1
|
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res 2023; 27:31. [PMID: 37072836 PMCID: PMC10114339 DOI: 10.1186/s40824-023-00371-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jiseong Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jieun Jeon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Siyeon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
2
|
Kuca-Warnawin E, Kurowska W, Plebańczyk M, Wajda A, Kornatka A, Burakowski T, Janicka I, Syrówka P, Skalska U. Basic Properties of Adipose-Derived Mesenchymal Stem Cells of Rheumatoid Arthritis and Osteoarthritis Patients. Pharmaceutics 2023; 15:pharmaceutics15031003. [PMID: 36986863 PMCID: PMC10051260 DOI: 10.3390/pharmaceutics15031003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are destructive joint diseases, the development of which are associated with the expansion of pathogenic T lymphocytes. Mesenchymal stem cells may be an attractive therapeutic option for patients with RA or OA due to the regenerative and immunomodulatory abilities of these cells. The infrapatellar fat pad (IFP) is a rich and easily available source of mesenchymal stem cells (adipose-derived stem cells, ASCs). However, the phenotypic, potential and immunomodulatory properties of ASCs have not been fully characterised. We aimed to evaluate the phenotype, regenerative potential and effects of IFP-derived ASCs from RA and OA patients on CD4+ T cell proliferation. The MSC phenotype was assessed using flow cytometry. The multipotency of MSCs was evaluated on the basis of their ability to differentiate into adipocytes, chondrocytes and osteoblasts. The immunomodulatory activities of MSCs were examined in co-cultures with sorted CD4+ T cells or peripheral blood mononuclear cells. The concentrations of soluble factors involved in ASC-dependent immunomodulatory activities were assessed in co-culture supernatants using ELISA. We found that ASCs with PPIs from RA and OA patients maintain the ability to differentiate into adipocytes, chondrocytes and osteoblasts. ASCs from RA and OA patients also showed a similar phenotype and comparable abilities to inhibit CD4+ T cell proliferation, which was dependent on the induction of soluble factors The results of our study constitute the basis for further research on the therapeutic potential of ASCs in the treatment of patients with RA and OA.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Weronika Kurowska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Magdalena Plebańczyk
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Anna Wajda
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Anna Kornatka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Tomasz Burakowski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Iwona Janicka
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Piotr Syrówka
- Rheumaorthopedics Clinic and Polyclinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| | - Urszula Skalska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
3
|
Ye F, Li J, Xu P, Xie Z, Zheng G, Liu W, Ye G, Yu W, Lin J, Su Z, Che Y, Zhang Z, Wang P, Wu Y, Shen H. Osteogenic differentiation of mesenchymal stem cells promotes c-Jun-dependent secretion of interleukin 8 and mediates the migration and differentiation of CD4+ T cells. Stem Cell Res Ther 2022; 13:58. [PMID: 35123547 PMCID: PMC8818240 DOI: 10.1186/s13287-022-02735-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background The immune system and the skeletal system have complex interactions in the bone marrow and even in the joints, which has promoted the development of the concept of osteoimmunology. Some evidence has indicated that T cells and B cells contribute to the balance between the resorption and formation of bone. However, there has been little discussion on the regulation of CD4+ T lymphocytes by cells involved in bone metabolism. Mesenchymal stem cells (MSCs), which exert core functions related to immunoregulation and osteogenic differentiation, are crucial cells linked to both bone metabolism and the immune system. Previous studies have shown that the immunoregulatory capacity of MSCs changes following differentiation. However, it is still unclear whether the osteogenic differentiation of MSCs affects the migration and differentiation of CD4+ T cells. Methods MSCs were cultured in growth medium or osteogenic medium for 10 days and then cocultured with CD4+ T cells. CD4+ T cell migration and differentiation were detected by flow cytometry. Further, gene expression levels of specific cytokines were analyzed by quantitative real-time PCR and enzyme-linked immunosorbent assays. A Proteome Profiler Human XL Cytokine Array Kit was used to analyze supernatants collected from MSCs. Alizarin red S staining and Alkaline phosphatase assay were used to detect the osteogenic differentiation of MSCs. Results Here, we found that the migration of CD4+ T cells was elevated, and the capacity to induce the differentiation of regulatory T (Treg) cells was weakened during MSC osteogenic differentiation, while the differentiation of T helper 1 (Th1), T helper 2 (Th2) and T helper 17 (Th17) cells was not affected. Further studies revealed that interleukin (IL)-8 was significantly upregulated during MSC osteogenic differentiation. Both a neutralizing antibody and IL-8-specific siRNA significantly inhibited the migration of CD4+ T cells and promoted the differentiation of Treg cells. Finally, we found that the transcription factor c-Jun was involved in regulating the expression of IL-8 and affected the osteogenic differentiation of MSCs, thereby mediating the migration and differentiation of CD4+ T cells. Conclusion This study demonstrated that MSC osteogenic differentiation promoted c-Jun-dependent secretion of IL-8 and mediated the migration and differentiation of CD4+ T cells. These results provide a further understanding of the crosstalk between bone and the immune system and reveal information about the relationship between osteogenesis and inflammation in the field of osteoimmunology. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02735-0.
