1
|
Ye C, Chen L, Zhang L, Zheng Y, Liu X, Huang Z, Tang K, Jiang X, Chen P. IL-17A, IL-23R, FCGR3A are associated with neuropsychiatric systemic lupus erythematosus susceptibility in pediatric patients with lupus nephritis. Cytokine 2025; 188:156874. [PMID: 39904110 DOI: 10.1016/j.cyto.2025.156874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
OBJECTIVE To comprehensively investigate the impact of candidate loci on the susceptibility to neuropsychiatric systemic lupus erythematosus (NPSLE) in a cohort of Chinese children with lupus nephritis (LN). METHODS This case-control study included sixty-two patients. And the case group consisted of 12 LN patients appearing NPSLE, while the control group consisted of 50 LN patients. A total of fifty-four single nucleotide polymorphisms (SNPs) across twenty genes were genotyped using the Agena Bioscience MassArray iPLEX platform. The associations between susceptibility to NPSLE and candidate SNPs were assessed using SNPStats online software. We evaluated the influence of candidate SNPs on the risk of NPSLE through odds ratios (OR) and 95 % confidence intervals (CI). Additionally, linkage disequilibrium (LD) and coefficient (D' and r2) for haplotypes and their frequencies were performed using the genetic statistical online software SHEsis. RESULTS Three significant SNPs were identified: IL17RA rs2895332, IL23R rs10889677, and FCGR3A rs396991. AA genotype of FCGR3A rs396991, GG genotype of IL17RA rs2895332 and AA genotype of IL23R rs10889677 exhibited a decreased risk of NPSLE compared to CA and CC genotypes, GA and AA genotypes, and CA and CC genotypes (rs396991 AA vs. CA-CC, OR 5.00, 95 %CI 0.99-25.17, P = 0.029; rs2895332 GG vs. GA-AA, OR 7.83, 95 %CI 1.47-41.79, P = 0.017; rs10889677 AA vs. CA-CC, OR 4.50, 95 %CI 1.08-18.69, P = 0.027). Furthermore, the haplotype A-T-G (STAT4 rs13426947, rs1551443 and rs3024866) appeared to confer protection against the development of NPSLE. The multivariate logistic regression analysis indicated that two specific SNPs were significantly associated with an increased risk of NPSLE: [FCGR3A rs396991 (OR = 6.444, 95 %CI = 1.1-37.736, P = 0.039), IL17RA rs2895332 (OR = 0.128, 95 %CI = 0.017-0.963, P = 0.046)]. Notably, the RegulomeDB score of them reached 1 f. Using HaploReg, these loci were in strong LD (r2>0.8) with several SNPs. CONCLUSION Our findings indicate that the polymorphisms IL17RA rs2895332, IL23R rs10889677, and FCGR3A rs396991 are significantly associated with the risk of NPSLE in childhood-onset LN.
Collapse
Affiliation(s)
- Chen Ye
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lizhi Chen
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lu Zhang
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yifan Zheng
- College of Pharmacy, University of Michigan, Ann Arbor, United States
| | - Xiaohong Liu
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhijun Huang
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kejing Tang
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Jiang
- Department of Pediatric Nephrology and Rheumatology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Pan Chen
- Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Bang SY, Shim SC. Early human migration determines the risk of being attacked by wolves: ethnic gene diversity on the development of systemic lupus erythematosus. JOURNAL OF RHEUMATIC DISEASES 2024; 31:200-211. [PMID: 39355544 PMCID: PMC11439634 DOI: 10.4078/jrd.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 10/03/2024]
Abstract
The prevalence of systemic lupus erythematosus (SLE) varies significantly based on ethnicity rather than geographic distribution; thus, the prevalence is higher in Asian, Hispanic, and Black African populations than in European populations. The risk of developing lupus nephritis (LN) is the highest among Asian populations. Therefore, we hypothesize that human genetic diversity between races has occurred through the early human migration and human genetic adaptation to various environments, with a particular focus on pathogens. Additionally, we compile the currently available evidence on the ethnic gene diversity of SLE and how it relates to disease severity. The human leukocyte antigen (HLA) locus is well established as associated with susceptibility to SLE; specific allele distributions have been observed across diverse populations. Notably, specific amino acid residues within these HLA loci demonstrate significant associations with SLE risk. The non-HLA genetic loci associated with SLE risk also varies across diverse ancestries, implicating distinct immunological pathways, such as the type-I interferon and janus kinase-signal transducers and activators of transcription (JAK-STAT) pathways in Asians, the type-II interferon signaling pathway in Europeans, and B cell activation pathway in Africans. Furthermore, assessing individual genetic susceptibility using genetic risk scores (GRS) for SLE helps to reveal the diverse prevalence, age of onset, and clinical phenotypes across different ethnicities. A higher GRS increases the risk of LN and the severity of SLE. Therefore, understanding ethnic gene diversity is crucial for elucidating disease mechanisms and SLE severity, which could enable the development of novel drugs specific to each race.
Collapse
Affiliation(s)
- So-Young Bang
- Division of Rheumatology, Hanyang University Guri Hospital, Guri, Korea
- Hanyang University Institute for Rheumatology Research and Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
3
|
Castellini-Pérez O, Povedano E, Barturen G, Martínez-Bueno M, Iakovliev A, Kerick M, López-Domínguez R, Marañón C, Martín J, Ballestar E, Borghi MO, Qiu W, Zhu C, Shankara S, Spiliopoulou A, de Rinaldis E, Carnero-Montoro E, Alarcón-Riquelme ME. Molecular subtypes explain lupus epigenomic heterogeneity unveiling new regulatory genetic risk variants. NPJ Genom Med 2024; 9:38. [PMID: 39013887 PMCID: PMC11252280 DOI: 10.1038/s41525-024-00420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/17/2024] [Indexed: 07/18/2024] Open
Abstract
The heterogeneity of systemic lupus erythematosus (SLE) can be explained by epigenetic alterations that disrupt transcriptional programs mediating environmental and genetic risk. This study evaluated the epigenetic contribution to SLE heterogeneity considering molecular and serological subtypes, genetics and transcriptional status, followed by drug target discovery. We performed a stratified epigenome-wide association studies of whole blood DNA methylation from 213 SLE patients and 221 controls. Methylation quantitative trait loci analyses, cytokine and transcription factor activity - epigenetic associations and methylation-expression correlations were conducted. New drug targets were searched for based on differentially methylated genes. In a stratified approach, a total of 974 differential methylation CpG sites with dependency on molecular subtypes and autoantibody profiles were found. Mediation analyses suggested that SLE-associated SNPs in the HLA region exert their risk through DNA methylation changes. Novel genetic variants regulating DNAm in disease or in specific molecular contexts were identified. The epigenetic landscapes showed strong association with transcription factor activity and cytokine levels, conditioned by the molecular context. Epigenetic signals were enriched in known and novel drug targets for SLE. This study reveals possible genetic drivers and consequences of epigenetic variability on SLE heterogeneity and disentangles the DNAm mediation role on SLE genetic risk and novel disease-specific meQTLs. Finally, novel targets for drug development were discovered.
Collapse
Affiliation(s)
- Olivia Castellini-Pérez
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- University of Granada, Granada, Spain
| | - Elena Povedano
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- Spanish National Research Council (CSIC), Institute of Economy, Geography and Demography, Madrid (IEGD), Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Guillermo Barturen
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Andrii Iakovliev
- Usher Institute of Population Health Sciences and Informatics. University of Edinburgh Medical School, EH8 9YL, Edinburgh, UK
| | - Martin Kerick
- IBPLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, 18016, Spain
| | - Raúl López-Domínguez
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Concepción Marañón
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Javier Martín
- IBPLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, 18016, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | | | - Weiliang Qiu
- Sanofi, Early Development and Research, Cambridge, MA, USA
| | - Cheng Zhu
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Srinivas Shankara
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Athina Spiliopoulou
- Usher Institute of Population Health Sciences and Informatics. University of Edinburgh Medical School, EH8 9YL, Edinburgh, UK
| | - Emanuele de Rinaldis
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Elena Carnero-Montoro
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
- University of Granada, Granada, Spain.
| | - Marta E Alarcón-Riquelme
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
- Institute for Environmental Medicine, Karolinska Institutet, 171 67, Solna, Sweden.
| |
Collapse
|
4
|
Taubmann J, Müller F, Yalcin Mutlu M, Völkl S, Aigner M, Bozec A, Mackensen A, Grieshaber-Bouyer R, Schett G. CD19 Chimeric Antigen Receptor T Cell Treatment: Unraveling the Role of B Cells in Systemic Lupus Erythematosus. Arthritis Rheumatol 2024; 76:497-504. [PMID: 38114423 DOI: 10.1002/art.42784] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/09/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
B cell generation of autoantibodies is a crucial step in the pathogenesis of systemic lupus erythematosus (SLE). After their differentiation in the bone marrow, B cells populate the secondary lymphatic organs, where they undergo further maturation leading to the development of memory B cells as well as antibody-producing plasmablasts and plasma cells. Targeting B cells is an important strategy to treat autoimmune diseases such as SLE, in which B cell tolerance is disturbed and autoimmune B cells and autoantibodies emerge. This review discusses the functional aspects of antibody- and cell-based B cell-depleting therapy in SLE. It thereby particularly focuses on lessons learned from chimeric antigen receptor (CAR) T cell treatment on the role of B cells in SLE for understanding B cell pathology in SLE. CAR T cells model a deep B cell depletion and thereby allow understanding the role of aberrant B cell activation in the pathogenesis of SLE. Furthermore, the effects of B cell depletion on autoantibody production can be better described, ie, explaining the concept of different cellular sources of (auto-) antibodies in the form of short-lived plasmablasts and long-lived plasma cells, which differ in their susceptibility to B cell depletion and require different targeted therapeutic approaches. Finally, the safety of deep B cell depletion in autoimmune disease is discussed.
Collapse
Affiliation(s)
- Jule Taubmann
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian Müller
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melek Yalcin Mutlu
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Völkl
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Aigner
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ricardo Grieshaber-Bouyer
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Friedrich-Alexander-Universität Erlangen Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Gupta A, Weinand K, Nathan A, Sakaue S, Zhang MJ, Donlin L, Wei K, Price AL, Amariuta T, Raychaudhuri S. Dynamic regulatory elements in single-cell multimodal data implicate key immune cell states enriched for autoimmune disease heritability. Nat Genet 2023; 55:2200-2210. [PMID: 38036783 PMCID: PMC10787644 DOI: 10.1038/s41588-023-01577-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
In autoimmune diseases such as rheumatoid arthritis, the immune system attacks the body's own cells. Developing a precise understanding of the cell states where noncoding autoimmune risk variants impart causal mechanisms is critical to developing curative therapies. Here, to identify noncoding regions with accessible chromatin that associate with cell-state-defining gene expression patterns, we leveraged multimodal single-nucleus RNA and assay for transposase-accessible chromatin (ATAC) sequencing data across 28,674 cells from the inflamed synovial tissue of 12 donors. Specifically, we used a multivariate Poisson model to predict peak accessibility from single-nucleus RNA sequencing principal components. For 14 autoimmune diseases, we discovered that cell-state-dependent ('dynamic') chromatin accessibility peaks in immune cell types were enriched for heritability, compared with cell-state-invariant ('cs-invariant') peaks. These dynamic peaks marked regulatory elements associated with T peripheral helper, regulatory T, dendritic and STAT1+CXCL10+ myeloid cell states. We argue that dynamic regulatory elements can help identify precise cell states enriched for disease-critical genetic variation.
Collapse
Affiliation(s)
- Anika Gupta
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kathryn Weinand
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin Jinye Zhang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Laura Donlin
- Weill Cornell Medicine, New York, NY, USA
- Hospital for Special Surgery, New York, NY, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alkes L Price
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tiffany Amariuta
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Qian T, Huo B, Deng X, Song X, Jiang Y, Yang J, Hao F. Decreased TAX1BP1 participates in systemic lupus erythematosus by regulating monocyte/macrophage function. Int Immunol 2023; 35:483-495. [PMID: 37465957 DOI: 10.1093/intimm/dxad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
Systemic lupus erythematosus (SLE) involves disorders of innate and adaptive immune pathways. Tax1-binding protein 1 (TAX1BP1) modulates the production of antibodies in B cells and the T-cell cycle by regulating the NF-κB signaling pathway. However, the potential association of TAX1BP1 with SLE and its role in monocytes/macrophages have not been fully elucidated. In this study, we utilized whole-exome sequencing (WES) in combination with Sanger sequencing and identified 16 gene mutations, including in TAX1BP1, in an SLE family. TAX1BP1 protein expression with western blotting detection was reduced in SLE patients and correlated with disease activity negatively. Furthermore, RNA sequencing and 4D Label-Free Phosphoproteomic analysis were employed to characterize the transcriptome and phosphoproteome profiles in THP-1 and THP-1-differentiated M1 macrophages with TAX1BP1 knockdown. Silencing of TAX1BP1 in THP-1 and THP-1-differentiated M1 macrophages led to an increase in cluster of differentiation 80 (CD80) expression and differential changes in CD14 and CD16 expression, as assessed by flow cytometry. Additionally, western blot analysis showed that knockdown of TAX1BP1 led to a reduction in TRAF6 and p-p65 in THP-1-differentiated macrophages, with or without lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-α stimulation. Taken together, our findings suggest that TAX1BP1 participates in SLE activity by regulating antigen presentation in monocytes and inflammatory responses in M1 macrophages.
