1
|
Yang J, Zhou X, Qiao X, Shi M. Friend or foe: the role of platelets in acute lung injury. Front Immunol 2025; 16:1556923. [PMID: 40438116 PMCID: PMC12116376 DOI: 10.3389/fimmu.2025.1556923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Lung diseases, including acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), are associated with various etiological factors and are characterized by high mortality rates. Current treatment strategies primarily focus on lung-protective ventilation and careful fluid management. Despite over 50 years of basic and clinical research, effective treatment options remain limited, and the search for novel strategies continues. Traditionally, platelets have been viewed primarily as contributors to blood coagulation; however, recent research has revealed their significant role in inflammation and immune regulation. While the relationship between platelet count and ALI/ARDS has remained unclear, emerging studies highlight the "dual role" of platelets in these conditions. On one hand, platelets interact with neutrophils to form neutrophil extracellular traps (NETs), promoting immune thrombosis and exacerbating lung inflammation. On the other hand, platelets also play a protective role by modulating inflammation, promoting regulatory T cell (Treg) activity, and assisting in alveolar macrophage reprogramming. This dual functionality of platelets has important implications for the pathogenesis and resolution of ALI/ARDS. This review examines the multifaceted roles of platelets in ALI/ARDS, focusing on their immunomodulatory effects, the platelet-neutrophil interaction, and the critical involvement of platelet-Treg cell complexes in shaping the inflammatory environment in ALI.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Thoracic and Cardiovascular Surgery, Hua Shan Hospital, Affiliated with Fudan University, Shanghai, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xun Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinrui Qiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Shi
- Department of Thoracic and Cardiovascular Surgery, Hua Shan Hospital, Affiliated with Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zheng Z, Qiao X, Yin J, Kong J, Han W, Qin J, Meng F, Tian G, Feng X. Advancements in omics technologies: Molecular mechanisms of acute lung injury and acute respiratory distress syndrome (Review). Int J Mol Med 2025; 55:38. [PMID: 39749711 PMCID: PMC11722059 DOI: 10.3892/ijmm.2024.5479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an inflammatory response arising from lung and systemic injury with diverse causes and associated with high rates of morbidity and mortality. To date, no fully effective pharmacological therapies have been established and the relevant underlying mechanisms warrant elucidation, which may be facilitated by multi‑omics technology. The present review summarizes the application of multi‑omics technology in identifying novel diagnostic markers and therapeutic strategies of ALI/ARDS as well as its pathogenesis.
Collapse
Affiliation(s)
- Zhihuan Zheng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Xinyu Qiao
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Junhao Yin
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Junjie Kong
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Wanqing Han
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jing Qin
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Fanda Meng
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Ge Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271000, P.R. China
| | - Xiujing Feng
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
3
|
Liu Y, Zhou W, Zhao J, Chu M, Xu M, Wang X, Xie L, Zhou Y, Song L, Wang J, Yang T. Regulation of YAP translocation by myeloid Pten deficiency alleviates acute lung injury via inhibition of oxidative stress and inflammation. Free Radic Biol Med 2024; 222:199-210. [PMID: 38901501 DOI: 10.1016/j.freeradbiomed.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is intricately involved in modulating the inflammatory response in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Nevertheless, the myeloid PTEN governing Hippo-YAP pathway mediated oxidative stress and inflammation in lipopolysaccharide (LPS)-induced ALI remains to be elucidate. METHODS The floxed Pten (PtenFL/FL) and myeloid-specific Pten knockout (PtenM-KO) mice were intratracheal instill LPS (5 mg/kg) to establish ALI, then Yap siRNA mix with the mannose-conjugated polymers was used to knockdown endogenous macrophage YAP in some PtenM-KO mice before LPS challenged. The bone marrow-derived macrophages (BMMs) from PtenFL/FL and PtenM-KO mice were obtained, and BMMs were transfected with CRISPR/Cas9-mediated glycogen synthase kinase 3 Beta (GSK3β) knockout (KO) or Yes-associated protein (YAP) KO vector subjected to LPS (100 ng/ml) challenged or then cocultured with MLE12 cells. RESULTS Here, our findings demonstrate that myeloid-specific PTEN deficiency exerts a protective against LPS-induced oxidative stress and inflammation dysregulated in ALI model. Moreover, ablation of the PTEN-YAP axis in macrophages results in reduced nuclear factor-E2-related factor-2 (NRF2) expression, a decrease in antioxidant gene expression, augmented levels of free radicals, lipid and protein peroxidation, heightened generation of pro-inflammatory cytokines, ultimately leading to increased apoptosis in MLE12 cells. Mechanistically, it is noteworthy that the deletion of myeloid PTEN promotes YAP translocation and regulates NRF2 expression, alleviating LPS-induced ALI via the inhibition of GSK3β and MST1 binding. CONCLUSIONS Our study underscores the crucial role of the myeloid PTEN-YAP-NRF2 axis in governing oxidative stress and inflammation dysregulated in ALI, indicating its potential as a therapeutic target for ALI.