Collapse
|
4
|
Li N, Gao J, Mi L, Zhang G, Zhang L, Zhang N, Huo R, Hu J, Xu K. Synovial membrane mesenchymal stem cells: past life, current situation, and application in bone and joint diseases. Stem Cell Res Ther 2020; 11:381. [PMID: 32894205 PMCID: PMC7487958 DOI: 10.1186/s13287-020-01885-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from not only bone marrow, but also various adult mesenchymal tissues such as periosteum, skeletal muscle, and adipose tissue. MSCs from different tissue sources have different molecular phenotypes and differentiation potential. Synovial membrane (SM) is an important and highly specific component of synovial joints. Previous studies have suggested that the synovium is a structure with a few cell layers thick and consists mainly of fibroblast-like synoviocytes (FLS), which forms a layer that lining the synovial membrane on the joint cavity and synovial fluid through cell-cell contact. In recent years, studies have found that there are also mesenchymal stem cells in the synovium, and as an important part of the mesenchymal stem cell family, it has strong capabilities of cartilage forming and tissue repairing. This article reviews the sources, surface markers, subtypes, influencing factors, and applications in inflammatory joints of synovial membrane mesenchymal stem cells (SM-MSCs) in recent years, aiming to clarify the research status and existing problems of SM-MSCs.
Collapse
Affiliation(s)
- Na Li
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Jinfang Gao
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Liangyu Mi
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Gailian Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Na Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Rongxiu Huo
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Junping Hu
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ke Xu
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
5
|
Meng HY, Chen LQ, Chen LH. The inhibition by human MSCs-derived miRNA-124a overexpression exosomes in the proliferation and migration of rheumatoid arthritis-related fibroblast-like synoviocyte cell. BMC Musculoskelet Disord 2020; 21:150. [PMID: 32143603 PMCID: PMC7060528 DOI: 10.1186/s12891-020-3159-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis is a long-term, progressive autoimmune disease. It is characterized by synovial hyperplasia leading to swelling, stiffness, and joint deformity in more than one joint. Fibroblast-like synoviocytes are the major cell types that make up the synovial intima structure, which is one of the decisive factors in the development and course of rheumatoid arthritis. METHODS The potential therapeutic effects of MSCs-derived miRNA-124a overexpression exosomes were evaluated in vitro by the method including MTT assay and cell cycle test for cell proliferation, scratch wound closure and transwell for cell migration, flow cytometry and western for the apoptosis detection. RESULTS Exosomes derived from human MSCs that overexpression miRNA-124a were prepared and characterized. We found that the pretreatment of this exosome was able to inhibit the proliferation and migration of fibroblast-like synoviocyte cell line and promote the apoptosis of this cell during the co-incubation. CONCLUSIONS Exosomes derived from MSCs were proved to be a suitable vector for the delivery of therapeutic miRNA-124a, and such miRNA-124a overexpression exosomes were expected to provide a new medicine and strategy for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Hong-Yan Meng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, P.R. China
| | - Li-Qing Chen
- Health Management Center of Shandong Sunshine Union Hospital Co.,Ltd., Shandong, P.R. China
| | - Li-Hui Chen
- Department of Rheumatology and Immunology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
