing, MI 48824, USA; (F.B.V.-H.); (B.D.N.)
| | - Aimee C. Colbath
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Ave, East Lansing, MI 48864, USA
- Correspondence:
| |
Collapse
|
10
|
Micro-Osteoperforations Induce TNF-α Expression and Accelerate Orthodontic Tooth Movement via TNF-α-Responsive Stromal Cells. Int J Mol Sci 2022; 23:ijms23062968. [PMID: 35328385 PMCID: PMC8955966 DOI: 10.3390/ijms23062968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Micro-osteoperforations (MOPs) have been reported to accelerate orthodontic tooth movement (OTM), and tumor necrosis factor (TNF)-α has been reported to play a crucial role in OTM. In this report, the influence of MOPs during OTM was analyzed. We evaluated the expression of TNF-α with and without MOPs by RT-PCR analysis. A Ni-Ti closed coil spring was fixed between the maxillary left first molar and the incisors as an OTM mouse model to move the first molar in the mesial direction. MOPs were prepared on the lingual side and mesial side of the upper first molars. Furthermore, to investigate the target cell of TNF-α for osteoclast formation during OTM with MOPs in vivo, we created four types of chimeric mice in which bone marrow of wild-type (WT) or TNF receptor 1- and 2-deficient mice (KO) was transplanted into lethally irradiated WT or KO mice. The results showed that MOPs increased TNF-α expression, the distance of tooth movement and osteoclast formation significantly. Furthermore, mice with TNF-α-responsive stromal cells showed a significant increase in tooth movement and number of osteoclasts by MOPs. We conclude that MOPs increase TNF-α expression, and tooth movement is dependent on TNF-α-responsive stromal cells.
Collapse
|
11
|
Han X, Deng F, Zhu R, Li K, Yang S, Jin L, Ma Z, Ning C, Shi X, Li Y. Osteoimmune reaction caused by novel silicocarnotite bioceramic promoting osteogenesis through MAPK pathway. Biomater Sci 2022; 10:2877-2891. [DOI: 10.1039/d2bm00125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The host immune response to implant is a key factor in determining the fate of bone grafts, which is thought to be a regulator of tissue regeneration. Figuring out the...
Collapse
|
12
|
Regulation of TNF-Induced Osteoclast Differentiation. Cells 2021; 11:cells11010132. [PMID: 35011694 PMCID: PMC8750957 DOI: 10.3390/cells11010132] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Increased osteoclast (OC) differentiation and activity is the critical event that results in bone loss and joint destruction in common pathological bone conditions, such as osteoporosis and rheumatoid arthritis (RA). RANKL and its decoy receptor, osteoprotegerin (OPG), control OC differentiation and activity. However, there is a specific concern of a rebound effect of denosumab discontinuation in treating osteoporosis. TNFα can induce OC differentiation that is independent of the RANKL/RANK system. In this review, we discuss the factors that negatively and positively regulate TNFα induction of OC formation, and the mechanisms involved to inform the design of new anti-resorptive agents for the treatment of bone conditions with enhanced OC formation. Similar to, and being independent of, RANKL, TNFα recruits TNF receptor-associated factors (TRAFs) to sequentially activate transcriptional factors NF-κB p50 and p52, followed by c-Fos, and then NFATc1 to induce OC differentiation. However, induction of OC formation by TNFα alone is very limited, since it also induces many inhibitory proteins, such as TRAF3, p100, IRF8, and RBP-j. TNFα induction of OC differentiation is, however, versatile, and Interleukin-1 or TGFβ1 can enhance TNFα-induced OC formation through a mechanism which is independent of RANKL, TRAF6, and/or NF-κB. However, TNFα polarized macrophages also produce anabolic factors, including insulin such as 6 peptide and Jagged1, to slow down bone loss in the pathological conditions. Thus, the development of novel approaches targeting TNFα signaling should focus on its downstream molecules that do not affect its anabolic effect.
Collapse
|
13
|
Mestres G, Carter SSD, Hailer NP, Diez-Escudero A. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials. Acta Biomater 2021; 130:115-137. [PMID: 34087437 DOI: 10.1016/j.actbio.2021.05.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
Biomaterials offer a promising approach to repair bone defects. Whereas traditional studies predominantly focused on optimizing the osteogenic capacity of biomaterials, less focus has been on the immune response elicited by them. However, the immune and skeletal systems extensively interact, a concept which is referred to as 'osteoimmunology'. This realization has fuelled the development of biomaterials with favourable osteoimmunomodulatory (OIM) properties, aiming to modulate the immune response and to support bone regeneration, thereby affecting the success of an implant. Given the plethora of in vitro assays used to evaluate the OIM properties of biomaterials, it may be challenging to select the right methods to produce conclusive results. In this review, we aim to provide a comprehensive and practical guide for researchers interested in studying the OIM properties of biomaterials in vitro. After a concise overview of the concept of osteoimmunology, emphasis is put on the methodologies that are regularly used to evaluate the OIM properties of biomaterials. First, a description of the most commonly used cell types and cell culture media is provided. Second, typical experimental set-ups and their relevant characteristics are discussed. Third, a detailed overview of the generally used methodologies and readouts, including cell type-specific markers and time points of analysis, is given. Finally, we highlight the promise of advanced approaches, namely microarrays, bioreactors and microfluidic-based systems, and the potential that these may offer to the osteoimmunology field. STATEMENT OF SIGNIFICANCE: Osteoimmunology focuses on the connection and communication between the skeletal and immune systems. This interaction has been recognized to play an important role in the clinical success of biomaterials, which has resulted in an increasing amount of research on the osteoimmunomodulatory (OIM) properties of biomaterials. However, the amount of literature makes it challenging to extract the information needed to design experiments from beginning to end, and to compare obtained results to existing work. This article intends to serve as a guide for those aiming to learn more about the commonly used experimental approaches in the field. We cover early-stage choices, such as cell types and experimental set-ups, but also discuss specific assays, including cell markers and time points of analysis.
Collapse
Affiliation(s)
- Gemma Mestres
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden.
| | - Sarah-Sophia D Carter
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden
| | - Nils P Hailer
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| | - Anna Diez-Escudero
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
14
|
Pham HT, Kram V, Dar QA, Komori T, Ji Y, Mohassel P, Rooney J, Li L, Kilts TM, Bonnemann C, Lamande S, Young MF. Collagen VIα2 chain deficiency causes trabecular bone loss by potentially promoting osteoclast differentiation through enhanced TNFα signaling. Sci Rep 2020; 10:13749. [PMID: 32792616 PMCID: PMC7426410 DOI: 10.1038/s41598-020-70730-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Type VI collagen is well known for its role in muscular disorders, however its function in bone is still not well understood. To examine its role in bone we analyzed femoral and vertebral bone mass by micro-computed tomography analysis, which showed lower bone volume/total volume and trabecular number in Col6α2-KO mice compared with WT. Dynamic histomorphometry showed no differences in trabecular bone formation between WT and Col6α2-KO mice based on the mineral appositional rate, bone formation rate, and mineralizing perimeter. Femoral sections were assessed for the abundance of Tartrate Resistant Acid Phosphatase-positive osteoclasts, which revealed that mutant mice had more osteoclasts compared with WT mice, indicating that the primary effect of Col6a2 deficiency is on osteoclastogenesis. When bone marrow stromal cells (BMSCs) from WT and Col6α2-KO mice were treated with rmTNFα protein, the Col6α2-KO cells expressed higher levels of TNFα mRNA compared with WT cells. This was accompanied by higher levels of p-p65, a down-stream target of TNFα, suggesting that BMSCs from Col6α2-KO mice are highly sensitive to TNFα signaling. Taken together, our data imply that Col6a2 deficiency causes trabecular bone loss by enhancing osteoclast differentiation through enhanced TNFα signaling.