Collapse
Affiliation(s)
- Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Wenqin Zhou
- Department of Emergency Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China; Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingqiang Chu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingcui Xu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Xiao Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangjie Xie
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Lijia Song
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
Wang C, Zou K, Diao Y, Zhou C, Zhou J, Yang Y, Zeng Z. Liensinine alleviates LPS-induced acute lung injury by blocking autophagic flux via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2023; 168:115813. [PMID: 37922654 DOI: 10.1016/j.biopha.2023.115813] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023] Open
Abstract
Acute lung injury (ALI) is a major pathological problem characterized by severe inflammatory reactions and is a critical disease with high clinical morbidity and mortality. Liensinine, a major isoquinoline alkaloid, is extracted from the green embryos of mature Nelumbonaceae seeds. It has been reported to have an inhibitory effect on tumors. However, the effects of liensinine on ALI have not been reported to-date. The aim of this study was to explore the inhibitory effects of liensinine on lipopolysaccharide (LPS)-induced ALI and its possible mechanism. We found that liensinine significantly reduced LPS-induced ALI and reduced the production of inflammatory factors IL-6, IL-8, and TNF-α. In addition, liensinine blocked autophagic flux and increased the number of autophagosomes by upregulating LC3-II/I and p62 protein levels. More importantly, pretreatment with the early stages autophagy inhibitor 3-Methyladenine (3-MA) can reverse the inhibitory effects of liensinine on the secretion of inflammatory factors in ALI. The PI3K/AKT/mTOR pathway is involved in LPS-induced autophagy regulated by liensinine in ALI. In summary, this study suggests that liensinine inhibits the production of inflammatory factors in LPS-induced ALI by regulating autophagy via the PI3K/AKT/mTOR pathway, which may provide a new therapeutic strategy to alleviate ALI.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, Nanchang 330052, China
| | - Kang Zou
- Department of Critical Care Medicine, the First Affiliated Hospital of Gannan Medical College, Gannan Medical College, Ganzhou 341000, China
| | - Yunlian Diao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, Nanchang 330052, China
| | - Chaoqi Zhou
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jia Zhou
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, Nanchang 330052, China
| | - Yuting Yang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
Liu J, Chen B, Jiang M, Cui T, Lv B, Fu Z, Li X, Du Y, Guo J, Zhong X, Zou Y, Zhao X, Yang W, Gao X. Polygonatum odoratum polysaccharide attenuates lipopolysaccharide-induced lung injury in mice by regulating gut microbiota. Food Sci Nutr 2023; 11:6974-6986. [PMID: 37970373 PMCID: PMC10630852 DOI: 10.1002/fsn3.3622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 11/17/2023] Open
Abstract
Polygonatum odoratum is appreciated for its edible and medicinal benefits especially for lung protection. However, the contained active components have been understudied, and further research is required to fully exploit its potential application. We aimed to probe into the beneficial effects of Polygonatum odoratum polysaccharide (POP) in lipopolysaccharide-induced lung inflammatory injury mice. POP treatment could ameliorate the survival rate, pulmonary function, lung pathological lesions, and immune inflammatory response. POP treatment could repair intestinal barrier, and modulate the composition of gut microbiota, especially reducing the abundance of Klebsiella, which were closely associated with the therapeutic effects of POP. Investigation of the underlying anti-inflammatory mechanism showed that POP suppressed the generation of pro-inflammatory molecules in lung by inhibiting iNOS+ M1 macrophages. Collectively, POP is a promising multi-target microecological regulator to prevent and treat the immuno-inflammation and lung injury by modulating gut microbiota.
Collapse
Affiliation(s)
- Jia‐rui Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bo‐xue Chen
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Mei‐ting Jiang
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tian‐yi Cui
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bin Lv
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhi‐fei Fu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xue Li
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yao‐dong Du
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jin‐he Guo
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin‐qin Zhong
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ya‐dan Zou
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wen‐zhi Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiu‐mei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of EducationTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
6
|
Jing H, Chen X, Wang D. Identification of biomarkers associated with diagnosis of acute lung injury based on bioinformatics and machine learning. Medicine (Baltimore) 2023; 102:e34840. [PMID: 37603512 PMCID: PMC10443773 DOI: 10.1097/md.0000000000034840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is an acute inflammatory disease characterized by excess production of inflammatory factors in lung tissue and has a high mortality. This research was designed for the identification of novel diagnostic biomarkers for ALI and analyzing the possible association between critical genes and infiltrated immune cells. METHODS The study used 2 datasets (GSE2411 and GSE18341) to identify differentially expressed genes (DEGs) between 2 groups. Then we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses to identify the functions of these DEGs. The study also used SVM-recursive feature elimination analysis and least absolute shrinkage and selection operator regression model to screen possible markers. The study further analyzed immune cell infiltration via CIBERSORT. Gene Set Enrichment Analysis was used to explore the molecular mechanism of the critical genes. RESULTS DEGs were identified between 2 groups. In total, 690 DEGs were obtained: 527 genes were upregulated and 163 genes were downregulated. We identified PDZK1IP1, CCKAR, and CXCL2 as critical genes. And we then found that these critical genes correlated with Mast Cells, Neutrophil Cells, M1 Macrophage, dendritic cell Actived, Eosinophil Cells, B Cells Naive, Mast Cells, and dendritic cell Immature. Furthermore, we investigated the specific signaling pathways involved in key genes and derived some potential molecular mechanisms by which key genes affect disease progression by use of Gene Set Enrichment Analysis. Moreover, we predict transcription factors. Also, we obtained critical gene-related microRNAs through the targetscan database, and visualized the microRNA network of the genes. CONCLUSION Our findings might provide some novel clue for the exploration of novel markers for ALI diagnosis. The critical genes and their associations with immune infiltration may offer new insight into understanding ALI developments.
Collapse
Affiliation(s)
- Hekun Jing
- Department of Respiratory and Critical Care of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaorui Chen
- Department of Respiratory and Critical Care of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Daoxin Wang
- Department of Respiratory and Critical Care of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Ma A, Feng Z, Li Y, Wu Q, Xiong H, Dong M, Cheng J, Wang Z, Yang J, Kang Y. Ferroptosis-related signature and immune infiltration characterization in acute lung injury/acute respiratory distress syndrome. Respir Res 2023; 24:154. [PMID: 37301835 DOI: 10.1186/s12931-023-02429-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/19/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the most life-threatening diseases in the intensive care unit with high mortality and morbidity. Ferroptosis is a newly discovered immune related cell death that is associated with various lung diseases. However, the role of immune-mediated ferroptosis in ALI/ARDS has not been elucidated. METHOD We analyzed two Gene Expression Omnibus (GEO) datasets (GSE2411 and GSE109913) and extracted characteristic ferroptosis-related genes (FRGs) between the control and ALI groups through bioinformatic analysis. Then, we prospectively collected bronchoalveolar lavage fluid (BALF) from patients with ARDS and verified the expression of characteristic FRGs. Lastly, we constructed the ALI/ARDS model induced by LPS and isolated the primary neutrophils of mice. Erastin, an ferroptosis inducer, was used at the cellular level to verify the effect of neutrophils on ferroptosis in lung epithelium cells. RESULT We identified three characteristic FRGs, Cp, Slc39a14 and Slc7a11, by analyzing two gene expression profiling datasets. Immune infiltration analysis showed that the three characteristic genes were significantly positively correlated with the infiltration levels of neutrophils. We collected BALF from 59 ARDS patients to verify the expression of Cp, Slc7a11 and Slc39a14 in humans. The results showed that Cp was elevated in patients with severe ARDS (p = 0.019), Slc7a11 was significantly elevated in patients with moderate ARDS (p = 0.021) relative to patients with mild ARDS. The levels of neutrophils in the peripheral blood of ARDS patients were positively correlated with the expression levels of Slc7a11 (Pearson's R2 = 0.086, p = 0.033). Three characteristic FRGs were significantly activated after the onset of ferroptosis (6 h) early in LPS induced ALI model, and that ferroptosis was alleviated after the organism compensated within 12 to 48 h. We extracted primary activated neutrophils from mice and co-cultured them with MLE-12 in transwell, Slc7a11, Cp and Slc39a14 in MLE-12 cells were significantly upregulated as the number of neutrophils increased. The results showed that neutrophil infiltration alleviated erastin-induced MDA accumulation, GSH depletion, and divalent iron accumulation, accompanied by upregulation of Slc7a11 and Gpx4, implying the existence of a compensatory effect of lipid oxidation in neutrophils after acute lung injury in the organism. CONCLUSION We identified three immune-mediated ferroptosis genes, namely, Cp, Slc7a11 and Slc39a14, which possibly regulated by neutrophils during the development of ALI, and their pathways may be involved in anti-oxidative stress and anti-lipid metabolism. Thus, the present study contributes to the understanding of ALI/ARDS and provide novel targets for future immunotherapeutic.