6
|
Berthelot JM, Le Goff B, Maugars Y. Bone marrow mesenchymal stem cells in rheumatoid arthritis, spondyloarthritis, and ankylosing spondylitis: problems rather than solutions? Arthritis Res Ther 2019; 21:239. [PMID: 31722720 PMCID: PMC6854713 DOI: 10.1186/s13075-019-2014-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BM-MSCs) can dampen inflammation in animal models of inflammatory rheumatisms and human osteoarthritis. They are expected to be a solution for numerous human conditions. However, in rheumatoid arthritis (RA) and spondyloarthritis (SpA), subsets of subchondral BM-MSCs might conversely fuel synovitis and enthesitis. Main text Abnormal behaviour of BM-MSCs and/or their progeny has been found in RA and SpA. BM-MSCs also contribute to the ossifying processes observed in ankylosing spondylitis. Some synovial fibroblastic stem cells probably derive from BM-MSCs, but some stem cells can also migrate through the bare zone area of joints, not covered by cartilage, into the synovium. BM-MSCs can also migrate in the synovium over tendons. Sub-populations of bone marrow stem cells also invade the soft tissue side of enthesis via small holes in the bone cortex. The present review aims (1) to make a focus on these two aspects and (2) to put forward the hypothesis that lasting epigenetic changes of some BM-MSCs, induced by transient infections of the bone marrow close to the synovium and/or entheses (i.e. trained immunity of BM-MSCs and/or their progeny), contribute to the pathogenesis of inflammatory rheumatisms. Such hypothesis would fit with (1) the uneven distribution and/or flares of arthritis and enthesitis observed at the individual level in RA and SpA (reminiscent of what is observed following reactive arthritis and/or in Whipple’s disease); (2) the subchondral bone marrow oedema and erosions occurring in many RA patients, in the bare zone area; and (3) the frequent relapses of RA and SpA despite bone marrow transplantation, whereas most BM-MSCs resist graft preconditioning. Conclusion Some BM-MSCs might be more the problem than the solution in inflammatory rheumatisms. Subchondral bone marrow BM-MSCs and their progeny trafficking through the bare zone area of joints or holes in the bone cortex of entheses should be thoroughly studied in RA and SpA respectively. This may be done first in animal models. Mini-arthroscopy of joints could also be used in humans to specifically sample tissues close to the bare zone and/or enthesis areas.
Collapse
Affiliation(s)
| | - Benoit Le Goff
- Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Yves Maugars
- Centre Hospitalier Universitaire de Nantes, Nantes, France
| |
Collapse
|
7
|
Li F, Tang Y, Song B, Yu M, Li Q, Zhang C, Hou J, Yang R. Nomenclature clarification: synovial fibroblasts and synovial mesenchymal stem cells. Stem Cell Res Ther 2019; 10:260. [PMID: 31426847 PMCID: PMC6701095 DOI: 10.1186/s13287-019-1359-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Synovial-derived cells, found in the synovial membrane of human joints, were obtained by digestion of the synovial membrane and were subsequently expanded in vitro. The identity of synovial-derived cells has long been a topic of debate. The terms "type B synoviocytes," "fibroblast-like synoviocytes (FLS)," "synovium-derived mesenchymal stem cells (MSCs)," and "synovial fibroblasts (SF)" appeared in different articles related to human synovial-derived cells in various disease models, yet they seemed to be describing the same cell type. However, to date, there is no clear standard to distinguish these terms; thus, the hypothesis that they represent the same cell type is currently inconclusive. Therefore, this review aims to clarify the similarities and differences between these terms and to diffuse the chaotic nomenclature of synovial-derived cells.
