1
|
Tian H, Zheng J, Wang F, Zhang W, Chen Y, Wang X, Wang X, Xi J, Hu J, Zhang Y. NLRP3 inflammasome promotes functional repair after spinal cord injury in mice by regulating autophagy and its mechanism. Int Immunopharmacol 2025; 149:114230. [PMID: 39922115 DOI: 10.1016/j.intimp.2025.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/25/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Inflammation at the injury site exacerbates tissue cell death following a spinal cord injury (SCI). Studies show that NLRP3 inflammasomes are crucial in the inflammation following Spinal Cord Injury, and NLRP3 inflammasomes have been shown to promote cells to undergo excessive autophagy in other diseases. Moreover, excessive autophagy levels could hinder functional repair post-SCI. In this regard, we hypothesized that inhibiting NLRP3 inflammasomes could reduce autophagy levels at the injury site, thus promoting functional repair post-SCI. METHODS Herein, a mouse SCI model was used for in vivo experiments, and an in vitro neuroinflammatory model created using LPS-activated BV2 cells was used for in vitro experiments. Histopathological staining was used to assess tissue repair. Western Blot (WB) and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) were used to detect changes in relevant autophagy molecules, macrophage polarization-related markers and downstream inflammatory factors, and Immunofluorescence (IF) was used to detect changes in macrophage polarization. RESULTS Following SCI, the inhibition of NLRP3 inflammasomes resulting from intraperitoneal injection of MCC950 significantly reduced autophagy levels at the injury site, resulting in both histological and behavioral improvements. In addition, the phosphorylation of mTOR during inhibition of NLRP3 inflammasomes to reduce autophagy levels further improved the immune microenvironment at the injury site, and M2-type macrophages were significantly upregulated M2-type macrophages. Moreover, in vitro experiments yielded results consistent with those of in vivo experiments regarding changes in autophagy-related indexes and polarization-related markers. CONCLUSIONS Inhibition of NLRP3 inflammasomes can reduce autophagy level at the injury site to promote functional recovery and play a neuroprotective role. Moreover, phosphorylation of mTOR during the process of inhibition of NLRP3 inflammasomes to reduce autophagy, leading to reduced autophagy levels, could improve the immune microenvironment at the injury site, thus promoting functional recovery and histopathological repair post-SCI.
Collapse
Affiliation(s)
- Haozhe Tian
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Juan Zheng
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Fangli Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Wenjing Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China
| | - Yuqing Chen
- School of Laboratory Medicine Bengbu Medical University Bengbu China
| | - Xiangshu Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Xiaoxuan Wang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China
| | - Jianguo Hu
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases Bengbu China; Clinical laboratory of The First Affiliated Hospital of Bengbu Medical University Bengbu China.
| | - Yuxin Zhang
- School of Laboratory Medicine Bengbu Medical University Bengbu China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical University Bengbu China.
| |
Collapse
|
2
|
Wang C, Luo H. Crosstalk Between Innate Immunity and Autophagy in Viral Myocarditis Leading to Dilated Cardiomyopathy. Rev Med Virol 2024; 34:e2586. [PMID: 39349889 DOI: 10.1002/rmv.2586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Viral myocarditis, characterised by inflammation of the heart muscle, presents a significant challenge to global public health, particularly affecting younger individuals and often progressing to dilated cardiomyopathy (DCM), a leading cause of heart failure. Despite ongoing research efforts, viable treatments for this condition remain elusive. Recent studies have shed light on the complex interplay between the innate immune response and autophagy mechanisms, revealing their pivotal roles in the pathogenesis of viral myocarditis and subsequent DCM development. This review aims to delve into the recent advancements in understanding the molecular mechanisms and pathways that intersect innate immunity and autophagy in the context of viral myocarditis. Furthermore, it explores the potential therapeutic implications of these findings, offering insights into promising avenues for the management and treatment of this debilitating condition.
Collapse
Affiliation(s)
- Chen Wang
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital-University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Luciano M, Sieberer H, Krenn PW, Dang HH, Vetter J, Neuper T, Amend D, Blöchl C, Weichenberger CX, Eglseer A, Unger MS, Andosch A, Steiner P, Neureiter D, Bauer R, Hummer L, Tesanovic S, Binder S, Elmer DP, Strandt H, Schaller S, Strunk D, Pleyer L, Greil R, Winkler S, Hartmann TN, Schmidt-Arras D, Huber CG, Aberger F, Horejs-Hoeck J. Targeting NLRP3 inhibits AML progression by inducing PERK/eIF2-mediated apoptosis. Cell Commun Signal 2024; 22:424. [PMID: 39223663 PMCID: PMC11367831 DOI: 10.1186/s12964-024-01777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is characterized by the abnormal proliferation of myeloid precursor cells and presents significant challenges in treatment due to its heterogeneity. Recently, the NLRP3 inflammasome has emerged as a potential contributor to AML pathogenesis, although its precise mechanisms remain poorly understood. METHODS Public genome datasets were utilized to evaluate the expression of NLRP3 inflammasome-related genes (IL-1β, IL-18, ASC, and NLRP3) in AML patients compared to healthy individuals. CRISPR/Cas9 technology was employed to generate NLRP3-deficient MOLM-13 AML cells, followed by comprehensive characterization using real-time PCR, western blotting, FACS analysis, and transmission electron and immunofluorescence microscopy. Proteomic analyses were conducted to identify NLRP3-dependent alterations in protein levels, with a focus on the eIF2 kinase PERK-mediated signaling pathways. Additionally, in vivo studies were performed using a leukemic mouse model to elucidate the pathogenic role of NLRP3 in AML. RESULTS Elevated expression of NLRP3 was significantly associated with diminished overall survival in AML patients. Genetic deletion, pharmacological inhibition and silencing by RNA interference of NLRP3 led to decreased AML cell survival through the induction of apoptosis. Proteomic analyses uncovered NLRP3-dependent alterations in protein translation, characterized by enhanced eIF2α phosphorylation in NLRP3-deficient AML cells. Moreover, inhibition of PERK-mediated eIF2α phosphorylation reduced apoptosis by downregulating pro-apoptotic Bcl-2 family members. In vivo studies demonstrated reduced leukemic burden in mice engrafted with NLRP3 knockout AML cells, as evidenced by alleviated leukemic symptoms. CONCLUSION Our findings elucidate the involvement of the NLRP3/PERK/eIF2 axis as a novel driver of AML cell survival. Targeting NLRP3-induced signaling pathways, particularly through the PERK/eIF2 axis, presents a promising therapeutic strategy for AML intervention. These insights into the role of the NLRP3 inflammasome offer potential avenues for improving the prognosis and treatment outcomes of AML patients.
Collapse
Affiliation(s)
- Michela Luciano
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Helene Sieberer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Peter W Krenn
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Julia Vetter
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Hagenberg Campus, Hagenberg, 4232, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Diana Amend
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Constantin Blöchl
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | | | - Anna Eglseer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Michael S Unger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Ancuela Andosch
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Philip Steiner
- Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, 4020, Austria
| | - Daniel Neureiter
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
- Institute of Pathology, Paracelsus Medical University (PMU), University Hospital Salzburg (SALK), Salzburg, 5020, Austria
| | - Renate Bauer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Laura Hummer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Suzana Tesanovic
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
| | - Stephanie Binder
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Dominik P Elmer
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Helen Strandt
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Susanne Schaller
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Hagenberg Campus, Hagenberg, 4232, Austria
| | - Dirk Strunk
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, 5020, Austria
| | - Lisa Pleyer
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
- Salzburg Cancer Research Institute (SCRI)-LIMCR, Salzburg, 5020, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University (PMU), University Hospital Salzburg (SALK), Salzburg, 5020, Austria
| | - Richard Greil
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
- Salzburg Cancer Research Institute (SCRI)-LIMCR, Salzburg, 5020, Austria
- 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Oncologic Center, Paracelsus Medical University (PMU), University Hospital Salzburg (SALK), Salzburg, 5020, Austria
| | - Stephan Winkler
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Hagenberg Campus, Hagenberg, 4232, Austria
| | - Tanja N Hartmann
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Dirk Schmidt-Arras
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
- Cancer Cluster Salzburg, Salzburg, 5020, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria.
- Cancer Cluster Salzburg, Salzburg, 5020, Austria.