Collapse
Affiliation(s)
- Tian Qian
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Bengang Huo
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaorong Deng
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Xiaoli Song
- Department of Rheumatology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Yiwei Jiang
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Fei Hao
- Dermatology and Plastic Surgery Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| |
Collapse
|
7
|
Gan T, Qu S, Zhang H, Zhou X. Modulation of the immunity and inflammation by autophagy. MedComm (Beijing) 2023; 4:e311. [PMID: 37405276 PMCID: PMC10315166 DOI: 10.1002/mco2.311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 07/06/2023] Open
Abstract
Autophagy, a highly conserved cellular self-degradation pathway, has emerged with novel roles in the realms of immunity and inflammation. Genome-wide association studies have unveiled a correlation between genetic variations in autophagy-related genes and heightened susceptibility to autoimmune and inflammatory diseases. Subsequently, substantial progress has been made in unraveling the intricate involvement of autophagy in immunity and inflammation through functional studies. The autophagy pathway plays a crucial role in both innate and adaptive immunity, encompassing various key functions such as pathogen clearance, antigen processing and presentation, cytokine production, and lymphocyte differentiation and survival. Recent research has identified novel approaches in which the autophagy pathway and its associated proteins modulate the immune response, including noncanonical autophagy. This review provides an overview of the latest advancements in understanding the regulation of immunity and inflammation through autophagy. It summarizes the genetic associations between variants in autophagy-related genes and a range of autoimmune and inflammatory diseases, while also examining studies utilizing transgenic animal models to uncover the in vivo functions of autophagy. Furthermore, the review delves into the mechanisms by which autophagy dysregulation contributes to the development of three common autoimmune and inflammatory diseases and highlights the potential for autophagy-targeted therapies.
Collapse
Affiliation(s)
- Ting Gan
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| | - Shu Qu
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| | - Hong Zhang
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| | - Xu‐jie Zhou
- Renal DivisionPeking University First HospitalBeijingChina
- Peking University Institute of NephrologyBeijingChina
- Key Laboratory of Renal DiseaseMinistry of Health of ChinaBeijingChina
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University)Ministry of EducationBeijingChina
| |
Collapse
|
8
|
Zambrano LD, Wu MJ, Martin L, Malloch L, Chen S, Newhams MM, Kucukak S, Son MB, Sanders C, Patterson K, Halasa N, Fitzgerald JC, Leroue MK, Hall M, Irby K, Rowan CM, Wellnitz K, Sahni LC, Loftis L, Bradford TT, Staat M, Babbitt C, Carroll CL, Pannaraj PS, Kong M, Schuster JE, Chou J, Patel MM, Randolph AG, Campbell AP, Hobbs CV. Risk Factors for Multisystem Inflammatory Syndrome in Children: A Case-control Investigation. Pediatr Infect Dis J 2023; 42:e190-e196. [PMID: 37000922 PMCID: PMC10265536 DOI: 10.1097/inf.0000000000003900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
BACKGROUND In a 2020 pilot case-control study using medical records, we reported that non-Hispanic Black children were more likely to develop multisystem inflammatory syndrome in children (MIS-C) after adjustment for sociodemographic factors and underlying medical conditions. Using structured interviews, we investigated patient, household, and community factors underlying MIS-C likelihood. METHODS MIS-C case patients hospitalized in 2021 across 14 US pediatric hospitals were matched by age and site to outpatient controls testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 3 months of the admission date. Caregiver interviews queried race/ethnicity, medical history, and household and potential community exposures 1 month before MIS-C hospitalization (case-patients) or after SARS-CoV-2 infection (controls). We calculated adjusted odds ratios (aOR) using mixed-effects multivariable logistic regression. RESULTS Among 275 case patients and 496 controls, race/ethnicity, social vulnerability and patient or family history of autoimmune/rheumatologic disease were not associated with MIS-C. In previously healthy children, MIS-C was associated with a history of hospitalization for an infection [aOR: 4.8; 95% confidence interval (CI): 2.1-11.0]. Household crowding (aOR: 1.7; 95% CI: 1.2-2.6), large event attendance (aOR: 1.7; 95% CI: 1.3-2.1), school attendance with limited masking (aOR: 2.6; 95% CI: 1.1-6.6), public transit use (aOR: 1.8; 95% CI: 1.4-2.4) and co-resident testing positive for SARS-CoV-2 (aOR: 2.2; 95% CI: 1.3-3.7) were associated with increased MIS-C likelihood, with risk increasing with the number of these factors. CONCLUSIONS From caregiver interviews, we clarify household and community exposures associated with MIS-C; however, we did not confirm prior associations between sociodemographic factors and MIS-C.
Collapse
Affiliation(s)
- Laura D. Zambrano
- COVID-19 Response Team, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Michael J. Wu
- COVID-19 Response Team, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lora Martin
- Division of Infectious Disease, Department of Pediatrics, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lacy Malloch
- Division of Infectious Disease, Department of Pediatrics, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sabrina Chen
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Margaret M. Newhams
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Suden Kucukak
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
| | - Mary Beth Son
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Cameron Sanders
- Division of Infectious Disease, Department of Pediatrics, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kayla Patterson
- Division of Infectious Disease, Department of Pediatrics, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, Mississippi
| | - Natasha Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Julie C. Fitzgerald
- Division of Critical Care Medicine, Department of Anesthesiology and Critical Care, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew K. Leroue
- Department of Pediatrics, Section of Critical Care Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Mark Hall
- Division of Pediatric Critical Care Medicine, Nationwide Children’s Hospital Columbus, Ohio
| | - Katherine Irby
- Section of Pediatric Critical Care, Department of Pediatrics, Arkansas Children’s Hospital, Little Rock, Arkansas
| | - Courtney M. Rowan
- Division of Pediatric Critical Care, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, Indiana
| | - Kari Wellnitz
- Division of Critical Care, Stead Family Department of Pediatrics, University of Iowa Hospitals & Clinics, Iowa City, Iowa
| | - Leila C. Sahni
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas
| | - Laura Loftis
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas
| | - Tamara T. Bradford
- Division of Cardiology, Department of Pediatrics, Louisiana State University Health Sciences Center and Children’s Hospital of New Orleans, New Orleans, Louisiana
| | - Mary Staat
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Christopher Babbitt
- Miller Children’s and Women’s Hospital of Long Beach, Long Beach, California
| | - Christopher L. Carroll
- Division of Pediatric Critical Care, Connecticut Children’s Hospital, Hartford, Connecticut
| | - Pia S. Pannaraj
- Division of Infectious Diseases, Children’s Hospital Los Angeles and Departments of Pediatrics and Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Michele Kong
- Department of Pediatrics, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jennifer E. Schuster
- Department of Pediatrics, Children’s Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Janet Chou
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Manish M. Patel
- COVID-19 Response Team, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Department of Anesthesia, Harvard Medical School, Boston, Massachusetts
| | - Angela P. Campbell
- COVID-19 Response Team, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Charlotte V. Hobbs
- Division of Infectious Disease, Department of Pediatrics, Children’s of Mississippi, University of Mississippi Medical Center, Jackson, Mississippi
| | | |
Collapse
|
9
|
Innate and adaptive immune abnormalities underlying autoimmune diseases: the genetic connections. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-021-2187-3. [PMID: 36738430 PMCID: PMC9898710 DOI: 10.1007/s11427-021-2187-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023]
Abstract
With the exception of an extremely small number of cases caused by single gene mutations, most autoimmune diseases result from the complex interplay between environmental and genetic factors. In a nutshell, etiology of the common autoimmune disorders is unknown in spite of progress elucidating certain effector cells and molecules responsible for pathologies associated with inflammatory and tissue damage. In recent years, population genetics approaches have greatly enriched our knowledge regarding genetic susceptibility of autoimmunity, providing us with a window of opportunities to comprehensively re-examine autoimmunity-associated genes and possible pathways. In this review, we aim to discuss etiology and pathogenesis of common autoimmune disorders from the perspective of human genetics. An overview of the genetic basis of autoimmunity is followed by 3 chapters detailing susceptibility genes involved in innate immunity, adaptive immunity and inflammatory cell death processes respectively. With such attempts, we hope to expand the scope of thinking and bring attention to lesser appreciated molecules and pathways as important contributors of autoimmunity beyond the 'usual suspects' of a limited subset of validated therapeutic targets.
Collapse
|
10
|
Lichtnekert J, Anders HJ, Lech M. Lupus Nephritis: Current Perspectives and Moving Forward. J Inflamm Res 2022; 15:6533-6552. [PMID: 36483271 PMCID: PMC9726217 DOI: 10.2147/jir.s363722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 08/07/2023] Open
Abstract
Lupus nephritis is a severe organ manifestation of systemic lupus erythematosus, and its pathogenesis involves complex etiology and mechanisms. Despite significant knowledge gains and extensive efforts put into understanding the development and relapsing disease activity, lupus nephritis remains a substantial cause of morbidity and mortality in lupus patients. Current therapies retain a significant unmet medical need regarding rates of complete response, preventing relapse of lupus nephritis, progression of chronic kidney disease to kidney failure, drug toxicity, and pill burden-related drug non-adherence. Connected to progression of chronic kidney disease are the associated risks for disabling or even lethal cardiovascular events, as well as chronic kidney disease-related secondary immunodeficiency and serious infections. In this regard, biomarkers are needed that can predict treatment response to specific drugs to enable personalized precision medicine. A series of clinical trials with innovative immunomodulatory drugs are ongoing and raise expectations for improvements in the management of lupus nephritis. Here, we review how new developments in pathogenesis connect with current and future perspectives for the management of lupus nephritis.
Collapse
Affiliation(s)
- Julia Lichtnekert
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| | - Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| | - Maciej Lech
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, München, Germany
| |
Collapse
|
11
|
Suzuki E, Zhang XK, Yashiro-Furuya M, Asano T, Kanno T, Kobayashi H, Migita K, Ohira H. The expression of Ets-1 and Fli-1 is associated with interferon-inducible genes in peripheral blood mononuclear cells from Japanese patients with systemic lupus erythematosus. Medicine (Baltimore) 2022; 101:e31522. [PMID: 36397345 PMCID: PMC9666161 DOI: 10.1097/md.0000000000031522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/04/2022] [Indexed: 11/18/2022] Open
Abstract
Transcription factors E26 transformation-specific-1 (Ets-1) and Friend leukemia insertion site-1 (Fli-1) and type I interferon (IFN) have been implicated in systemic lupus erythematosus (SLE). We examined the expression of these genes in peripheral blood mononuclear cells (PBMCs) from Japanese patients with SLE and analyzed their association with SLE. We enrolled 53 Japanese patients with SLE, 42 patients with rheumatoid arthritis (RA), and 30 healthy donors (HDs) (as controls) in this study. PBMCs were collected from all participants, and the expressions of Ets-1, Fli-1, and three interferon-inducible genes (IFIGs) (interferon-inducible protein with tetratricopeptide 1 [IFIT1], interferon-inducible protein 44 [IFI44], and eukaryotic translation initiation factor 2 alpha kinase 2 [EIF2AK2]) were measured using real-time polymerase chain reaction (PCR). The relationships of each molecule with clinical symptoms, laboratory data, and treatments were analyzed. The expression of Ets-1 and Fli-1 was significantly lower in the PBMCs from patients with SLE than that in the PBMCs from patients with RA and HDs. The expression of the three IFIGs was significantly higher in the PBMCs from patients with SLE than that in the PBMCs from patients with RA and HDs. For patients with SLE, significantly positive correlations were found between Ets-1 and three IFIGs; a similar trend was observed between Fli-1 and IFIGs. IFIG expression in the PBMCs was significantly higher in patients with SLE than that in other participants, and the expression of Ets-1 and Fli-1 was positively associated with IFN expression. Therefore, it was suggested that Ets-1 and Fli-1 were associated with the pathophysiology of SLE by regulating the type I IFN pathway.
