1
|
Richards ND, Howell SJ, Bellamy MC, Beck J. The diverse effects of ketamine, jack-of-all-trades: a narrative review. Br J Anaesth 2025; 134:649-661. [PMID: 39753406 PMCID: PMC11867090 DOI: 10.1016/j.bja.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 02/22/2025] Open
Abstract
Ketamine, an N-methyl-D-aspartic acid receptor antagonist that was first discovered in 1962, has become established in anaesthesia providing dose-dependent anaesthetic, sedative, and analgesic effects. Ketamine, however, also acts on a wide range of other cellular targets, resulting in interesting and diverse effects on both physiological and pathological processes. Potential beneficial properties of ketamine include cardiovascular stability for patients undergoing sedation or anaesthesia, analgesia in both acute and chronic pain, bronchodilation in severe refractory asthma, anti-inflammatory properties particularly in sepsis, tumour inhibition, and antidepressant properties with marked ability to reverse suicidal ideation. The reluctance to adopt ketamine into routine practice is likely attributable in part to the stigma and negative reputation associated with its perceived side-effects and potential for abuse. This review explores the diverse properties and therapeutic potentials of ketamine being investigated across different fields whilst also identifying areas for ongoing and future research. Given the diverse range of potential benefits and promising early work, ketamine should be the focus of ongoing research in multiple different specialty areas. This includes areas relevant to anaesthesia and perioperative medicine, such as acute and chronic pain management, ICU sedation, and even tumour suppression in those undergoing surgical resection of malignancies.
Collapse
Affiliation(s)
- Nicholas D Richards
- Adult Critical Care, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| | - Simon J Howell
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Mark C Bellamy
- Adult Critical Care, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - James Beck
- Adult Critical Care, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
2
|
Xie T, Schorn RE, Kitto KF, Florio SK, Peterson CD, Wilcox GL, Vulchanova L, Fairbanks CA. Agmatine inhibits NMDA receptor-mediated calcium transients in mouse spinal cord dorsal horn via intact PSD95-nNOS signaling. J Pharmacol Exp Ther 2024; 392:100061. [PMID: 39969272 PMCID: PMC11969267 DOI: 10.1016/j.jpet.2024.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/10/2024] [Indexed: 02/20/2025] Open
Abstract
Intrathecal administration of agmatine, an NMDA receptor (NMDAr) antagonist and nitric oxide synthase inhibitor, prevents neuropathic pain behavior in a dose-dependent manner by acting at the GluN2B subunit of the NMDAr. The present study investigated the pharmacological mechanism of agmatine's inhibitory effect using calcium imaging and an in vivo assay of nociceptive responses induced by NMDA. The application of NMDA-evoked calcium transients in the mouse spinal cord dorsal horn slice was inhibited by the NMDAr antagonist, 2-amino-5-phosphonovalerate. Agmatine also concentration-dependently inhibited NMDA-evoked calcium responses. To evaluate the role of the GluN2B subunit of the NMDAr in the agmatine response, we conditionally knocked-down Grin2B, the gene encoding GluN2B, in spinal cord dorsal horn neurons (GluN2B knockdown [GluN2B-KD]). In control spinal cord slices, ifenprodil inhibited NMDAr-mediated calcium transients, but it was not effective in GluN2B-KD. Surprisingly, agmatine was equally effective in reducing calcium transients in control and GluN2B-KD mouse spinal cord slices. To determine whether the effect of agmatine could be attributed to an action downstream of the NMDAr (eg, neuronal nitric oxide synthase [nNOS]), we used the PSD95-nNOS tethering inhibitor, IC87201, to disrupt the link between NMDAr and nNOS. In the presence of IC87201, agmatine's attenuation of NMDA-evoked calcium transients in ex vivo spinal cord dorsal horn was significantly reversed as was agmatine's antihyperalgesic effect in the intrathecal NMDA-evoked thermal hyperalgesia in vivo model. These results indicated that agmatine requires an intact NMDAr-PSD95-nNOS pathway to attenuate NMDAr-mediated calcium transients and thermal hyperalgesia induced by intrathecal NMDA. SIGNIFICANCE STATEMENT: Chronic pain is an urgent public health concern, and effective long-term treatments are still needed. Agmatine reduces pain in preclinical models without the side effects of motor dysfunction or addiction. Clarifying the pharmacological mechanism of agmatine's analgesic effect in spinal neurotransmission may facilitate the development of novel pain-alleviating therapeutics.