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, 5020, Austria.
| |
Collapse
|
4
|
Wang S, Liu W, Wei B, Wang A, Wang Y, Wang W, Gao J, Jin Y, Lu H, Ka Y, Yue Q. Traditional herbal medicine: Therapeutic potential in acute gouty arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118182. [PMID: 38621464 DOI: 10.1016/j.jep.2024.118182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute gouty arthritis (AGA) is characterized by a rapid inflammatory reaction caused by the build-up of monosodium urate (MSU) crystals in the tissues surrounding the joints. This condition often associated with hyperuricemia (HUA), is distinguished by its symptoms of intense pain, active inflammation, and swelling of the joints. Traditional approaches in AGA management often fall short of desired outcomes in clinical settings. However, recent ethnopharmacological investigations have been focusing on the potential of Traditional Herbal Medicine (THM) in various forms, exploring their therapeutic impact and targets in AGA treatment. AIM OF THE REVIEW This review briefly summarizes the current potential pharmacological mechanisms of THMs - including active ingredients, extracts, and prescriptions -in the treatment of AGA, and discusses the relevant potential mechanisms and molecular targets in depth. The objective of this study is to offer extensive information and a reference point for the exploration of targeted AGA treatment using THMs. MATERIALS AND METHODS This review obtained scientific publications focused on in vitro and in vivo studies of anti-AGA THMs conducted between 2013 and 2023. The literature was collected from various journals and electronic databases, including PubMed, Elsevier, ScienceDirect, Web of Science, and Google Scholar. The retrieval and analysis of relevant articles were guided by keywords such as "acute gouty arthritis and Chinese herbal medicine," "acute gouty arthritis herbal prescription," "acute gouty arthritis and immune cells," "acute gouty arthritis and inflammation," "acute gouty arthritis and NOD-like receptor thermoprotein domain associated protein 3 (NLRP3)," "acute gouty arthritis and miRNA," and "acute gouty arthritis and oxidative stress." RESULTS We found that AGA has a large number of therapeutic targets, highlighting the effectiveness the potential of THMs in AGA treatment through in vitro and in vivo studies. THMs and their active ingredients can mitigate AGA symptoms through a variety of therapeutic targets, such as influencing macrophage polarization, neutrophils, T cells, natural killer (NK) cells, and addressing factors like inflammation, NLRP3 inflammasome, signaling pathways, oxidative stress, and miRNA multi-target interactions. The anti-AGA properties of THMs, including their active components and prescriptions, were systematically summarized and categorized based on their respective therapeutic targets. CONCLUSION phenolic, flavonoid, terpenoid and alkaloid compounds in THMs are considered the key ingredients to improve AGA. THMs and their active ingredients achieve enhanced efficacy through interactions with multiple targets, of which NLRP3 is a main therapeutic target. Nonetheless, given the intricate composition of traditional Chinese medicine (TCM), additional research is required to unravel the underlying mechanisms and molecular targets through which THMs alleviate AGA.
Collapse
Affiliation(s)
- Siwei Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| | - Bowen Wei
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Aihua Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yiwen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Wen Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jingyue Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yue Jin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Hang Lu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Yuxiu Ka
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Qingyun Yue
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| |
Collapse
|
5
|
Li X, Mao X, Jiang H, Xia C, Fu L, Gao W, Chen W, Li W, Wang P, Zhang Y, Xu H. Shirebi granules ameliorate acute gouty arthritis by inhibiting NETs-induced imbalance between immunity and inflammation. Chin Med 2024; 19:105. [PMID: 39123236 PMCID: PMC11312299 DOI: 10.1186/s13020-024-00962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/17/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Acute gouty arthritis (AGA) is classified as 'arthritis' in traditional Chinese medicine (TCM) theory. Shirebi granules (SGs), derived from the classic prescription SiMiaoWan, exerts satisfying therapeutic efficacy in ameliorating AGA clinically. However, the underlying mechanisms of SGs against AGA remain unclarified. METHODS AGA-related biological processes, signal pathways and biomarker genes were mined from the GEO database through bioinformatics. SGs components were systematically recognized using the UPLC-Q-TOF-MS/MS. A correlation network was established based on the biomarker genes and the chemical components, from which the signal pathway used for further study was selected. Finally, we established an AGA model using SD rats injected with monosodium urate (MSU) in the ankle joint for experimental validation. A combination of behavioral tests, H&E, safranin O- fast green, western blotting, and immunofluorescence were employed to reveal the mechanism of action of SGs on AGA. RESULTS The deterioration of AGA was significantly related to the imbalance between immunity and inflammation, neutrophil chemotaxis and inflammatory factor activation. HDAC5, PRKCB, NFκB1, MPO, PRKCA, PIK3CA were identified to be the candidate targets of SGs against AGA, associated with neutrophil extracellular traps (NETs) signal pathway. Animal experiments demonstrated that SGs effectively repaired cartilage damage, blocked TLR4 activation, and inhibited the expression of NETs indicators and inflammatory factors. In addition, SGs prominently alleviated joint redness and swelling, improved joint dysfunction, inhibited inflammatory infiltration of AGA rats. CONCLUSION Our data reveal that SGs may effectively alleviate the disease severity of AGA by suppressing NETs-promoted imbalance between immunity and inflammation.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xia Mao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Hong Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Cong Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Lu Fu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Wenjing Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Wenjia Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Weijie Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Ping Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yanqiong Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Haiyu Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
6
|
Weber S, Sitte S, Voegele AL, Sologub L, Wilfer A, Rath T, Nägel A, Zundler S, Franchi L, Opipari AW, Sonnewald S, Reid S, Hartmann A, Eichhorn P, Handtrack C, Weber K, Grützmann R, Neufert C, Schellerer VS, Naschberger E, Ekici AB, Büttner C, Neurath MF, Atreya R. NLRP3 Inhibition Leads to Impaired Mucosal Fibroblast Function in Patients with Inflammatory Bowel Diseases. J Crohns Colitis 2024; 18:446-461. [PMID: 37748021 DOI: 10.1093/ecco-jcc/jjad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases (IBD) are characterized by mucosal inflammation and sequential fibrosis formation, but the exact role of the hyperactive NLRP3 inflammasome in these processes is unclear. Thus, we studied the expression and function of the NLRP3 inflammasome in the context of inflammation and fibrosis in IBD. METHODS We analysed intestinal NLRP3 expression in mucosal immune cells and fibroblasts from IBD patients and NLRP3-associated gene expression via single-cell RNA sequencing and microarray analyses. Furthermore, cytokine secretion of NLRP3 inhibitor treated blood and mucosal cells, as well as proliferation, collagen production, and cell death of NLRP3 inhibitor treated intestinal fibroblasts from IBD patients were studied. RESULTS We found increased NLRP3 expression in the inflamed mucosa of IBD patients and NLRP3 inhibition led to reduced IL-1β and IL-18 production in blood cells and diminished the bioactive form of mucosal IL-1β. Single cell analysis identified overlapping expression patterns of NLRP3 and IL-1β in classically activated intestinal macrophages and we also detected NLRP3 expression in CD163+ macrophages. In addition, NLRP3 expression was also found in intestinal fibroblasts from IBD patients. Inhibition of NLRP3 led to reduced proliferation of intestinal fibroblasts, which was associated with a marked decrease in production of collagen type I and type VI in IBD patients. Moreover, NLRP3 inhibition in intestinal fibroblasts induced autophagy, a cellular process involved in collagen degradation. CONCLUSIONS In the presented study, we demonstrate that inhibiting NLRP3 might pave the way for novel therapeutic approaches in IBD, especially to prevent the severe complication of intestinal fibrosis formation.