Collapse
Affiliation(s)
- Eiji Suzuki
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Rheumatology, Ohta-Nishinouchi Hospital, Fukushima, Japan
| | - Xian K. Zhang
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Makiko Yashiro-Furuya
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Asano
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takashi Kanno
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Hiroko Kobayashi
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kiyoshi Migita
- Department of Rheumatology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
12
|
Villalvazo P, Carriazo S, Rojas-Rivera J, Ramos AM, Ortiz A, Perez-Gomez MV. Gain-of-function TLR7 and loss-of-function A20 gene variants identify a novel pathway for Mendelian lupus and lupus nephritis. Clin Kidney J 2022; 15:1973-1980. [PMID: 36324999 PMCID: PMC9613427 DOI: 10.1093/ckj/sfac152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic and inflammatory autoimmune disease of unknown origin that may cause kidney disease, i.e. lupus nephritis (LN). Within a wider trend towards an expanding field of genetic causes of kidney disease, two recent reports have emphasized the role of Mendelian autoimmune disorders in causing LN both in children and in young adults. Loss-of-function (LOF) variants of tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and gain of function (GOF) variants of Toll-like receptor 7 (TLR7) cause SLE and LN, respectively. Interestingly, both genes regulate the same signaling route, as A20, the protein encoded by TNFAIP3, inhibits nuclear factor ĸB (NF-ĸB) activation while TLR7 promoted NF-ĸB activation. Moreover, TNFAIP3 and TLR7 variants are relatively frequent, potentially contributing to polygenic risk for LN. Finally, they both may be expressed by kidney cells, potentially contributing to the severity of kidney injury in persons who have already developed autoimmunity. The fact that both genes regulate the same pathway may lead to novel therapeutic approaches targeting the shared molecular pathway.
Collapse
Affiliation(s)
- Priscila Villalvazo
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol Carriazo
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jorge Rojas-Rivera
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Adrián M Ramos
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Yin X, Kim K, Suetsugu H, Bang SY, Wen L, Koido M, Ha E, Liu L, Sakamoto Y, Jo S, Leng RX, Otomo N, Kwon YC, Sheng Y, Sugano N, Hwang MY, Li W, Mukai M, Yoon K, Cai M, Ishigaki K, Chung WT, Huang H, Takahashi D, Lee SS, Wang M, Karino K, Shim SC, Zheng X, Miyamura T, Kang YM, Ye D, Nakamura J, Suh CH, Tang Y, Motomura G, Park YB, Ding H, Kuroda T, Choe JY, Li C, Niiro H, Park Y, Shen C, Miyamoto T, Ahn GY, Fei W, Takeuchi T, Shin JM, Li K, Kawaguchi Y, Lee YK, Wang YF, Amano K, Park DJ, Yang W, Tada Y, Lau YL, Yamaji K, Zhu Z, Shimizu M, Atsumi T, Suzuki A, Sumida T, Okada Y, Matsuda K, Matsuo K, Kochi Y, Yamamoto K, Ohmura K, Kim TH, Yang S, Yamamoto T, Kim BJ, Shen N, Ikegawa S, Lee HS, Zhang X, Terao C, Cui Y, Bae SC. Biological insights into systemic lupus erythematosus through an immune cell-specific transcriptome-wide association study. Ann Rheum Dis 2022; 81:1273-1280. [PMID: 35609976 PMCID: PMC9380500 DOI: 10.1136/annrheumdis-2022-222345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/11/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) have identified >100 risk loci for systemic lupus erythematosus (SLE), but the disease genes at most loci remain unclear, hampering translation of these genetic discoveries. We aimed to prioritise genes underlying the 110 SLE loci that were identified in the latest East Asian GWAS meta-analysis. METHODS We built gene expression predictive models in blood B cells, CD4+ and CD8+ T cells, monocytes, natural killer cells and peripheral blood cells of 105 Japanese individuals. We performed a transcriptome-wide association study (TWAS) using data from the latest genome-wide association meta-analysis of 208 370 East Asians and searched for candidate genes using TWAS and three data-driven computational approaches. RESULTS TWAS identified 171 genes for SLE (p<1.0×10-5); 114 (66.7%) showed significance only in a single cell type; 127 (74.3%) were in SLE GWAS loci. TWAS identified a strong association between CD83 and SLE (p<7.7×10-8). Meta-analysis of genetic associations in the existing 208 370 East Asian and additional 1498 cases and 3330 controls found a novel single-variant association at rs72836542 (OR=1.11, p=4.5×10-9) around CD83. For the 110 SLE loci, we identified 276 gene candidates, including 104 genes at recently-identified SLE novel loci. We demonstrated in vitro that putative causal variant rs61759532 exhibited an allele-specific regulatory effect on ACAP1, and that presence of the SLE risk allele decreased ACAP1 expression. CONCLUSIONS Cell-level TWAS in six types of immune cells complemented SLE gene discovery and guided the identification of novel genetic associations. The gene findings shed biological insights into SLE genetic associations.
Collapse
Affiliation(s)
- Xianyong Yin
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Human Phenome Institute, Fudan University, Shanghai, People's Republic of China
| | - Kwangwoo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Hiroyuki Suetsugu
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Leilei Wen
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eunji Ha
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Lu Liu
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Yuma Sakamoto
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Koga Hospital 21, Kurume, Japan
| | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Nao Otomo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Young-Chang Kwon
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Yujun Sheng
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Nobuhiko Sugano
- Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Weiran Li
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Masaya Mukai
- Department of Rheumatology & Clinical Immunology, Sapporo City General Hospital, Hokkaido, Japan
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Minglong Cai
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Won Tae Chung
- Department of Internal Medicine, Dong-A University Hospital, Busan, South Korea
| | - He Huang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Daisuke Takahashi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shin-Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Mengwei Wang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Kohei Karino
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Seung-Cheol Shim
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, South Korea
| | - Xiaodong Zheng
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Tomoya Miyamura
- Department of Internal Medicine and Rheumatology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Young Mo Kang
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, South Korea
| | - Dongqing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Goro Motomura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yong-Beom Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, People's Republic of China
| | - Takeshi Kuroda
- Niigata University Health Administration Center, Niigata, Japan
| | - Jung-Yoon Choe
- Department of Rheumatology, Catholic University of Daegu School of Medicine, Daegu, South Korea
| | - Chengxu Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Youngho Park
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Changbing Shen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, People's Republic of China
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ga-Young Ahn
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Wenmin Fei
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jung-Min Shin
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Keke Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yasushi Kawaguchi
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yeon-Kyung Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Yong-Fei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Koichi Amano
- Department of Rheumatology & Clinical Immunology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dae Jin Park
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yoshifumi Tada
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Zhengwei Zhu
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Masato Shimizu
- Hokkaido Medical Center for Rheumatic Diseases, Sapporo, Japan
| | - Takashi Atsumi
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Sen Yang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
| | - Takuaki Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, People's Republic of China
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| | - Xuejun Zhang
- Department of Dermatology and Institute of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, People's Republic of China
- Department of Dermatology, Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea
- Hanyang University Institute for Rheumatology Research, Seoul, South Korea
| |
Collapse
|
14
|
Systemic Lupus Erythematosus and Hereditary Coproporphyria: Two Different Entities Diagnosed by WES in the Same Patient. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9096999. [PMID: 35669728 PMCID: PMC9167117 DOI: 10.1155/2022/9096999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Background Hereditary coproporphyria (HCP) is a rare autosomal dominant disorder caused by a partial deficiency of coproporphyrinogen III oxidase (CPOX), and systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic predisposition. SLC7A7 (solute carrier family 7 member 7) may be associated with monogenic lupus disease; however, only 2 cases of concomitant HCP and SLE have been reported. Methods We report a 30-year-old woman with a six-year history of SLE presenting with abdominal pain, vomiting, dysuria, tachycardia, and hyponatremia. Whole exome sequencing (WES) and Sanger sequencing were carried out for the proband and members of her pedigree to detect the genetic background. The Gene Expression Omnibus (GEO) database was used to search the related gene expression profiles. Differentially expressed genes (DEGs) were identified using GEO2R. Result A novel heterozygous splicing mutation of CPOX (NM_000097): c.700+2 T > C (intron 2) was detected by WES in the proband, and it was considered likely pathogenic (PSV1+PM2). Sanger sequencing verified the heterozygous mutation of CPOX in the proband, although it was not detected in her father. WES also identified 62 other gene variants, especially two heterozygous variants in SLC7A7 (NM_001126106): c.250G > A (p. V84I) and c.625+1G > A (splicing). DEGs were detected from GSE51997, and the expression of CPOX was downregulated in SLE patients compared with normal controls (adj. P = 0.0071, logFC = −1.0975). Conclusion This study presents the first reported case of SLE coexisting with HCP in China; moreover, a novel splicing mutation of CPOX, i.e., c.700+2 T > C (intron 2), and two heterozygous mutations of SLC7A7 were reported. The simultaneous mutations of CPOX and SLC7A7 may explain the etiopathogenetic connections of HCP and SLE.
Collapse
|
15
|
Sternhagen E, Bettendorf B, Lenert A, Lenert PS. The Role of Clinical Features and Serum Biomarkers in Identifying Patients with Incomplete Lupus Erythematosus at Higher Risk of Transitioning to Systemic Lupus Erythematosus: Current Perspectives. J Inflamm Res 2022; 15:1133-1145. [PMID: 35210816 PMCID: PMC8863324 DOI: 10.2147/jir.s275043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Discovery of antinuclear antibodies (ANA) enabled earlier diagnosis of systemic lupus erythematosus (SLE) and other ANA+ connective tissue diseases (CTD). Rheumatologists increasingly encounter high referral volume of ANA+ patients. It has been estimated that only a small percentage of these patients will eventually transition to either SLE or other specified CTD. Incomplete lupus erythematosus (ILE) has been defined as a subset of patients who have some SLE-specific clinical manifestations but do not meet currently accepted classification criteria for SLE. Several studies have been performed with the goal of identifying clinical features, serum and tissue biomarkers that can distinguish those patients with ILE at risk of transitioning to SLE from those who will not. Increased autoantibody diversity, presence of anti-double-stranded DNA (dsDNA) antibodies, high expression of type I and type II interferon (IFN)-gene products, increased serum levels of B-cell-activating factor of the TNF family (BAFF), and certain serum cytokines and complement products have been identified as markers with positive predictive value, particularly when combined together. Once this patient population is better characterized biochemically, clinical trials should be considered with the primary objective to completely halt or slow down the transition from ILE to SLE. Hydroxychloroquine (HCQ) appears to be a promising agent due to its good tolerability and low toxicity profile and open-label studies in ILE patients have already shown its ability to delay the onset of SLE. Other therapeutics, like those targeting abnormal type I and type II IFN-signatures, B-cell specific signaling pathways, complement activation pathways and high BAFF levels should also be evaluated, but the risk to benefit ratio must be carefully determined before they can be considered.
Collapse
Affiliation(s)
- Erin Sternhagen
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Brittany Bettendorf
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Aleksander Lenert
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Petar S Lenert
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
- Correspondence: Petar S Lenert, Clinical Professor of Medicine, C428-2GH, 200 Hawkins Drive, Iowa City, Iowa City, 52242, USA, Email
| |
Collapse
|
16
|
Jung JH, Lim JH, Song GG, Kim BY. Association between interleukin 12B and interleukin 23R gene polymorphisms and systemic lupus erythematosus: a meta-analysis. J Int Med Res 2022; 50:3000605221075220. [PMID: 35086377 PMCID: PMC8801674 DOI: 10.1177/03000605221075220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine whether polymorphisms of interleukin 12B (IL12B) and IL23 receptor genes (IL23R) confer susceptibility to systemic lupus erythematosus (SLE). METHODS A meta-analysis was conducted to analyze the associations between SLE and IL12B rs3212227 and rs17860508 and IL23R rs7517847, rs10489629, rs10889677, rs1004819, rs11209026, rs11209032, rs1343151, and rs1884444 polymorphisms using allele contrast, dominant, recessive, heterozygote, and homozygote models. Ten studies involving 1989 patients with SLE and 2394 controls were considered for the meta-analysis. RESULTS The meta-analysis using the homozygote model revealed that IL23R rs10889677 was significantly associated with SLE susceptibility in the overall population (AA vs. CC) (odds ratio = 0.70, 95% confidence interval = 0.50-0.98) but not in the Asian population. Other polymorphisms of IL12B and IL23R were not significantly associated with SLE protection. CONCLUSIONS These findings suggest that the IL23R rs10889677 polymorphism confers SLE susceptibility to individuals of certain ethnicities. (Research Registry number: 1268).