Collapse
Affiliation(s)
- Hai T Pham
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Vardit Kram
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Qurratul-Ain Dar
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Taishi Komori
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Youngmi Ji
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Payam Mohassel
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jachinta Rooney
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Li Li
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Tina M Kilts
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA
| | - Carsten Bonnemann
- Neuromuscular and Neurogenic Disorders of Childhood Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stoke, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shireen Lamande
- Department of Pediatrics, University of Melbourne, Parkville, Australia
| | - Marian F Young
- Molecular Biology of Bones and Teeth Section, Department of Health and Human Services (DHHS), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Building 30 Room 5A509, Bethesda, MD, 20892, USA.
| |
Collapse
|
15
|
Jiao Y, Chen C, Hu X, Feng X, Shi Z, Cao J, Li Q, Zhu Y. Niclosamide and its derivative DK-520 inhibit RANKL-induced osteoclastogenesis. FEBS Open Bio 2020; 10:1685-1697. [PMID: 32602250 PMCID: PMC7396435 DOI: 10.1002/2211-5463.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/13/2023] Open
Abstract
Niclosamide is a potent inhibitor of osteoclastogenesis and bone remodeling. DK‐520 is an acyl derivative of Niclosamide and significantly increased both the plasma concentration and the duration of exposure of Niclosamide when dosed orally. However, at present the effect of DK‐520 on osteoclastogenesis has not been reported. Here, we investigated whether DK‐520 can regulate receptor activator of nuclear factor‐κB ligand (RANKL)‐induced osteoclastogenesis of bone marrow macrophages (BMMs) in vitro. Following induction of BMMs with RANKL for three days, we detected differentiated osteoclasts with typical morphology and high levels of tartrate‐resistant acid phosphatase (TRAP), RANKL, and cathepsin K (CTSK) expression. Treatment with either Niclosamide or DK‐520 did not affect the viability of osteoclast precursors (OCPs), but significantly inhibited RANKL‐induced transdifferentiation of macrophages into OCPs, particularly in the early stage of osteoclastogenesis. Both Niclosamide and DK‐520 significantly decreased the relative levels of transcription factor PU.1 mRNA transcripts and dendritic cell‐specific transmembrane protein (DC‐STAMP), but not v‐ATPasev0d2 protein expression in OCPs. In addition, the inhibitory effect of DK‐520 on osteoclastogenesis is realized through impairment of the NF‐kB (nuclear factor‐κB) and MAPK (mitogen‐activated protein kinase) signaling pathways. These results demonstrate that DK‐520, like Niclosamide, effectively inhibits the early stage of osteoclastogenesis. The findings presented here, together with its increased oral plasma concentrations and bioavailability, suggest that DK‐520 may be a promising drug candidate for treatment of osteoclast‐related diseases.
Collapse
Affiliation(s)
- Yurui Jiao
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
| | - Xijian Hu
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xu Feng
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Zhenqi Shi
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Jie Cao
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qing Li
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yikun Zhu
- Department of Endocrinology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
16
|
van Drongelen V, Ali WH, Holoshitz J. Uncovering a Shared Epitope-Activated Protein Citrullination Pathway. THE JOURNAL OF IMMUNOLOGY 2020; 205:579-586. [PMID: 32591395 DOI: 10.4049/jimmunol.1901108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/26/2020] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is closely associated with shared epitope (SE)-coding HLA-DRB1 alleles and circulating anticitrullinated protein Abs (ACPA), but neither the respective pathogenic roles of SE and ACPA in RA nor the mechanisms underlying their coassociation are known. It was recently shown that the SE functions as a signal transduction ligand that activates a cell surface calreticulin-mediated, proarthritogenic, bone erosive pathway in an experimental model of RA. In this study, we demonstrate that stimulation of murine macrophages with LPS or DTT facilitated cell surface translocation of calreticulin, which in turn enabled increased SE-activated calcium signaling and activation of peptidylarginine deiminase with the resultant increased cellular abundance of citrullinated proteins. The i.p. administration of LPS to transgenic mice carrying a human SE-coding HLA-DRB1 allele lead to increased serum levels of TNF-α and anticitrullinated cyclic peptide Abs, along with terminal phalanx bone destruction. These data uncover a previously unknown signal transduction pathway by which the SE facilitates protein citrullination, ACPA production, and bone destruction.
Collapse
Affiliation(s)
- Vincent van Drongelen
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Wahida H Ali
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
17
|
Shin B, Kupferman J, Schmidt E, Polleux F, Delany AM, Lee SK. Rac1 Inhibition Via Srgap2 Restrains Inflammatory Osteoclastogenesis and Limits the Clastokine, SLIT3. J Bone Miner Res 2020; 35:789-800. [PMID: 31880824 PMCID: PMC7690287 DOI: 10.1002/jbmr.3945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 01/26/2023]
Abstract
The Rac1-specific guanosine triphosphatase (GTPase)-activating protein Slit-Robo GAP2 (Srgap2) is dramatically upregulated during RANKL-induced osteoclastogenesis. Srgap2 interacts with the cell membrane to locally inhibit activity of Rac1. In this study, we determined the role of Srgap2 in the myeloid lineage on bone homeostasis and the osteoclastic response to TNFα treatment. The bone phenotype of mice specifically lacking Srgap2 in the myeloid lineage (Srgap2 f/f :LysM-Cre; Srgap2 conditional knockout [cKO]) was investigated using histomorphometric analysis, in vitro cultures and Western blot analysis. Similar methods were used to determine the impact of TNFα challenge on osteoclast formation in Srgap2 cKO mice. Bone parameters in male Srgap2 cKO mice were unaffected. However, female cKO mice displayed higher trabecular bone volume due to increased osteoblast surface and bone formation rate, whereas osteoclastic parameters were unaltered. In vitro, cells from Srgap2 cKO had strongly enhanced Rac1 activation, but RANKL-induced osteoclast formation was unaffected. In contrast, conditioned medium from Srgap2 cKO osteoclasts promoted osteoblast differentiation and had increased levels of the bone anabolic clastokine SLIT3, providing a possible mechanism for increased bone formation in vivo. Rac1 is rapidly activated by the inflammatory cytokine TNFα. Supracalvarial injection of TNFα caused an augmented osteoclastic response in Srgap2 cKO mice. In vitro, cells from Srgap2 cKO mice displayed increased osteoclast formation in response to TNFα. We conclude that Srgap2 plays a prominent role in limiting osteoclastogenesis during inflammation through Rac1, and restricts expression of the paracrine clastokine SLIT3, a positive regulator of bone formation. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Bongjin Shin
- Center on Aging, UConn Health, Farmington, CT, USA
| | | | - Ewoud Schmidt
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Anne M Delany
- Center for Molecular Oncology, UConn Health, Farmington, CT, USA
| | | |
Collapse
|
18
|
IL-33 Inhibits TNF-α-Induced Osteoclastogenesis and Bone Resorption. Int J Mol Sci 2020; 21:ijms21031130. [PMID: 32046264 PMCID: PMC7038169 DOI: 10.3390/ijms21031130] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family, which acts as an alarmin. Several studies suggested that IL-33 inhibited osteoclastogenesis and bone resorption. Tumor necrosis factor-α (TNF-α) is considered a direct inducer of osteoclastogenesis. However, there has been no report regarding the effect of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. The objective of this study is to investigate the role of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. In an in vitro analysis of osteoclastogenesis, osteoclast precursors, which were derived from bone marrow cells, were treated with or without IL-33 in the presence of TNF-α. Tartrate-resistant acid phosphatase (TRAP) staining solution was used to assess osteoclast formation. In an in vivo analysis of mouse calvariae, TNF-α with or without IL-33 was subcutaneously administrated into the supracalvarial region of mice daily for 5 days. Histological sections were stained for TRAP, and osteoclast numbers were determined. Using micro-CT reconstruction images, the ratio of bone destruction area on the calvariae was evaluated. The number of TRAP-positive cells induced by TNF-α was significantly decreased with IL-33 in vitro and in vivo. Bone resorption was also reduced. IL-33 inhibited IκB phosphorylation and NF-κB nuclear translocation. These results suggest that IL-33 inhibited TNF-α-induced osteoclastogenesis and bone resorption.
Collapse
|
19
|
Inoue K, Hu X, Zhao B. Regulatory network mediated by RBP-J/NFATc1-miR182 controls inflammatory bone resorption. FASEB J 2020; 34:2392-2407. [PMID: 31908034 PMCID: PMC7018544 DOI: 10.1096/fj.201902227r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Bone resorption is a severe consequence of inflammatory diseases associated with osteolysis, such as rheumatoid arthritis (RA), often leading to disability in patients. In physiological conditions, the differentiation of bone-resorbing osteoclasts is delicately regulated by the balance between osteoclastogenic and anti-osteoclastogenic mechanisms. Inflammation has complex impact on osteoclastogenesis and bone destruction, and the underlying mechanisms of which, especially feedback inhibition, are underexplored. Here, we identify a novel regulatory network mediated by RBP-J/NFATc1-miR182 in TNF-induced osteoclastogenesis and inflammatory bone resorption. This network includes negative regulator RBP-J and positive regulators, NFATc1 and miR182, of osteoclast differentiation. In this network, miR182 is a direct target of both RBP-J and NFATc1. RBP-J represses, while NFATc1 activates miR182 expression through binding to specific open chromatin regions in the miR182 promoter. Inhibition of miR182 by RBP-J servers as a critical mechanism that limits TNF-induced osteoclast differentiation and inflammatory bone resorption. Inflammation, such as that which occurs in RA, shifts the expression levels of the components in this network mediated by RBP-J/NFATc1-miR182-FoxO3/PKR (previously identified miR182 targets) towards more osteoclastogenic, rather than healthy conditions. Treatment with TNF inhibitors in RA patients reverses the expression changes of the network components and osteoclastogenic potential. Thus, this network controls the balance between activating and repressive signals that determine the extent of osteoclastogenesis. These findings collectively highlight the biological significance and translational implication of this newly identified intrinsic regulatory network in inflammatory osteoclastogenesis and osteolysis.