Collapse
Affiliation(s)
- Simone Weber
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Selina Sitte
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna-Lena Voegele
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ludmilla Sologub
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Angelika Wilfer
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Timo Rath
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Nägel
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sebastian Zundler
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luigi Franchi
- SVP, Translational Medicine, Odyssey Therapeutics, Michigan, USA
| | | | - Sophia Sonnewald
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephen Reid
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philip Eichhorn
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Handtrack
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Weber
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Neufert
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Vera S Schellerer
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Elisabeth Naschberger
- Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- First Department of Medicine, University Hospital Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie [DZI], Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
7
|
Zaninelli TH, Martelossi-Cebinelli G, Saraiva-Santos T, Borghi SM, Fattori V, Casagrande R, Verri WA. New drug targets for the treatment of gout arthritis: what's new? Expert Opin Ther Targets 2023; 27:679-703. [PMID: 37651647 DOI: 10.1080/14728222.2023.2247559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Gout arthritis (GA) is an intermittent inflammatory disease affecting approximately 10% of the worldwide population. Symptomatic phases (acute flares) are timely spaced by asymptomatic periods. During an acute attack, redness, joint swelling, limited movement, and excruciating pain are common symptoms. However, the current available therapies are not fully effective in reducing symptoms and offer numerous side effects. Therefore, unveiling new drug targets and effector molecules are required in developing novel GA therapeutics. AREAS COVERED This review discusses the pathophysiological mechanisms of GA and explores potential pharmacological targets to ameliorate disease outcome. In addition, we listed promising pre-clinical studies demonstrating effector molecules with therapeutical potential. Among those, we emphasized the importance of natural products, including traditional Chinese medicine formulas and their multitarget mechanisms of action. EXPERT OPINION In our search, we observed that there is a massive gap between pre-clinical and clinical knowledge. Only a minority (4.4%) of clinical trials aimed to intervene by applying natural products or current hot targets described herein. In this sense, we envisage four possibilities for GA therapeutics, which include the repurposing of existing therapies, ALX/FPR2 agonism for improvement in disease outcome, the use of multitarget drugs (e.g. natural products), and targeting the neuroinflammatory component of GA.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Telma Saraiva-Santos
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
- Center for Research in Health Sciences, University of Northern Londrina, Londrina, Brazil
| | - Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, Boston, MA, USA
| | - Rubia Casagrande
- Laboratory of Antioxidants and Inflammation, Department of Pharmaceutical Sciences, Centre of Health Sciences, Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| |
Collapse
|
8
|
Chen YH, Chen WY, Yu CL, Tsai CY, Hsieh SC. Gouty arthritis involves impairment of autophagic degradation via cathepsin D inactivation-mediated lysosomal dysfunction that promotes apoptosis in macrophages. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166703. [PMID: 37001704 DOI: 10.1016/j.bbadis.2023.166703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
This study examined autophagy-lysosome pathway (ALP) perturbations in synovial monocytes/macrophages from patients with gouty arthritis (GA) and the associations of ALP perturbations with cell death. Synovial fluid mononuclear cells (SFMCs) and synovial tissues (STs) from patients with GA, as well as monosodium urate (MSU) crystal-exposed macrophages, underwent immunoblotting, quantitative polymerase chain reaction, and immunofluorescence analyses of markers linked to the ALP (microtubule-associated protein 1 light chain 3B [LC3B], p62, cathepsin D [CTSD], and lysosome-associated membrane protein 2 [LAMP2]) and cell death (caspase-3). GA STs underwent immunohistochemistry and immunofluorescence analyses to determine the distributions of LC3B-positive autophagosomes and macrophages. GA SFMCs and STs exhibited impaired autophagic degradation, indicated by elevated levels of LC3B and p62, along with CTSD upregulation and caspase-3 activation. Macrophages from GA STs exhibited significant accumulation of LC3B-positive autophagosomes. The temporal effects of MSU crystals on the ALP and the associations of these effects with cell death were investigated using a macrophage model of GA. MSU crystal-exposed macrophages exhibited early (2 h) autophagosome formation but later (6-24 h) autophagic flux impairment, demonstrated by p62 accumulation, lysosomal inhibitor failure to increase LC3B accumulation, and LC3B colocalization with p62. These macrophages exhibited autophagic flux impairment because of CTSD inactivation-mediated lysosomal dysfunction, which caused immature CTSD to accumulate within damaged LAMP2-positive lysosomes. This accumulation coincided with caspase-3-dependent cell death (24 h) that was unaffected by CTSD inhibition. These findings indicate that GA involves MSU crystal-induced impairment of autophagic degradation via CTSD inactivation-mediated lysosomal dysfunction, which promotes apoptosis in macrophages.
Collapse
|
9
|
Yu C, Chen P, Miao L, Di G. The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury. Int J Mol Sci 2023; 24:3067. [PMID: 36834481 PMCID: PMC9959699 DOI: 10.3390/ijms24043067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies.
Collapse
Affiliation(s)
- Chaoqun Yu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
10
|
Panda C, Mahapatra RK. Bi-Directional Relationship Between Autophagy and Inflammasomes in Neurodegenerative Disorders. Cell Mol Neurobiol 2023; 43:115-137. [PMID: 35066716 PMCID: PMC11415217 DOI: 10.1007/s10571-021-01184-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/12/2021] [Indexed: 01/18/2023]
Abstract
The innate immune system, as the first line of cellular defense, triggers a protective response called inflammation when encountered with invading pathogens. Inflammasome is a multi-protein cytosolic signaling complex that induces inflammation and is critical for inflammation-induced pyroptotic cell death. Inflammasome activation has been found associated with neurodegenerative disorders (NDs), inflammatory diseases, and cancer. Autophagy is a crucial intracellular quality control and homeostasis process which removes the dysfunctional organelles, damaged proteins, and pathogens by sequestering the cytosolic components in a double-membrane vesicle, which eventually fuses with lysosome resulting in cargo degradation. Autophagy disruption has been observed in many NDs presented with persistent neuroinflammation and excessive inflammasome activation. An interplay between inflammation activation and the autophagy process has been realized over the last decade. In the case of NDs, autophagy regulates neuroinflammation load and cellular damage either by engulfing the misfolded protein deposits, dysfunctional mitochondria, or the inflammasome complex itself. A healthy two-way regulation between both cellular processes has been realized for cell survival and cell defense during inflammatory conditions. Therefore, clinical interest in the modulation of inflammasome activation by autophagy inducers is rapidly growing. In this review, we discuss the structural basis of inflammasome activation and the mechanistic ideas of the autophagy process in NDs. Along with comments on multiple ways of neuroinflammation regulation by microglial autophagy, we also present a perspective on pharmacological opportunities in this molecular interplay pertaining to NDs.
Collapse
Affiliation(s)
- Chinmaya Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Rajani Kanta Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
11
|
Han Y, Yang Q, Huang Y, Gao P, Jia L, Zheng Y, Li W. Compressive force regulates orthodontic tooth movement via activating the NLRP3 inflammasome. FASEB J 2022; 36:e22627. [PMID: 36314562 DOI: 10.1096/fj.202200447rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
Abstract
Mechanical stress regulates various cellular functions like cell inflammation, immune responses, proliferation, and differentiation to maintain tissue homeostasis. However, the impact of mechanical signals on macrophages and the underlying mechanisms by which mechanical force regulates bone remodeling during orthodontic tooth movement remain unclear. NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been reported to promote osteoclastic differentiation to regulate alveolar bone resorption. But the relationship between the compressive force and NLRP3 inflammasome in macrophages remains unknown. In this study, immunohistochemical staining results showed elevated expression of NLRP3 and interleukin-1β, as well as an increased number of macrophages expressing NLRP3, on the compression side of the periodontal tissues, after force application for 7 days. Furthermore, the number of tartrate-resistant acid phosphatase-positive osteoclasts, and the mRNA and protein expression levels of osteoclast-related genes in the periodontal tissue decreased in the Nlrp3-/- mice compared to the WT mice group after orthodontic movement. In vitro mechanical force activates the NLRP3 inflammasome and inhibits autophagy. Intraperitoneal injection of the autophagy inhibitor 3-methyladenine in Nlrp3-/- mice promoted orthodontic tooth movement. This result indicates that the absence of NLRP3 inflammasome activation can be partially compensated for by autophagy inhibitors. Mechanistically, force-induced activation of the NLRP3 inflammasome in macrophages via the cGAS/P2X7R axis. In conclusion, compressive force regulates orthodontic tooth movement via activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yineng Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Qiaolin Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Pengfei Gao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, People's Republic of China.,Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
| | - Lingfei Jia
- National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.,National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, People's Republic of China
| |
Collapse
|
12
|
Anti-inflammatory and Antioxidant Effect of Poly-gallic Acid (PGAL) in an In Vitro Model of Synovitis Induced by Monosodium Urate Crystals. Inflammation 2022; 45:2066-2077. [PMID: 35505045 DOI: 10.1007/s10753-022-01676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022]
Abstract
Gout is a chronic and degenerative disease that affects the joints and soft tissues because of the crystalline deposit of monosodium urate. The interaction between monosodium urate crystals (MSU) and synoviocytes generates oxidative and inflammatory states. These physiological characteristics have promoted the study of poly-gallic acid (PGAL), a poly-oxidized form of gallic acid reported to be effective in in vitro models of inflammation. The effect of PGAL in an in vitro model of oxidation and synovial inflammation induced by MSU was evaluated after 24 h of stimulation through the morphological changes, the determination of oxidative stress (OS), IL-1β, and the phagocytosis of the MSU. A 20% reduction in synovial viability and the generation of vesicles were observed when they were exposed to MSU. When PGAL was used at 100 and 200 µg/ml, cell death was reduced by 30% and 17%, respectively. PGAL both doses reduce the vesicles generated by MSU. OS generation in synoviocytes exposed to 100 µg/ml and 200 µg/ml PGAL decreased by 1.28 and 1.46 arbitrary fluorescence units (AFU), respectively, compared to the OS in synoviocytes exposed to MSU (1.9 AFU). PGAL at 200 µg/ml inhibited IL-1β by 100%, while PGAL at 100 µg/ml inhibited IL-1β by 66%. The intracellular MSU decreased in synoviocytes stimulated with 100 µg/ml PGAL. The PGAL has a cytoprotective effect against damage caused by MSU in synoviocytes and can counteract the oxidative and inflammatory response induced by the crystals probably because it exerts actions at the membrane level that prevent phagocytosis of the crystals.