Collapse
Affiliation(s)
- Aijia Ma
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yang Li
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qin Wu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Huaiyu Xiong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Meiling Dong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Jiangli Cheng
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhenling Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Ma Y, Xu H, Chen G, Liu W, Ma C, Meng J, Yuan L, Hua X, Ge G, Lei M. Uncovering the active constituents and mechanisms of Rujin Jiedu powder for ameliorating LPS-induced acute lung injury using network pharmacology and experimental investigations. Front Pharmacol 2023; 14:1186699. [PMID: 37251341 PMCID: PMC10210165 DOI: 10.3389/fphar.2023.1186699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Acute lung injury (ALI) is a common clinical disease with high mortality. Rujin Jiedu powder (RJJD) has been clinically utilized for the treatment of ALI in China, but the active constituents in RJJD and its protective mechanisms against ALI are still unclear. Methodology: ALI mice were established by intraperitoneal injection of LPS to test the effectiveness of RJJD in treating ALI. Histopathologic analysis was used to assess the extent of lung injury. An MPO (myeloperoxidase) activity assay was used to evaluate neutrophil infiltration. Network pharmacology was used to explore the potential targets of RJJD against ALI. Immunohistochemistry and TUNEL staining were performed to detect apoptotic cells in lung tissues. RAW264.7 and BEAS-2B cells were used to explore the protective mechanisms of RJJD and its components on ALI in vitro. The inflammatory factors (TNF-α, IL-6, IL-1β and IL-18) in serum, BALF and cell supernatant were assayed using ELISA. Western blotting was performed to detect apoptosis-related markers in lung tissues and BEAS-2B cells. Results: RJJD ameliorated pathological injury and neutrophil infiltration in the lungs of ALI mice and decreased the levels of inflammatory factors in serum and BALF. Network pharmacology investigations suggested that RJJD treated ALI via regulating apoptotic signaling pathways, with AKT1 and CASP3 as crucial targets and PI3K-AKT signaling as the main pathway. Meanwhile, baicalein, daidzein, quercetin and luteolin were identified as key constituents in RJJD targeting on the above crucial targets. Experimental investigations showed that RJJD significantly upregulated the expression of p-PI3K, p-Akt and Bcl-2, downregulated the expression of Bax, caspase-3 and caspase-9 in ALI mice, and attenuated lung tissue apoptosis. Four active constituents in RJJD (baicalein, daidzein, quercetin and luteolin) inhibited the secretion of TNF-α and IL-6 in LPS-induced RAW264.7 cells. Among these components, daidzein and luteolin activated the PI3K-AKT pathway and downregulated the expression of apoptosis-related markers induced by LPS in BEAS-2B cells. Conclusion: RJJD alleviates the inflammatory storm and prevents apoptosis in the lungs of ALI mice. The mechanism of RJJD in treating ALI is related to the activation of PI3K-AKT signaling pathway. This study provides a scientific basis for the clinical application of RJJD.
Collapse
Affiliation(s)
- Yuhui Ma
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Chen
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Ma
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialei Meng
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Yuan
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Hua
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Lei
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Guo J, Luo Y, Zuo J, Teng J, Shen B, Liu X. Echinacea Polyphenols Inhibit NLRP3-Dependent Pyroptosis, Apoptosis, and Necroptosis via Suppressing NO Production during Lipopolysaccharide-Induced Acute Lung Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7289-7298. [PMID: 37154470 DOI: 10.1021/acs.jafc.2c08382] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PANoptosis is an intricate programmed death pathway that involves the interaction between pyroptosis, apoptosis, and necroptosis. We systematically explored the protective effect of Echinacea polyphenols (EPP) against the lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the underlying mechanisms both in vitro and in vivo. We noted that EPP pretreatment could significantly alleviate LPS-induced lung tissue injury and pulmonary edema. EPP inhibited the PANoptosis by regulating the expression of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome, gasdermin D, caspase-8, caspase-3, and mixed lineage kinase domain-like protein. Meanwhile, a comparative study of EPP and inducible nitric oxide synthase inhibitor S-methylisothiourea sulfate indicated that EPP may play a preprotective role in inhibiting PANoptosis via reducing the activity of inducible nitric oxide synthase and the production of nitric oxide (NO) during ALI. Our results clearly indicated that PANoptosis existed in LPS-induced ALI, and EPP pretreatment could provide obvious protective effects to LPS-induced ALI by inhibiting PANoptosis, which may be related to NO production.