Collapse
Affiliation(s)
- Tongzhen Xie
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota
| | - Rachel E Schorn
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kelley F Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | | | - Cristina D Peterson
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota; Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota; Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota; Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
3
|
Srebro D, Dožić B, Savić Vujović K, Medić Brkić B, Vučković S. Magnesium Sulfate Reduces Carrageenan-Induced Rat Paw Inflammatory Edema Via Nitric Oxide Production. Dose Response 2023; 21:15593258231155788. [PMID: 36756149 PMCID: PMC9900672 DOI: 10.1177/15593258231155788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/12/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Magnesium is an antagonist of the N-methyl-D-aspartate receptor. This study aimed to investigate the anti-edematous effect of magnesium sulfate (MS) in different protocols of use and the possible mechanism of its action. Methods In a rat model of carrageenan-induced paw inflammation, the anti-edematous activity of MS was assessed with a plethysmometer. The effects of the nonselective inhibitor (L-NAME), selective inhibitor of neuronal (L-NPA) and inducible (SMT) nitric oxide synthase on the effects of MS were evaluated. Results MS administered systemically before or after inflammation reduced edema by 30% (5 mg/kg, P < .05) and 55% (30 mg/kg, P < .05). MS administered locally (.5 mg/paw, P < .05) significantly prevented the development of inflammatory edema by 60%. L-NAME, intraperitoneally administered before MS, potentiated (5 mg/kg, P < .05) or reduced (3 mg/kg, P < .05), while in the highest tested dose L-NPA (2 mg/kg, P < .01) and SMT (.015 mg/kg, P < .01) reduced the anti-edematous effect of MS. Conclusions Magnesium is a more effective anti-edematous drug in therapy than for preventing inflammatory edema. The effect of MS is achieved after systemic and local peripheral administration and when MS is administered as a single drug in a single dose. This effect is mediated at least in part via the production of nitric oxide.
Collapse
Affiliation(s)
- Dragana Srebro
- Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine,
University of Belgrade, Belgrade,
Serbia,Dragana Srebro, Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine, University of
Belgrade, Serbia Dr Subotića-starijeg 1, Belgrade 11129, Serbia.
| | - Branko Dožić
- Department of Pathology, School of
Dental Medicine, University of
Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine,
University of Belgrade, Belgrade,
Serbia
| | - Branislava Medić Brkić
- Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine,
University of Belgrade, Belgrade,
Serbia
| | - Sonja Vučković
- Department of Pharmacology,
Clinical Pharmacology and Toxicology, Faculty of Medicine,
University of Belgrade, Belgrade,
Serbia
| |
Collapse
|
4
|
Prospects for the Personalized Multimodal Therapy Approach to Pain Management via Action on NO and NOS. Molecules 2021; 26:molecules26092431. [PMID: 33921984 PMCID: PMC8122598 DOI: 10.3390/molecules26092431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic pain syndromes are an important medical problem generated by various molecular, genetic, and pathophysiologic mechanisms. Back pain, neuropathic pain, and posttraumatic pain are the most important pathological processes associated with chronic pain in adults. Standard approaches to the treatment of them do not solve the problem of pain chronicity. This is the reason for the search for new personalized strategies for the prevention and treatment of chronic pain. The nitric oxide (NO) system can play one of the key roles in the development of peripheral pain and its chronicity. The purpose of the study is to review publications devoted to changes in the NO system in patients with peripheral chronical pain syndromes. We have carried out a search for the articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier, and Google Scholar databases. The search was carried out using keywords and their combinations. The role of NO and NO synthases (NOS) isoforms in peripheral pain development and chronicity was demonstrated primarily from animal models to humans. The most studied is the neuronal NOS (nNOS). The role of inducible NOS (iNOS) and endothelial NOS (eNOS) is still under investigation. Associative genetic studies have shown that single nucleotide variants (SNVs) of NOS1, NOS2, and NOS3 genes encoding nNOS, iNOS, and eNOS may be associated with acute and chronic peripheral pain. Prospects for the use of NOS inhibitors to modulate the effect of drugs used to treat peripheral pain syndrome are discussed. Associative genetic studies of SNVs NOS1, NOS2, and NOS3 genes are important for understanding genetic predictors of peripheral pain chronicity and development of new personalized pharmacotherapy strategies.