Collapse
Affiliation(s)
- Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| |
Collapse
|
20
|
Zhao B. Intrinsic Restriction of TNF-Mediated Inflammatory Osteoclastogenesis and Bone Resorption. Front Endocrinol (Lausanne) 2020; 11:583561. [PMID: 33133025 PMCID: PMC7578415 DOI: 10.3389/fendo.2020.583561] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
TNF (Tumor necrosis factor) is a pleiotropic cytokine that plays an important role in immunity and inflammatory bone destruction. Homeostatic osteoclastogenesis is effectively induced by RANKL (Receptor activator of nuclear factor kappa-B ligand). In contrast, TNF often acts on cell types other than osteoclasts, or synergically with RANKL to indirectly promote osteoclastogenesis and bone resorption. TNF and RANKL are members of the TNF superfamily. However, the direct osteoclastogenic capacity of TNF is much weaker than that of RANKL. Recent studies have uncovered key intrinsic mechanisms by which TNF acts on osteoclast precursors to restrain osteoclastogenesis, including the mechanisms mediated by RBP-J signaling, RBP-J and ITAM (Immunoreceptor tyrosine-based activation motif) crosstalk, RBP-J mediated regulatory network, NF-κB p100, IRF8, and Def6. Some of these mechanisms, such as RBP-J and its mediated regulatory network, uniquely and predominantly limit osteoclastogenesis mediated by TNF but not by RANKL. As a consequence, targeting RBP-J activities suppresses inflammatory bone destruction but does not significantly impact normal bone remodeling or inflammation. Hence, discovery of these intrinsic inhibitory mechanisms addresses why TNF has a weak osteoclastogenic potential, explains a significant difference between RANKL and TNF signaling, and provides potentially new or complementary therapeutic strategies to selectively treat inflammatory bone resorption, without undesirable effects on normal bone remodeling or immune response in disease settings.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- *Correspondence: Baohong Zhao,
| |
Collapse
|
21
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Abstract
Chronic inflammation is one of the most evident and common pathological conditions leading to deregulated osteoclastogenesis and bone remodeling. Tumor necrosis factor (TNF) as a pleiotropic cytokine plays a key role, not only in inflammation, but also in bone erosion in diseases associated with bone loss. TNF can stimulate the proliferation of osteoclast precursors and, in most conditions, act together with other cytokines and growth factors such as receptor activator of nuclear factor (NF)-[kappa]B ligand (RANKL), interleukin-6, and transforming growth factor beta to synergistically promote osteoclast formation and bone resorption in vivo. A longstanding enigma in the field is why TNF alone is not able to induce osteoclast differentiation as effectively as the same superfamily member RANKL, a physiological master osteoclastogenic cytokine. Recent studies have highlighted several lines of evidence showing the intrinsic mechanisms through RBP-J, NF-[kappa]B p100/TNF receptor-associated factor 3, or interferon regulatory factor-8 that restrain TNF-induced osteoclast differentiation and bone resorption. These feedback inhibitory mechanisms driven by TNF shed light into the current paradigm of osteoclastogenesis and would provide novel therapeutic implications on controlling inflammatory bone resorption.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, and Department of Medicine, Weill Cornell Medical College, 535 E. 70th Street New York, New York 10021
| |
Collapse
|
23
|
Zhao D, Shu B, Wang C, Zhao Y, Cheng W, Sha N, Li C, Wang Q, Lu S, Wang Y. Oleanolic acid exerts inhibitory effects on the late stage of osteoclastogenesis and prevents bone loss in osteoprotegerin knockout mice. J Cell Biochem 2019; 121:152-164. [PMID: 31318102 DOI: 10.1002/jcb.28994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Postmenopausal women undergo rapid bone loss, which caused by the accelerated osteoclastic bone resorption. Receptor activator of nuclear factor kappa-B ligand (RANKL) plays critical and essential roles on varied stages of osteoclastogenesis. Oleanolic acid (OA), a naturally derived small compound, has been found suppress osteoclastogenesis in early stage of bone marrow macrophages (BMMs). However, whether OA also regulates the late stage of osteoclastogenesis remains unclear. Here, the regulatory effect of OA on the late stage of osteoclastogenesis was investigated in vitro using RANKL-pretreated BMMs and in vivo using osteoprotegerin (OPG) knockout mice. Our in vitro studies demonstrate that OA inhibits the late stage of osteoclastogenesis from RANKL-pretreated BMMs. For in vivo animal investigation, OA attenuates the bone loss phenotypes in OPG-knockout mice by decreasing the densities of osteoclast, which are in consistent with the finding with in vitro osteoclastogenesis. Mechanistic investigations found that OA largely inhibit the activity of c-Fos and Nuclear factor of activated T-cells c1 (NFATc1) with RANKL-pretreated BMMs and OPG-knockout mice. Furthermore, OA suppresses the activities of osteoclast genes, such as Tartrate resistant acid phosphatase (TRAP), CathepsinK (Ctsk), and Matrix metalloproteinase 9 (MMP9). Taken together these findings, they have not only defined an inhibitory effect of OA in the late stage of osteoclastogenesis but have also gained new molecular mechanisms underlying the process of osteoclast formation.
Collapse
Affiliation(s)
- Dongfeng Zhao
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Bing Shu
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chenglong Wang
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Central Laboratory of Research, Longhua Hospital, Shanghai, China
| | - Yongjian Zhao
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Weidong Cheng
- Henan Luoyang Orthopedic Hospital, Zhengzhou, Henan, China
| | - Nannan Sha
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Chenguang Li
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Qiang Wang
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Sheng Lu
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| | - Yongjun Wang
- Longhua Hospital, University of Traditional Chinese Medicine at Shanghai, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
| |
Collapse
|
24
|
Nakano S, Inoue K, Xu C, Deng Z, Syrovatkina V, Vitone G, Zhao L, Huang XY, Zhao B. G-protein Gα 13 functions as a cytoskeletal and mitochondrial regulator to restrain osteoclast function. Sci Rep 2019; 9:4236. [PMID: 30862896 PMCID: PMC6414604 DOI: 10.1038/s41598-019-40974-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Excessive osteoclastic bone erosion disrupts normal bone remodeling and leads to bone loss in many skeletal diseases, including inflammatory arthritis, such as rheumatoid arthritis (RA) and psoriatic arthritis, periodontitis and peri-prosthetic loosening. Functional control of osteoclasts is critical for the maintenance of bone homeostasis. However, the mechanisms that restrain osteoclast resorptive function are not fully understood. In this study, we identify a previously unrecognized role for G-protein Gα13 in inhibition of osteoclast adhesion, fusion and bone resorptive function. Gα13 is highly expressed in mature multinucleated osteoclasts, but not during early differentiation. Deficiency of Gα13 in myeloid osteoclast lineage (Gα13ΔM/ΔM mice) leads to super spread morphology of multinucleated giant osteoclasts with elevated bone resorptive capacity, corroborated with an osteoporotic bone phenotype in the Gα13ΔM/ΔM mice. Mechanistically, Gα13 functions as a brake that restrains the c-Src, Pyk2, RhoA-Rock2 mediated signaling pathways and related gene expressions to control the ability of osteoclasts in fusion, adhesion, actin cytoskeletal remodeling and resorption. Genome wide analysis reveals cytoskeleton related genes that are suppressed by Gα13, identifying Gα13 as a critical cytoskeletal regulator in osteoclasts. We also identify a genome wide regulation of genes responsible for mitochondrial biogenesis and function by Gα13 in osteoclasts. Furthermore, the significant correlation between Gα13 expression levels, TNF activity and RA disease activity in RA patients suggests that the Gα13 mediated mechanisms represent attractive therapeutic targets for diseases associated with excessive bone resorption.