Collapse
Affiliation(s)
- Jingjing Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingru Zuo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Teng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Wen J, Qin S, Li Y, Zhang P, Zhan X, Fang M, Shi C, Mu W, Kan W, Zhao J, Hui S, Hou M, Li H, Xiao X, Xu G, Bai Z. Flavonoids derived from licorice suppress LPS-induced acute lung injury in mice by inhibiting the cGAS-STING signaling pathway. Food Chem Toxicol 2023; 175:113732. [PMID: 36958387 DOI: 10.1016/j.fct.2023.113732] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/25/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
In recent years, we have found that the dysregulation of the cyclic-GMP-AMP synthase (cGAS)‒stimulator of interferon genes (STING) pathway leads to the development of immune and inflammatory diseases, therefore, finding compounds that can specifically regulate this pathway is essential for effective regulation of the immune pathway for addressing inflammatory diseases. Licorice flavonoids (LFs), are active ingredients extracted from the Chinese herb licorice, which has been reported to have strong anti-inflammatory activity in previous studies. Here, we report that LFs inhibit the activation of the cGAS-STING pathway evidenced by the inhibition of the expression of type I interferons and related downstream genes such as interferon-stimulated gene 15 (ISG15) and C-X-C motif chemokine ligand 10 (CXCL10), as well as inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Notably, LFs markedly improve the LPS-induced acute lung injury by inhibiting the excessive activation of cGAS-STING signaling pathway. Mechanistically, LFs treatment leads to the blocking of 2'3'-cyclic GMP-AMP (cGAMP) synthesis resulting in an inhibition of the activation of the cGAS-STING pathway. Our results indicate that LFs is a specific inhibitor of the cGAS-STING pathway, which is suggested to be a potential candidate for the treatment of cGAS-STING pathway-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Jincai Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Shuanglin Qin
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Yurong Li
- Department of Military Patient Management, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100039, China
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Mingxia Fang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ce Shi
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenqing Mu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wen Kan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jia Zhao
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Siwen Hui
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Manting Hou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Hui Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaohe Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Guang Xu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
11
|
Park S, Kim M, Park M, Jin Y, Lee SJ, Lee H. Specific upregulation of extracellular miR-6238 in particulate matter-induced acute lung injury and its immunomodulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130466. [PMID: 36455323 DOI: 10.1016/j.jhazmat.2022.130466] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases characterized by a severe inflammatory response and the destruction of alveolar epithelium and endothelium. ALI/ARDS is caused by pathogens and toxic environmental stimuli, such as particulate matter (PM). However, the general symptoms of ALI/ARDS are similar, and determining the cause of lung injury is often challenging. In this study, we investigated whether there is a critical miRNA that characterizes PM-induced ALI. We found that the expression of miR-6238 is specifically upregulated in lung tissue and lung-derived extracellular vesicles (EVs) in response to PM exposure. Notably, bacterial endotoxin (Lipopolysaccharide; LPS or peptidoglycan; PTG) does not induce the expression of miR-6238 in the lung. Instead, the expression of miR-155 is dramatically increased in LPS-induced ALI. We further demonstrated that human lung epithelial cells and macrophages predominantly produce miR-6238 and miR-155, respectively. Mechanistically, EV-miR-6238 is effectively internalized into alveolar macrophages (AMs) and regulates inflammatory responses in vivo. CXCL3 is a main target of miR-6238 in AMs and modulates neutrophil infiltration into the lung alveoli. Collectively, our findings suggest that miR-6238 is a novel regulator of pulmonary inflammation and a putative biomarker that distinguishes PM-induced ALI from endotoxin (LPS/PTG)-mediated ALI.
Collapse
Affiliation(s)
- Sujeong Park
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Miji Kim
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea
| | - Minkyung Park
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, South Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Seon-Jin Lee
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, South Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, South Korea.
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon 51140, South Korea.
| |
Collapse
|
12
|
Lu Q, Yu S, Meng X, Shi M, Huang S, Li J, Zhang J, Liang Y, Ji M, Zhao Y, Fan H. MicroRNAs: Important Regulatory Molecules in Acute Lung Injury/Acute Respiratory Distress Syndrome. Int J Mol Sci 2022; 23:5545. [PMID: 35628354 PMCID: PMC9142048 DOI: 10.3390/ijms23105545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is an overactivated inflammatory response caused by direct or indirect injuries that destroy lung parenchymal cells and dramatically reduce lung function. Although some research progress has been made in recent years, the pathogenesis of ALI/ARDS remains unclear due to its heterogeneity and etiology. MicroRNAs (miRNAs), a type of small noncoding RNA, play a vital role in various diseases. In ALI/ARDS, miRNAs can regulate inflammatory and immune responses by targeting specific molecules. Regulation of miRNA expression can reduce damage and promote the recovery of ALI/ARDS. Consequently, miRNAs are considered as potential diagnostic indicators and therapeutic targets of ALI/ARDS. Given that inflammation plays an important role in the pathogenesis of ALI/ARDS, we review the miRNAs involved in the inflammatory process of ALI/ARDS to provide new ideas for the pathogenesis, clinical diagnosis, and treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sifan Yu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mingyu Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Siyu Huang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Junfeng Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jianfeng Zhang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Mengjun Ji
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (S.Y.); (X.M.); (M.S.); (S.H.); (J.L.); (J.Z.); (Y.L.); (M.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
13
|
Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B 2022; 12:600-620. [PMID: 34401226 PMCID: PMC8359643 DOI: 10.1016/j.apsb.2021.08.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 02/08/2023] Open
Abstract
The use of small interfering RNAs (siRNAs) has been under investigation for the treatment of several unmet medical needs, including acute lung injury/acute respiratory distress syndrome (ALI/ARDS) wherein siRNA may be implemented to modify the expression of pro-inflammatory cytokines and chemokines at the mRNA level. The properties such as clear anatomy, accessibility, and relatively low enzyme activity make the lung a good target for local siRNA therapy. However, the translation of siRNA is restricted by the inefficient delivery of siRNA therapeutics to the target cells due to the properties of naked siRNA. Thus, this review will focus on the various delivery systems that can be used and the different barriers that need to be surmounted for the development of stable inhalable siRNA formulations for human use before siRNA therapeutics for ALI/ARDS become available in the clinic.