Collapse
|
5
|
Moreno P, Cazuza RA, Mendes-Gomes J, Díaz AF, Polo S, Leánez S, Leite-Panissi CRA, Pol O. The Effects of Cobalt Protoporphyrin IX and Tricarbonyldichlororuthenium (II) Dimer Treatments and Its Interaction with Nitric Oxide in the Locus Coeruleus of Mice with Peripheral Inflammation. Int J Mol Sci 2019; 20:ijms20092211. [PMID: 31060340 PMCID: PMC6540196 DOI: 10.3390/ijms20092211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Heme oxygenase 1 (HO-1) and carbon monoxide were shown to normalize oxidative stress and inflammatory reactions induced by neuropathic pain in the central nervous system, but their effects in the locus coeruleus (LC) of animals with peripheral inflammation and their interaction with nitric oxide are unknown. In wild-type (WT) and knockout mice for neuronal (NOS1-KO) or inducible (NOS2-KO) nitric oxide synthases with inflammatory pain induced by complete Freund’s adjuvant (CFA), we assessed: (1) antinociceptive actions of cobalt protoporphyrin IX (CoPP), an HO-1 inducer; (2) effects of CoPP and tricarbonyldichlororuthenium(II) dimer (CORM-2), a carbon monoxide-liberating compound, on the expression of HO-1, NOS1, NOS2, CD11b/c, GFAP, and mitogen-activated protein kinases (MAPK) in the LC. CoPP reduced inflammatory pain in different time-dependent manners in WT and KO mice. Peripheral inflammation activated astroglia in the LC of all genotypes and increased the levels of NOS1 and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK 1/2) in WT mice. CoPP and CORM-2 enhanced HO-1 and inhibited astroglial activation in all genotypes. Both treatments blocked NOS1 overexpression, and CoPP normalized ERK 1/2 activation. This study reveals an interaction between HO-1 and NOS1/NOS2 during peripheral inflammation and shows that CoPP and CORM-2 improved HO-1 expression and modulated the inflammatory and/or plasticity changes caused by peripheral inflammation in the LC.
Collapse
Affiliation(s)
- Patricia Moreno
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| | - Rafael Alves Cazuza
- Department of Psychology, Faculty of Philosophy, Science and Letters, University of São Paulo, 14040-901, RibeirãoPreto, SP, Brazil.
| | - Joyce Mendes-Gomes
- Department of Psychology, Faculty of Philosophy, Science and Letters, University of São Paulo, 14040-901, RibeirãoPreto, SP, Brazil.
| | - Andrés Felipe Díaz
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| | - Sara Polo
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| | | | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institutd'InvestigacióBiomèdicaSant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain.
- Institut de Neurociències, UniversitatAutònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
6
|
Preventive treatment with dizocilpine attenuates oedema in a carrageenan model of inflammation: the interaction of glutamatergic and nitrergic signaling. Inflammopharmacology 2018; 27:121-128. [PMID: 30182184 DOI: 10.1007/s10787-018-0526-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
Dizocilpine is a highly selective and potent non-competitive antagonist of the N-methyl-D-aspartate (NMDA) glutamate receptor. It is well known that dizocilpine has different neuroprotective effects in animal models of pain, epilepsy and oedema during trauma. The search for alternative antiinflammatory drugs is ongoing. We investigated the anti-oedematous effects of dizocilpine and the probable mechanism of action in a rat model that mimics local and persistent inflammation without tissue injury or damage. Male Wistar rats were injected with 100 μL of 0.5% carrageenan to the plantar surface of the hind paw. Anti-oedematous activity was assessed in the carrageenan-induced paw inflammatory oedema test with a plethysmometer. To assess possible mechanisms of dizocilpine action, we examined the effects of the selective inhibitor of neuronal [N-ω-propyl-L-arginine hydrochloride (L-NPA)] and inducible [S-methylisothiourea (SMT)] nitric oxide synthase (NOS). Dizocilpine after systemic (0.0005, 0.005 and 0.02 mg/kg, subcutaneous (s.c.)), but not after local peripheral administration, reduced the paw inflammatory oedema. The effect is not dose dependent, and the highest decrease by about 47% at the time of maximally developed oedema was achieved with 0.005 mg/kg. Intraperitoneally (i.p.) administered L-NPA (0.5, 1 and 2 mg/kg) or SMT (0.005, 0.01 and 0.015 mg/kg) before dizocilpine abolished or reduced the anti-oedematous effect of dizocilpine by about 70-85%. An acute single dose of dizocilpine administered before inducing oedema systemically reduced the development of inflammatory oedema. The mechanism of the anti-oedematous effect includes, at least partially, an increase in nitric oxide (NO) production.