Collapse
|
13
|
Zhao J, Wei K, Jiang P, Chang C, Xu L, Xu L, Shi Y, Guo S, Xue Y, He D. Inflammatory Response to Regulated Cell Death in Gout and Its Functional Implications. Front Immunol 2022; 13:888306. [PMID: 35464445 PMCID: PMC9020265 DOI: 10.3389/fimmu.2022.888306] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 02/03/2023] Open
Abstract
Gout, a chronic inflammatory arthritis disease, is characterized by hyperuricemia and caused by interactions between genetic, epigenetic, and metabolic factors. Acute gout symptoms are triggered by the inflammatory response to monosodium urate crystals, which is mediated by the innate immune system and immune cells (e.g., macrophages and neutrophils), the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation, and pro-inflammatory cytokine (e.g., IL-1β) release. Recent studies have indicated that the multiple programmed cell death pathways involved in the inflammatory response include pyroptosis, NETosis, necroptosis, and apoptosis, which initiate inflammatory reactions. In this review, we explore the correlation and interactions among these factors and their roles in the pathogenesis of gout to provide future research directions and possibilities for identifying potential novel therapeutic targets and enhancing our understanding of gout pathogenesis.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yu Xue
- Department of Rheumatology, Huashan Hospital, Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
14
|
Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, Li D, Wang X, Tao Z, Guan X, She W, Xu H, Deng Y. Role of ROS-Induced NLRP3 Inflammasome Activation in the Formation of Calcium Oxalate Nephrolithiasis. Front Immunol 2022; 13:818625. [PMID: 35154136 PMCID: PMC8828488 DOI: 10.3389/fimmu.2022.818625] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 01/18/2023] Open
Abstract
Calcium oxalate nephrolithiasis is a common and highly recurrent disease in urology; however, its precise pathogenesis is still unknown. Recent research has shown that renal inflammatory injury as a result of the cell-crystal reaction plays a crucial role in the development of calcium oxalate kidney stones. An increasing amount of research have confirmed that inflammation mediated by the cell-crystal reaction can lead to inflammatory injury of renal cells, promote the intracellular expression of NADPH oxidase, induce extensive production of reactive oxygen species, activate NLRP3 inflammasome, discharge a great number of inflammatory factors, trigger inflammatory cascading reactions, promote the aggregation, nucleation and growth process of calcium salt crystals, and ultimately lead to the development of intrarenal crystals and even stones. The renal tubular epithelial cells (RTECs)-crystal reaction, macrophage-crystal reaction, calcifying nanoparticles, endoplasmic reticulum stress, autophagy activation, and other regulatory factors and mechanisms are involved in this process.
Collapse
Affiliation(s)
- Yunlong Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Sun
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juening Kang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqi He
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jihua Wu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Derong Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Wang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwei Tao
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Guan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wusheng She
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Xu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaoliang Deng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
15
|
Zhu L, Liu L. New Insights Into the Interplay Among Autophagy, the NLRP3 Inflammasome and Inflammation in Adipose Tissue. Front Endocrinol (Lausanne) 2022; 13:739882. [PMID: 35432210 PMCID: PMC9008752 DOI: 10.3389/fendo.2022.739882] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a feature of metabolic syndrome with chronic inflammation in obese subjects, characterized by adipose tissue (AT) expansion, proinflammatory factor overexpression, and macrophage infiltration. Autophagy modulates inflammation in the enlargement of AT as an essential step for maintaining the balance in energy metabolism and waste elimination. Signaling originating from dysfunctional AT, such as AT containing hypertrophic adipocytes and surrounding macrophages, activates NOD-like receptor family 3 (NLRP3) inflammasome. There are interactions about altered autophagy and NLRP3 inflammasome activation during the progress in obesity. We summarize the current studies and potential mechanisms associated with autophagy and NLRP3 inflammasome in AT inflammation and aim to provide further evidence for research on obesity and obesity-related complications.
Collapse
Affiliation(s)
- Liyuan Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China
- Cardiovascular Disease Research Center of Hunan Province, Changsha, China
- *Correspondence: Ling Liu,
| |
Collapse
|
16
|
Chang P, Li H, Hu H, Li Y, Wang T. The Role of HDAC6 in Autophagy and NLRP3 Inflammasome. Front Immunol 2021; 12:763831. [PMID: 34777380 PMCID: PMC8578992 DOI: 10.3389/fimmu.2021.763831] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy fights against harmful stimuli and degrades cytosolic macromolecules, organelles, and intracellular pathogens. Autophagy dysfunction is associated with many diseases, including infectious and inflammatory diseases. Recent studies have identified the critical role of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasomes activation in the innate immune system, which mediates the secretion of proinflammatory cytokines IL-1β/IL-18 and cleaves Gasdermin D to induce pyroptosis in response to pathogenic and sterile stimuli. Accumulating evidence has highlighted the crosstalk between autophagy and NLRP3 inflammasome in multifaceted ways to influence host defense and inflammation. However, the underlying mechanisms require further clarification. Histone deacetylase 6 (HDAC6) is a class IIb deacetylase among the 18 mammalian HDACs, which mainly localizes in the cytoplasm. It is involved in two functional deacetylase domains and a ubiquitin-binding zinc finger domain (ZnF-BUZ). Due to its unique structure, HDAC6 regulates various physiological processes, including autophagy and NLRP3 inflammasome, and may play a role in the crosstalk between them. In this review, we provide insight into the mechanisms by which HDAC6 regulates autophagy and NLRP3 inflammasome and we explored the possibility and challenges of HDAC6 in the crosstalk between autophagy and NLRP3 inflammasome. Finally, we discuss HDAC6 inhibitors as a potential therapeutic approach targeting either autophagy or NLRP3 inflammasome as an anti-inflammatory strategy, although further clarification is required regarding their crosstalk.
Collapse
Affiliation(s)
- Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| | - Hao Li
- Department of Emergency, First Hospital of China Medical University, Shenyang, China
| | - Hui Hu
- Department of Traumatology, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, China
| | - Yongqing Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine of China, Beijing, China
| |
Collapse
|
17
|
Nie Q, Liu M, Zhang Z, Zhang X, Wang C, Song G. The effects of hyperuricemia on endothelial cells are mediated via GLUT9 and the JAK2/STAT3 pathway. Mol Biol Rep 2021; 48:8023-8032. [PMID: 34716863 PMCID: PMC8604859 DOI: 10.1007/s11033-021-06840-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Uric acid (UA) transporters mediate the uptake and outflow of UA, and are greatly involved in the control of UA concentrations. Glucose transporter 9 (GLUT9), one of the UA transporters, has been confirmed to be expressed in human umbilical vein endothelial cells (HUVECs). This study aimed to characterize GLUT9's effect on intracellular UA accumulation in HUVECs in a high-UA environment and to explore the mechanism of cellular dysfunction. METHODS AND RESULTS HUVECs were treated with UA to establish a model of cellular dysfunction. Then, UA uptake, GLUT9 expression and endothelial nitric oxide synthase (eNOS) and reactive oxygen species (ROS) amounts were measured. UA uptake was concentration- and time-dependent, and UA treatment significantly reduced nitric oxide (NO) levels and eNOS activity. UA also upregulated pro-inflammatory molecules and GLUT9, and increased intracellular ROS amounts in HUVECs. GLUT9 knockdown reduced UA uptake and ROS content, but antioxidant treatment did not reduce GLUT9 expression. To assess the function of JAK2/STAT3 signaling, HUVECs were treated with UA, and the phosphorylation levels of JAK2, STAT3, IL-6 and SOCS3 were increased by a high concentration of UA. In addition, GLUT9 knockdown reduced the phosphorylation of JAK2/STAT3 intermediates and increased p-eNOS amounts. CONCLUSIONS GLUT9 mediated the effects of high UA levels on HUVECs by increasing the cellular uptake of UA, activating JAK2/STAT3 signaling, and reduced the production of active eNOS and NO in HUVECs.
Collapse
Affiliation(s)
- Qian Nie
- Department of Internal Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China.,Physical Examination Center of Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Miaomiao Liu
- Department of Oncology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Zhimei Zhang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Xuemei Zhang
- Department of Rheumatism and Immunology, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, China. .,Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, 348 Heping West Road, Shijiazhuang, China.
| |
Collapse
|
18
|
Pellegrini C, Martelli A, Antonioli L, Fornai M, Blandizzi C, Calderone V. NLRP3 inflammasome in cardiovascular diseases: Pathophysiological and pharmacological implications. Med Res Rev 2021; 41:1890-1926. [PMID: 33460162 DOI: 10.1002/med.21781] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence points out the importance of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome in the pathogenesis of cardiovascular diseases (CVDs), including hypertension, myocardial infarct (MI), ischemia, cardiomyopathies (CMs), heart failure (HF), and atherosclerosis. In this regard, intensive research efforts both in humans and in animal models of CVDs are being focused on the characterization of the pathophysiological role of NLRP3 inflammasome signaling in CVDs. In addition, clinical and preclinical evidence is coming to light that the pharmacological blockade of NLRP3 pathways with drugs, including novel chemical entities as well as drugs currently employed in the clinical practice, biologics and phytochemicals, could represent a suitable therapeutic approach for prevention and management of CVDs. On these bases, the present review article provides a comprehensive overview of clinical and preclinical studies about the role of NLRP3 inflammasome in the pathophysiology of CVDs, including hypertension, MI, ischemic injury, CMs, HF and atherosclerosis. In addition, particular attention has been focused on current evidence on the effects of drugs, biologics, and phytochemicals, targeting different steps of inflammasome signaling, in CVDs.