Collapse
Affiliation(s)
- Jae Hyun Jung
- Korea University College of Medicine, Seongbuk-gu, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Korea University Ansan Hospital, Danwon-gu, Ansan-si, Gyeonggi-do, Korea
| | - Ji Hyun Lim
- Korea University College of Medicine, Seongbuk-gu, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Korea University Ansan Hospital, Danwon-gu, Ansan-si, Gyeonggi-do, Korea.,Soksiwon Clinic, Michuhol-gu, Incheon, Korea
| | - Gwan Gyu Song
- Korea University College of Medicine, Seongbuk-gu, Seoul, Korea.,Division of Rheumatology, Department of Internal Medicine, Korea University Guro Hospital, Guro-gu, Seoul, Korea
| | - Bo Young Kim
- Division of Rheumatology, Department of Internal Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung-si, Gangwon-do, Korea
| |
Collapse
|
17
|
Kaneko K, Chen H, Kaufman M, Sverdlov I, Stein EM, Park‐Min K. Glucocorticoid-induced osteonecrosis in systemic lupus erythematosus patients. Clin Transl Med 2021; 11:e526. [PMID: 34709753 PMCID: PMC8506634 DOI: 10.1002/ctm2.526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
Osteonecrosis (ON) is a complex and multifactorial complication of systemic lupus erythematosus (SLE). ON is a devastating condition that causes severe pain and compromises the quality of life. The prevalence of ON in SLE patients is variable, ranging from 1.7% to 52%. However, the pathophysiology and risk factors for ON in patients with SLE have not yet been fully determined. Several mechanisms for SLE patients' propensity to develop ON have been proposed. Glucocorticoid is a widely used therapeutic option for SLE patients and high-dose glucocorticoid therapy in SLE patients is strongly associated with the development of ON. Although the hips and knees are the most commonly affected areas, it may be present at multiple anatomical locations. Clinically, ON often remains undetected until patients feel discomfort and pain at specific sites at which point the process of bone death is already advanced. However, strategies for prevention and options for treatment are limited. Here, we review the epidemiology, risk factors, diagnosis, and treatment options for glucocorticoid-induced ON, with a specific focus on patients with SLE.
Collapse
Affiliation(s)
- Kaichi Kaneko
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
| | - Hao Chen
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
- Department of OrthopedicsBeijing Friendship HospitalBeijing100050China
| | - Matthew Kaufman
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
- Case Western Reserve School of MedicineClevelandOhio44106USA
| | - Isaak Sverdlov
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
- Tuoro College of Osteopathic Medicine‐New York CampusNew YorkNew York10027USA
| | - Emily M. Stein
- Endocrinology Service, Hospital for Special SurgeryNew YorkNew YorkUSA
- Metabolic Bone Disease Service, Hospital for Special SurgeryNew YorkNew YorkUSA
| | - Kyung‐Hyun Park‐Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research CenterHospital for Special SurgeryNew YorkNew York10021USA
- Department of MedicineWeill Cornell Medical CollegeNew YorkNew YorkUSA
- BCMB allied programWeill Cornell Graduate School of Medical SciencesNew YorkNew York10021USA
| |
Collapse
|
18
|
Relevance of autoantibody profile with HLA-DRB1 and -DQB1 alleles in a group of Iranian systemic lupus erythematosus patients. Immunol Lett 2021; 237:11-16. [PMID: 34186156 DOI: 10.1016/j.imlet.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND One of the most relevant genetic components in systemic lupus erythematosus (SLE) is human leukocyte antigen (HLA) gene complex which plays a central role in autoimmune responses. This study aimed to explore the associations of HLA-DRB1/-DQB1 alleles and haplotypes with SLE risk and the appearance of autoantibodies in SLE disease. METHODS A total of 127 SLE patients and 153 ethnically matched healthy controls were enrolled. HLA-DRB1 and HLA-DQB1 alleles were determined by PCR-SSP method and then HLA alleles and haplotypes frequencies were compared between two groups and among the patients in terms of autoantibodies spectrum. RESULTS We found that HLA-DRB1*03 and HLA-DRB1*16 alleles were significantly associated with increased risk (P = 0.008, PC=0.05 and P = 0.002, PC=0.02 respectively) and DRB1*01 conferred a potential protective role for disease (P = 0.03, PC=0.13). Similar associations were observed at haplotype level; DRB1*03~DQB1*02 (OR1.91,P = 0.01, PC=0.08), DRB1*16~DQB1*05 (OR3.65,P = 0.004,PC=0.06) and DRB1*01~DQB1*05 (OR0.36,P = 0.04, PC=0.22). Remarkably, we observed significantly associations of DRB1*03 with the appearance of anti-SSA/Ro (PC=0.02), anti-SSB/La (PC=0.002) and anti-coagulant (P = 0.007), DRB1*15 with anti-SSA/Ro (PC=0.04), DRB1*16 with anti-Sm (PC=0.02), DRB1*04 with anti-β2gpI (PC=3 * 10-5), anti-cardiolipin (P = 0.002) and rheumatoid factor (P = 0.004) and DRB1*13 with anti-Sm (PC=0.02) and anti-β2gpI (PC=0.01) antibodies. Also, negative associations of DRB1*04 with anti-Sm, anti-SSA/Ro, DQB1*03 with anti-Sm and DRB1*11 with anti-Sm and anti-β2gpI were observed. CONCLUSIONS We identified DRB1*03 and DRB1*16 as risk alleles and DRB1*01 as a potential protective allele for SLE disease. More importantly, we found a close link between genetic susceptibility for SLE and autoantibodies status that was more evident for DRB1*03 allele.
Collapse
|
19
|
Strong association of common variants in the miRNA-binding site of NOD2 gene with clinicopathological characteristics and disease activity of systemic lupus erythematosus. Clin Rheumatol 2021; 40:4559-4567. [PMID: 34173079 DOI: 10.1007/s10067-021-05812-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION/OBJECTIVES Systemic lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease, in which genetic susceptibility plays a pivotal role. The nucleotide oligomerization domain 2 (NOD2) gene is one of the main regulators of chronic inflammatory conditions and could be involved in SLE pathogenesis. Single nucleotide polymorphisms (SNPs) in miRNA binding sites which are located in 3'UTR of the NOD2 gene could be associated with SLE risk by dysregulation of NOD2 expression. In the present study, we assessed the possible association between SNPs rs3135500 and rs3135499 in the NOD2 gene with SLE risk in the Iranian population. METHODS A case-control study using 110 SLE patients and 120 control subjects was undertaken to estimate rs3135500 (G > A) and rs3135499 (A > C) genotypes via real-time PCR high-resolution melting method (HRM). RESULTS No significant association was observed between allele and genotype frequencies of rs3135500 and rs3135499 polymorphisms and SLE risk in this population (P > 0.05). However, there was an obvious association between rs3135500 (A allele) with laboratory factors that are associated with disease activity (P < 0.05) and some clinical manifestations that are associated with disease severity such as neurological symptoms, skin manifestations, renal involvements, and higher serum concentration of creatinine (P < 0.05). Besides, rs3135499 (C allele) was correlated with renal involvement and also the concentration of creatinine (P < 0.05). Moreover, in the patients group, the risk alleles in these polymorphisms were associated with lower age of onset (P < 0.05). CONCLUSIONS Our results suggest a substantial association between NOD2 polymorphisms with clinicopathological characteristics and SLE disease activity. Key Points • Single nucleotide polymorphisms (SNPs) in miRNA binding sites which are located in 3'UTR of the NOD2 gene could be associated with SLE risk by dysregulation of NOD2 expression. • Our results suggested that two miRSNPs (rs3135500 and rs3135499) in the NOD2 gene were meaningfully correlated with clinicopathological characteristics and disease activity of SLE.
Collapse
|
20
|
Ehtesham N, Zare Rafie M, Esmaeilzadeh E, Dehani M, Davar S, Mosallaei M, Pakzad B, Ghorashi T, Darvish H, Soosanabadi M. Three functional variants in the NLRP3 gene are associated with susceptibility and clinical characteristics of systemic lupus erythematosus. Lupus 2021; 30:1273-1282. [PMID: 33951966 DOI: 10.1177/09612033211014273] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nod-like receptor pyrin domain containing 3 (NLRP3) gene encodes an intracellular receptor whose dysregulation in systemic lupus erythematosus (SLE) has been reported in multiple studies. Activation of NLRP3 inflammasome leads to the induction of inflammatory response via cleaving and producing of specific cytokines. In the present study, we assessed the possible association between three functional polymorphisms in this gene and SLE risk in the Iranian population. These variants include two gain of function (rs4612666 and rs10754558) and one loss of function (rs6672995) which are correlated with modulation of expression of NLRP3. METHODS A case-control study involving 110 SLE patients and 116 control subjects was undertaken to estimate the frequency of rs4612666, rs10754558, and rs6672995 genotypes using real-time PCR high resolution melting method (HRM). RESULTS Our findings revealed significant associations between GG genotype and G allele of rs10754558 with increased risk of SLE (OR for GG genotype= 2.82; 95%CI [1.45-5.46]/OR for G allele= 1.97; 95%CI [1.36-2.87]). Although, no significant associations were recognized between allele and genotype frequencies of rs4612666 and rs6672995 polymorphisms with SLE risk (P > 0.05). Also, our analysis revealed that the C allele in rs4612666 and G allele in rs10754558 was correlated with the severity of disease activity (P < 0.001). Moreover, these common variants were associated with lower age of onset and some clinical symptoms in the patient group, such as skin manifestation, neurological symptom and, renal involvement (P < 0.05). CONCLUSION This study demonstrates a substantial association between NLRP3 polymorphisms with increased risk, clinical symptoms, and the severity of disease activity of SLE.
Collapse
Affiliation(s)
- Naeim Ehtesham
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Zare Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mohammad Dehani
- School of Medicine, Aja University of Medical Science, Tehran, Iran
| | - Saeideh Davar
- Department of Epidemiology and Biostatistics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Meysam Mosallaei
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Pakzad
- Department of Internal Medicine, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Tahereh Ghorashi
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Darvish
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Soosanabadi
- Department of Medical Genetics, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
21
|
Yin X, Kim K, Suetsugu H, Bang SY, Wen L, Koido M, Ha E, Liu L, Sakamoto Y, Jo S, Leng RX, Otomo N, Laurynenka V, Kwon YC, Sheng Y, Sugano N, Hwang MY, Li W, Mukai M, Yoon K, Cai M, Ishigaki K, Chung WT, Huang H, Takahashi D, Lee SS, Wang M, Karino K, Shim SC, Zheng X, Miyamura T, Kang YM, Ye D, Nakamura J, Suh CH, Tang Y, Motomura G, Park YB, Ding H, Kuroda T, Choe JY, Li C, Niiro H, Park Y, Shen C, Miyamoto T, Ahn GY, Fei W, Takeuchi T, Shin JM, Li K, Kawaguchi Y, Lee YK, Wang Y, Amano K, Park DJ, Yang W, Tada Y, Yamaji K, Shimizu M, Atsumi T, Suzuki A, Sumida T, Okada Y, Matsuda K, Matsuo K, Kochi Y, Kottyan LC, Weirauch MT, Parameswaran S, Eswar S, Salim H, Chen X, Yamamoto K, Harley JB, Ohmura K, Kim TH, Yang S, Yamamoto T, Kim BJ, Shen N, Ikegawa S, Lee HS, Zhang X, Terao C, Cui Y, Bae SC. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann Rheum Dis 2021; 80:632-640. [PMID: 33272962 PMCID: PMC8053352 DOI: 10.1136/annrheumdis-2020-219209] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE), an autoimmune disorder, has been associated with nearly 100 susceptibility loci. Nevertheless, these loci only partially explain SLE heritability and their putative causal variants are rarely prioritised, which make challenging to elucidate disease biology. To detect new SLE loci and causal variants, we performed the largest genome-wide meta-analysis for SLE in East Asian populations. METHODS We newly genotyped 10 029 SLE cases and 180 167 controls and subsequently meta-analysed them jointly with 3348 SLE cases and 14 826 controls from published studies in East Asians. We further applied a Bayesian statistical approach to localise the putative causal variants for SLE associations. RESULTS We identified 113 genetic regions including 46 novel loci at genome-wide significance (p<5×10-8). Conditional analysis detected 233 association signals within these loci, which suggest widespread allelic heterogeneity. We detected genome-wide associations at six new missense variants. Bayesian statistical fine-mapping analysis prioritised the putative causal variants to a small set of variants (95% credible set size ≤10) for 28 association signals. We identified 110 putative causal variants with posterior probabilities ≥0.1 for 57 SLE loci, among which we prioritised 10 most likely putative causal variants (posterior probability ≥0.8). Linkage disequilibrium score regression detected genetic correlations for SLE with albumin/globulin ratio (rg=-0.242) and non-albumin protein (rg=0.238). CONCLUSION This study reiterates the power of large-scale genome-wide meta-analysis for novel genetic discovery. These findings shed light on genetic and biological understandings of SLE.