Collapse
Affiliation(s)
- Shinichi Nakano
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Cheng Xu
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Zhonghao Deng
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Viktoriya Syrovatkina
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Gregory Vitone
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Liang Zhao
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and The David Z, Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA.
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA.
- Graduate Program in Cell & Developmental Biology, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA.
| |
Collapse
|
25
|
Poly-γ-glutamic acid suppresses osteoclastogenesis in human osteoclast precursors and prevents joint damage in a collagen-induced murine arthritis model. Immunol Lett 2018; 203:80-86. [DOI: 10.1016/j.imlet.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 12/22/2022]
|
26
|
Abstract
Targeting microRNAs recently shows significant therapeutic promise; however, such progress is underdeveloped in treatment of skeletal diseases with osteolysis, such as osteoporosis and rheumatoid arthritis (RA). Here, we identified miR-182 as a key osteoclastogenic regulator in bone homeostasis and diseases. Myeloid-specific deletion of miR-182 protects mice against excessive osteoclastogenesis and bone resorption in disease models of ovariectomy-induced osteoporosis and inflammatory arthritis. Pharmacological treatment of these diseases with miR-182 inhibitors completely suppresses pathologic bone erosion. Mechanistically, we identify protein kinase double-stranded RNA-dependent (PKR) as a new and essential miR-182 target that is a novel inhibitor of osteoclastogenesis via regulation of the endogenous interferon (IFN)-β-mediated autocrine feedback loop. The expression levels of miR-182, PKR, and IFN-β are altered in RA and are significantly correlated with the osteoclastogenic capacity of RA monocytes. Our findings reveal a previously unrecognized regulatory network mediated by miR-182-PKR-IFN-β axis in osteoclastogenesis, and highlight the therapeutic implications of miR-182 inhibition in osteoprotection. Osteoclasts mediate bone disruption in a number of degenerative bone diseases. Here, the authors show that miR-182 regulates osteoclastogenesis via PKR and IFN-beta signaling, is correlated with rheumatoid arthritis, and that its ablation or inhibition is protective against bone erosion in mouse models of osteoporosis or inflammatory arthritis.
Collapse
|
27
|
Srivastava RK, Dar HY, Mishra PK. Immunoporosis: Immunology of Osteoporosis-Role of T Cells. Front Immunol 2018; 9:657. [PMID: 29675022 PMCID: PMC5895643 DOI: 10.3389/fimmu.2018.00657] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/16/2018] [Indexed: 12/28/2022] Open
Abstract
The role of immune system in various bone pathologies, such as osteoporosis, osteoarthritis, and rheumatoid arthritis is now well established. This had led to the emergence of a modern field of systems biology called as osteoimmunology, an integrated research between fields of immunology and bone biology under one umbrella. Osteoporosis is one of the most common inflammatory bone loss condition with more than 200 million individuals affected worldwide. T helper (Th) cells along with various other immune cells are major players involved in bone homeostasis. In the present review, we specifically discuss the role of various defined T lymphocyte subsets (Th cells comprising Th1, Th2, Th9, Th17, Th22, regulatory T cells, follicular helper T cells, natural killer T cells, γδ T cells, and CD8+ T cells) in the pathophysiology of osteoporosis. The study of the specific role of immune system in osteoporosis has now been proposed by our group as "immunoporosis: the immunology of osteoporosis" with special emphasis on the role of various subsets of T lymphocytes. The establishment of this new field had been need of the hour due to the emergence of novel roles of various T cell lymphocytes in accelerated bone loss observed during osteoporosis. Activated T cells either directly or indirectly through the secretion of various cytokines and factors modulate bone health and thereby regulate bone remodeling. Several studies have summarized the role of inflammation in pathogenesis of osteoporosis but very few reports had delineated the precise role of various T cell subsets in the pathobiology of osteoporosis. The present review thus for the first time clearly highlights and summarizes the role of various T lymphocytes in the development and pathophysiology of osteoporosis, giving birth to a new field of biology termed as "immunoporosis". This novel field will thus provide an overview of the nexus between the cellular components of both bone and immune systems, responsible for the observed bone loss in osteoporosis. A molecular insight into the upcoming and novel field of immunoporosis would thus leads to development of innovative approaches for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Rupesh K. Srivastava
- Department of Zoology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, India
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Hamid Y. Dar
- Department of Zoology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, India
| | - Pradyumna K. Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
28
|
Wang T, Li S, Yi D, Zhou GQ, Chang Z, Ma PX, Xiao G, Chen D. CHIP regulates bone mass by targeting multiple TRAF family members in bone marrow stromal cells. Bone Res 2018; 6:10. [PMID: 29619270 PMCID: PMC5874245 DOI: 10.1038/s41413-018-0010-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022] Open
Abstract
Carboxyl terminus of Hsp70-interacting protein (CHIP or STUB1) is an E3 ligase and regulates the stability of several proteins which are involved in different cellular functions. Our previous studies demonstrated that Chip deficient mice display bone loss phenotype due to increased osteoclast formation through enhancing TRAF6 activity in osteoclasts. In this study we provide novel evidence about the function of CHIP. We found that osteoblast differentiation and bone formation were also decreased in Chip KO mice. In bone marrow stromal (BMS) cells derived from Chip-/- mice, expression of a panel of osteoblast marker genes was significantly decreased. ALP activity and mineralized bone matrix formation were also reduced in Chip-deficient BMS cells. We also found that in addition to the regulation of TRAF6, CHIP also inhibits TNFα-induced NF-κB signaling through promoting TRAF2 and TRAF5 degradation. Specific deletion of Chip in BMS cells downregulated expression of osteoblast marker genes which could be reversed by the addition of NF-κB inhibitor. These results demonstrate that the osteopenic phenotype observed in Chip-/- mice was due to the combination of increased osteoclast formation and decreased osteoblast differentiation. Taken together, our findings indicate a significant role of CHIP in bone remodeling.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, 200011 Shanghai, China
| | - Shan Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Dan Yi
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Guang-Qian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory and the Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, 518060 Shenzhen, China
| | - Zhijie Chang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University School of Medicine, 100084 Beijing, China
| | - Peter X. Ma
- Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109 USA
| | - Guozhi Xiao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
29
|
Kitazawa R, Haraguchi R, Fukushima M, Kitazawa S. Pathologic conditions of hard tissue: role of osteoclasts in osteolytic lesion. Histochem Cell Biol 2018; 149:405-415. [PMID: 29356963 DOI: 10.1007/s00418-018-1639-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 12/11/2022]
Abstract
Hard tissue homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. This physiologic process allows adaptation to mechanical loading and calcium homeostasis. Under pathologic conditions, however, this process is ill-balanced resulting in either over-resorption or over-formation of hard tissue. Local over-resorption by osteoclasts is typically observed in osteolytic metastases of malignancies, autoimmune arthritis, and giant cell tumor of bone (GCTB). In tumor-related local osteolysis, tumor-derived osteoclast-activating factors induce bone resorption not by directly acting on osteoclasts but by indirectly upregulating receptor activator of NFκB ligand (RANKL) on osteoblastic cells. Similarly, synovial tissue in the autoimmune arthritis model does overexpress RANKL and contains numerous osteoclast precursors, and like a landing craft, when it comes in contact with eroded bone surfaces, osteoclast precursors are immediately polarized to become mature osteoclasts, inducing rapidly progressive bone destruction at a late stage of the disease. GCTB, on the other hand, is a common primary bone tumor, usually arising at the metaphysis of the long bone in young adults. After the discovery of RANKL, the concept of GCTB as a tumor of RANKL-expressing stromal cells was established, and comprehensive exosome studies finally disclosed the causative single-point mutation at histone H3.3 (H3F3A) in stromal cells. Thus, osteolytic lesions under various pathological conditions are ultimately attributable to the overexpression of RANKL, which opens up a common, practical and useful therapeutic target for diverse osteolytic conditions.