Collapse
|
7
|
Zhao H, Liu S, Wang C, Wang Q, Liu W, Gong M. Contralateral monoarthritis exacerbated chronic constriction injury-induced pain hypersensitivity through upregulating inducible nitric oxide synthase. J Pain Res 2018; 11:1433-1443. [PMID: 30122974 PMCID: PMC6078183 DOI: 10.2147/jpr.s166994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction High comorbidity of osteoarthritis (OA) and neuropathic pain has been reported in aged patients. Evidence shows that central sensitization of pain processing occurs in late-phase OA and may facilitate the development of neuropathic pain. Few studies reveal whether acute monoarthritis (MA) aggravates neuropathic pain on the opposite side of the body from the injury. Methods To address whether neuropathic pain is affected by contralateral MA through distinct inflammatory pathway, MA was induced by intra-articular injection of complete Freund’s adjuvant (CFA) into the right tibiotarsal joint, and neuropathic pain was established by chronic constriction injury (CCI) of the left sciatic nerve. Results We observed that MA aggravated mechanical allodynia and thermal hyperalgesia in CCI rats. Furthermore, MA affected the other side of the spinal cord in multiple aspects, including the upregulation of iNOS mRNA and the enhancement of forskolin-induced facilitation of excitatory synaptic transmission in the spinal cord dorsal horn substantia gelatinosa neurons. Discussion Interestingly, intrathecal injection of 1400W, an antagonist of iNOS, attenuated intensity of pain behaviors in CCI rats with contralateral MA to similar levels in CCI rats without MA, and also normalized the facilitatory effect of forskolin on excitatory synaptic transmission in the spinal cord dorsal horn neurons in contralateral MA rats. Therefore, contralateral MA worsened CCI-induced pain hypersensitivity probably through upregulating iNOS and enhancing the facilitation of synaptic transmission following CCI. Conclusion Inhibiting the iNOS might be a potential therapeutic strategy for concurrent OA and neuropathic pain.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, Shandong, People's Republic of China,
| | - Shenghou Liu
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, Shandong, People's Republic of China,
| | - Chenhua Wang
- Department of Nuclear Medicine, The Second Hospital of Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Qingjie Wang
- Department of Emergency, The Second Hospital of Shandong University, Jinan, 250033, Shandong, People's Republic of China
| | - Wenguang Liu
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, Shandong, People's Republic of China,
| | - Mingzhi Gong
- Department of Orthopedics, The Second Hospital of Shandong University, Jinan, 250033, Shandong, People's Republic of China,
| |
Collapse
|
8
|
Ding Y, Yao P, Hong T, Han Z, Zhao B, Chen W, Zhou G. Early hyperbaric oxygen effects on neuropathic pain and nitric oxide synthase isoforms in CCI rats. Oncotarget 2018; 9:7513-7521. [PMID: 29484128 PMCID: PMC5800920 DOI: 10.18632/oncotarget.23867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 12/24/2017] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain is pain caused by injury or dysfunction in the central and/or peripheral nervous system. Neuropathic pain has a high incidence with a complex mechanism, but effective treatment remains elusive. Hyperbaric oxygen (HBO) therapy has been widely used in the treatment of a variety of neurological diseases. The current study used a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve. We observed the effects of early use of 2.5 absolute atmosphere (ATA) HBO on neuropathic pain-related behaviors and the expression of nitric oxide synthase (NOS) isoforms in the spinal dorsal horn. In the CCI group, mechanical withdrawal threshold (MWT) was decreased, Thermal withdrawal latency (TWL) was shortened, and mRNA and protein levels of iNOS and nNOS were significantly increased compared to the sham group. MWT was increased, TWL was enhanced, and iNOS and nNOS levels were significantly decreased in the HBO group compared to the CCI group. There was no change in eNOS levels across all groups. HBO treatment at early stages can improve hyperalgesia.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Yao
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Hong
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenkai Han
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, China
| | - Baisong Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Weimin Chen
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Chen SR, Jin XG, Pan HL. Endogenous nitric oxide inhibits spinal NMDA receptor activity and pain hypersensitivity induced by nerve injury. Neuropharmacology 2017; 125:156-165. [PMID: 28754372 DOI: 10.1016/j.neuropharm.2017.07.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/30/2017] [Accepted: 07/22/2017] [Indexed: 11/25/2022]
Abstract
The role of nitric oxide (NO) in nociceptive transmission at the spinal cord level remains uncertain. Increased activity of spinal N-methyl-d-aspartate (NMDA) receptors contributes to development of chronic pain induced by peripheral nerve injury. In this study, we determined how endogenous NO affects NMDA receptor activity of spinal cord dorsal horn neurons in control and spinal nerve-ligated rats. Bath application of the NO precursor l-arginine or the NO donor S-nitroso-N-acetylpenicillamine (SNAP) significantly inhibited NMDA receptor currents of spinal dorsal horn neurons in both sham control and nerve-injured rats. Inhibition of neuronal nitric oxide synthase (nNOS) or blocking the S-nitrosylation reaction with N-ethylmaleimide abolished the inhibitory effects of l-arginine on NMDA receptor currents recorded from spinal dorsal horn neurons in sham control and nerve-injured rats. However, bath application of the cGMP analog 8-bromo-cGMP had no significant effects on spinal NMDA receptor currents. Inhibition of soluble guanylyl cyclase also did not alter the inhibitory effect of l-arginine on spinal NMDA receptor activity. Furthermore, knockdown of nNOS with siRNA abolished the inhibitory effects of l-arginine, but not SNAP, on spinal NMDA receptor activity in both groups of rats. Additionally, intrathecal injection of l-arginine significantly attenuated mechanical or thermal hyperalgesia induced by nerve injury, and the l-arginine effect was diminished in rats treated with a nNOS inhibitor or nNOS-specific siRNA. These findings suggest that endogenous NO inhibits spinal NMDA receptor activity through S-nitrosylation. NO derived from nNOS attenuates spinal nociceptive transmission and neuropathic pain induced by nerve injury.