Collapse
Key Words
- AAV, adeno-associated virus
- ALI/ARDS
- ALI/ARDS, acute lung injury/acute respiratory distress syndrome
- AM, alveolar macrophage
- ATI, alveolar cell type I
- ATII, alveolar cell type II
- AV, adenovirus
- Ago-2, argonaute 2
- CFDA, China Food and Drug Administration
- COPD, chronic obstructive pulmonary disease
- CPP, cell-penetrating peptide
- CS, cigarette smoke
- CXCR4, C–X–C motif chemokine receptor type 4
- Cellular uptake
- DAMPs, danger-associated molecular patterns
- DC-Chol, 3β-(N-(N′,N′-dimethylethylenediamine)-carbamoyl) cholesterol
- DDAB, dimethyldioctadecylammonium bromide
- DODAP, 1,2-dioleyl-3-dimethylammonium-propane
- DODMA, 1,2-dioleyloxy-N,N-dimethyl-3-aminopropane
- DOGS, dioctadecyl amido glycin spermine
- DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine
- DOPE, 1,2-dioleoyl-l-α-glycero-3-phosphatidylethanolamine
- DOSPA, 2,3-dioleyloxy-N-[2-(sperminecarboxamido)ethyl]-N,N-dimethyl-1-propanaminium
- DOTAP, 1,2-dioleoyl-3-trimethylammonium-propane
- DOTMA, N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium
- DPI, dry powder inhaler
- DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
- Drug delivery
- EC, endothelial cell
- EPC, egg phosphatidylcholine
- EXOs, exosomes
- Endosomal escape
- EpiC, epithelial cell
- FDA, US Food and Drug Administration
- HALI, hyperoxic acute lung injury
- HMGB1, high-mobility group box 1
- HMVEC, human primary microvascular endothelial cell
- HNPs, hybrid nanoparticles
- Hem-CLP, hemorrhagic shock followed by cecal ligation and puncture septic challenge
- ICAM-1, intercellular adhesion molecule-1
- IFN, interferons
- Inflammatory diseases
- LPS, lipopolysaccharides
- MEND, multifunctional envelope-type nano device
- MIF, macrophage migration inhibitory factor
- Myd88, myeloid differentiation primary response 88
- N/P ratio, nitrogen /phosphate ratio
- NETs, neutrophil extracellular traps
- NF-κB, nuclear factor kappa B
- NPs, nanoparticles
- Nanoparticles
- PAI-1, plasminogen activator inhibitor-1
- PAMAM, polyamidoamine
- PAMPs, pathogen-associated molecular patterns
- PD-L1, programmed death ligand-1
- PDGFRα, platelet-derived growth factor receptor-α
- PEEP, positive end-expiratory pressure
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PF, pulmonary fibrosis
- PFC, perfluorocarbon
- PLGA, poly(d,l-lactic-co-glycolic acid)
- PMs, polymeric micelles
- PRR, pattern recognition receptor
- PS, pulmonary surfactant
- Pulmonary administration
- RIP2, receptor-interacting protein 2
- RISC, RNA-induced silencing complex
- RNAi, RNA interference
- ROS, reactive oxygen species
- SLN, solid lipid nanoparticle
- SNALP, stable nucleic acid lipid particle
- TGF-β, transforming growth factor-β
- TLR, Toll-like receptor
- TNF-α, tumor necrosis factor-α
- VALI, ventilator-associated lung injury
- VILI, ventilator-induced lung injury
- dsDNA, double-stranded DNA
- dsRNA, double-stranded RNA
- eggPG, l-α-phosphatidylglycerol
- mRNA, messenger RNA
- miRNA, microRNA
- pDNA, plasmid DNA
- shRNA, short RNA
- siRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Makhloufi Zoulikha
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingqing Xiao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - George Frimpong Boafo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Marwa A. Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
14
|
Liu J, Dean DA. Gene Therapy for Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:786255. [PMID: 35111077 PMCID: PMC8801611 DOI: 10.3389/fphys.2021.786255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating clinical syndrome that leads to acute respiratory failure and accounts for over 70,000 deaths per year in the United States alone, even prior to the COVID-19 pandemic. While its molecular details have been teased apart and its pathophysiology largely established over the past 30 years, relatively few pharmacological advances in treatment have been made based on this knowledge. Indeed, mortality remains very close to what it was 30 years ago. As an alternative to traditional pharmacological approaches, gene therapy offers a highly controlled and targeted strategy to treat the disease at the molecular level. Although there is no single gene or combination of genes responsible for ARDS, there are a number of genes that can be targeted for upregulation or downregulation that could alleviate many of the symptoms and address the underlying mechanisms of this syndrome. This review will focus on the pathophysiology of ARDS and how gene therapy has been used for prevention and treatment. Strategies for gene delivery to the lung, such as barriers encountered during gene transfer, specific classes of genes that have been targeted, and the outcomes of these approaches on ARDS pathogenesis and resolution will be discussed.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - David A. Dean
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
15
|
Zheng L, Su J, Zhang Z, Jiang L, Wei J, Xu X, Lv S. Salidroside regulates inflammatory pathway of alveolar macrophages by influencing the secretion of miRNA-146a exosomes by lung epithelial cells. Sci Rep 2020; 10:20750. [PMID: 33247202 PMCID: PMC7695860 DOI: 10.1038/s41598-020-77448-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
The purpose of this study was to explore the investigative mechanism of salidroside (SAL) on LPS-induced acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The exosomes from RLE-6TN are extracted and identified by transmission electron microscopy, particle size analysis and protein marker detection, and co-cultured with NR8383 cells. The ALI/ARDS model of SD rats was established by LPS (10 mg/kg) intratracheal instillation. Following a four-hour intratracheal instillation of LPS, 50 μl of RLE-6TN exosomes were injected through the tail vein. After that, SAL and miR-146a antagomir were injected into the tail vein for 72 h, respectively. As the changes of HE stain, body weight and ALI score are observed. The expression of miR-146a, TLR4, NF-kB, IRAK1, TRAF6 and their related proteins were detected by RT-PCR and Western blot, respectively. TNF-α, IL-6, IL-8 and IL-1 β inflammatory factors were detected by ELISA. The expression of miR-146a, NF-kB, IRAK, TRAF6 and related inflammatory factors in LPS-induced NR8383 was significantly higher than that in the control group, while SAL has greatly reduced the expression of TLR4 mediated NF-kB inflammatory pathway and related inflammatory factors. SAL can significantly improve the LPS-induced lung morphological abnormalities, slowed down the rate of weight loss in rats, and reducing the ALI score. The expression trend of NF-kB, IRAK, TRAF6 and related inflammatory factors in rats’ lung tissues was consistent with that in NR8383 cells. SAL has a protective effect on ALI/ARDS caused by sepsis, which is likely to be developed to a potential treatment for the disease. To sum up, this study provides a new theoretical basis for the treatment of ALI/ARDS with SAL.