Collapse
Affiliation(s)
- Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan.,Department of Molecular Pathology, Graduate School of Medicine, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Graduate School of Medicine, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mana Fukushima
- Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Sohei Kitazawa
- Department of Molecular Pathology, Graduate School of Medicine, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW The mechanisms involved in the TNF-mediated deregulated bone remodeling are little appreciated. This review will discuss and summarize the impact of TNF, Notch, and RBP-J signaling on bone remodeling. RECENT FINDINGS The integrity of the adult skeleton undergoes constant and dynamic remodeling throughout life to maintain a proper bone homeostasis, which is achieved by the essential tight control of coupling between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The studies in this field include not only the differentiation and function of osteoblasts and osteoclasts, but also the mechanisms that simultaneously control both cell types during bone remodeling. Chronic inflammation is one of the most evident and common pathological settings that often leads to deregulated bone remodeling. The resounding success of TNF blockade therapy has demonstrated a key role for TNF in inflammation and the pathogenesis of inflammatory bone resorption associated with diseases such as rheumatoid arthritis and periodontitis. Recent studies have highlighted the function of Notch and RBP-J signaling in both physiological and TNF-mediated inflammatory bone remodeling.
Collapse
Affiliation(s)
- Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA.
- Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
31
|
Raimondo A, Lembo S, Di Caprio R, Donnarumma G, Monfrecola G, Balato N, Ayala F, Balato A. Psoriatic cutaneous inflammation promotes human monocyte differentiation into active osteoclasts, facilitating bone damage. Eur J Immunol 2017; 47:1062-1074. [DOI: 10.1002/eji.201646774] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/18/2017] [Accepted: 04/05/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Annunziata Raimondo
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”; University of Salerno; Salerno Italy
| | - Roberta Di Caprio
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology; Second University of Naples; Napoli Italy
| | - Giuseppe Monfrecola
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Nicola Balato
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Fabio Ayala
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Anna Balato
- Department of Advanced Biomedical Sciences; University of Naples Federico II; Napoli Italy
| |
Collapse
|
32
|
Liu G, Guo T, Zhang Y, Liu N, Chen J, Chen J, Zhang J, Zhao J. Apoptotic pathways of macrophages within osteolytic interface membrane in periprosthestic osteolysis after total hip replacement. APMIS 2017; 125:565-578. [PMID: 28345781 DOI: 10.1111/apm.12679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/10/2017] [Indexed: 12/27/2022]
Abstract
Macrophage apoptosis in interface membrane, which occurs through either death receptor, mitochondrion, or endoplasmic reticulum (ER) stress pathways, has been suggested to play an important role in promoting osteolysis. However, how and why macrophage apoptosis originates and the correlation among these apoptotic pathways is not yet clear. The objective of this study was to identify the apoptotic mechanism of macrophages, and to explore the relationship between the apoptotic pathways and progression of osteolysis. Transmission electron microscopy (TEM) was utilized to analyze the tissue ultrastructure of wear particles, and in situ apoptotic macrophage identification was performed by TUNEL staining. We analyzed the expression of the key biomarkers of apoptotic pathways via immunohistochemistry and Western blotting. Our results demonstrated that the majority of wear particles within osteolytic interface membrane was in the 30-60 nm range, and that macrophage apoptotic ratio increased along with osteolysis progression. Normal hip dysplasia and mechanical loosening of tissues showed low expression levels of biomarkers for ER stress (Ca2+ , JNK, cleaved Caspase-4, IRE1-α, Grp78/Bip, and CHOP), mitochondrion (Bcl-2, Bax, and Cytochrome c), and death receptor (Fas and cleaved Caspase-8) pathways, while osteolytic interface membrane tissues expressed high levels of these biomarkers. In addition, we found that the ER stress intensity was in complete conformity with mitochondrial dysfunction and was consistent with the results of death receptor activation. Thus, our findings suggested that wear particles generated at implant interface can accelerate macrophage apoptosis through changes in apoptotic pathways and ultimately aggravate the symptom of osteolysis. These data represent a preferential apoptotic signaling pathway of macrophages as specific target points for the prevention and therapeutic modulation of periprosthetic osteolysis.
Collapse
Affiliation(s)
- Guoyin Liu
- Department of Orthopaedics, Jinling Hospital affiliated to School of Medicine, Nanjing University and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Department of Orthopaedics, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, Nanjing, China
| | - Ting Guo
- Department of Orthopaedics, Jinling Hospital affiliated to School of Medicine, Nanjing University and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong Zhang
- Department of Orthopaedics, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, Nanjing, China
| | - Naicheng Liu
- Department of Orthopaedics, Jinling Hospital affiliated to School of Medicine, Nanjing University and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jiangning Chen
- Department of Orthopaedics, Jinling Hospital affiliated to School of Medicine, Nanjing University and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianmin Chen
- Department of Orthopaedics, Bayi Hospital Affiliated Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Zhang
- Department of Orthopaedics, Jinling Hospital affiliated to School of Medicine, Nanjing University and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianning Zhao
- Department of Orthopaedics, Jinling Hospital affiliated to School of Medicine, Nanjing University and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Binder N, Miller C, Yoshida M, Inoue K, Nakano S, Hu X, Ivashkiv LB, Schett G, Pernis A, Goldring SR, Ross FP, Zhao B. Def6 Restrains Osteoclastogenesis and Inflammatory Bone Resorption. THE JOURNAL OF IMMUNOLOGY 2017; 198:3436-3447. [PMID: 28314855 DOI: 10.4049/jimmunol.1601716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/19/2017] [Indexed: 01/08/2023]
Abstract
Inflammatory bone resorption mediated by osteoclasts is a major cause of morbidity and disability in many inflammatory disorders, including rheumatoid arthritis (RA). The mechanisms that regulate osteoclastogenesis and bone resorption in inflammatory settings are complex and have not been well elucidated. In this study, we identify the immunoregulator differentially expressed in FDCP 6 homolog (Def6) as a novel inhibitor of osteoclastogenesis in physiological and inflammatory conditions. Def6 deficiency in Def6-/- mice enhanced the sensitivity of osteoclast precursors to the physiological osteoclastogenic inducer receptor activator for NF-κB ligand, and Def6-/- osteoclasts formed actin rings. Furthermore, Def6 deficiency markedly increased TNF-α-induced osteoclastogenesis in vitro and in vivo and enhanced bone resorption in an inflammatory osteolysis mouse model. TNF-α serum levels correlated negatively with Def6 expression levels in osteoclast precursors obtained from RA patients, and the osteoclastogenic capacity of the osteoclast precursors was significantly inversely correlated with their Def6 expression levels, indicating that Def6 functions as an inhibitor of excessive osteoclast formation and bone destruction in RA. Mechanistically, Def6 suppressed osteoclastogenesis and the expression of key osteoclastogenic factors NFATc1, B lymphocyte-induced maturation protein-1, and c-Fos by regulating an endogenous IFN-β-mediated autocrine feedback loop. The Def6-dependent pathway may represent a novel therapeutic target to prevent pathological bone destruction.
Collapse
Affiliation(s)
- Nikolaus Binder
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Christine Miller
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Masaki Yoshida
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Shinichi Nakano
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021
| | - Georg Schett
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Alessandra Pernis
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021.,Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; and
| | - Steven R Goldring
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - F Patrick Ross
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; .,Department of Medicine, Weill Cornell Medical College, New York, NY 10021
| |
Collapse
|
34
|
Giambartolomei GH, Arriola Benitez PC, Delpino MV. Brucella and Osteoarticular Cell Activation: Partners in Crime. Front Microbiol 2017; 8:256. [PMID: 28265268 PMCID: PMC5316522 DOI: 10.3389/fmicb.2017.00256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 01/18/2023] Open
Abstract
Osteoarticular brucellosis is the most common presentation of human active disease although its prevalence varies widely. The three most common forms of osteoarticular involvement are sacroiliitis, spondylitis, and peripheral arthritis. The molecular mechanisms implicated in bone damage have been recently elucidated. B. abortus induces bone damage through diverse mechanisms in which TNF-α and the receptor activator of nuclear factor kappa-B ligand (RANKL)-the natural modulator of bone homeostasis are involved. These processes are driven by inflammatory cells, like monocytes/macrophages, neutrophils, Th17 CD4+ T, and B cells. In addition, Brucella abortus has a direct effect on osteoarticular cells and tilts homeostatic bone remodeling. These bacteria inhibit bone matrix deposition by osteoblasts (the only bone cells involved in bone deposition), and modify the phenotype of these cells to produce matrix metalloproteinases (MMPs) and cytokine secretion, contributing to bone matrix degradation. B. abortus also affects osteoclasts (cells naturally involved in bone resorption) by inducing an increase in osteoclastogenesis and osteoclast activation; thus, increasing mineral and organic bone matrix resorption, contributing to bone damage. Given that the pathology induced by Brucella species involved joint tissue, experiments conducted on synoviocytes revealed that besides inducing the activation of these cells to secrete chemokines, proinflammatory cytokines and MMPS, the infection also inhibits synoviocyte apoptosis. Brucella is an intracellular bacterium that replicates preferentially in the endoplasmic reticulum of macrophages. The analysis of B. abortus-infected synoviocytes indicated that bacteria also replicate in their reticulum suggesting that they could use this cell type for intracellular replication during the osteoarticular localization of the disease. Finally, the molecular mechanisms of osteoarticular brucellosis discovered recently shed light on how the interaction between B. abortus and immune and osteoarticular cells may play an important role in producing damage in joint and bone.