Collapse
Affiliation(s)
- Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiao-Gao Jin
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Ketamine upregulates eNOS expression in human astroglial A172 cells: Possible role in its antidepressive properties. J Neuroimmunol 2017; 305:75-81. [PMID: 28284350 DOI: 10.1016/j.jneuroim.2016.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/05/2016] [Accepted: 12/28/2016] [Indexed: 02/08/2023]
Abstract
Ketamine is a potent anti-depressive agent. Nitric oxide plays an essential role in neuronal transmission and cerebral blood flow and has been implicated in the pathophysiology of major depressive disorder as well as cardiovascular functioning. We investigated the effect of ketamine on eNOS expression in human A172 astroglial cells. Ketamine (50-500μM) increased eNOS expression at 4-24h in a concentration-dependent manner. This effect was mediated by NMDA receptor, Akt inhibition and ERK1/2 activation and was synergistically augmented by rapamycin. The combined effect on the vascular, immune and neuronal systems may be relevant to the rapid antidepressive effect of ketamine.
Collapse
|
11
|
Srebro DP, Vucković SM, Savic Vujovic KR, Prostran MS. Nitric oxide synthase modulates the antihyperalgesic effect of the NMDA receptor antagonist MK-801 on Carrageenan-induced inflammatory pain in rats. TOHOKU J EXP MED 2015; 234:287-93. [PMID: 25483276 DOI: 10.1620/tjem.234.287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor, an ionotropic glutamate receptor, may play a significant role in the development and maintenance of an inflammatory pain. Activation of NMDA receptors may cause nitric oxide (NO) release through activation of NO synthase (NOS). MK-801, a noncompetitive NMDA receptor antagonist is commonly used as a neuropharmacological tool. The interaction between MK-801 and NOS in the inflammatory pain has not been evaluated before. We investigated whether MK-801 affects inflammatory pain and whether NOS modulates the effect of MK-801. Carrageenan-induced hyperalgesia was evaluated by measuring the withdrawal response to mechanical stimuli, using an electronic version of the von Frey anesthesiometer in Wistar rats. MK-801 given subcutaneously (0.5-20 μg/kg) or intraplantarly (0.1 and 0.15 μg/paw) significantly reduced mechanical hyperalgesia. Intraplantarly given MK-801 exerted a local antihyperalgesic effect, because when applied to the contralateral side it did not reduce mechanical sensitivity in the ipsilateral side. N-nitro-L-arginine methyl ester hydrochloride (5 and 10 mg/kg), a non-selective NOS inhibitor, significantly reduced the effects of MK-801. N-ω-Propyl-L-arginine hydrochloride (0.5-2 mg/kg), a selective inhibitor of neuronal NOS, increased the antihyperalgesic effect of MK-801, whereas S-methylisothiourea (5-15 μg/kg), a selective inhibitor of inducible NOS, lowered the antihyperalgesic effect of MK-801. Importantly, each NOS inhibitor given alone did not affect carrageenan-induced hyperalgesia. In conclusion, MK-801 is effective against inflammatory pain and its antihyperalgesic effect is modulated in a different ways by NOS, being enhanced by a neuronal NOS inhibitor but reduced by an inducible NOS inhibitor.
Collapse
Affiliation(s)
- Dragana P Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade
| | | | | | | |
Collapse
|
12
|
Interaction between NMDA glutamatergic and nitrergic enteric pathways during in vitro ischemia and reperfusion. Eur J Pharmacol 2015; 750:123-31. [DOI: 10.1016/j.ejphar.2015.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 11/23/2022]
|
13
|
Carr FB, Géranton SM, Hunt SP. Descending controls modulate inflammatory joint pain and regulate CXC chemokine and iNOS expression in the dorsal horn. Mol Pain 2014; 10:39. [PMID: 24947159 PMCID: PMC4080690 DOI: 10.1186/1744-8069-10-39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/09/2014] [Indexed: 12/19/2022] Open
Abstract
Background Descending control of nociceptive processing, by pathways originating in the rostral ventromedial medulla (RVM) and terminating in the dorsal horn, contributes to behavioural hypersensitivity in a number of pain models. Two facilitatory pathways have been identified and are characterized by serotonin (5-HT) content or expression of the mu opiate receptor. Here we investigated the contribution of these pathways to inflammatory joint pain behaviour and gene expression changes in the dorsal horn. Results Selective lesion of the descending serotonergic (5-HT) pathway by prior intrathecal administration of 5,7-dihydroxytryptamine attenuated hypersensitivity at early time points following ankle injection of CFA. In a separate study ablation of the mu opioid receptor expressing (MOR+) cells of the RVM, by microinjection of the toxin dermorphin-saporin, resulted in a more prolonged attenuation of hypersensitivity post CFA. Microarray analysis was carried out to identify changes in dorsal horn gene expression associated with descending facilitation by the MOR+ pathway at 7d post joint inflammation. This analysis led to the identification of a number of genes including the chemokines Cxcl9 and Cxcl10, their common receptor Cxcr3, and the proinflammatory gene Nos2 (inducible nitric oxide synthase, iNOS). Conclusions These findings demonstrate that joint pain behaviour is dependent in part on descending facilitation via the RVM, and identify a novel pathway driving CXC chemokine and iNOS expression in the dorsal horn.