Collapse
Affiliation(s)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | | |
Collapse
|
19
|
Biasizzo M, Kopitar-Jerala N. Interplay Between NLRP3 Inflammasome and Autophagy. Front Immunol 2020; 11:591803. [PMID: 33163006 PMCID: PMC7583715 DOI: 10.3389/fimmu.2020.591803] [Citation(s) in RCA: 374] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
The NLRP3 inflammasome is cytosolic multi-protein complex that induces inflammation and pyroptotic cell death in response to both pathogen (PAMPs) and endogenous activators (DAMPs). Recognition of PAMPs or DAMPs leads to formation of the inflammasome complex, which results in activation of caspase-1, followed by cleavage and release of pro-inflammatory cytokines. Excessive activation of NLRP3 inflammasome can contribute to development of inflammatory diseases and cancer. Autophagy is vital intracellular process for recycling and removal of damaged proteins and organelles, as well as destruction of intracellular pathogens. Cytosolic components are sequestered in a double-membrane vesicle-autophagosome, which then fuses with lysosome resulting in degradation of the cargo. The autophagy dysfunction can lead to diseases with hyperinflammation and excessive activation of NLRP3 inflammasome and thus acts as a major regulator of inflammasomes. Autophagic removal of NLRP3 inflammasome activators, such as intracellular DAMPs, NLRP3 inflammasome components, and cytokines can reduce inflammasome activation and inflammatory response. Likewise, inflammasome signaling pathways can regulate autophagic process necessary for balance between required host defense inflammatory response and prevention of excessive and detrimental inflammation. Autophagy has a protective role in some inflammatory diseases associated with NLRP3 inflammasome, including gouty arthritis, familial Mediterranean fever (FMF), and sepsis. Understanding the interregulation between these two essential biological processes is necessary to comprehend the biological mechanisms and designing possible treatments for multiple inflammatory diseases.
Collapse
Affiliation(s)
- Monika Biasizzo
- Department of Biochemistry, Molecular and Structural Biology, JoŽef Stefan Institute, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, JoŽef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
20
|
Lee SS, Lee SW, Oh DH, Kim HS, Chae SC, Kim SK. Genetic Analysis for rs2241880(T > C) in ATG16L1 Polymorphism for the Susceptibility of Gout. J Clin Rheumatol 2019; 25:e113-e115. [PMID: 29280816 DOI: 10.1097/rhu.0000000000000685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Shin-Seok Lee
- Department of Rheumatology, Chonnam NationalUniversity Medical School, Gwangju Division of Rheumatology, Department of Internal Medicine, Dong-A University College of Medicine, Busan Department of Internal Medicine, Pohang Saint Mary's Hospital, Pohang Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University, College of Medicine, Seoul Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk Division of Rheumatology, Department of Internal Medicine, Arthritis and Autoimmunity, Research Center, Catholic University of Daegu, School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Liu F, Dong J, Zhou D, Kang Q, Xiong F. Gout is not associated with the risk of fracture: a meta-analysis. J Orthop Surg Res 2019; 14:272. [PMID: 31455330 PMCID: PMC6712626 DOI: 10.1186/s13018-019-1317-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Numerous quantitatively based studies measuring the association between gout and the risk of fractures remain inconclusive. In order to determine whether gout could increase the risk of fractures, a meta-analysis was performed systematically. METHODS Electronic databases, MEDLINE/PubMed, Embase, and Cochrane Library were systematically searched to identify studies evaluating the association of gout and the risk of fractures. No restrictions on language, publication date, or journal of publication were imposed. Meta-analysis was performed to pool the outcome estimates of interest such as fracture incidence, fracture risk, and fracture risk in different sites and at different time points in the follow-up period. RESULTS Screening determined that seven studies involving a total of 684,964 participants (151,002 in the gout group and 533,962 in the control group) were deemed viable for inclusion in the meta-analysis. The results of the analysis showed that gout would not significantly have a relatively higher risk of any fracture (RR = 1.11, 95% CI 0.98-1.26). Subgroup analysis showed consistent results for sexuality (female: RR = 1.13, 95% CI 0.93-1.37; male: RR = 0.99, 95% CI 0.91-1.07) and several occurring sites (humerus, wrist, vertebra, hip, upper limbs, and lower limbs). Additionally, the results demonstrated that urate-lowering drugs prescribed early during disease had neither adverse nor beneficial effect on the long-term risk of fractures (RR = 0.89, 95% CI 0.76-1.05). CONCLUSIONS This meta-analysis confirmed that gout was not associated with an increased risk of fractures. Urate-lowering drugs prescribed early during the course of disease had neither adverse nor beneficial effect on the long-term risk of fractures.
Collapse
Affiliation(s)
- Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong, China
| | - Jinlei Dong
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong, China
| | - Dongsheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Road Jing Wu Wei Qi, Jinan, 250021, Shandong, China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China
| | - Fei Xiong
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China.
| |
Collapse
|
22
|
Tavares LD, Galvão I, Costa VV, Batista NV, Rossi LCR, Brito CB, Reis AC, Queiroz-Junior CM, Braga AD, Coelho FM, Dias AC, Zamboni DS, Pinho V, Teixeira MM, Amaral FA, Souza DG. Phosphoinositide-3 kinase gamma regulates caspase-1 activation and leukocyte recruitment in acute murine gout. J Leukoc Biol 2019; 106:619-629. [PMID: 31392775 DOI: 10.1002/jlb.ma1118-470rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022] Open
Abstract
This study investigates the participation of PI3Kγ in the development of joint inflammation and dysfunction in an experimental model of acute gout in mice. Acute gout was induced by injection of monosodium urate (MSU) crystals into the tibiofemoral joint of mice. The involvement of PI3Kγ was evaluated using a selective inhibitor and mice deficient for PI3Kγ (PI3Kγ-/- ) or with loss of kinase activity. Neutrophils recovered from the inflamed joint were quantified and stained for phosphorylated Akt (pAkt) and production of reactive oxygen species (ROS). The adherence of leukocytes to the joint microvasculature was assessed by intravital microscopy and cleaved caspase-1 by Western blot. Injection of MSU crystals induced massive accumulation of neutrophils expressing phosphorylated Akt. In the absence of PI3Kγ, there was reduction of pAkt expression, chemokine production, and neutrophil recruitment. Genetic or pharmacological inhibition of PI3Kγ reduced the adherence of leukocytes to the joint microvasculature, even in joints with established inflammation. Neutrophils from PI3Kγ-/- mice produced less ROS than wild-type neutrophils. There was decreased joint damage and dysfunction in the absence of PI3Kγ. In addition, in the absence of PI3Kγ activity, there was reduction of cleaved caspase-1 and IL-1β production in synovial tissue after injection of MSU crystals and leukotriene B4 . Our studies suggest that PI3Kγ is crucial for MSU crystal-induced acute joint inflammation. It is necessary for regulating caspase-1 activation and for mediating neutrophil migration and activation. Drugs that impair PI3Kγ function may be useful to control acute gout inflammation.
Collapse
Affiliation(s)
- Lívia D Tavares
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vivian V Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathalia V Batista
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia C R Rossi
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila B Brito
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alesandra C Reis
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda D Braga
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda M Coelho
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Ana C Dias
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Medical School of Ribeirão Preto, University of São Paulo FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele G Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
23
|
Shin JI, Lee KH, Joo YH, Lee JM, Jeon J, Jung HJ, Shin M, Cho S, Kim TH, Park S, Jeon BY, Jeong H, Lee K, Kang K, Oh M, Lee H, Lee S, Kwon Y, Oh GH, Kronbichler A. Inflammasomes and autoimmune and rheumatic diseases: A comprehensive review. J Autoimmun 2019; 103:102299. [PMID: 31326231 DOI: 10.1016/j.jaut.2019.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 02/07/2023]
Abstract
Inflammasomes are a multi-protein platform forming a part of the innate immune system. Inflammasomes are at standby status and can be activated when needed. Inflammasome activation is an important mechanism for the production of active interleukin (IL)-1β and IL-18, which have important roles to instruct adaptive immunity. Active forms of inflammasomes trigger a series of inflammatory cascades and lead to the differentiation and polarization of naïve T cells and secretion of various cytokines, which can induce various kinds of autoimmune and rheumatic diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), gout, Sjögren's syndrome, Behçet's disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and IgA vasculitis (former Henoch-Schönlein purpura ). In this review, we summarize studies published on inflammasomes and review their roles in various autoimmune diseases. Understanding of the role of inflammasomes may facilitate the diagnosis of autoimmune diseases and the development of tailored therapies in the future.
Collapse
Affiliation(s)
- Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea.