Collapse
Affiliation(s)
- Xianyong Yin
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kwangwoo Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Hiroyuki Suetsugu
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Kanagawa, Japan
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Leilei Wen
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Division of Molecular Pathology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eunji Ha
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Lu Liu
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | | | - Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Nao Otomo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Kanagawa, Japan
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Viktoryia Laurynenka
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Young-Chang Kwon
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Yujun Sheng
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Nobuhiko Sugano
- Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mi Yeong Hwang
- Division of Genome Research, Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Weiran Li
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Masaya Mukai
- Department of Rheumatology & Clinical Immunology, Sapporo City General Hospital, Hokkaido, Japan
| | - Kyungheon Yoon
- Division of Genome Research, Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Minglong Cai
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Kazuyoshi Ishigaki
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Data Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Won Tae Chung
- Department of Internal Medicine, Dong-A University Hospital, Busan, Korea
| | - He Huang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Daisuke Takahashi
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Shin-Seok Lee
- Division of Rheumatology, Department of Internal Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Mengwei Wang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Kohei Karino
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - Seung-Cheol Shim
- Division of Rheumatology, Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Xiaodong Zheng
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Tomoya Miyamura
- Department of Internal Medicine and Rheumatology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Young Mo Kang
- Division of Rheumatology, Department of Internal medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Dongqing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Junichi Nakamura
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Yuanjia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, China
| | - Goro Motomura
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yong-Beom Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Huihua Ding
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, China
| | - Takeshi Kuroda
- Niigata University Health Administration Center, Niigata, Japan
| | - Jung-Yoon Choe
- Department of Rheumatology, Catholic University of Daegu School of Medicine, Daegu, Korea
| | - Chengxu Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka City, Japan
| | - Youngho Park
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Changbing Shen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ga-Young Ahn
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Wenmin Fei
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jung-Min Shin
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Keke Li
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Yasushi Kawaguchi
- Institute of Rheumatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yeon-Kyung Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Yongfei Wang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Koichi Amano
- Department of Rheumatology & Clinical Immunology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Dae Jin Park
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yoshifumi Tada
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masato Shimizu
- Hokkaido Medical Center for Rheumatic Disease, Hokkaido, Japan
| | - Takashi Atsumi
- Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPi-iFReC), Osaka University, Osaka, Japan
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shruti Eswar
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hanan Salim
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - John B Harley
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical immunology, Kyoto University Graduate school of Medicine, Kyoto, Japan
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Sen Yang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
| | - Takuaki Yamamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Korea
| | - Nan Shen
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine (SJTUSM), Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Kanagawa, Japan
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Xuejun Zhang
- Department of Dermatology, First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, Anhui, China
- Key Lab of Dermatology, Ministry of Education (Anhui Medical University), Hefei, Anhui, China
- Department of Dermatology, Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| |
Collapse
|
22
|
Jiang SH, Stanley M, Vinuesa CG. Rare genetic variants in systemic autoimmunity. Immunol Cell Biol 2020; 98:490-499. [PMID: 32315078 DOI: 10.1111/imcb.12339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
Abstract
Autoimmune disease is a substantial cause of morbidity and is strongly influenced by genetic risk. Extensive efforts have characterized the overall genetic basis of many autoimmune diseases, typically by investigation of common variants. While these common variants have modest effects and may cumulatively predispose to disease, it is also increasingly apparent that rare variants have significantly greater effect on phenotype and are likely to contribute to autoimmune disease. Recent advances have illustrated the next fundamental step in elucidating the genetic basis of autoimmunity, moving beyond association to demonstrate the functional consequences of these variants.
Collapse
Affiliation(s)
- Simon H Jiang
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, ACT, 2601, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Acton, ACT, 2601, Australia.,Department of Renal Medicine, The Canberra Hospital, Garran, ACT, 2601, Australia
| | - Maurice Stanley
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, ACT, 2601, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Acton, ACT, 2601, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, ACT, 2601, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Acton, ACT, 2601, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, 200333, China
| |
Collapse
|
23
|
Brant EJ, Rietman EA, Klement GL, Cavaglia M, Tuszynski JA. Personalized therapy design for systemic lupus erythematosus based on the analysis of protein-protein interaction networks. PLoS One 2020; 15:e0226883. [PMID: 32191711 PMCID: PMC7081981 DOI: 10.1371/journal.pone.0226883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
We analyzed protein expression data for Lupus patients, which have been obtained from publicly available databases. A combination of systems biology and statistical thermodynamics approaches was used to extract topological properties of the associated protein-protein interaction networks for each of the 291 patients whose samples were used to provide the molecular data. We have concluded that among the many proteins that appear to play critical roles in this pathology, most of them are either ribosomal proteins, ubiquitination pathway proteins or heat shock proteins. We propose some of the proteins identified in this study to be considered for drug targeting.
Collapse
Affiliation(s)
- Elizabeth J. Brant
- Nephrology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States of America
| | - Edward A. Rietman
- BINDS lab, College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Mechanical and Industrial Engineering, University of Mass, Amherst, Massachusetts, United States of America
| | | | | | - Jack A. Tuszynski
- DIMEAS, Politecnico di Torino, Torino, Italy
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
24
|
Abo El-Khair SM, Sameer W, Awadallah N, Shaalan D. Programmed cell death 1 gene polymorphism as a possible risk for systemic lupus erythematosus in Egyptian females. Lupus 2019; 28:1427-1434. [PMID: 31551030 DOI: 10.1177/0961203319878493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with a suggested genetic basis. The newly identified human programmed cell death 1 gene could be associated with SLE susceptibility. We aimed to investigate the association between programmed cell death 1 polymorphism (PD1.3G/A (rs11568821) and PD1.5C/T (rs2227981)) with the risk of SLE in the Egyptian female population. This retrospective case-control study included 150 Egyptian females; 70 patients diagnosed to have SLE and 80 age-matched healthy controls. The two single nucleotide polymorphisms of the pdcd1 gene were genotyped by allelic discrimination through TaqMan real-time polymerase chain reaction. The PD1.3GG genotype and G allele as well as the PD1.5CC genotype were significantly more frequent in SLE patients (67.1%; p = 0.023, 82.1%; p = 0.0021, 62.9%; p = 0.0287 respectively). The GC haplotype was the most common haplotype among SLE patients (70.77%) with a reported significant linkage disequilibrium between the two studied polymorphisms (p = 0.0041). Although most of the studies showed significant association of SLE with the minor alleles, we reported a significant association between the dominant genotypes (PD1.3GG and PD1.5CC) as well as the major G allele with the risk of SLE among Egyptian females.
Collapse
Affiliation(s)
- S M Abo El-Khair
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - W Sameer
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - N Awadallah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| | - D Shaalan
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
25
|
Salimi S, Eskandari F, Rezaei M, Sandoughi M. Vitamin D Receptor rs2228570 and rs731236 Polymorphisms are Susceptible Factors for Systemic Lupus Erythematosus. Adv Biomed Res 2019; 8:48. [PMID: 31516886 PMCID: PMC6712894 DOI: 10.4103/abr.abr_19_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: The Vitamin D receptor (VDR) polymorphisms are the candidate genetic variants for susceptibility to different disease including autoimmune disorders. In the present study, we aimed to assess the association between VDR polymorphisms and systemic lupus erythematosus (SLE) susceptibility in Southeast Iranian population. Materials and Methods: One hundred and twenty-seven patients with SLE and 139 controls were genotyped for VDR rs2228570, rs731236, and rs7975232 polymorphisms using polymerase chain reaction-restriction fragment length polymorphism method. Results: The VDR rs2228570 polymorphism was associated with higher risk of SLE in codominant, dominant, and overdominant models. Moreover, higher risk of SLE was observed in individuals with VDR rs731236 polymorphism in codominant, dominant, overdominant, and allelic models. The tAf haplotype of rs731236/rs7975232/rs2228570 polymorphisms was associated with higher risk of SLE. Conclusion: In conclusion, VDR rs2228570 and rs731236 polymorphisms and tAf haplotype were associated with SLE risk.
Collapse
Affiliation(s)
- Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Eskandari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahnaz Rezaei
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahnaz Sandoughi
- Department of Internal Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
26
|
Lockshin MD, Barbhaiya M, Izmirly P, Buyon JP, Crow MK. SLE: reconciling heterogeneity. Lupus Sci Med 2019; 6:e000280. [PMID: 31080630 PMCID: PMC6485210 DOI: 10.1136/lupus-2018-000280] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/14/2018] [Accepted: 11/18/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Michael D Lockshin
- Barbara Volcker Center, Hospital for Special Surgery, New York City, New York, USA
| | - Medha Barbhaiya
- Barbara Volcker Center, Hospital for Special Surgery, New York City, New York, USA
| | - Peter Izmirly
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York City, New York, USA
| | - Jill P Buyon
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York City, New York, USA
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York City, New York, USA
| |
Collapse
|
27
|
Wolf BJ, Ramos PS, Hyer JM, Ramakrishnan V, Gilkeson GS, Hardiman G, Nietert PJ, Kamen DL. An Analytic Approach Using Candidate Gene Selection and Logic Forest to Identify Gene by Environment Interactions (G × E) for Systemic Lupus Erythematosus in African Americans. Genes (Basel) 2018; 9:genes9100496. [PMID: 30326636 PMCID: PMC6211136 DOI: 10.3390/genes9100496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022] Open
Abstract
Development and progression of many human diseases, such as systemic lupus erythematosus (SLE), are hypothesized to result from interactions between genetic and environmental factors. Current approaches to identify and evaluate interactions are limited, most often focusing on main effects and two-way interactions. While higher order interactions associated with disease are documented, they are difficult to detect since expanding the search space to all possible interactions of p predictors means evaluating 2p − 1 terms. For example, data with 150 candidate predictors requires considering over 1045 main effects and interactions. In this study, we present an analytical approach involving selection of candidate single nucleotide polymorphisms (SNPs) and environmental and/or clinical factors and use of Logic Forest to identify predictors of disease, including higher order interactions, followed by confirmation of the association between those predictors and interactions identified with disease outcome using logistic regression. We applied this approach to a study investigating whether smoking and/or secondhand smoke exposure interacts with candidate SNPs resulting in elevated risk of SLE. The approach identified both genetic and environmental risk factors, with evidence suggesting potential interactions between exposure to secondhand smoke as a child and genetic variation in the ITGAM gene associated with increased risk of SLE.
Collapse
Affiliation(s)
- Bethany J Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Paula S Ramos
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
- Division of Rheumatology and Immunology, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
| | - J Madison Hyer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Viswanathan Ramakrishnan
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
| | - Gary Hardiman
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
- Center for Genomic Medicine, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
- Division of Nephrology, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Paul J Nietert
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Department of Medicine, Medical Univeristy of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
28
|
Wang J, Cao P, Qi YY, Chen XP, Ma L, Deng RR, Zhang LL, Zhao Y. The relationship between cell apoptosis dysfunction and FEN1 E160D mutation in lupus nephritis patients. Autoimmunity 2018; 50:476-480. [PMID: 29239254 DOI: 10.1080/08916934.2017.1402302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aims to evaluate the role of FEN1 E160D mutation in lupus nephritis (LN) patients with cell apoptosis dysfunction. METHODS (1) Cell apoptosis was detected from 50 paraffin samples obtained from renal biopsies of patients with Class IV LN by TUNEL method and the relationship of the systemic lupus erythematosus disease activity index 2000 (SLEDAI 2000) and renal tissue cell apoptotic index (AI) was discussed. (2) FEN1 gene 61563142-61563342 containing E160D were analysed by extracting genomic DNA from peripheral blood collected from the above 50 LN patients and 25 patients with nephrectomy caused by renal trauma. The difference between these two groups was statistically significant. RESULTS Cell apoptosis was detected in all patients with LN, and correlation analysis results revealed a positive relationship between SLEDAI 2000 and AI (r = 0.39, p = .032). The FEN1 gene 61563142-61563342 fragment had site mutations at C/- (+61563189), A/T (+61563198), A/- (+61563204), G/T (+61563303), and T/C (+61563304). However, no statistical significance was found between LN patients detected with cell apoptosis and healthy individuals. CONCLUSIONS This study revealed that cell apoptosis dysfunction plays a key role in the pathogenesis of LN, even though the difference in FEN1 gene 61563142-61563342 between LN patients and healthy individuals was not statistically significant. Larger sample size studies or genome-wide association studies are needed.