Collapse
Affiliation(s)
| | | | - Stephen P Hunt
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
14
|
Deer TR, Prager J, Levy R, Rathmell J, Buchser E, Burton A, Caraway D, Cousins M, De Andrés J, Diwan S, Erdek M, Grigsby E, Huntoon M, Jacobs MS, Kim P, Kumar K, Leong M, Liem L, McDowell GC, Panchal S, Rauck R, Saulino M, Sitzman BT, Staats P, Stanton-Hicks M, Stearns L, Wallace M, Willis KD, Witt W, Yaksh T, Mekhail N. Polyanalgesic Consensus Conference 2012: recommendations for the management of pain by intrathecal (intraspinal) drug delivery: report of an interdisciplinary expert panel. Neuromodulation 2012; 15:436-64; discussion 464-6. [PMID: 22748024 DOI: 10.1111/j.1525-1403.2012.00476.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The use of intrathecal (IT) infusion of analgesic medications to treat patients with chronic refractory pain has increased since its inception in the 1980s, and the need for clinical research in IT therapy is ongoing. The Polyanalgesic Consensus Conference (PACC) panel of experts convened in 2000, 2003, and 2007 to make recommendations on the rational use of IT analgesics based on preclinical and clinical literature and clinical experiences. METHODS The PACC panel convened again in 2011 to update the standard of care for IT therapies to reflect current knowledge gleaned from literature and clinical experience. A thorough literature search was performed, and information from this search was provided to panel members. Analysis of published literature was coupled with the clinical experience of panel members to form recommendations regarding the use of IT analgesics to treat chronic pain. RESULTS After a review of literature published from 2007 to 2011 and discussions of clinical experience, the panel created updated algorithms for the rational use of IT medications for the treatment of neuropathic pain and nociceptive pain. CONCLUSIONS The advent of new algorithmic tracks for neuropathic and nociceptive pain is an important step in improving patient care. The panel encourages continued research and development, including the development of new drugs, devices, and safety recommendations to improve the care of patients with chronic pain.
Collapse
|
15
|
Dauch JR, Yanik BM, Hsieh W, Oh SS, Cheng HT. Neuron-astrocyte signaling network in spinal cord dorsal horn mediates painful neuropathy of type 2 diabetes. Glia 2012; 60:1301-15. [PMID: 22573263 DOI: 10.1002/glia.22349] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
Abstract
Activation of the neuronal-glial network in the spinal cord dorsal horn (SCDH) mediates various chronic painful conditions. We studied spinal neuronal-astrocyte signaling interactions involved in the maintenance of painful diabetic neuropathy (PDN) in type 2 diabetes. We used the db/db mouse, an animal model for PDN of type 2 diabetes, which develops mechanical allodynia from 6 to 12 wk of age. In this study, enhanced substance P expression was detected in the presynaptic sensory fibers innervating lamina I-III in the lumbar SCDH (LSCDH) of the db/db mouse at 10 wk of age. This phenomenon is associated with enhanced spinal ERK1/2 phosphorylation in projection sensory neurons and regional astrocyte activation. In addition, peak phosphorylation of the NR1 subunit of N-methyl-D-aspartate receptor (NMDAR), along with upregulation of neuronal and inducible nitric oxide synthase (nNOS and iNOS) expression were detected in diabetic mice. Expression of nNOS and iNOS was detected in both interneurons and astrocytes in lamina I-III of the LSCDH. Treatment with MK801, an NMDAR inhibitor, inhibited mechanical allodynia, ERK1/2 phosphorylation, and nNOS and iNOS upregulation in diabetic mice. MK801 also reduced astrocytosis and glial acidic fibrillary protein upregulation in db/db mice. In addition, N(G)-nitro-L-arginine methyl ester (L-NAME), a nonspecific NOS inhibitor, had similar effects on NMDAR signaling and NOS expression. These results suggest that nitric oxide from surrounding interneurons and astrocytes interacts with NMDAR-dependent signaling in the projection neurons of the SCDH during the maintenance of PDN.