Collapse
Affiliation(s)
- Fangqi Li
- Department of Orthopedic, Sun Yat-sen Memorial Hospital Sun Yat-sen University, NO.107 Yan Jiang West Road, Guangzhou, Guangdong Province, 510120, China
| | - Yiyong Tang
- Department of Orthopedic, Sun Yat-sen Memorial Hospital Sun Yat-sen University, NO.107 Yan Jiang West Road, Guangzhou, Guangdong Province, 510120, China
| | - Bin Song
- Department of Orthopedic, Sun Yat-sen Memorial Hospital Sun Yat-sen University, NO.107 Yan Jiang West Road, Guangzhou, Guangdong Province, 510120, China
| | - Menglei Yu
- Department of Orthopedic, Sun Yat-sen Memorial Hospital Sun Yat-sen University, NO.107 Yan Jiang West Road, Guangzhou, Guangdong Province, 510120, China
| | - Qingyue Li
- Department of Orthopedic, Sun Yat-sen Memorial Hospital Sun Yat-sen University, NO.107 Yan Jiang West Road, Guangzhou, Guangdong Province, 510120, China
| | - Congda Zhang
- Department of Orthopedic, Sun Yat-sen Memorial Hospital Sun Yat-sen University, NO.107 Yan Jiang West Road, Guangzhou, Guangdong Province, 510120, China
| | - Jingyi Hou
- Department of Orthopedic, Sun Yat-sen Memorial Hospital Sun Yat-sen University, NO.107 Yan Jiang West Road, Guangzhou, Guangdong Province, 510120, China.
| | - Rui Yang
- Department of Orthopedic, Sun Yat-sen Memorial Hospital Sun Yat-sen University, NO.107 Yan Jiang West Road, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
8
|
Koizumi K, Ebina K, Hart DA, Hirao M, Noguchi T, Sugita N, Yasui Y, Chijimatsu R, Yoshikawa H, Nakamura N. Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering approach. Osteoarthritis Cartilage 2016; 24:1413-22. [PMID: 26973329 DOI: 10.1016/j.joca.2016.03.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess whether synovial mesenchymal stem cells (SMSCs) from patients with osteoarthritis (OA) or rheumatoid arthritis (RA) can be used as an alternative cell source for cartilage repair using allogenic tissue engineered construct (TEC). METHODS Twenty-five patients (17 female, average age 61.8 years) were divided according to their pathology (control trauma group; N = 6, OA group; N = 6) and RA patients were subdivided into two groups to evaluate the impact of biologics in accordance with whether treated with biologics [Bio(+)RA; N = 7] or not [Bio(-)RA; N = 6]. We compared the following characteristics among these groups: (1) The cell proliferation capacity of SMSCs; (2) The influence of passage number on features of SMSCs; (3) The weight and volume of TEC from the same number of SMSCs; (4) Inflammatory cytokine gene expressions levels of TEC; (5) The chondrogenic potential of TEC; and (6) Osteochondral repair using TEC in athymic nude rats. RESULTS SMSCs from the four groups exhibited equivalent features in the above evaluation items. In in vivo studies, the TEC-treated repair tissues for all groups exhibited significantly better outcomes than those for the untreated group and no significant differences among the four TEC groups. CONCLUSION SMSCs from OA or RA patients are no less appropriate for repairing cartilage than those from trauma patients and thus, may be an effective source for allogenic cell-based cartilage repair.
Collapse
Affiliation(s)
- K Koizumi
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - K Ebina
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - D A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Canada
| | - M Hirao
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - T Noguchi
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - N Sugita
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Y Yasui
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - R Chijimatsu
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - H Yoshikawa
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - N Nakamura
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Medical Science in Sports, Osaka Health Science University, 1-9-27, Tennma, Kita-ku, Osaka 530-0043, Japan.
| |
Collapse
|
9
|
Mesenchymal Stromal Cells from Osteoarthritic Synovium Are a Distinct Population Compared to Their Bone-Marrow Counterparts regarding Surface Marker Distribution and Immunomodulation of Allogeneic CD4+ T-Cell Cultures. Stem Cells Int 2016; 2016:6579463. [PMID: 27516777 PMCID: PMC4969547 DOI: 10.1155/2016/6579463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 01/15/2023] Open
Abstract
Introduction. The participation of an inflammatory joint milieu has been described in osteoarthritis (OA) pathogenesis. Mesenchymal stromal cells (MSCs) play an important role in modulating inflammatory processes. Based on previous studies in an allogeneic T-cell coculture model, we aimed at further determining the role of synovial MSCs in OA pathogenesis. Methods. Bone-marrow (BM) and synovial membrane (SM) MSCs from hip joints of late stage OA patients and CD4+ T-cells from healthy donors were analysed regarding surface marker expression before and after coculture. Proliferation upon CD3/CD28 stimulation and cytokine analyses were compared between MSCs. Results. SM-MSCs differed from BM-MSCs in several surface markers and their osteogenic differentiation potential. Cocultures of both MSCs with CD4+ T-cells resulted in recruitment of CD45RA+ FoxP3+ regulatory T-cells. Upon stimulation, only SM-MSCs suppressed CD4+ T-cell proliferation, while both SM-MSCs and BM-MSCs modified cytokine profiles through suppressing IL-2 and TNF-α as well as increasing IL-6 secretion. Conclusions. Synovial MSCs from OA joints are a unique fraction that can be distinguished from their bone-marrow derived counterparts. Their unique ability to suppress CD3/CD28 induced CD4+ T-cell proliferation makes them a potential target for future therapeutic approaches.