Collapse
Affiliation(s)
- Lanzhi Zheng
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Jianming Su
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Zhuoyi Zhang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Lu Jiang
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Jinling Wei
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Xiaoyang Xu
- Emergency Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China
| | - Shumin Lv
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou City, 310006, Zhejiang Province, China.
| |
Collapse
|
16
|
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C, Garcia JGN. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality. Antioxid Redox Signal 2019; 31:1027-1052. [PMID: 31016989 PMCID: PMC6939590 DOI: 10.1089/ars.2018.7701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
Collapse
Affiliation(s)
- Heather Lynn
- Department of Physiological Sciences and University of Arizona, Tucson, Arizona.,Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Nancy Casanova
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | | | - Christian Bime
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
17
|
Qin S, Wang H, Liu G, Mei H, Chen M. miR‑21‑5p ameliorates hyperoxic acute lung injury and decreases apoptosis of AEC II cells via PTEN/AKT signaling in rats. Mol Med Rep 2019; 20:4953-4962. [PMID: 31702805 PMCID: PMC6854583 DOI: 10.3892/mmr.2019.10779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Inhibiting apoptosis of type II alveolar epithelial cells (AEC II) is an effective way to decrease hyperoxic acute lung injury (HALI); however, the specific underlying molecular mechanisms have not yet been fully elucidated. Although miRNA‑21‑5p has previously been reported to decrease H2O2‑induced AEC II apoptosis by targeting PTEN in vitro, whether miR‑21‑5p can decrease HALI in vivo and the downstream molecular mechanisms remain unclear. In the present study, rats were endotracheally administered with an miR‑21‑5p‑encoding (AAV‑6‑miR‑21‑5p) or a negative control adenovirus vector, and then a HALI model was established by exposure to hyperoxia. At 3 weeks following the administration of AAV‑6‑miR‑21‑5p, the severity of HALI was decreased, as evidenced by the improved outcome of the oxygenation index, respiratory index, wet/dry weight ratio and pathological scores of the HALI lungs. To further investigate the underlying mechanisms, AEC II cells were isolated from the lungs of the experimental rats and cultured. The expression levels of miR‑21‑5p and its target gene, PTEN, were detected, as well as the levels of phosphorylated and total AKT. In addition, the apoptosis rate of AEC II was detected by flow cytometry. The results demonstrated that AAV‑6‑miR‑21‑5p administration increased the miR‑21‑5p levels in primary AEC II cells, while it decreased the expression levels of PTEN. miR‑21‑5p overexpression also increased AKT phosphorylation in AEC II cells from the HALI lungs compared with that of the HALI alone group and the control virus group. The present study indicated that miR‑21‑5p ameliorated HALI in vivo, which may have resulted from the inhibition of PTEN/AKT‑induced apoptosis of AEC II cells. These findings suggest that miR‑21‑5p and PTEN/AKT signaling might serve as potential targets for HALI treatment.
Collapse
Affiliation(s)
- Song Qin
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hongliang Wang
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guoyue Liu
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hong Mei
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Miao Chen
- Intensive Care Unit, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
18
|
Chen X, Wang T, Song L, Liu X. Activation of multiple Toll-like receptors serves different roles in sepsis-induced acute lung injury. Exp Ther Med 2019; 18:443-450. [PMID: 31258682 PMCID: PMC6566018 DOI: 10.3892/etm.2019.7599] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
The activation of Toll-like receptors (TLRs) is involved in the innate immune response and the acute inflammatory response following sepsis-induced acute lung injury (ALI). Increasing evidence has demonstrated that sepsis-induced ALI may be closely associated with several abnormal TLRs, activated by components of microorganisms. However, the number of TLRs involved in this process and the extent of their involvement has not been fully elucidated. The current study examined the simultaneous activation of four TLRs closely associated with sepsis-induced ALI. The results demonstrated that in contrast to the sham-operated group, the mRNA and protein expression levels of TLR2/4/9 were significantly increased in the cecal ligation and puncture (CLP)-operated group. In addition, TLR2-/-, TLR3-/-, TLR4-/- and TLR9-/- C57BL/6 mice were used to establish a CLP-induced ALI animal model and measure the expression levels of TNF-α and IL-6 in plasma and lung tissue samples. The expression of both TNF-α and IL-6 were significantly decreased in TLR2-/-, TLR4-/- and TLR9-/- mice compared with WT mice. In addition, the results revealed that knockdown of TLR2, 4 or 9 decreased immune cell infiltration and therefore may attenuate lung injury. Furthermore, the overall survival was significantly increased in TLR2-/-, 4-/- and 9-/- CLP-induced ALI mice compared with the WT CLP-induced ALI mice. However, there was no statistical significance between TLR3-/- CLP-induced ALI and WT CLP-induced ALI in the current study. Taken together, these results suggest that in the sepsis-induced ALI model, several TLRs are upregulated and participate in the inflammatory response. Therefore, inhibition of multiple TLRs including TLR2, 9, and especially TLR4 simultaneously, but not TLR3, may be a potential therapeutic target for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Xinlei Chen
- Department of Anesthesia, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| | - Tingting Wang
- Department of Anesthesia, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| | - Liang Song
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| | - Xiangyan Liu
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
19
|
Zhang XP, Zhang WT, Qiu Y, Ju MJ, Tu GW, Luo Z. Understanding Gene Therapy in Acute Respiratory Distress Syndrome. Curr Gene Ther 2019; 19:93-99. [PMID: 31267871 DOI: 10.2174/1566523219666190702154817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) and its complications remain lifethreatening conditions for critically ill patients. The present therapeutic strategies such as prone positioning ventilation strategies, nitric oxide inhalation, restrictive intravenous fluid management, and extracorporeal membrane oxygenation (ECMO) do not contribute much to improving the mortality of ARDS. The advanced understanding of the pathophysiology of acute respiratory distress syndrome suggests that gene-based therapy may be an innovative method for this disease. Many scientists have made beneficial attempts to regulate the immune response genes of ARDS, maintain the normal functions of alveolar epithelial cells and endothelial cells, and inhibit the fibrosis and proliferation of ARDS. Limitations to effective pulmonary gene therapy still exist, including the security of viral vectors and the pulmonary defense mechanisms against inhaled particles. Here, we summarize and review the mechanism of gene therapy for acute respiratory distress syndrome and its application.