Collapse
Affiliation(s)
- Jing Wang
- a Department of Nephropathy , Lanzhou University Second Hospital , Lanzhou , PR China
| | - Ping Cao
- b Thinks People's Hospital , Gan Su , PR China
| | - Yuan-Yuan Qi
- a Department of Nephropathy , Lanzhou University Second Hospital , Lanzhou , PR China
| | - Xue-Ping Chen
- a Department of Nephropathy , Lanzhou University Second Hospital , Lanzhou , PR China
| | - Li Ma
- a Department of Nephropathy , Lanzhou University Second Hospital , Lanzhou , PR China
| | - Rong-Rong Deng
- a Department of Nephropathy , Lanzhou University Second Hospital , Lanzhou , PR China
| | - Li-Li Zhang
- a Department of Nephropathy , Lanzhou University Second Hospital , Lanzhou , PR China
| | - Yu Zhao
- a Department of Nephropathy , Lanzhou University Second Hospital , Lanzhou , PR China
| |
Collapse
|
29
|
Wang XM, Tu JC. TNFSF15 is likely a susceptibility gene for systemic lupus erythematosus. Gene 2018; 670:106-113. [PMID: 29803925 DOI: 10.1016/j.gene.2018.05.098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
Abstract
We aim to explore the correlation of TNFSF15 genetic polymorphisms with susceptibility to systemic lupus erythematosus (SLE). This study enrolled SLE patients and healthy individuals to detect three single nucleotide polymorphisms (SNPs) of TNFSF15 (rs3810936, rs6478108 and rs4979462) through using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze the possible association of these three SNPs with the risk of SLE and the mRNA level of TNFSF15 was quantified by real-time PCR. The rs3810936 T allele carrier greatly decreased risk of SLE (OR = 0.620, 95% CI = 0.454-0.849, P = 0.003), while the risk of SLE for rs4979462 T allele carrier was significantly increased (OR = 1.66, 95% CI = 1.243-2.218, P < 0.001). The mRNA level of TNFSF15 was obviously higher in SLE patients, and specifically, the patients who carried the CC genotype of TNFSF15 rs3810936 had a higher TNFSF15 mRNA, but the rs4979462 CC genotype carriers appeared to be associated with the decreased TNFSF15 mRNA (all P < 0.05). Besides, the genotypes of rs3810936 and rs4979462 of TNFSF15 were significantly associated with butterfly rash, arthritis, serositis, renal nephritis, hematological disorder, immunological disorder and positive antinuclear antibody (ANA) of SLE patients (all P < 0.05). CCT and CTT haplotypes were risk factors of SLE, but CCC and TTT were protective factors of SLE (all P < 0.05). Logistic regression analysis showed that rs3810936 and rs4979462 of TNFSF15, histories of chilblain and wet living environment were independently associated with the risk of SLE (all P < 0.05).The current results suggested that TNFSF15 (rs3810936 and rs4979462) SNPs may confer susceptibility to SLE risk, which were significantly associated with the clinical phenotypes of SLE.
Collapse
Affiliation(s)
- Xian-Mo Wang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, PR China
| | - Jian-Cheng Tu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, PR China; The First People's Hospital of Jingzhou, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, Hubei, PR China.
| |
Collapse
|
30
|
Evaluation of Impact of Interferon-Induced Helicase C Domain-Containing Protein 1 Gene in Egyptian Systemic Lupus Erythematosus Patients and its Relationship With Vascular Manifestations of the Disease. Arch Rheumatol 2018; 33:181-189. [PMID: 30207578 DOI: 10.5606/archrheumatol.2018.6476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Objectives This study aims to investigate the impact of interferon-induced helicase C domain-containing protein 1 (IFIH1) gene single nucleotide polymorphism on interferon pathway signaling in systemic lupus erythematosus (SLE) patients specifically with vascular affection. Patients and methods The cross-sectional study included 30 consecutive SLE patients (2 males, 28 females; mean age 28±3.4 years; range 16 to 40 years) diagnosed according to the American College of Rheumatology revised criteria and 10 healthy age- and sex-matched controls (2 males, 8 females; mean age 27±2.5 years; range 22 to 23 years). SLE patients and controls were compared in terms of quantitative reverse transcriptase polymerase chain reaction gene expression of IFIH1 gene, von Willebrand factor, carotid intima-media thickness, and ankle brachial index. Results Interferon-induced helicase C domain-containing protein 1 gene expression was significantly higher in SLE patients than controls (1.7±0.6 and 0.5±0.2, respectively) (p<0.0001). IFIH1 gene expression was highly related to vascular complication with a cutoff point at 1.74 and it positively correlated with other endothelial dysfunction markers. Conclusion Interferon-induced helicase C domain-containing protein 1 gene (single nucleotide polymorphism 1990670) is associated with SLE in Egyptian patients. Expression of IFIH1 gene is related to disease activity and may serve as a novel predictor of vascular affection in SLE.
Collapse
|
31
|
Carrel L, Brown CJ. When the Lyon(ized chromosome) roars: ongoing expression from an inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160355. [PMID: 28947654 PMCID: PMC5627157 DOI: 10.1098/rstb.2016.0355] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
A tribute to Mary Lyon was held in October 2016. Many remarked about Lyon's foresight regarding many intricacies of the X-chromosome inactivation process. One such example is that a year after her original 1961 hypothesis she proposed that genes with Y homologues should escape from X inactivation to achieve dosage compensation between males and females. Fifty-five years later we have learned many details about these escapees that we attempt to summarize in this review, with a particular focus on recent findings. We now know that escapees are not rare, particularly on the human X, and that most lack functionally equivalent Y homologues, leading to their increasingly recognized role in sexually dimorphic traits. Newer sequencing technologies have expanded profiling of primary tissues that will better enable connections to sex-biased disorders as well as provide additional insights into the X-inactivation process. Chromosome organization, nuclear location and chromatin environments distinguish escapees from other X-inactivated genes. Nevertheless, several big questions remain, including what dictates their distinct epigenetic environment, the underlying basis of species differences in escapee regulation, how different classes of escapees are distinguished, and the roles that local sequences and chromosome ultrastructure play in escapee regulation.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Laura Carrel
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, 500 University Drive, Mail code H171, Hershey, PA 17033, USA
| | - Carolyn J Brown
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, Canada BC V6T 1Z3
| |
Collapse
|
32
|
Hoffman RW, Merrill JT, Alarcón-Riquelme MME, Petri M, Dow ER, Nantz E, Nisenbaum LK, Schroeder KM, Komocsar WJ, Perumal NB, Linnik MD, Airey DC, Liu Y, Rocha GV, Higgs RE. Gene Expression and Pharmacodynamic Changes in 1,760 Systemic Lupus Erythematosus Patients From Two Phase III Trials of BAFF Blockade With Tabalumab. Arthritis Rheumatol 2017; 69:643-654. [PMID: 27723281 PMCID: PMC6585752 DOI: 10.1002/art.39950] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Objective To characterize baseline gene expression and pharmacodynamically induced changes in whole blood gene expression in 1,760 systemic lupus erythematosus (SLE) patients from 2 phase III, 52‐week, randomized, placebo‐controlled, double‐blind studies in which patients were treated with the BAFF‐blocking IgG4 monoclonal antibody tabalumab. Methods Patient samples were obtained from SLE patients from the ILLUMINATE‐1 and ILLUMINATE‐2 studies, and control samples were obtained from healthy donors. Blood was collected in Tempus tubes at baseline, week 16, and week 52. RNA was analyzed using Affymetrix Human Transcriptome Array 2.0 and NanoString. Results At baseline, expression of the interferon (IFN) response gene was elevated in patients compared with controls, with 75% of patients being positive for this IFN response gene signature. There was, however, substantial heterogeneity of IFN response gene expression and complex relationships among gene networks. The IFN response gene signature was a predictor of time to disease flare, independent of anti–double‐stranded DNA (anti‐dsDNA) antibody and C3 and C4 levels, and overall disease activity. Pharmacodynamically induced changes in gene expression following tabalumab treatment were extensive, occurring predominantly in B cell–related and immunoglobulin genes, and were consistent with other pharmacodynamic changes including anti‐dsDNA antibody, C3, and immunoglobulin levels. Conclusion SLE patients demonstrated increased expression of an IFN response gene signature (75% of patients had an elevated IFN response gene signature) at baseline in ILLUMINATE‐1 and ILLUMINATE‐2. Substantial heterogeneity of gene expression was detected among individual patients and in gene networks. The IFN response gene signature was an independent risk factor for future disease flares. Pharmacodynamic changes in gene expression were consistent with the mechanism of BAFF blockade by tabalumab.
Collapse
Affiliation(s)
| | | | - Marta M E Alarcón-Riquelme
- Oklahoma Medical Research Foundation, Oklahoma City, and Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | | | - Ernst R Dow
- Eli Lilly and Company, Indianapolis, Indiana
| | - Eric Nantz
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | | | | | - Yushi Liu
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | |
Collapse
|
33
|
Chang NH, Manion KP, Loh C, Pau E, Baglaenko Y, Wither JE. Multiple tolerance defects contribute to the breach of B cell tolerance in New Zealand Black chromosome 1 congenic mice. PLoS One 2017. [PMID: 28628673 PMCID: PMC5476272 DOI: 10.1371/journal.pone.0179506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lupus is characterized by a loss of B cell tolerance leading to autoantibody production. In this study, we explored the mechanisms underlying this loss of tolerance using B6 congenic mice with an interval from New Zealand Black chromosome 1 (denoted c1(96–100)) sufficient for anti-nuclear antibody production. Transgenes for soluble hen egg white lysozyme (sHEL) and anti-HEL immunoglobulin were crossed onto this background and various tolerance mechanisms examined. We found that c1(96–100) mice produced increased levels of IgM and IgG anti-HEL antibodies compared to B6 mice and had higher proportions of germinal center B cells and long-lived plasma cells, suggesting a germinal center-dependent breach of B cell anergy. Consistent with impaired anergy induction, c1(96–100) double transgenic B cells showed enhanced survival and CD86 upregulation. Hematopoietic chimeric sHEL mice with a mixture of B6 and c1(96–100) HEL transgenic B cells recapitulated these results, suggesting the presence of a B cell autonomous defect. Surprisingly, however, there was equivalent recruitment of B6 and c1(96–100) B cells into germinal centers and differentiation to splenic plasmablasts in these mice. In contrast, there were increased proportions of c1(96–100) T follicular helper cells and long-lived plasma cells as compared to their B6 counterparts, suggesting that both B and T cell defects are required to breach germinal center tolerance in this model. This possibility was further supported by experiments showing an enhanced breach of anergy in double transgenic mice with a longer chromosome 1 interval with additional T cell defects.
Collapse
Affiliation(s)
- Nan-Hua Chang
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
| | - Kieran P. Manion
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Christina Loh
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Evelyn Pau
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yuriy Baglaenko
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Joan E. Wither
- Arthritis Centre of Excellence, Division of Genetics and Development, Krembil Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
34
|
Eyre S, Orozco G, Worthington J. The genetics revolution in rheumatology: large scale genomic arrays and genetic mapping. Nat Rev Rheumatol 2017; 13:421-432. [PMID: 28569263 DOI: 10.1038/nrrheum.2017.80] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Susceptibility to rheumatic diseases, such as osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, juvenile idiopathic arthritis and psoriatic arthritis, includes a large genetic component. Understanding how an individual's genetic background influences disease onset and outcome can lead to a better understanding of disease biology, improved diagnosis and treatment, and, ultimately, to disease prevention or cure. The past decade has seen great progress in the identification of genetic variants that influence the risk of rheumatic diseases. The challenging task of unravelling the function of these variants is ongoing. In this Review, the major insights from genetic studies, gained from advances in technology, bioinformatics and study design, are discussed in the context of rheumatic disease. In addition, pivotal genetic studies in the main rheumatic diseases are highlighted, with insights into how these studies have changed the way we view these conditions in terms of disease overlap, pathways of disease and potential new therapeutic targets. Finally, the limitations of genetic studies, gaps in our knowledge and ways in which current genetic knowledge can be fully translated into clinical benefit are examined.