Collapse
|
10
|
Thompson PA, Khatami M, Baglole CJ, Sun J, Harris S, Moon EY, Al-Mulla F, Al-Temaimi R, Brown D, Colacci A, Mondello C, Raju J, Ryan E, Woodrick J, Scovassi I, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Amedei A, Hamid RA, Lowe L, Guarnieri T, Bisson WH. Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis 2015; 36 Suppl 1:S232-S253. [PMID: 26106141 PMCID: PMC4492068 DOI: 10.1093/carcin/bgv038] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
An emerging area in environmental toxicology is the role that chemicals and chemical mixtures have on the cells of the human immune system. This is an important area of research that has been most widely pursued in relation to autoimmune diseases and allergy/asthma as opposed to cancer causation. This is despite the well-recognized role that innate and adaptive immunity play as essential factors in tumorigenesis. Here, we review the role that the innate immune cells of inflammatory responses play in tumorigenesis. Focus is placed on the molecules and pathways that have been mechanistically linked with tumor-associated inflammation. Within the context of chemically induced disturbances in immune function as co-factors in carcinogenesis, the evidence linking environmental toxicant exposures with perturbation in the balance between pro- and anti-inflammatory responses is reviewed. Reported effects of bisphenol A, atrazine, phthalates and other common toxicants on molecular and cellular targets involved in tumor-associated inflammation (e.g. cyclooxygenase/prostaglandin E2, nuclear factor kappa B, nitric oxide synthesis, cytokines and chemokines) are presented as example chemically mediated target molecule perturbations relevant to cancer. Commentary on areas of additional research including the need for innovation and integration of systems biology approaches to the study of environmental exposures and cancer causation are presented.
Collapse
Affiliation(s)
- Patricia A. Thompson
- *To whom correspondence should be addressed. Tel: +1 631 444 6818; Fax: +1 631 444 3424;
| | - Mahin Khatami
- Inflammation and Cancer Research, National Cancer Institute (NCI) (Retired), NIH, Bethesda, MD 20817, USA
| | - Carolyn J. Baglole
- Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, IL 60612, USA
| | - Shelley Harris
- Prevention and Cancer Control, Cancer Care Ontario, 620 University Avenue, Toronto, Ontario M5G 2L3, Canada
| | - Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of South Korea
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Dustin Brown
- Department of Environmental and Radiological Health Sciences, Colorado State University, Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Chiara Mondello
- The Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Ivana Scovassi
- The Institute of Molecular Genetics, National Research Council, 27100 Pavia, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre, King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, 40126 Bologna, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, 50134 Florence, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, Universiti Putra, Malaysia, Serdang, Selangor 43400, Malaysia
| | - Leroy Lowe
- Getting to Know Cancer, Room 229A, 36 Arthur St, Truro, Nova Scotia B2N 1X5, Canada
| | - Tiziana Guarnieri
- Department of Biology, Geology and Environmental Sciences, Alma Mater Studiorum Università di Bologna, Via Francesco Selmi, 3, 40126 Bologna, Italy
- Center for Applied Biomedical Research, S. Orsola-Malpighi University Hospital, Via Massarenti, 9, 40126 Bologna, Italy,
- National Institute of Biostructures and Biosystems, Viale Medaglie d’ Oro, 305, 00136 Roma, Italy and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
11
|
De Bari C. Are mesenchymal stem cells in rheumatoid arthritis the good or bad guys? Arthritis Res Ther 2015; 17:113. [PMID: 25929877 PMCID: PMC4416346 DOI: 10.1186/s13075-015-0634-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advancements in our understanding of the inflammatory and immune mechanisms in rheumatoid arthritis (RA) have fuelled the development of targeted therapies that block cytokine networks and pathogenic immune cells, leading to a considerable improvement in the management of RA patients. Nonetheless, no therapy is curative and clinical remission does not necessarily correspond to non-progression of joint damage. Hence, the biomedical community has redirected scientific efforts and resources towards the