Collapse
Affiliation(s)
- Xue-Peng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Wei-Tao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, No. 179 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Yue Qiu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Min-Jie Ju
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai 200032, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, No. 668 Jinghu Road, Huli District, Xiamen 361015, China
| |
Collapse
|
20
|
Bi G, Wu L, Huang P, Islam S, Heruth DP, Zhang LQ, Li DY, Sampath V, Huang W, Simon BA, Easley RB, Ye SQ. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown. FASEB J 2018; 32:3583-3596. [PMID: 29452569 PMCID: PMC5998971 DOI: 10.1096/fj.201701059r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Although a deficiency of surfactant protein B (SFTPB) has been associated with lung injury, SFTPB expression has not yet been linked with nicotinamide phosphoribosyltransferase (NAMPT), a potential biomarker of acute lung injury (ALI). The effects of Nampt in the pulmonary epithelial cell on both SFTPB expression and lung inflammation were investigated in a LPS-induced ALI mouse model. Pulmonary epithelial cell-specific knockdown of Nampt gene expression, achieved by the crossing of Nampt gene exon 2 floxed mice with mice expressing epithelial-specific transgene Cre or by the use of epithelial-specific expression of anti-Nampt antibody cDNA, significantly attenuated LPS-induced ALI. Knockdown of Nampt expression was accompanied by lower levels of bronchoalveolar lavage (BAL) neutrophil infiltrates, total protein and TNF-α levels, as well as lower lung injury scores. Notably, Nampt knockdown was also associated with significantly increased BAL SFTPB levels relative to the wild-type control mice. Down-regulation of NAMPT increased the expression of SFTPB and rescued TNF-α-induced inhibition of SFTPB, whereas overexpression of NAMPT inhibited SFTPB expression in both H441 and A549 cells. Inhibition of NAMPT up-regulated SFTPB expression by enhancing histone acetylation to increase its transcription. Additional data indicated that these effects were mainly mediated by NAMPT nonenzymatic function via the JNK pathway. This study shows that pulmonary epithelial cell-specific knockdown of NAMPT expression attenuated ALI, in part, via up-regulation of SFTPB expression. Thus, epithelial cell-specific knockdown of Nampt may be a potential new and viable therapeutic modality to ALI.-Bi, G., Wu, L., Huang, P., Islam, S., Heruth, D. P., Zhang, L. Q., Li, D.-Y., Sampath, V., Huang, W., Simon, B. A., Easley, R. B., Ye, S. Q. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown.
Collapse
Affiliation(s)
- Guangliang Bi
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wu
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Pediatrics, Changsha Central Hospital, Changsha, China
| | - Peixin Huang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Shamima Islam
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Daniel P. Heruth
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Li Qin Zhang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Ding-You Li
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Venkatesh Sampath
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Weimin Huang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Brett A. Simon
- Department of Anesthesiology, Josie Robertson Surgery Center, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ronald Blaine Easley
- Department of Pediatrics-Anesthesiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shui Qing Ye
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Biomedical and Health Informatics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
21
|
Sondhi D, Stiles KM, De BP, Crystal RG. Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Hum Gene Ther 2017; 28:3-84. [PMID: 27927014 DOI: 10.1089/hum.2016.152] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.
Collapse
Affiliation(s)
- Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College , New York, New York
| |
Collapse
|
22
|
Wei Y, Tejera P, Wang Z, Zhang R, Chen F, Su L, Lin X, Bajwa EK, Thompson BT, Christiani DC. A Missense Genetic Variant in LRRC16A/CARMIL1 Improves Acute Respiratory Distress Syndrome Survival by Attenuating Platelet Count Decline. Am J Respir Crit Care Med 2017; 195:1353-1361. [PMID: 27768389 DOI: 10.1164/rccm.201605-0946oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Platelets are believed to contribute to acute respiratory distress syndrome (ARDS) pathogenesis through inflammatory coagulation pathways. We recently reported that leucine-rich repeat-containing 16A (LRRC16A) modulates baseline platelet counts to mediate ARDS risk. OBJECTIVES To examine the role of LRRC16A in ARDS survival and its mediating effect through platelets. METHODS A total of 414 cases with ARDS from intensive care units (ICUs) were recruited who had exome-wide genotyping data, detailed platelet counts, and follow-up data during ICU hospitalization. Association of LRRC16A single-nucleotide polymorphisms (SNPs) and ARDS prognosis, and the mediating effect of SNPs through platelet counts were analyzed. LRRC16A mRNA expression levels for 39 cases with ARDS were also evaluated. MEASUREMENTS AND MAIN RESULTS Missense SNP rs9358856G>A within LRRC16A was associated with favorable survival within 28 days (hazard ratio [HR], 0.57; 95% confidence interval [CI], 0.38-0.87; P = 0.0084) and 60 days (P = 0.0021) after ICU admission. Patients with ARDS who carried the variant genotype versus the wild-type genotype showed an attenuated platelet count decline (∆PLT) within 28 days (difference of ∆PLT, -27.8; P = 0.025) after ICU admission. Patients with ∆PLT were associated with favorable ARDS outcomes. Mediation analysis indicated that the SNP prognostic effect was mediated through ∆PLT within 28 days (28-day survival: HRIndirect, 0.937; 95% CI, 0.918-0.957; P = 0.0009, 11.53% effects mediated; 60-day survival: HRIndirect, 0.919; 95% CI, 0.901-0.936; P = 0.0001, 14.35% effects mediated). Functional exploration suggested that this SNP reduced LRRC16A expression at ICU admission, which was associated with a lesser ∆PLT during ICU hospitalization. CONCLUSIONS LRRC16A appears to mediate ∆PLT after ICU admission to affect the prognosis in patients with ARDS.