Collapse
Affiliation(s)
| | | | - M. Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo – Consejo Nacional de Investigaciones Cientificas y Tecnicas – Universidad de Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
35
|
Choe JY, Kim SK. Melittin inhibits osteoclast formation through the downregulation of the RANKL-RANK signaling pathway and the inhibition of interleukin-1β in murine macrophages. Int J Mol Med 2017; 39:539-548. [PMID: 28204822 PMCID: PMC5360391 DOI: 10.3892/ijmm.2017.2876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/23/2016] [Indexed: 01/05/2023] Open
Abstract
Melittin is a major toxic component of bee venom (Apis mellifera). It is not known whether melittin is involved in bone metabolism and osteoclastogenesis. The aim of this study was to determine the role of melittin in the regulation of osteoclastogenesis. In vitro osteoclastogenesis assays were performed using mouse RAW 264.7 cells and bone marrow-derived macrophages (BMMs) treated with receptor activator of nuclear factor-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Morphologic and functional analyses for osteoclast-like multinucleated cells (MNCs) were performed by tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining and pit formation methods. The gene expression of TRAP, cathepsin K, matrix metalloproteinase-9 (MMP-9) and carbonic anhydrase II was measured by reverse transcription-quantitative PCR. The protein expression levels of mitogen-activated protein kinases (MAPKs), the p65 subunit of nuclear factor-κB (NF-κB), c-Fos, c-Jun, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), TNF receptor-associated factor-6 (TRAF6), and interleukin-1β (IL-1β) were assessed by western blot analysis. Melittin inhibited the mRNA expression of TRAP, cathepsin K, MMP-9 and carbonic anhydrase II in RANKL-stimulated RAW 264.7 cells. The increased protein expression of TRAF6, p-extracellular signal-regulated kinase (ERK), p-JNK, p-p65, p-c-Fos and NFATc1 induced by RANKL was significantly suppressed in the RAW 264.7 cells treated with melittin. A synergistic effect of IL-1β on the formation of RANKL-induced osteoclast-like MNCs was found in two experimental cells. The increased expression of IL-1β following the stimulation of RAW 264.7 cells with RANKL activated TRAF6, p-ERK, p-JNK, p-p65, p-c-Fos and NFATc1. These effects were attenuated by the downregulation of IL-1β using siRNA against IL-1β, and also by treatment with melittin. On the whole, the findings of this study demonstrate that melittin inhibits the formation of osteoclast-like MNCs by interfering with the RANKL-RANK signaling pathway.
Collapse
Affiliation(s)
- Jung-Yoon Choe
- Division of Rheumatology, Department of Internal Medicine, Arthritis and Autoimmunity Research Center, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Seong-Kyu Kim
- Division of Rheumatology, Department of Internal Medicine, Arthritis and Autoimmunity Research Center, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
36
|
Miller CH, Smith SM, Elguindy M, Zhang T, Xiang JZ, Hu X, Ivashkiv LB, Zhao B. RBP-J-Regulated miR-182 Promotes TNF-α-Induced Osteoclastogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4977-4986. [PMID: 27183593 PMCID: PMC4893988 DOI: 10.4049/jimmunol.1502044] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/21/2016] [Indexed: 01/06/2023]
Abstract
Increased osteoclastogenesis is responsible for osteolysis, which is a severe consequence of inflammatory diseases associated with bone destruction, such as rheumatoid arthritis and periodontitis. The mechanisms that limit osteoclastogenesis under inflammatory conditions are largely unknown. We previously identified transcription factor RBP-J as a key negative regulator that restrains TNF-α-induced osteoclastogenesis and inflammatory bone resorption. In this study, we tested whether RBP-J suppresses inflammatory osteoclastogenesis by regulating the expression of microRNAs (miRNAs) important for this process. Using high-throughput sequencing of miRNAs, we obtained the first, to our knowledge, genome-wide profile of miRNA expression induced by TNF-α in mouse bone marrow-derived macrophages/osteoclast precursors during inflammatory osteoclastogenesis. Furthermore, we identified miR-182 as a novel miRNA that promotes inflammatory osteoclastogenesis driven by TNF-α and whose expression is suppressed by RBP-J. Downregulation of miR-182 dramatically suppressed the enhanced osteoclastogenesis program induced by TNF-α in RBP-J-deficient cells. Complementary loss- and gain-of-function approaches showed that miR-182 is a positive regulator of osteoclastogenic transcription factors NFATc1 and B lymphocyte-induced maturation protein-1. Moreover, we identified that direct miR-182 targets, Foxo3 and Maml1, play important inhibitory roles in TNF-α-mediated osteoclastogenesis. Thus, RBP-J-regulated miR-182 promotes TNF-α-induced osteoclastogenesis via inhibition of Foxo3 and Maml1. Suppression of miR-182 by RBP-J serves as an important mechanism that restrains TNF-α-induced osteoclastogenesis. Our results provide a novel miRNA-mediated mechanism by which RBP-J inhibits osteoclastogenesis and suggest that targeting of the newly described RBP-J-miR-182-Foxo3/Maml1 axis may represent an effective therapeutic approach to suppress inflammatory osteoclastogenesis and bone resorption.
Collapse
Affiliation(s)
- Christine H Miller
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Sinead M Smith
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Mahmoud Elguindy
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medical College, New York, NY 10065
| | - Jenny Z Xiang
- Genomics Resources Core Facility, Weill Cornell Medical College, New York, NY 10065
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing 100084, China
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065; and
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
37
|
Jules J, Wang S, Shi Z, Liu J, Wei S, Feng X. The IVVY Motif and Tumor Necrosis Factor Receptor-associated Factor (TRAF) Sites in the Cytoplasmic Domain of the Receptor Activator of Nuclear Factor κB (RANK) Cooperate to Induce Osteoclastogenesis. J Biol Chem 2015; 290:23738-50. [PMID: 26276390 DOI: 10.1074/jbc.m115.667535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Indexed: 01/05/2023] Open
Abstract
Receptor activator of NF-κB (RANK) activation by RANK ligand (RANKL) mediates osteoclastogenesis by recruiting TNF receptor-associated factors (TRAFs) via three cytoplasmic motifs (motif 1, PFQEP(369-373); motif 2, PVQEET(559-564); and motif 3, PVQEQG(604-609)) to activate the NF-κB and MAPK signaling pathways. RANK also has a TRAF-independent motif (IVVY(535-538)), which is dispensable for the activation of TRAF-induced signaling pathways but essential for osteoclast lineage commitment by inducing the expression of nuclear factor of activated T-cells c1 (NFATc1) to regulate osteoclast gene expression. Notably, TNF/IL-1-mediated osteoclastogenesis requires RANK ligand assistance, and the IVVY motif is also critical for TNF/IL-1-mediated osteoclastogenesis by rendering osteoclast genes responsive to these two cytokines. Here we show that the two types of RANK cytoplasmic motifs have to be on the same RANK molecule to mediate osteoclastogenesis, suggesting a functional cooperation between them. Subsequent osteoclastogenesis assays with TNF or IL-1 revealed that, although all three TRAF motifs play roles in TNF/IL-1-mediated osteoclastogenesis, motifs 2 and 3 are more potent than motif 1. Accordingly, inactivation of motifs 2 and 3 blocksTNF/IL-1-mediated osteoclastogenesis. Mechanistically, double mutation of motifs 2 and 3, similar to inactivation of the IVVY motif, abrogates the expression of nuclear factor of activated T-cells c1 and osteoclast genes in assays reflecting RANK-initiated and TNF/IL-1-mediated osteoclastogenesis. In contrast, double inactivation of motifs 2 and 3 did not affect the ability of RANK to activate the NF-κB and MAPK signaling pathways. Collectively, these results indicate that the RANK IVVY motif cooperates with the TRAF-binding motifs to promote osteoclastogenesis, which provides novel insights into the molecular mechanism of RANK signaling in osteoclastogenesis.