investigation of other biological aspects of the disease, including the mechanisms driving tissue remodelling and repair. In this regard, stem cell research has attracted extraordinary attention, with the ultimate goal to develop interventions for the biological repair of damaged tissues in joint disorders, including RA. The recent evidence that mesenchymal stem cells (MSCs) with the ability to differentiate into cartilage are present in joint tissues raises an opportunity for therapeutic interventions via targeting intrinsic repair mechanisms. Under physiological conditions, MSCs in the joint are believed to contribute to the maintenance and repair of joint tissues. In RA, however, the repair function of MSCs appears to be repressed by the inflammatory milieu. In addition to being passive targets, MSCs could interact with the immune system and play an active role in the perpetuation of arthritis and progression of joint damage. Like MSCs, fibroblast-like synoviocytes (FLSs) are part of the stroma of the synovial membrane. During RA, FLSs undergo proliferation and contribute to the formation of the deleterious pannus, which mediates damage to articular cartilage and bone. Both FLSs and MSCs are contained within the mononuclear cell fraction in vitro, from which they can be culture expanded as plastic-adherent fibroblast-like cells. An important question to address relates to the relationship between MSCs and FLSs. MSCs and FLSs could be the same cell type with functional specialisation or represent different functional stages of the same stromal lineage. This review will discuss the roles of MSCs in RA and will address current knowledge of the relative identity between MSCs and FLSs. It will also examine the immunomodulatory properties of the MSCs and the potential to harness such properties for the treatment of RA.
Collapse
Affiliation(s)
- Cosimo De Bari
- Regenerative Medicine Group, Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
12
|
Interleukin-17 and its implication in the regulation of differentiation and function of hematopoietic and mesenchymal stem cells. Mediators Inflamm 2015; 2015:470458. [PMID: 25999667 PMCID: PMC4427009 DOI: 10.1155/2015/470458] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 12/21/2022] Open
Abstract
Adult stem cells have a great potential applicability in regenerative medicine and cell-based therapies. However, there are still many unresolved issues concerning their biology, and the influence of the local microenvironment on properties of stem cells has been increasingly recognized. Interleukin (IL-) 17, as a cytokine implicated in many physiological and pathological processes, should be taken into consideration as a part of a regulatory network governing tissue-associated stem cells' fate. This review is focusing on the published data on the effects of IL-17 on the properties and function of hematopoietic and mesenchymal stem cells and trying to discuss that IL-17 achieves many of its roles by acting on adult stem cells.
Collapse
|
13
|
Immunoregulation by mesenchymal stem cells: biological aspects and clinical applications. J Immunol Res 2015; 2015:394917. [PMID: 25961059 PMCID: PMC4417567 DOI: 10.1155/2015/394917] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/20/2014] [Accepted: 12/01/2014] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD).
Collapse
|
14
|
Eseonu OI, De Bari C. Homing of mesenchymal stem cells: mechanistic or stochastic? Implications for targeted delivery in arthritis. Rheumatology (Oxford) 2014; 54:210-8. [PMID: 25288785 DOI: 10.1093/rheumatology/keu377] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with the capacity to undergo chondrogenic differentiation. Systemically administered MSCs have been shown to preferentially accumulate at sites of tissue damage and inflammation, thus MSC-based therapy holds great promise for the treatment of inflammatory diseases such as RA. Modulation of MSC homing may allow targeted delivery of systemically administered MSCs to damaged articular cartilage, where they can suppress immune-mediated cartilage destruction and contribute to cartilage repair via a combination of chondrogenic differentiation and paracrine stimulation of intrinsic residual repair. To harness the potential of MSC homing, a thorough understanding of the mechanism is key. This review discusses current knowledge of the mechanism of MSC homing to injured/inflamed tissue and its implications for targeted MSC-based therapy in arthritis.