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea; Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, South Korea
| | - Yo Han Joo
- Yonsei University College of Medicine, Seoul, South Korea
| | - Jiwon M Lee
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, South Korea
| | - Jaewook Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hee Jae Jung
- Yonsei University College of Medicine, Seoul, South Korea
| | - Minkyue Shin
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seobum Cho
- Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Hwan Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seonghyuk Park
- Yonsei University College of Medicine, Seoul, South Korea
| | - Bong Yeol Jeon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hyunwoo Jeong
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kangto Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Kyutae Kang
- Yonsei University College of Medicine, Seoul, South Korea
| | - Myungsuk Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Hansang Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Seungchul Lee
- Yonsei University College of Medicine, Seoul, South Korea
| | - Yeji Kwon
- Yonsei University College of Medicine, Seoul, South Korea
| | - Geun Ho Oh
- Yonsei University College of Medicine, Seoul, South Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
24
|
Zong Q, Hu Y, Zhang Q, Zhang X, Huang J, Wang T. Associations of hyperuricemia, gout, and UA-lowering therapy with the risk of fractures: A meta-analysis of observational studies. Joint Bone Spine 2019; 86:419-427. [DOI: 10.1016/j.jbspin.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
|
25
|
Matteucci KC, Pereira GJS, Weinlich R, Bortoluci KR. Frontline Science: Autophagy is a cell autonomous effector mechanism mediated by NLRP3 to controlTrypanosoma cruziinfection. J Leukoc Biol 2019; 106:531-540. [DOI: 10.1002/jlb.hi1118-461r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Kely C. Matteucci
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular (CTC‐Mol)UNIFESP São Paulo Brazil
| | | | - Ricardo Weinlich
- Instituto de Ensino e PesquisaHospital Israelita Albert Einstein São Paulo Brazil
| | - Karina R. Bortoluci
- Departamento de Ciências Biológicas e Centro de Terapia Celular e Molecular (CTC‐Mol)UNIFESP São Paulo Brazil
| |
Collapse
|
26
|
Nakatochi M, Kanai M, Nakayama A, Hishida A, Kawamura Y, Ichihara S, Akiyama M, Ikezaki H, Furusyo N, Shimizu S, Yamamoto K, Hirata M, Okada R, Kawai S, Kawaguchi M, Nishida Y, Shimanoe C, Ibusuki R, Takezaki T, Nakajima M, Takao M, Ozaki E, Matsui D, Nishiyama T, Suzuki S, Takashima N, Kita Y, Endoh K, Kuriki K, Uemura H, Arisawa K, Oze I, Matsuo K, Nakamura Y, Mikami H, Tamura T, Nakashima H, Nakamura T, Kato N, Matsuda K, Murakami Y, Matsubara T, Naito M, Kubo M, Kamatani Y, Shinomiya N, Yokota M, Wakai K, Okada Y, Matsuo H. Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals. Commun Biol 2019; 2:115. [PMID: 30993211 PMCID: PMC6453927 DOI: 10.1038/s42003-019-0339-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/22/2019] [Indexed: 01/05/2023] Open
Abstract
Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10-8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci-TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A-are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout.
Collapse
Affiliation(s)
- Masahiro Nakatochi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, 466-8560 Japan
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115 USA
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Medical Squadron, Air Base Group, Western Aircraft Control and Warning Wing, Japan Air Self-Defense Force, Kasuga, 816-0804 Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Department of General Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, 329-0498 Japan
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Hiroaki Ikezaki
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, 812-8582 Japan
| | - Norihiro Furusyo
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, 812-8582 Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, 830-0011 Japan
| | - Makoto Hirata
- Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Rieko Okada
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Sayo Kawai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Department of Urology, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, 849-8501 Japan
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, 849-8501 Japan
| | - Rie Ibusuki
- International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544 Japan
| | - Toshiro Takezaki
- International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8544 Japan
| | - Mayuko Nakajima
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
- Department of Surgery, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Etsuko Ozaki
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566 Japan
| | - Daisuke Matsui
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, 602-8566 Japan
| | - Takeshi Nishiyama
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8602 Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8602 Japan
| | - Naoyuki Takashima
- Department of Health Science, Shiga University of Medical Science, Otsu, 520-2192 Japan
| | - Yoshikuni Kita
- Department of Nursing, Tsuruga City College of Nursing, Fukui, 914-8501 Japan
| | - Kaori Endoh
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Division of Nutritional Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503 Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503 Japan
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681 Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, 464-8681 Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, 260-8717 Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, 260-8717 Japan
| | - Takashi Tamura
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, 162-8655 Japan
| | - Koichi Matsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yoshinori Murakami
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Tatsuaki Matsubara
- Department of Internal Medicine, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651 Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
- Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, 734-8553 Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507 Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, 464-8651 Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550 Japan
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, 565-0871 Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, 359-8513 Japan
| |
Collapse
|
27
|
Zhang Q, Zhang XF. Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3‑E1 cells by regulating TNF‑like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway. Mol Med Rep 2018; 19:41-50. [PMID: 30387825 PMCID: PMC6297762 DOI: 10.3892/mmr.2018.9622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 04/06/2018] [Indexed: 12/20/2022] Open
Abstract
Wear particles generated between the interface of joints and artificial joint replacements are one of the primary causes of aseptic loosening. The aim of the present study was to investigate the influence of titanium (Ti) particles on the apoptosis and autophagy of osteoblasts, and probe into the potential use of hyperoside (Hy) as a protector for osteoblasts in Ti particle-induced injury. MC3T3-E1 cells were divided into control, Ti, Hy-1+Ti and Hy-2+Ti groups. Cell viability was detected using a Cell Counting Kit-8 assay. Apoptosis and autophagy rates were determined using flow cytometry. Expression levels of apoptosis-associated genes, including caspase-3, apoptosis regulator BAX, apoptosis regulator Bcl-2 and cellular tumor antigen p53, in addition to autophagy-associated genes, including Beclin1 and microtubule-associated protein light chain 3 conversion LC3-II/I, were measured using reverse transcription-quantitative polymerase chain reaction and western blotting. Activation of the tumor necrosis factor ligand superfamily member 12 (TWEAK)-mitogen activated protein kinase 11 (p38) mitogen activated protein kinase (MAPK) pathway was observed by western blotting. The present study demonstrated that pretreatment with Hy was able to increase cell viability and proliferation, and decrease apoptosis and autophagy to protect MC3T3-E1 cells against Ti particle-induced damage. Activation of the TWEAK-p38 pathway contributed to the repair processes of treatment with Hy. The present results suggested that Hy protected osteoblasts against Ti particle-induced damage by regulating the TWEAK-p38 pathway, which suggested the potential of Hy as a protective agent for bones.
Collapse
Affiliation(s)
- Qing Zhang
- Division of Hand and Foot Surgery, Department of Orthopedics, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| | - Xiao-Feng Zhang
- Department of Central Pharmacy, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
28
|
Shirasuna K, Karasawa T, Takahashi M. Exogenous nanoparticles and endogenous crystalline molecules as danger signals for the NLRP3 inflammasomes. J Cell Physiol 2018; 234:5436-5450. [PMID: 30370619 DOI: 10.1002/jcp.27475] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
Inflammasome mechanisms are involved as some of the pathways of sterile inflammation. Inflammasomes are large multiprotein complexes in the cytosol and are a key system for the production of the pivotal inflammatory cytokines, interleukin (IL)-1β and IL-18, and inflammatory cell death called pyroptosis. Although a number of inflammasomes have been described, the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) is the most extensively investigated inflammasome. Exogenous pathogen-associated molecular patterns released during infection and endogenous crystalline danger/damage-associated molecular patterns (DAMPs) are well-known activators of NLRP3 inflammasomes. In addition, nanoparticle-associated molecular patterns (NAMPs), which are mediated by synthetic materials, including nanomaterials and nanoparticles, are proposed to be new danger signals of NLRP3 inflammasomes. Importantly, NAMP- and DAMP-triggered inflammation, a defining characteristic in inflammatory diseases, is termed as sterile inflammation because it occurs in the absence of foreign pathogens. This review focuses on the role of inflammasomes in exogenous NAMP- and endogenous crystalline DAMP-mediated sterile inflammation. Moreover, many regulatory mechanisms have been identified to attenuate NLRP3 inflammasomes. Therefore, we also summarize endogenous negative regulators of NLRP3 inflammasome activation, particularly induced by NAMPs or crystalline DAMPs.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Japan
| |
Collapse
|
29
|
Fattori V, Zarpelon AC, Staurengo-Ferrari L, Borghi SM, Zaninelli TH, Da Costa FB, Alves-Filho JC, Cunha TM, Cunha FQ, Casagrande R, Arakawa NS, Verri WA. Budlein A, a Sesquiterpene Lactone From Viguiera robusta, Alleviates Pain and Inflammation in a Model of Acute Gout Arthritis in Mice. Front Pharmacol 2018; 9:1076. [PMID: 30319413 PMCID: PMC6167909 DOI: 10.3389/fphar.2018.01076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/05/2018] [Indexed: 01/27/2023] Open
Abstract
Background: Gout is the most common inflammatory arthritis worldwide. It is a painful inflammatory disease induced by the deposition of monosodium urate (MSU) crystals in the joints and peri-articular tissues. Sesquiterpene lactones (SLs) are secondary metabolite biosynthesized mainly by species from the family Asteraceae. It has been demonstrated that SLs present anti-inflammatory, analgesic, antitumoral, antiparasitic, and antimicrobial activities. In this study, we aimed at evaluating the efficacy of the SL budlein A in a model of acute gout arthritis in mice. Methods: Experiments were conducted in male Swiss or male LysM-eGFP mice. Animals were treated with budlein A (1 or 10 mg/kg) or vehicle 30 min before stimulus with MSU (100 μg/10 μL, intra-articular). Knee joint withdrawal threshold and edema were evaluated using electronic von Frey and caliper, respectively, 1-15 h after MSU injection. Leukocyte recruitment was determined by counting cells (Neubauer chamber), H&E staining, and using LysM-eGFP mice by confocal microscopy. Inflammasome components, Il-1β, and Tnf-α mRNA expression were determined by RT-qPCR. IL-1β and TNF-α production (in vitro) and NF-κB activation (in vitro and in vivo) were evaluated by ELISA. In vitro analysis using LPS-primed bone marrow-derived macrophages (BMDMs) was performed 5 h after stimulation with MSU crystals. For these experiments, BMDMs were either treated or pre-treated with budlein A at concentrations of 1, 3, or 10 μg/mL. Results: We demonstrated that budlein A reduced mechanical hypersensitivity and knee joint edema. Moreover, it reduced neutrophil recruitment, phagocytosis of MSU crystals by neutrophils, and Il-1β and Tnf-α mRNA expression in the knee joint. In vitro, budlein A decreased TNF-α production, which might be related to the inhibition of NF-κB activation. Furthermore, budlein A also reduced the IL-1β maturation, possibly by targeting inflammasome assembly in macrophages. Conclusion: Budlein A reduced pain and inflammation in a model of acute gout arthritis in mice. Therefore, it is likely that molecules with the ability of targeting NF-κB activation and inflammasome assembly, such as budlein A, are interesting approaches to treat gout flares.