Collapse
Affiliation(s)
- Stephen Eyre
- Arthritis Research UK Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Gisela Orozco
- Arthritis Research UK Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Jane Worthington
- Arthritis Research UK Centre for Genetics and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Sciences Centre, Central Manchester Foundation Trust, Grafton Street. Manchester M13 9NT, UK
| |
Collapse
|
35
|
Abstract
Immunological abnormalities seen in relatives of patients with autoimmune disorders can be useful in understanding the pathogenesis of the disease since, unlike in patients, they cannot result from the disease process or drug treatment. In this article we present a brief overview of our studies of the basic immunological status of close relatives of SLE patients. We looked at blood levels of IgG, IgM and antibodies to double-stranded DNA, as well as at NK cell numbers and cytotoxic activity and the levels of NKT, B and T cells. As many as 60% of relatives showed one or more abnormalities in these assays. Most notably there were increased levels of IgG in male and female relatives and a reduction of IgM in females. IgG correlated inversely with NKT cell numbers adding strength to the concept that the presence of IgG autoantibodies in patients is due to impaired regulation by NKT cells. IgM, on the other hand, correlated inversely with NK cells which may thus have a role in bringing about the reduced IgM seen in some patients. Immunological abnormalities were found to be more often associated with parents and offspring of patients than with their siblings, pointing to the involvement of environmental or epigenetic influences in lupus pathogenesis.
Collapse
Affiliation(s)
- M R Salaman
- 1 Department of Medicine, St Mary's Campus, Imperial College, London, UK
| | - D A Isenberg
- 2 Centre for Rheumatology, University College London, London, UK
| |
Collapse
|
36
|
Sukhikh GT, Safronova VG, Vanko LV, Matveeva NK, Belyaeva AS, Fedorova EV, Nikolaeva MA, Klimenchenko NI, Krechetova LV. Phagocyte activity in the peripheral blood of pregnant women with systemic lupus erythematosus and in the cord blood of their newborns. Int J Rheum Dis 2017; 20:597-608. [DOI: 10.1111/1756-185x.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Gennady T. Sukhikh
- Laboratory of Clinical Immunology; The Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation; Moscow Russia
| | - Valentina G. Safronova
- Laboratory of Cellular Neurobiology; Institute of Cell Biophysics; Russian Academy of Sciences; Pushchino Russia
| | - Ludmila V. Vanko
- Laboratory of Clinical Immunology; The Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation; Moscow Russia
| | - Nataliya K. Matveeva
- Laboratory of Clinical Immunology; The Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation; Moscow Russia
| | - Anastasiya S. Belyaeva
- Laboratory of Clinical Immunology; The Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation; Moscow Russia
| | - Ekaterina V. Fedorova
- Laboratory of Clinical Immunology; The Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation; Moscow Russia
| | - Marina A. Nikolaeva
- Laboratory of Clinical Immunology; The Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation; Moscow Russia
| | - Nataliya I. Klimenchenko
- Laboratory of Clinical Immunology; The Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation; Moscow Russia
| | - Lyubov V. Krechetova
- Laboratory of Clinical Immunology; The Federal State Budget Institution “Research Center for Obstetrics, Gynecology and Perinatology” of the Ministry of Healthcare of the Russian Federation; Moscow Russia
| |
Collapse
|
37
|
Nawrocki MJ, Majewski D, Puszczewicz M, Jagodziński PP. Decreased mRNA expression levels of DNA methyltransferases type 1 and 3A in systemic lupus erythematosus. Rheumatol Int 2017; 37:775-783. [PMID: 28349196 PMCID: PMC5397457 DOI: 10.1007/s00296-017-3711-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/20/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is a chronic relapsing autoimmune disease characterized by the presence of autoantibodies directed against nuclear antigens and by chronic inflammation. Although the etiology of SLE remains unclear, the influence of environment factors, which is largely reflected by the epigenetic mechanisms, with DNA methylation changes in particular, is generally considered as main players in the pathogenesis of SLE. We studied DNA methyltransferases' (DNMTs) type 1, 3A and 3B transcript levels in peripheral blood mononuclear cells from patients diagnosed with systemic lupus erythematosus and from the healthy control subjects. Furthermore, the association of DNMT1, DNMT3A, and DNMT3B mRNA levels with gender, age, and major clinical manifestations was analyzed. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from 32 SLE patients and 40 healthy controls. Reverse transcription and real-time quantitative polymerase chain reaction (RT-qPCR) analyses were used to determine DNMT1, DNMT3A, and DNMT3B mRNA expression levels. RESULTS Significantly lower DNMT1 (p = 0.015543) and DNMT3A (p = 0.003652) transcript levels in SLE patients were observed compared with healthy controls. Nevertheless, the DNMT3B mRNA expression levels were markedly lower compared with DNMT1 and DNMT3A, both in PBMCs from affected patients and those from control subjects. Furthermore, the DNMT1 transcript levels were positively correlated with SLE disease activity index (SLEDAI) (r s = 0.4087, p = 0.020224), while the DNMT3A transcript levels were negatively correlated with patients age (r s = -0.3765, p = 0.03369). CONCLUSIONS Our analyses confirmed the importance of epigenetic alterations in SLE etiology. Moreover, our results suggest that the presence of some clinical manifestations, such as phototosensitivity and arthritis, might be associated with the dysregulation of DNA methyltransferases' mRNA expression levels.
Collapse
Affiliation(s)
- Mariusz J Nawrocki
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznań, Poland.
| | - Dominik Majewski
- Department of Rheumatology and Internal Diseases, Poznań University of Medical Science, 135/147 28 Czerwca 1956 r. St., 61-545, Poznań, Poland
| | - Mariusz Puszczewicz
- Department of Rheumatology and Internal Diseases, Poznań University of Medical Science, 135/147 28 Czerwca 1956 r. St., 61-545, Poznań, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznań, Poland
| |
Collapse
|
38
|
Zervou M, Dorschner J, Ghodke-Puranik Y, Boumpas D, Niewold T, Goulielmos G. Association of IRF5 polymorphisms with increased risk for systemic lupus erythematosus in population of Crete, a southern-eastern European Greek island. Gene 2017; 610:9-14. [DOI: 10.1016/j.gene.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/30/2017] [Accepted: 02/05/2017] [Indexed: 11/28/2022]
|
39
|
Demirci FY, Wang X, Morris DL, Feingold E, Bernatsky S, Pineau C, Clarke A, Ramsey-Goldman R, Manzi S, Vyse TJ, Kamboh MI. Multiple signals at the extended 8p23 locus are associated with susceptibility to systemic lupus erythematosus. J Med Genet 2017; 54:381-389. [PMID: 28289186 DOI: 10.1136/jmedgenet-2016-104247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND A major systemic lupus erythematosus (SLE) susceptibility locus lies within a common inversion polymorphism region (encompassing 3.8 - 4.5 Mb) located at 8p23. Initially implicated genes included FAM167A-BLK and XKR6, of which BLK received major attention due to its known role in B-cell biology. Recently, additional SLE risk carried in non-inverted background was also reported. OBJECTIVE AND METHODS In this case -control study, we further investigated the 'extended' 8p23 locus (~ 4 Mb) where we observed multiple SLE signals and assessed these signals for their relation to the inversion affecting this region. The study involved a North American discovery data set (~ 1200 subjects) and a replication data set (> 10 000 subjects) comprising European-descent individuals. RESULTS Meta-analysis of 8p23 SNPs, with p < 0.05 in both data sets, identified 51 genome-wide significant SNPs (p < 5.0 × 10-8). While most of these SNPs were related to previously implicated signals (XKR6-FAM167A-BLK subregion), our results also revealed two 'new' SLE signals, including SGK223-CLDN23-MFHAS1 (6.06 × 10-9 ≤ meta p ≤ 4.88 × 10-8) and CTSB (meta p = 4.87 × 10-8) subregions that are located > 2 Mb upstream and ~ 0.3 Mb downstream from previously reported signals. Functional assessment of relevant SNPs indicated putative cis-effects on the expression of various genes at 8p23. Additional analyses in discovery sample, where the inversion genotypes were inferred, replicated the association of non-inverted status with SLE risk and suggested that a number of SLE risk alleles are predominantly carried in non-inverted background. CONCLUSIONS Our results implicate multiple (known+novel) SLE signals/genes at the extended 8p23 locus, beyond previously reported signals/genes, and suggest that this broad locus contributes to SLE risk through the effects of multiple genes/pathways.
Collapse
Affiliation(s)
- F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - David L Morris
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Sasha Bernatsky
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, Canada
| | - Christian Pineau
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, Canada
| | - Ann Clarke
- Division of Rheumatology, Department of Medicine, University of Calgary, Calgary, Canada
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Susan Manzi
- Department of Medicine, Lupus Center of Excellence, Allegheny Health Network, Pittsburgh, USA
| | - Timothy J Vyse
- Department of Medical & Molecular Genetics, King's College London, Guy's Hospital, London, UK
| | - M I Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
40
|
Abou El Hassan M, Huang K, Eswara MBK, Xu Z, Yu T, Aubry A, Ni Z, Livne-Bar I, Sangwan M, Ahmad M, Bremner R. Properties of STAT1 and IRF1 enhancers and the influence of SNPs. BMC Mol Biol 2017; 18:6. [PMID: 28274199 PMCID: PMC5343312 DOI: 10.1186/s12867-017-0084-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND STAT1 and IRF1 collaborate to induce interferon-γ (IFNγ) stimulated genes (ISGs), but the extent to which they act alone or together is unclear. The effect of single nucleotide polymorphisms (SNPs) on in vivo binding is also largely unknown. RESULTS We show that IRF1 binds at proximal or distant ISG sites twice as often as STAT1, increasing to sixfold at the MHC class I locus. STAT1 almost always bound with IRF1, while most IRF1 binding events were isolated. Dual binding sites at remote or proximal enhancers distinguished ISGs that were responsive to IFNγ versus cell-specific resistant ISGs, which showed fewer and mainly single binding events. Surprisingly, inducibility in one cell type predicted ISG-responsiveness in other cells. Several dbSNPs overlapped with STAT1 and IRF1 binding motifs, and we developed methodology to rapidly assess their effects. We show that in silico prediction of SNP effects accurately reflects altered binding both in vitro and in vivo. CONCLUSIONS These data reveal broad cooperation between STAT1 and IRF1, explain cell type specific differences in ISG-responsiveness, and identify genetic variants that may participate in the pathogenesis of immune disorders.
Collapse
Affiliation(s)
- Mohamed Abou El Hassan
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada.,Clinical Chemistry Division, Provincial Laboratory Services, Queen Elizabeth Hospital, Charlottetown, PE, Canada.,Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Katherine Huang
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Manoja B K Eswara
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Zhaodong Xu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Zuyao Ni
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada.,Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Izzy Livne-Bar
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Monika Sangwan
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Mohamad Ahmad
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mt Sinai Hospital, Toronto, ON, Canada. .,Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada. .,Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Paradowska-Gorycka A, Sowinska A, Stypinska B, Grobelna MK, Walczyk M, Olesinska M, Piotrowski P, Jagodzinski PP. Genetic Variants in IL-12B and IL-27 in the Polish Patients with Systemic Lupus Erythematosus. Scand J Immunol 2017; 84:49-60. [PMID: 27059274 DOI: 10.1111/sji.12439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/04/2016] [Indexed: 01/12/2023]
Abstract
To investigate the potential association between IL-12B and IL-27 gene polymorphisms and systemic lupus erythematosus (SLE), we performed a case-control study based on the Polish population. Patients with SLE and healthy individuals were examined for -6415 CTCTAA/GC (rs17860508) and +1188A/C (rs3212227) in IL-12B and -924A/G (rs153109) and 4730T/C (rs181206) in IL-27 gene polymorphisms using the high-resolution melting method, PCR-RFLP method and TaqMan SNP genotyping assay, respectively. An increased frequency of GC/GC genotype as well as GC allele of the IL-12B rs17860508 was found in patients with SLE, as compared with healthy subjects (P < 0.001). We did not find differences in genotype and allele frequencies of the IL-12B rs3212227 and IL-27 rs153109 and rs181206 variants between patients with SLE and controls. IL-27 haplotype rs181206C/rs153109G indicated higher risk for SLE (P = 0.002), whereas haplotype rs181206T/rs153109G indicated reduced risk for SLE (P = 0.005). The IL-12B rs3212227 A/C polymorphism was associated with the mean value of the platelets (PLT), urea and complement C3 level. Furthermore, IL-12B rs17860508 genetic variant showed correlation with PLT, prothrombin time, international normalized ratio and alkaline phosphatase. Our results revealed that IL-12B rs17860508 and IL-27 haplotype CG are genetic risk factors for SLE and that both IL-12B rs17860508 and rs3212227 predict disease phenotype.