Collapse
Affiliation(s)
- Onyedikachi I Eseonu
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Cosimo De Bari
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
15
|
Xiong Y, Ma Y, Han W, Kodithuwakku ND, Liu LF, Li FW, Fang WR, Li YM. Clematichinenoside AR induces immunosuppression involving Treg cells in Peyer׳s patches of rats with adjuvant induced arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:1306-1314. [PMID: 25063305 DOI: 10.1016/j.jep.2014.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 05/23/2014] [Accepted: 07/15/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clematichinenoside AR (AR) has been defined as a major active ingredient of triterpenoid saponins extracted from Clematidis Radix et Rhizoma, which is a traditional Chinese herbal medicine that has long been used in the treatment of rheumatoid arthritis (RA). To further explore the mechanism of AR in the treatment of RA, we investigated whether its immunomodulatory effects are related to Treg-mediated suppression derived from Peyer׳s patches (PPs) in adjuvant induced arthritis (AIA) rat model. MATERIALS AND METHODS AR (8, 16, 32 mg/kg) was orally administered daily from Day 18 to Day 31 after immunization. The effect of AR on AIA rats was evaluated by hind paw swelling and histopathological examination. Percentages of CD4(+)CD25(+)Foxp3(+) T regulatory cells were determined by flow cytometry. Levels of IL-10, TGF-β1, IL-17A and TNF-α were measured by ELISA. Expressions of Foxp3 and RORγ in synovium were detected using immunohistochemical analysis. RESULTS AR treatment significantly reduced paw swelling of AIA rats, and histopathological analysis confirmed it could suppress severity of established arthritis. AR treatment upregulated the percentages of CD4(+)CD25(+)Foxp3(+) Treg cells among CD4+ T cells in PPs lymphocytes, and increased the levels of IL-10 and TGF-β1 secreted from ConA-activated PPs lymphocytes, whereas decreased the levels of IL-17 A and TNF-α. Similar tendency of circulating CD4(+)CD25(+)Foxp3(+) Treg cells percentages and serum cytokine levels were observed. Moreover, AR decreased the expression levels of Foxp3 and RORγ in joint synovial membrane. CONCLUSIONS In conclusion, these results suggested AR has a potent protective effect on the progression of AIA, probably by augmenting CD4(+)CD25(+)Foxp3(+) Treg cells in PPs to induce immunosuppression, and modulating the balance between Treg cells and Th17 cells systemically. These findings may help to develop AR as a potent immunosuppressive agent for the treatment of RA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Disease Progression
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Freund's Adjuvant
- Immunosuppressive Agents/pharmacology
- Inflammation Mediators/immunology
- Inflammation Mediators/metabolism
- Joints/drug effects
- Joints/immunology
- Joints/metabolism
- Male
- Peyer's Patches/drug effects
- Peyer's Patches/immunology
- Peyer's Patches/metabolism
- Phytotherapy
- Plants, Medicinal
- Rats, Sprague-Dawley
- Saponins/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Time Factors
- Triterpenes/pharmacology
Collapse
Affiliation(s)
- Ying Xiong
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, # 24 TongJiaXiang, Nanjing 210009, PR China
| | - Yan Ma
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, # 24 TongJiaXiang, Nanjing 210009, PR China
| | - Wang Han
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, # 24 TongJiaXiang, Nanjing 210009, PR China
| | - Nandani Darshika Kodithuwakku
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, # 24 TongJiaXiang, Nanjing 210009, PR China
| | - Li-Fang Liu
- Department of Pharmacognosy, the Key Laboratory of Modern Chinese Medicines (Ministry of Education), China Pharmaceutical University, # 24 TongJiaXiang, Nanjing 210009, PR China
| | - Feng-Wen Li
- Department of Traditional Chinese Pharmacy, China Pharmaceutical University, # 24 TongJiaXiang, Nanjing 210009, PR China
| | - Wei-Rong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, # 24 TongJiaXiang, Nanjing 210009, PR China.
| | - Yun-Man Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, # 24 TongJiaXiang, Nanjing 210009, PR China.
| |
Collapse
|
16
|
Ryu JS, Jung YH, Cho MY, Yeo JE, Choi YJ, Kim YI, Koh YG. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes. Biochem Biophys Res Commun 2014; 447:715-20. [DOI: 10.1016/j.bbrc.2014.04.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/15/2014] [Indexed: 01/15/2023]
|