Collapse
Affiliation(s)
- Victor Fattori
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Ana C Zarpelon
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Larissa Staurengo-Ferrari
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Sergio M Borghi
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Fernando B Da Costa
- AsterBioChem Research Team, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Jose C Alves-Filho
- Laboratory of Inflammation and Pain, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M Cunha
- Laboratory of Inflammation and Pain, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Laboratory of Inflammation and Pain, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Sciences, Londrina State University, Londrina, Brazil
| | - Nilton S Arakawa
- Department of Pharmaceutical Sciences, Center of Health Sciences, Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
30
|
Chaperonin 60 sustains osteoblast autophagy and counteracts glucocorticoid aggravation of osteoporosis by chaperoning RPTOR. Cell Death Dis 2018; 9:938. [PMID: 30224697 PMCID: PMC6141469 DOI: 10.1038/s41419-018-0970-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022]
Abstract
Glucocorticoid excess medication interrupts osteoblast homeostasis and exacerbates bone mass and microstructure loss ramping up the pathogenesis of osteoporotic disorders. Heat shock protein 60 (HSP60) is found to maintain protein function within cellular microenvironment upon encountering detrimental stress. In this study, we revealed that supraphysiological dexamethasone decreased HSP60 expression along with deregulated autophagy in osteoblasts cultures. This chaperonin is required to sustain autophagic markers Atg4, and Atg12 expression, LC3-II conversion, and autophagic puncta formation, and alleviated the glucocorticoid-induced loss of osteogenic gene expression and mineralized matrix accumulation. Regulator-associated protein of mTOR complex 1 (RPTOR) existed in HSP60 immunoprecipitate contributing to the HSP60-promoted autophagy and osteogenesis because knocking down RPTOR impaired autophagic influx and osteogenic activity. HSP60 shielded from RPTOR dysfunction by reducing the glucocorticoid-induced RPTOR de-phosphorylation, aggregation, and ubiquitination. In vivo, forced RPTOR expression attenuated the methylprednisolone-induced loss of osteoblast autophagy, bone mass, and trabecular microstructure in mice. HSP60 transgenic mice displayed increased cortical bone, mineral acquisition, and osteoblast proliferation along with higher osteogenesis of bone marrow mesenchymal cells than those of wild-type mice. HSP60 overexpression retained RPTOR signaling, sustained osteoblast autophagy, and compromised the severity of glucocorticoid-induced bone loss and sparse trabecular histopathology. Taken together, HSP60 is essential to maintain osteoblast autophagy, which facilitates mineralized matrix production. It fends off glucocorticoid-induced osteoblast apoptosis and bone loss by stabilizing RPTOR action to autophagy. This study offers a new insight into the mechanistic by which chaperonin protects against the glucocorticoid-induced osteoblast dysfunction and bone loss.
Collapse
|
31
|
Study on the expressions of NLRP3 gene transcript variants in peripheral blood monocytes of primary gout patients. Clin Rheumatol 2018; 37:2547-2555. [PMID: 29946988 DOI: 10.1007/s10067-018-4149-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 10/28/2022]
Abstract
It is well-known that NLRP3 is closely related to the onset of primary gout (PG). However, the relation between NLRP3 gene transcript variants and the occurrence of PG remains unclear. This study was undertaken to evaluate whether NLRP3 gene transcript variants are involved in the occurrence of PG. A total of 44 acute phase PG (APPG), 52 non-acute phase PG (NAPPG) male patients, and 30 male health control (HC) were involved in this study. We measured NLRP3 and its transcript variants 2, 3, 4, 5, and 1 + 6 expressions in the PBMCs, together with the level of IL-1β in the serum. Further, PBMCs of HC were stimulated with MSU crystals. The levels of NLRP3, NLRP3 gene transcript variants 2, 3, 4 mRNA, and protein expressions were significantly lower in the APPG and NAPPG groups than in the HC group (P < 0.05, respectively), and IL-1β expression was significantly higher in the APPG group than in the HC and NAPPG groups (P < 0.05, respectively). Levels of IL-1β and NLRP3-4 mRNA expressions were negatively correlated with APPG group (r = - 0.2828, P = 0.0252). After stimulating PBMCs of HC with MSU crystals, levels of NLRP3, NLRP3-4 mRNA, and NLRP3 protein expressions were reduced significantly (P < 0.05, respectively), and the level of IL-1β in MSU group was increased significantly (P < 0.05). Here, we show that NLRP3-4 transcript variant may be closely related to the occurrence of PG. Thus, NLRP3-4 gene transcript variant may provide a novel target for the diagnosis and therapy of PG.
Collapse
|
32
|
Xiao J, Zhang X, Fu C, Yang Q, Xie Y, Zhang Z, Ye Z. Impaired Na +-K +-ATPase signaling in renal proximal tubule contributes to hyperuricemia-induced renal tubular injury. Exp Mol Med 2018; 50:e452. [PMID: 29497172 PMCID: PMC5898891 DOI: 10.1038/emm.2017.287] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/11/2017] [Accepted: 09/26/2017] [Indexed: 12/27/2022] Open
Abstract
Hyperuricemia contributes to renal inflammation. We aimed to investigate the role of Na+–K+–ATPase (NKA) in hyperuricemia-induced renal tubular injury. Human primary proximal tubular epithelial cells (PTECs) were incubated with uric acid (UA) at increasing doses or for increasing lengths of time. PTECs were then stimulated by pre-incubation with an NKA α1 expression vector or small interfering RNA before UA (100 μg ml−1, 48 h) stimulation. Hyperuricemic rats were induced by gastric oxonic acid and treated with febuxostat (Feb). ATP levels, the activity of NKA and expression of its α1 subunit, Src, NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and interleukin 1β (IL-1β) were measured both in vitro and in vivo. Beginning at concentrations of 100 μg ml−1, UA started to dose-dependently reduce NKA activity. UA at a concentration of 100 μg ml−1 time-dependently affected the NKA activity, with the maximal increased NKA activity at 24 h, but the activity started to decrease after 48 h. This inhibitory effect of UA on NKA activity at 48 h was in addition to a decrease in NKA α1 expression in the cell membrane, but an increase in lysosomes. This process also involved the subsequent activation of Src kinase and NLRP3, promoting IL-1β processing. In hyperuricemic rats, renal cortex NKA activity and its α1 expression were upregulated at the 7th week and both decreased at the 10th week, accompanied with increased renal cortex expression of Src, NLRP3 and IL-1β. The UA levels were reduced and renal tubular injuries in hyperuricemic rats were alleviated in the Feb group. Our data suggested that the impairment of NKA and its consequent regulation of Src, NLRP3 and IL-1β in the renal proximal tubule contributed to hyperuricemia-induced renal tubular injury.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Nephrology, Huadong Hospital affiliated with Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong hospital affiliated with Fudan University, Shanghai, China
| | - Xiaoli Zhang
- Department of Nephrology, Huadong Hospital affiliated with Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong hospital affiliated with Fudan University, Shanghai, China
| | - Chensheng Fu
- Department of Nephrology, Huadong Hospital affiliated with Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong hospital affiliated with Fudan University, Shanghai, China
| | - Qingmei Yang
- Department of Nephrology, Huadong Hospital affiliated with Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong hospital affiliated with Fudan University, Shanghai, China
| | - Ying Xie
- Department of Nephrology, Huadong Hospital affiliated with Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong hospital affiliated with Fudan University, Shanghai, China
| | - Zhenxing Zhang
- Department of Nephrology, Huadong Hospital affiliated with Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong hospital affiliated with Fudan University, Shanghai, China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital affiliated with Fudan University, Shanghai, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong hospital affiliated with Fudan University, Shanghai, China
| |
Collapse
|
33
|
Sessile Innate Immune Cells. DAMAGE-ASSOCIATED MOLECULAR PATTERNS IN HUMAN DISEASES 2018. [PMCID: PMC7123606 DOI: 10.1007/978-3-319-78655-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this chapter, sessile cells of the innate immune system are briefly introduced. Defined as cells equipped with diverse pattern recognition molecules capable of detecting MAMPs and DAMPs, they encompass cells such as epithelial cells, fibroblasts, vascular cells, chondrocytes, osteoblasts, and adipocytes. Located at the body surfaces, epithelial cells represent the first line of innate immune defense against invading microbial pathogens. They are significant contributors to innate mucosal immunity and generate various antimicrobial defense mechanisms. Also, epithelial cells critically contribute to tissue repair via the phenomenon of re-epithelialization. Fibroblasts operate as classical sentinel cells of the innate immune system dedicated to responding to MAMPs and DAMPs emitted upon any tissue injury. Typically, fibroblasts synthesize most of the extracellular matrix of connective tissues, thereby playing a crucial role in tissue repair processes. Vascular cells of the innate immune system represent an evolutionarily developed first-line defense against any inciting insult hitting the vessel walls from the luminal side including bacteria, viruses, microbial toxins, and chemical noxa such as nicotine. Upon such insults and following recognition of MAMPs and DAMPs, vascular cells react with an innate immune response to create an acute inflammatory milieu in the vessel wall aimed at curing the vascular injury concerned. Chondrocytes, osteoblasts, and osteoclasts represent other vital cells of the skeletal system acting as cells of the innate immune system in its wider sense. These cells mediate injury-promoted DAMP-induced inflammatory and regenerative processes specific for the skeletal systems. Finally, adipocytes are regarded as highly active cells of the innate immune system. As white, brown, and beige adipocytes, they operate as a dynamic metabolic organ that can secrete certain bioactive molecules which have endocrine, paracrine, and autocrine actions.