Collapse
Affiliation(s)
- Joel Jules
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Shunqing Wang
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and the Department of Hematology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, China
| | - Zhenqi Shi
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Jianzhong Liu
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Shi Wei
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Xu Feng
- From the Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| |
Collapse
|
38
|
Endoplasmic reticulum stress-mediated inflammatory signaling pathways within the osteolytic periosteum and interface membrane in particle-induced osteolysis. Cell Tissue Res 2015; 363:427-47. [PMID: 26004143 PMCID: PMC4735257 DOI: 10.1007/s00441-015-2205-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/23/2015] [Indexed: 12/29/2022]
Abstract
Aseptic loosening secondary to periprosthetic inflammatory osteolysis results from the biological response to wear particles and is a leading cause of arthroplasty failure. The origin of this inflammatory response remains unclear. We aim to validate the definite link between endoplasmic reticulum (ER) stress and particle-induced inflammatory signaling pathways in periprosthetic osteolysis. We examine the histopathologic changes of osteolysis and the expression of specific biomarkers for ER-stress-mediated inflammatory signaling pathways (IRE1α, GRP78/Bip, c-Fos, NF-κB, ROS and Ca(2+)). Moreover, pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) and osteoclastogenic molecules (VEGF, OPG, RANKL and M-CSF) were assessed in clinical interface membranes and murine periosteum tissues. We found wear particles to be capable of inducing ER stress in macrophages within clinical osteolytic interface membranes and murine osteolytic periosteum tissues and to be associated with the inflammatory response and osteoclastogenesis. Blocking ER stress with sodium 4-phenylbutyrate (4-PBA) results in a dramatic amelioration of particle-induced osteolysis and a significant reduction of ER-stress intensity. Simultaneously, this ER-stress blocker also lessens inflammatory cell infiltration, diminishes the capability of osteoclastogenesis and reduces the inflammatory response by lowering IRE1α, GRP78/Bip, c-Fos, NF-κB, ROS and Ca(2+) levels. Thus, ER stress plays an important role in particle-induced inflammatory osteolysis and osteoclastogenic reactions. The pharmacological targeting of ER-stress-mediated inflammatory signaling pathways might be an appealing approach for alleviating or preventing particle-induced osteolysis in at-risk patients.
Collapse
|
39
|
Hazan-Molina H, Aizenbud I, Kaufman H, Teich S, Aizenbud D. The Influence of Shockwave Therapy on Orthodontic Tooth Movement Induced in the Rat. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 878:57-65. [DOI: 10.1007/5584_2015_179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Mena P, Domínguez-Perles R, Gironés-Vilaplana A, Baenas N, García-Viguera C, Villaño D. Flavan-3-ols, anthocyanins, and inflammation. IUBMB Life 2014; 66:745-58. [PMID: 25504851 DOI: 10.1002/iub.1332] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022]
Abstract
The process of inflammation constitutes a reactive response of the organism to tissue damage and is an important factor making part of a number of degenerative pathologies as insulin resistance, dyslipidemia, and hypertension, all of them comprised in the metabolic syndrome. There is an increasing interest in plant products rich in flavan-3-ols and anthocyanins because of their potential beneficial effects observed in epidemiological studies against inflammatory-related diseases. Their anti-inflammatory effects are exerted by modulation of cell redox status and inhibition of signaling pathways as NF-κB activation. The effects depend on their concentrations in target tissues and hence the bioavailability pathways followed by each particular compound. In this sense, in vitro studies performed with parental compounds at doses exceeding to those found in vivo may be drawing erroneous conclusions about their real efficacy. Contradictory results have been observed in human intervention trials, which may be ascribed to the type of population studied, length of study, source of flavan-3-ol/anthocyanin, and dose provided. Human studies are required to confirm the positive effects found in vitro and in animal models. Future research should be focused on the understanding of dose/flavonoid intake-response relationship with pharmacokinetic studies, evaluating proper biomarkers of intake. Long-term dietary interventions are necessary to observe effects on markers of late activation as well as the possible preventive effects of these compounds on long-term inflammation-related diseases.
Collapse
Affiliation(s)
- Pedro Mena
- Laboratory of Phytochemicals in Physiology, Department of Food Science, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Li S, Miller CH, Giannopoulou E, Hu X, Ivashkiv LB, Zhao B. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J Clin Invest 2014; 124:5057-73. [PMID: 25329696 PMCID: PMC4347236 DOI: 10.1172/jci71882] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Osteoclastogenesis requires activation of RANK signaling as well as costimulatory signals from immunoreceptor tyrosine-based activation motif-containing (ITAM-containing) receptors/adaptors, predominantly tyrosine kinase-binding proteins DAP12 and FcRγ, in osteoclast precursors. It is not well understood how costimulatory signals are regulated and integrated with RANK signaling. Here, we found that osteopetrotic bone phenotypes in mice lacking DAP12 or DAP12 and FcRγ are mediated by the transcription factor RBP-J, as deletion of Rbpj in these mice substantially rescued the defects of bone remodeling. Using a TNF-α-induced model of inflammatory bone resorption, we determined that RBP-J deficiency enables TNF-α to induce osteoclast formation and bone resorption in DAP12-deficient animals. Thus, RBP-J imposes a requirement for ITAM-mediated costimulation of RANKL or TNF-α-induced osteoclastogenesis. Mechanistically, RBP-J suppressed induction of key osteoclastogenic factors NFATc1, BLIMP1, and c-FOS by inhibiting ITAM-mediated expression and function of PLCγ2 and activation of downstream calcium-CaMKK/PYK2 signaling. Moreover, RBP-J suppressed Plcg2 expression and downstream calcium oscillations indirectly by a TGF-β/PLCγ2/calcium axis. Together, our findings indicate that RBP-J suppresses ITAM-mediated costimulation, thereby limiting crosstalk between ITAM and RANK/TNFR signaling and allowing fine tuning of osteoclastogenesis during bone homeostasis and under inflammatory conditions. Furthermore, these data suggest that environmental cues that regulate RBP-J expression/function potentially modulate the requirement for costimulatory signaling for osteoclast differentiation and bone remodeling.
Collapse
Affiliation(s)
- Susan Li
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Christine H. Miller
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Eugenia Giannopoulou
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Xiaoyu Hu
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Lionel B. Ivashkiv
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA. Biological Sciences Department, New York City College of Technology, City University of New York, New York, New York, USA. Department of Medicine and Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
| |
Collapse
|
42
|
Exaggerated inflammatory environment decreases BMP-2/ACS-induced ectopic bone mass in a rat model: implications for clinical use of BMP-2. Osteoarthritis Cartilage 2014; 22:1186-96. [PMID: 24981632 DOI: 10.1016/j.joca.2014.06.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Numerous recent reports have observed a low osteoinductive efficacy property of bone morphogenetic protein-2 (BMP-2) and disappointing long-term outcomes in clinical cases. An alternative hypothesis, that these observations are caused by an exaggerated inflammatory environment, needs experimental evidence. METHOD Thirty-seven Sprague Dawley (SD) rats were administrated with Lipopolysaccharide (LPS) injections and BMP-2/absorbable collagen sponge (ACS) implantation to respectively mimic pre-operative and post-operative inflammatory responses. Blood samples and BMP-2/ACS implants were analyzed by enzyme-linked immunosorbent assay (ELISA), real-time polymerase chain reaction (PCR), micro-computed tomography (μCT) and histological examination. RESULTS LPS injections and BMP-2/ACS implantation provoked a significant elevation of inflammatory cytokines in serum and an obvious infiltration of inflammatory cells around BMP-2/ACS implants. The bone volume, mineral content and mineral density of the BMP-2/ACS implants from LPS-injected rats were significantly decreased, indicating that attenuated BMP-2-induced bone mass might be associated with down-regulated bone formation activity and up-regulated bone resorption activity. Furthermore, histological examination of the rhBMP-2/ACS implants showed a decreased expression of osteocalcin (OCN) and an increased number of osteoclasts in LPS-injected rats at 8 weeks; the expression level of bone turnover markers in serum and BMP-2/ACS implants revealed inhibited osteoblastogenesis activity and activated osteoclastogenesis activity in LPS-injected rats. Among the top three elevated pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) showed a suppressive effect on BMP-2-induced osteoblastic differentiation in vitro. CONCLUSION These data indicate that an exaggerated inflammatory environment may decrease BMP-2/ACS-induced bone mass in vivo by suppressing BMP-2-induced osteoblastic differentiation and by increasing the number or activity of osteoclasts. The negative role of exaggerated inflammation deserves consideration for future clinical use of BMP-2 in inducing bone regeneration.