Collapse
Affiliation(s)
- Jacqueline R Dauch
- Department of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
16
|
Negrete R, Hervera A, Leánez S, Martín-Campos JM, Pol O. The antinociceptive effects of JWH-015 in chronic inflammatory pain are produced by nitric oxide-cGMP-PKG-KATP pathway activation mediated by opioids. PLoS One 2011; 6:e26688. [PMID: 22031841 PMCID: PMC3198780 DOI: 10.1371/journal.pone.0026688] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 10/03/2011] [Indexed: 12/15/2022] Open
Abstract
Background Cannabinoid 2 receptor (CB2R) agonists attenuate inflammatory pain but the precise mechanism implicated in these effects is not completely elucidated. We investigated if the peripheral nitric oxide-cGMP-protein kinase G (PKG)-ATP-sensitive K+ (KATP) channels signaling pathway triggered by the neuronal nitric oxide synthase (NOS1) and modulated by opioids, participates in the local antinociceptive effects produced by a CB2R agonist (JWH-015) during chronic inflammatory pain. Methodology/Principal Findings In wild type (WT) and NOS1 knockout (NOS1-KO) mice, at 10 days after the subplantar administration of complete Freund's adjuvant (CFA), we evaluated the antiallodynic (von Frey filaments) and antihyperalgesic (plantar test) effects produced by the subplantar administration of JWH-015 and the reversion of their effects by the local co-administration with CB2R (AM630), peripheral opioid receptor (naloxone methiodide, NX-ME) or CB1R (AM251) antagonists. Expression of CB2R and NOS1 as well as the antinociceptive effects produced by a high dose of JWH-015 combined with different doses of selective L-guanylate cyclase (ODQ) or PKG (Rp-8-pCPT-cGMPs) inhibitors or a KATP channel blocker (glibenclamide), were also assessed. Results show that the local administration of JWH-015 dose-dependently inhibited the mechanical and thermal hypersensitivity induced by CFA which effects were completely reversed by the local co-administration of AM630 or NX-ME, but not AM251. Inflammatory pain increased the paw expression of CB2R and the dorsal root ganglia transcription of NOS1. Moreover, the antinociceptive effects of JWH-015 were absent in NOS1-KO mice and diminished by their co-administration with ODQ, Rp-8-pCPT-cGMPs or glibenclamide. Conclusions/Significance These data indicate that the peripheral antinociceptive effects of JWH-015 during chronic inflammatory pain are mainly produced by the local activation of the nitric oxide-cGMP-PKG-KATP signaling pathway, triggered by NOS1 and mediated by endogenous opioids. These findings suggest that the activation of this pathway might be an interesting therapeutic target for the treatment of chronic inflammatory pain with cannabinoids.
Collapse
Affiliation(s)
- Roger Negrete
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arnau Hervera
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús M. Martín-Campos
- Grup de Bioquímica, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l'Hospital de la Sta Creu i Sant Pau and Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
17
|
Schmidt JR, Krugner-Higby L, Heath TD, Sullivan R, Smith LJ. Epidural administration of liposome-encapsulated hydromorphone provides extended analgesia in a rodent model of stifle arthritis. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2011; 50:507-512. [PMID: 21838980 PMCID: PMC3148635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/13/2010] [Accepted: 11/24/2010] [Indexed: 05/31/2023]
Abstract
Liposome encapsulation of opioids by using an ammonium-sulfate-gradient loading technique significantly slows the release time of the drug. This study evaluated the duration of analgesia in a rodent model of monoarthritis after epidural administration of liposome-encapsulated hydromorphone (LE-hydromorphone; prepared by ammonium-sulfate-gradient loading) compared with standard hydromorphone and a negative control of blank liposomes. Analgesia was assessed by changes in thermal withdrawal latency, relative weight-bearing, and subjective behavioral scoring. Analgesia in arthritic rats was short-lived after epidural hydromorphone; increases in pain threshold were observed only at 2 h after administration. In contrast, thermal pain thresholds after epidural LE-hydromorphone were increased for as long as 72 h, and subjective lameness scores were lower for as long as 96 h after epidural administration. Injection of LE-hydromorphone epidurally was associated with various mild changes in CNS behavior, and 2 rats succumbed to respiratory depression and death. In conclusion, LE-hydromorphone prolonged the duration of epidural analgesia compared with the standard formulation of hydromorphone, but CNS side effects warrant careful administration of this LE-hydromorphone in future studies.