Collapse
|
34
|
Paik JM, Kim SC, Feskanich D, Choi HK, Solomon DH, Curhan GC. Gout and Risk of Fracture in Women: A Prospective Cohort Study. Arthritis Rheumatol 2017; 69:422-428. [PMID: 27589491 DOI: 10.1002/art.39852] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Uric acid may be linked to bone health through its antioxidant or prooxidant effects, thereby affecting bone resorption and formation, or through its dual inhibition of vitamin D activation and parathyroid hormone production. Results of prior studies on the relationship between uric acid and bone mineral density have been conflicting. This prospective study was undertaken to examine the relationship between gout, a disease characterized by hyperuricemia and inflammation, and risk of hip or wrist fracture in women. METHODS We conducted a prospective observational study of gout and risk of incident wrist and hip fracture in women participating in the Nurses' Health Study (n = 103,799 at baseline, with 14 years of follow-up for the wrist fracture analysis and 22 years of follow-up for the hip fracture analysis). Gout history and incident cases of wrist and hip fracture were assessed by biennial questionnaire. Cox proportional hazards models were used to simultaneously adjust for potential confounders. RESULTS In this cohort, there were 3,769 incident wrist fractures (1990-2004) and 2,147 incident hip fractures (1990-2012), with 107 wrist fractures and 117 hip fractures occurring in participants with gout. In those women with a history of gout compared with women without gout, the multivariable-adjusted relative risk of wrist fracture was 1.12 (95% confidence interval [95% CI] 0.92-1.36) and the multivariable-adjusted relative risk of hip fracture was 1.38 (95% CI 1.14-1.68). CONCLUSION In women, a history of gout is associated with a modestly increased risk of hip fracture, but not significantly associated with a risk of wrist fracture.
Collapse
Affiliation(s)
- Julie M Paik
- Brigham and Women's Hospital, Harvard Medical School, and Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Seoyoung C Kim
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Diane Feskanich
- Brigham and Women's Hospital and Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Hyon K Choi
- Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel H Solomon
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gary C Curhan
- Brigham and Women's Hospital, Harvard Medical School, and Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
35
|
Parathithasan N, Lee WK, Pianta M, Oon S, Perera W. Gouty arthropathy: Review of clinico-pathologic and imaging features. J Med Imaging Radiat Oncol 2015; 60:9-20. [PMID: 26439321 DOI: 10.1111/1754-9485.12356] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/30/2015] [Indexed: 12/27/2022]
Abstract
Gout is a common inflammatory arthropathy in adults, with the prevalence increasing in males of older age. It occurs when monosodium urate (MSU) crystals are deposited in joints and connective tissue causing inflammation. The gold standard for the diagnosis of gout is the demonstration of negatively birefringent, needle-shaped MSU crystals through synovial fluid aspiration. However, this is an invasive technique and may not always be conclusive or feasible. Imaging techniques have been developed to aid in diagnosis of gout non-invasively. Radiography has a low utility in the early diagnosis of gout and demonstrates erosions in late stages. Ultrasound (US) has a high overall sensitivity in diagnosing gout with the 'double contour' sign having a high specificity. Magnetic resonance imaging is good at detecting tophi, bone marrow oedema and erosions, but has a limited role in diagnosis because of its high cost and limited availability. Conventional computed tomography (CT) has no role in the routine diagnosis of gout before development of erosions and tophi. A newer technology, dual-energy CT (DECT) has been shown to be able to detect MSU crystals burden with high accuracy. It has a higher specificity and lower sensitivity that US in gout diagnosis. However, because of radiation exposure and cost, it has a better utility in diagnosing clinically suspected gout complicated by other concurrent rheumatologic conditions or if radiography, US and synovial aspiration are inconclusive or not feasible. This paper will review the clinico-pathologic and imaging features of gouty arthropathy.
Collapse
Affiliation(s)
| | - Wai-Kit Lee
- Department of Medical Imaging, St Vincent's Hospital, University of Melbourne, Victoria, Australia
| | - Marcus Pianta
- Department of Medical Imaging, St Vincent's Hospital, University of Melbourne, Victoria, Australia
| | - Shereen Oon
- Department of Rheumatology, St Vincent's Hospital, University of Melbourne, Victoria, Australia
| | - Warren Perera
- Department of Medical Imaging, St Vincent's Hospital, University of Melbourne, Victoria, Australia
| |
Collapse
|
36
|
Agyemang AF, Harrison SR, Siegel RM, McDermott MF. Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond. Semin Immunopathol 2015; 37:335-47. [DOI: 10.1007/s00281-015-0496-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 02/03/2023]
|
37
|
Kwak JW, Jeong H, Han SH, Kim Y, Son SM, Mook-Jung I, Hwang D, Park JW. Phosphokinase antibody arrays on dendron-coated surface. PLoS One 2014; 9:e96456. [PMID: 24802362 PMCID: PMC4011796 DOI: 10.1371/journal.pone.0096456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/08/2014] [Indexed: 12/04/2022] Open
Abstract
Monitoring protein phosphorylation at the cellular level is important to understand the intracellular signaling. Among the phosphoproteomics methods, phosphokinase antibody arrays have emerged as preferred tools to measure well-characterized phosphorylation in the intracellular signaling. Here, we present a dendron-coated phosphokinase antibody array (DPA) in which the antibodies are immobilized on a dendron-coated glass slide. Self-assembly of conically shaped dendrons well-controlled in size and structure resulted in precisely controlled lateral spacing between the immobilized phosphosite-specific antibodies, leading to minimized steric hindrance and improved antigen-antibody binding kinetics. These features increased sensitivity, selectivity, and reproducibility in measured amounts of protein phosphorylation. To demonstrate the utility of the DPA, we generated the phosphorylation profiles of brain tissue samples obtained from Alzheimer's disease (AD) model mice. The analysis of the profiles revealed signaling pathways deregulated during the course of AD progression.
Collapse
Affiliation(s)
- Ju-Won Kwak
- Department of Chemistry, POSTECH, Pohang, Republic of Korea
| | - Hyobin Jeong
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Republic of Korea
| | - Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Youngkyu Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Republic of Korea
| | - Sung Min Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University, Seoul, Republic of Korea
- * E-mail: (IM-J); (DH); (JWP)
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Republic of Korea
- Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu, Republic of Korea
- * E-mail: (IM-J); (DH); (JWP)
| | - Joon Won Park
- Department of Chemistry, POSTECH, Pohang, Republic of Korea
- * E-mail: (IM-J); (DH); (JWP)
| |
Collapse
|