Collapse
Affiliation(s)
- A Paradowska-Gorycka
- Department of Biochemistry and Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - A Sowinska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - B Stypinska
- Department of Biochemistry and Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - M K Grobelna
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - M Walczyk
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - M Olesinska
- Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - P Piotrowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland.,Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - P P Jagodzinski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
42
|
Pinto AJ, Benatti FB, Roschel H, de Sá Pinto AL, Silva CA, Sallum AME, Gualano B. Poor muscle strength and function in physically inactive childhood-onset systemic lupus erythematosus despite very mild disease. REVISTA BRASILEIRA DE REUMATOLOGIA 2016; 56:509-514. [PMID: 27914598 DOI: 10.1016/j.rbre.2016.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/12/2016] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To compare muscle strength (i.e. lower- and upper-body strength) and function between physically inactive childhood-onset systemic lupus erythematosus patients (C-SLE) and healthy controls (CTRL). METHODS This was a cross-sectional study and the sample consisted of 19 C-SLE (age between 9 and 18 years) and 15 CTRL matched by age, sex, body mass index (BMI), and physical activity levels (assessed by accelerometry). Lower- and upper-body strength was assessed by the one-repetition-maximum (1-RM) test. Isometric strength was assessed through a handgrip dynamometer. Muscle function was evaluated by the timed-stands test (TST) and the timed-up-and-go test (TUG). RESULTS When compared with CTRL, C-SLE showed lower leg-press and bench-press 1-RM (p=0.026 and p=0.008, respectively), and a tendency toward lower handgrip strength (p=0.052). C-SLE showed lower TST scores (p=0.036) and a tendency toward higher TUG scores (p=0.070) when compared with CTRL. CONCLUSION Physically inactive C-SLE patients with very mild disease showed reduced muscle strength and functionality when compared with healthy controls matched by physical activity levels. These findings suggest C-SLE patients may greatly suffer from a physically inactive lifestyle than healthy controls do. Moreover, some sub-clinical "residual" effect of the disease or its pharmacological treatment seems to affect C-SLE patients even with a well-controlled disease.
Collapse
Affiliation(s)
- Ana Jéssica Pinto
- Universidade de São Paulo (USP), Grupo de Pesquisa em Fisiologia Aplicada e Nutrição, São Paulo, SP, Brazil
| | - Fabiana Braga Benatti
- Universidade de São Paulo (USP), Faculdade de Medicina, Divisão de Reumatologia, São Paulo, SP, Brazil
| | - Hamilton Roschel
- Universidade de São Paulo (USP), Grupo de Pesquisa em Fisiologia Aplicada e Nutrição, São Paulo, SP, Brazil; Universidade de São Paulo (USP), Faculdade de Medicina, Divisão de Reumatologia, São Paulo, SP, Brazil
| | - Ana Lúcia de Sá Pinto
- Universidade de São Paulo (USP), Faculdade de Medicina, Divisão de Reumatologia, São Paulo, SP, Brazil
| | - Clovis Artur Silva
- Universidade de São Paulo (USP), Faculdade de Medicina, Instituto da Criança, São Paulo, SP, Brazil
| | | | - Bruno Gualano
- Universidade de São Paulo (USP), Grupo de Pesquisa em Fisiologia Aplicada e Nutrição, São Paulo, SP, Brazil; Universidade de São Paulo (USP), Faculdade de Medicina, Divisão de Reumatologia, São Paulo, SP, Brazil.
| |
Collapse
|
43
|
Carbonella A, Mancano G, Gremese E, Alkuraya FS, Patel N, Gurrieri F, Ferraccioli G. An autosomal recessive DNASE1L3-related autoimmune disease with unusual clinical presentation mimicking systemic lupus erythematosus. Lupus 2016; 26:768-772. [PMID: 27821515 DOI: 10.1177/0961203316676382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe the third family in the world, after Arabian and Turkish ones, displaying an autosomal recessive autoimmune disease (AID), mimicking systemic lupus erythematosus (SLE), with unusual manifestations due to a homozygous frame-shift variant in DNASE1L3. SLE is a complex AID characterized by multiple organ involvement. Genetic risk variants identified account for only 15% of SLE heritability. Rare Mendelian forms have been reported, including DNASE1L3-related SLE. Through specific genetic tests we identified a homozygous 2 bp-deletion c.289_290delAC (NM_004944.2) in DNASE1L3, predicting frameshift and premature truncation (p.Thr97Ilefs*2). The same mutation was previously reported in three sisters, born from consanguineous parents and affected with hypocomplementemic urticarial vasculitis syndrome (HUVS). As approximately 50% of individuals affected with HUVS develop SLE, it is still unclear whether it is a SLE sub-phenotype or a separate condition.
Collapse
Affiliation(s)
- A Carbonella
- 1 Division of Rheumatology, Institute of Rheumatology, Catholic University School of Medicine, Rome, Italy
| | - G Mancano
- 2 Division of Internal medicine, Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| | - E Gremese
- 1 Division of Rheumatology, Institute of Rheumatology, Catholic University School of Medicine, Rome, Italy
| | - F S Alkuraya
- 3 Developmental Genetics Unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - N Patel
- 3 Developmental Genetics Unit, Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - F Gurrieri
- 2 Division of Internal medicine, Institute of Medical Genetics, Catholic University School of Medicine, Rome, Italy
| | - G Ferraccioli
- 1 Division of Rheumatology, Institute of Rheumatology, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
44
|
Pinto AJ, Benatti FB, Roschel H, de Sá Pinto AL, Silva CA, Sallum AME, Gualano B. Redução na força muscular e capacidade funcional em pacientes fisicamente inativos com lúpus eritematoso sistêmico de início juvenil, apesar de doença muito leve. REVISTA BRASILEIRA DE REUMATOLOGIA 2016. [DOI: 10.1016/j.rbr.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
45
|
Gardet A, Chou WC, Reynolds TL, Velez DB, Fu K, Czerkowicz JM, Bajko J, Ranger AM, Allaire N, Kerns HM, Ryan S, Legault HM, Dunstan RW, Lafyatis R, Lukashev M, Viney JL, Browning JL, Rabah D. Pristane-Accelerated Autoimmune Disease in (SWR X NZB) F1 Mice Leads to Prominent Tubulointerstitial Inflammation and Human Lupus Nephritis-Like Fibrosis. PLoS One 2016; 11:e0164423. [PMID: 27760209 PMCID: PMC5070861 DOI: 10.1371/journal.pone.0164423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/23/2016] [Indexed: 01/12/2023] Open
Abstract
Mouse models lupus nephritis (LN) have provided important insights into disease pathogenesis, although none have been able to recapitulate all features of the human disease. Using comprehensive longitudinal analyses, we characterized a novel accelerated mouse model of lupus using pristane treatment in SNF1 (SWR X NZB F1) lupus prone mice (pristane-SNF1 mice). Pristane treatment in SNF1 mice accelerated the onset and progression of proteinuria, autoantibody production, immune complex deposition and development of renal lesions. At week 14, the pristane-SNF1 model recapitulated kidney disease parameters and molecular signatures seen in spontaneous disease in 36 week-old SNF1 mice and in a traditional IFNα-accelerated NZB X NZW F1 (BWF1) model. Blood transcriptome analysis revealed interferon, plasma cell, neutrophil, T-cell and protein synthesis signatures in the pristane-SNF1 model, all known to be present in the human disease. The pristane-SNF1 model appears to be particularly useful for preclinical research, robustly exhibiting many characteristics reminiscent of human disease. These include i) a stronger upregulation of the cytosolic nucleic acid sensing pathway, which is thought to be key component of the pathogenesis of the human disease, and ii) more prominent kidney interstitial inflammation and fibrosis, which have been both associated with poor prognosis in human LN. To our knowledge, this is the only accelerated model of LN that exhibits a robust tubulointerstitial inflammatory and fibrosis response. Taken together our data show that the pristane-SNF1 model is a novel accelerated model of LN with key features similar to human disease.
Collapse
Affiliation(s)
- Agnes Gardet
- Biogen, Cambridge, Massachusetts, United States of America
- * E-mail: (DR); (AG)
| | - Wei C. Chou
- Biogen, Cambridge, Massachusetts, United States of America
| | | | - Diana B. Velez
- Biogen, Cambridge, Massachusetts, United States of America
| | - Kai Fu
- Biogen, Cambridge, Massachusetts, United States of America
| | | | - Jeffrey Bajko
- Biogen, Cambridge, Massachusetts, United States of America
| | - Ann M. Ranger
- Biogen, Cambridge, Massachusetts, United States of America
| | | | | | - Sarah Ryan
- Biogen, Cambridge, Massachusetts, United States of America
| | | | | | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, United States of America
| | | | | | - Jeffrey L. Browning
- Boston University School of Medicine, Department of Microbiology, Boston, United States of America
| | - Dania Rabah
- Biogen, Cambridge, Massachusetts, United States of America
- * E-mail: (DR); (AG)
| |
Collapse
|
46
|
Harraz E, Hammad E, Darwish M, Awad M, Salah S, Farag SE. Mannose binding lectin 2 promotor-221 X/Y gene polymorphism in Egyptian systemic lupus erythematosus patients. THE EGYPTIAN RHEUMATOLOGIST 2016. [DOI: 10.1016/j.ejr.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Husakova M. MicroRNAs in the key events of systemic lupus erythematosus pathogenesis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:327-42. [DOI: 10.5507/bp.2016.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
|
48
|
Losada López I, García Gasalla M, González Moreno J, Serrano A, Domínguez Valdés FJ, Milà J, Payeras A. Mannose binding lectin polymorphisms in systemic lupus erythematosus in Spain. EUR J INFLAMM 2016. [DOI: 10.1177/1721727x16646385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Low mannose binding lectin (MBL) producer genotypes have been considered as a systemic lupus erythematosus (SLE) risk factor. The aim of this study was to explore whether polymorphisms in the MBL gene are associated with susceptibility to SLE and disease-specific clinical manifestations or with disease severity in SLE patients in Son Llàtzer Hospital. MBL2 exon 1 and promoter polymorphisms were genotyped and MBL plasma levels were quantified by ELISA in 39 SLE cases and in 96 healthy controls. High MBL producer genotypes HYPA and LXPA were the most frequent haplotypes (65 and 62 participants, respectively). LYQC/HYPD, LXPA/LYQC and LYPB/HYPD were only found in SLE, and all of them were related to severe MBL deficiency. SLE patients showed a trend towards more severe MBL deficiency (MBL <100 ng/mL) compared to controls (10 [25.6%] and 11 [11.46%] respectively, P = 0.07). The wild-type genotype was more frequent in controls compared to SLE. The trend towards more severe MBL deficiency in SLE and the fact that some of the low-MBL producer genotypes were only found in SLE patients, suggest that low MBL levels or MBL2 variant could be a risk factor for the development of SLE.
Collapse
Affiliation(s)
| | | | | | - Araceli Serrano
- Internal Medicine, Son Llàtzer Hospital, Balearic Islands, Spain
| | | | - Joan Milà
- Immunology, Son Espases Hospital, Balearic Islands, Spain
| | - Antoni Payeras
- Internal Medicine, Son Llàtzer Hospital, Balearic Islands, Spain
| |
Collapse
|
49
|
Vitamin D supplementation effects on FoxP3 expression in T cells and FoxP3+/IL-17A ratio and clinical course in systemic lupus erythematosus patients: a study in a Portuguese cohort. Immunol Res 2016; 65:197-206. [DOI: 10.1007/s12026-016-8829-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
50
|
Serino G, Curci C, Schena FP. Role of miR-422a and kallikrein-related peptidase 4 implicated in the development of lupus nephritis. Do we work in this direction? Nephrol Dial Transplant 2016; 31:683-5. [PMID: 26614269 DOI: 10.1093/ndt/gfv396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022] Open
Affiliation(s)
- Grazia Serino
- C.A.R.S.O. Consortium, University of Bari, 70100 Valenzano (Ba), Italy IRCCS "de Bellis", Laboratory of Experimental Immunopathology, 70013 Castellana Grotte, BA, Italy
| | - Claudia Curci
- C.A.R.S.O. Consortium, University of Bari, 70100 Valenzano (Ba), Italy Schena Foundation, Research Center of Kidney Diseases, Valenzano, Bari, Italy
| | - Francesco Paolo Schena
- C.A.R.S.O. Consortium, University of Bari, 70100 Valenzano (Ba), Italy Schena Foundation, Research Center of Kidney Diseases, Valenzano, Bari, Italy
| |
Collapse
|