Collapse
Affiliation(s)
- Jennifer R Schmidt
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Lisa Krugner-Higby
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Timothy D Heath
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin
| | - Ruth Sullivan
- Research Animal Resources Center, University of Wisconsin, Madison, Wisconsin
| | - Lesley J Smith
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
18
|
Nie H, Zhang H, Weng HR. Minocycline prevents impaired glial glutamate uptake in the spinal sensory synapses of neuropathic rats. Neuroscience 2010; 170:901-12. [PMID: 20678556 DOI: 10.1016/j.neuroscience.2010.07.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/23/2010] [Accepted: 07/24/2010] [Indexed: 01/19/2023]
Abstract
Activation of glutamate receptors and glial cells in the spinal dorsal horn are two fundamental processes involved in the pathogenesis of various pain conditions, including neuropathic pain induced by injury to the peripheral or central nervous systems. Numerous studies have demonstrated that minocycline treatment attenuates allodynic and hyperalgesic behaviors induced by tissue inflammation or nerve injury. However, the synaptic mechanisms by which minocycline prevents hyperalgesia are not fully understood. We recently reported that deficient glutamate uptake by glial glutamate transporters (GTs) is key for the enhanced activation of N-methyl-d-aspartate (NMDA) receptors in the spinal sensory synapses of rats receiving partial sciatic nerve ligation (pSNL). In this study, we investigated how minocycline affects activation of NMDA receptors in the spinal sensory synapses in rats with pSNL by whole cell recordings of NMDA currents in spinal laminea I and II neurons from spinal slices. The effects of minocycline treatments on the dorsal horn expression of glial GTs and astrocyte marker glial fibrillary acidic protein (GFAP) were analyzed by immunohistochemistry. We demonstrated that normalized activation of NMDA receptors in synapses activated by both weak and strong peripheral input in the spinal dorsal horn is temporally associated with attenuated mechanical allodynia in rats with pSNL receiving intraperitoneal injection of minocycline. Minocycline ameliorated both the downregulation of glial GT expression and the activation of astrocytes induced by pSNL in the spinal dorsal horn. We further revealed that preventing deficient glial glutamate uptake at the synapse is crucial for preserving the normalized activation of NMDA receptors in the spinal sensory synapses in pSNL rats treated with minocycline. Our studies suggest that glial GTs may be a potential target for the development of analgesics.
Collapse
Affiliation(s)
- H Nie
- Department of Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
19
|
Sciatic nerve transection increases gluthatione antioxidant system activity and neuronal nitric oxide synthase expression in the spinal cord. Brain Res Bull 2009; 80:422-7. [DOI: 10.1016/j.brainresbull.2009.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/02/2009] [Accepted: 08/06/2009] [Indexed: 12/11/2022]
|
20
|
Tesser-Viscaíno SA, Denadai-Souza A, Teixeira SA, Ervolino E, Cruz-Rizzolo RJ, Costa SK, Muscará MN, Casatti CA. Putative antinociceptive action of nitric oxide in the caudal part of the spinal trigeminal nucleus during chronic carrageenan-induced arthritis in the rat temporomandibular joint. Brain Res 2009; 1302:85-96. [DOI: 10.1016/j.brainres.2009.09.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 09/14/2009] [Accepted: 09/14/2009] [Indexed: 12/31/2022]
|
21
|
Leánez S, Hervera A, Pol O. Peripheral antinociceptive effects of µ- and δ-opioid receptor agonists in NOS2 and NOS1 knockout mice during chronic inflammatory pain. Eur J Pharmacol 2009; 602:41-9. [DOI: 10.1016/j.ejphar.2008.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 10/27/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
|
22
|
Fan W, Huang F, Li C, Qu H, Gao Z, Leng S, Li D, He H. Involvement of NOS/NO in the development of chronic dental inflammatory pain in rats. ACTA ACUST UNITED AC 2008; 59:324-32. [PMID: 19013482 DOI: 10.1016/j.brainresrev.2008.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/09/2008] [Accepted: 10/11/2008] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) is believed to be an important messenger molecule in nociceptive transmission. To assess the possible roles of NO in trigeminal sensory system, we examined the distribution and density of histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), a marker for nitric oxide synthase (NOS), and immunohistochemical staining for c-Fos, a neuronal activity marker, in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (Vc) following pulp exposure (PX) injured rats. The neurons innervating injured tooth in TG were labeled by the retrograde transport of fluoro-gold (FG). Teeth were processed for H&E staining. We found that NADPH-d activity increased significantly in the TG and Vc following PX pretreatment (7-28 days, especially in 21-28 days). Such changes were closely corresponding to the pattern of c-Fos detected by immunocytochemistry. The results demonstrate that PX-induced chronic pulpal inflammation results in significant alterations in the TG cells and in the Vc, and such changes may underlie the observed NADPH-d activity. It suggests that NOS/NO may play an active role in both peripheral and central processing of nociceptive information following chronic tooth inflammation.
Collapse
Affiliation(s)
- Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | | | | | | | | | | | | | | |
Collapse
|