Collapse
|
43
|
Hazan-Molina H, Reznick AZ, Kaufman H, Aizenbud D. Periodontal cytokines profile under orthodontic force and extracorporeal shock wave stimuli in a rat model. J Periodontal Res 2014; 50:389-96. [PMID: 25073624 DOI: 10.1111/jre.12218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2014] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Extracorporeal shock wave therapy has been used in various clinical conditions as a result of its ability to stimulate healing processes in acute and chronic inflammatory states. Orthodontic force application triggers an inflammatory reaction in the periodontal tissue surrounding the involved teeth, resulting in tooth movement. Preliminary work revealed that extracorporeal shock wave therapy increased the expression of the inflammatory cytokines involved. Our aim was to investigate the expression of inflammatory cytokines in the periodontal tissues following orthodontic force induction, with and without shock wave therapy, in experimental rats. MATERIAL AND METHODS An orthodontic appliance was fabricated and applied between the molars and the incisors of adult Wistar rats. In conjunction with orthodontic force commencement, the rats were treated with a single episode of 1000 shock waves. Every day, during the 3 d of the study, rats were killed and the immunolocalization of RANKL, interleukin (IL)-1β, IL-6 and tumor necrosis factor-alpha was evaluated. RESULTS The percentage of the area staining positively for all inflammatory cytokines during the first 2 d decreased statistically significantly more in the shock wave-treated group compared with the nontreated control group. On the first day, the percentage of the area staining positively for IL-1β and RANKL on the compression side peaked in both groups, with a sequential rise in the number of TRAP-positive cells. CONCLUSION The induction of shock wave therapy during orthodontic tooth movement influences the expression of different inflammatory cytokines in the tissue and might alter the expected periodontal remodeling rate.
Collapse
Affiliation(s)
- H Hazan-Molina
- Orthodontic and Craniofacial Department, Graduate School of Dentistry, Rambam Health Care Campus and the Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
44
|
Glatman Zaretsky A, Engiles JB, Hunter CA. Infection-induced changes in hematopoiesis. THE JOURNAL OF IMMUNOLOGY 2014; 192:27-33. [PMID: 24363432 DOI: 10.4049/jimmunol.1302061] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The bone marrow (BM) is an important site for the interrelated processes of hematopoiesis, granulopoiesis, erythropoiesis, and lymphopoiesis. A wide variety of microbial challenges are associated with profound changes in this compartment that impact on hematopoietic differentiation and mobilization of a variety of cell types. This article reviews some of the key pathways that control BM homeostasis, the infectious and inflammatory processes that affect the BM, and how addressing the knowledge gaps in this area has the potential to widen our comprehension of immune homeostasis.
Collapse
Affiliation(s)
- Arielle Glatman Zaretsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | |
Collapse
|
45
|
Tumor necrosis factor stimulates osteoclastogenesis from human bone marrow cells under hypoxic conditions. Exp Cell Res 2014; 321:167-77. [DOI: 10.1016/j.yexcr.2013.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/06/2013] [Accepted: 11/27/2013] [Indexed: 02/07/2023]
|
46
|
Enzymatically Synthesized Inorganic Polymers as Morphogenetically Active Bone Scaffolds. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:27-77. [DOI: 10.1016/b978-0-12-800177-6.00002-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Yokota K, Sato K, Miyazaki T, Kitaura H, Kayama H, Miyoshi F, Araki Y, Akiyama Y, Takeda K, Mimura T. Combination of Tumor Necrosis Factor α and Interleukin-6 Induces Mouse Osteoclast-like Cells With Bone Resorption Activity Both In Vitro and In Vivo. Arthritis Rheumatol 2013; 66:121-9. [DOI: 10.1002/art.38218] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/26/2013] [Indexed: 01/07/2023]
|
48
|
Mechanisms of osteoclast-dependent bone formation. BONEKEY REPORTS 2013; 2:449. [PMID: 24422142 DOI: 10.1038/bonekey.2013.183] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/08/2013] [Indexed: 01/14/2023]
Abstract
Should we believe that osteoclasts are only involved in bone resorption? What about their contribution to bone formation? In this article I will review evidence that bone formation can be regulated by osteoclasts. Why is this? Likely because in the physiologic condition of bone remodeling, bone resorption and formation are balanced, and there is no better way to control this equilibrium than through a concerted action between the two cell types. Although the influence of osteoblasts on osteoclastic bone resorption is well documented and consolidated over time, what osteoclasts do to regulate osteoblast activity is still matter of intense investigation. The original hypothesis that all is in the osteoblast-seeking factors stored in the bone matrix, released and activated during bone resorption, is now being challenged by several studies, suggesting that osteoclasts are also capable of producing 'clastokines' that regulate osteoblast performance. Indeed, several of them have been demonstrated to orchestrate osteoclast-osteoblast activities. However, we are probably still at the dawn of a new era, and future work will tell us whether any of these clastokines can be exploited to stimulate bone formation and rebalance bone remodeling in skeletal diseases.
Collapse
|
49
|
Ikeda K, Nakagomi D, Sanayama Y, Yamagata M, Okubo A, Iwamoto T, Kawashima H, Takahashi K, Nakajima H. Correlation of Radiographic Progression with the Cumulative Activity of Synovitis Estimated by Power Doppler Ultrasound in Rheumatoid Arthritis: Difference Between Patients Treated with Methotrexate and Those Treated with Biological Agents. J Rheumatol 2013; 40:1967-76. [DOI: 10.3899/jrheum.130556] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Objective.Our prospective study aimed to demonstrate that the cumulative synovial power Doppler (PD) ultrasound scores correlate with radiographic progression better than conventional measures in patients with rheumatoid arthritis (RA). We also investigated the difference between antirheumatic agents.Methods.Sixty-nine patients with RA who had recently received either methotrexate (MTX; n = 23), tumor necrosis factor (TNF) antagonists (n = 28), or tocilizumab (TCZ; n = 18) were enrolled. Patients underwent clinical, laboratory, and ultrasonographic assessment at baseline, 12 weeks, and 24 weeks. Radiographic damage was evaluated using van der Heijde modified total Sharp score (TSS) at baseline and 24 weeks.Results.Fifty-seven patients continued the same treatment regimen for 24 weeks and completed the study, and 21 patients (36.8%) showed radiographic progression during the study period. In all patients, ΔTSS significantly correlated both with cumulative 28-joint Disease Activity Score–C-reactive protein (DAS28-CRP; ρ = 0.342, p = 0.009) and cumulative total PD scores (ρ = 0.357, p = 0.006). In MTX-treated patients, cumulative total PD scores significantly correlated with ΔTSS (ρ = 0.679, p = 0.004), whereas cumulative DAS28-CRP did not (ρ = 0.487, p = 0.056). However, cumulative total PD scores did not correlate with ΔTSS in TNF antagonist–treated or TCZ-treated patients.Conclusion.Our data confirm the evidence that synovial PD activity more accurately reflects active synovial inflammation (which actually causes joint destruction) than do conventional measures in patients treated with MTX. Our data also indicate that TNF antagonists can inhibit short-term radiographic progression in the presence of active synovitis.
Collapse
|
50
|
Lee Y, Kim HJ, Park CK, Kim YG, Lee HJ, Kim JY, Kim HH. MicroRNA-124 regulates osteoclast differentiation. Bone 2013; 56:383-389. [PMID: 23867221 DOI: 10.1016/j.bone.2013.07.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 12/25/2022]
Abstract
Osteoclasts are specialized cells for bone-resorption originated from precursors of macrophage/monocyte lineage. The receptor activator of NFκB ligand (RANKL) initiates osteoclast differentiation, in which nuclear factor of activated T cell cytoplasmic 1 (NFATc1) plays a key role as a master transcription factor. In the present report, we show that microRNA-124 (miR-124) regulates osteoclastogenesis of mouse bone marrow macrophages (BMMs) by suppressing NFATc1 expression. On the other hand, synthetic inhibitor that binds specifically to miR-124 enhanced osteoclast differentiation and NFATc1 expression. The overexpression of a constitutively active form of NFATc1 prevented the inhibitory effect of miR-124 on osteoclastogenesis. Finally, miR-124 also affected the proliferation and motility of osteoclast precursors, the latter coinciding with the reduced expression of RhoA and Rac1. These findings not only reveal unprecedented role of miR-124 in osteoclastogenesis but also suggest a novel mode of regulation of NFATc1 in osteoclasts.
Collapse
Affiliation(s)
- Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 700-412, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|