Collapse
Affiliation(s)
- Yongyue Wei
- 1 Department of Environmental Health and.,2 Department of Biostatistics, School of Public Health and.,3 China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; and
| | | | | | - Ruyang Zhang
- 1 Department of Environmental Health and.,2 Department of Biostatistics, School of Public Health and
| | - Feng Chen
- 2 Department of Biostatistics, School of Public Health and.,3 China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; and
| | - Li Su
- 1 Department of Environmental Health and
| | - Xihong Lin
- 4 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Ednan K Bajwa
- 5 Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - B Taylor Thompson
- 5 Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David C Christiani
- 1 Department of Environmental Health and.,3 China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; and.,5 Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Sun LL, Liu TJ, Li L, Tang W, Zou JJ, Chen XF, Zheng JY, Jiang BG, Shi YQ. Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces β-cell proliferation in diabetic mice. Int J Mol Med 2017; 39:936-948. [PMID: 28290605 PMCID: PMC5360423 DOI: 10.3892/ijmm.2017.2914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
Recent progress in regenerative medicine has suggested that mesenchymal stem cell (MSC)-based therapy is a novel potential cure for diabetes. Betatrophin is a newly identified hormone that can increase the production and expansion of insulin-secreting β-cells when administered to mice. In this study, we evaluated the effect of betatrophin overexpression by human adipose-derived MSCs (ADMSCs) by in vitro experiments, as well as following their transplantation into a mice with streptozotocin (STZ)-induced diabetes. The overexpression of betatrophin did not affect the ADMSCs in terms of proliferation, differentiation and morphology. However, the co-culture of human islets with ADMSCs overexpressing betatrophin (ADMSCs-BET) induced islet proliferation, β-cell specific transcription factor expression, and the islet production of insulin under the stimulation of glucose or KCl and Arg. In addition, ADMSCs-BET enhanced the anti-inflammatory and anti-apoptotic effects of the co-cultured islets compared with ADMSCs cultured alone. In mice with STZ-induced diabetes, the transplantation of ADMSCs-BET ameliorated the hyperglycemia and weight loss associated with STZ-induced diabetes; ADMSCs-BET also significantly enhanced the ratio of β-cells per islet compared to the transplantation of ADMSCs alone. Thus, our study demonstrates a novel strategy for inducing β-cell regeneration. ADMSCs-BET may replace insulin injections by increasing the number of endogenous insulin-producing cells in patients with diabetes. This combined strategy of ADMSC transplantation and gene therapy may prove to be a useful therapy for the treatment of diabetes.
Collapse
Affiliation(s)
- Liang-Liang Sun
- Department of Endocrinology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Tian-Jin Liu
- Institute of Biochemistry and Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Limei Li
- Clinical and Translational Research Center Shanghai East Hospital, Key Laboratory of Arrhythmias of Ministry of Education, Shanghai 200120, P.R. China
| | - Wei Tang
- Department of Endocrinology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Jun-Jie Zou
- Department of Endocrinology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiang-Fang Chen
- Department of Endocrinology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiao-Yang Zheng
- Department of Endocrinology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Bei-Ge Jiang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200438, P.R. China
| | - Yong-Quan Shi
- Department of Endocrinology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
24
|
Rocco PRM, Nieman GF. ARDS: what experimental models have taught us. Intensive Care Med 2016; 42:806-810. [PMID: 26928038 DOI: 10.1007/s00134-016-4268-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Gary F Nieman
- Department of Surgery, Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
25
|
Wei Y, Wang Z, Su L, Chen F, Tejera P, Bajwa EK, Wurfel MM, Lin X, Christiani DC. Platelet count mediates the contribution of a genetic variant in LRRC16A to ARDS risk. Chest 2015; 147:607-617. [PMID: 25254322 DOI: 10.1378/chest.14-1246] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Platelets are believed to be critical in pulmonary-origin ARDS as mediators of endothelial damage through their interactions with fibrinogen and multiple signal transduction pathways. A prior meta-analysis identified five loci for platelet count (PLT): BAD, LRRC16A, CD36, JMJD1C, and SLMO2. This study aims to validate the quantitative trait loci (QTLs) of PLT within BAD, LRRC16A, CD36, JMJD1C, and SLMO2 among critically ill patients and to investigate the associations of these QTLs with ARDS risk that may be mediated through PLT. METHODS ARDS cases and at-risk control subjects were recruited from the intensive care unit of the Massachusetts General Hospital. Exome-wide genotyping data of 629 ARDS cases and 1,026 at-risk control subjects and genome-wide gene expression profiles of 18 at-risk control subjects were generated for analysis. RESULTS Single-nucleotide polymorphism (SNP) rs7766874 within LRRC16A was a significant locus for PLT among at-risk control subjects (β = -13.00; 95% CI, -23.22 to -2.77; P = .013). This association was validated using LRRC16A gene expression data from at-risk control subjects (β = 77.03 per 1 SD increase of log2-transformed expression; 95% CI, 27.26-126.80; P = .005). Further, rs7766874 was associated with ARDS risk conditioned on PLT (OR = 0.68; 95% CI, 0.51-0.90; P = .007), interacting with PLT (OR = 1.15 per effect allele per 100 × 103/μL of PLT; 95% CI, 1.03-1.30; P = .015), and mediated through PLT (indirect OR = 1.045; 95% CI, 1.007-1.085; P = .021). CONCLUSIONS Our findings support the role of LRRC16A in platelet formation and suggest the importance of LRRC16A in ARDS pathophysiology by interacting with, and being mediated through, platelets.
Collapse
Affiliation(s)
- Yongyue Wei
- Department of Environmental Health, Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Feng Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Paula Tejera
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Ednan K Bajwa
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mark M Wurfel
- Division of Pulmonary and Critical Care Medicine, University of Washington, Harborview Medical Center, Seattle, WA
| | - Xihong Lin
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - David C Christiani
- Department of Environmental Health, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
26
|
Suen CM, Mei SHJ, Kugathasan L, Stewart DJ. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases. Compr Physiol 2014; 3:1749-79. [PMID: 24265244 DOI: 10.1002/cphy.c120034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety.
Collapse
Affiliation(s)
- Colin M Suen
- Sprott Centre for Stem Cell Research, The Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
ZHANG ZHUO, CHEN NI, LIU JINBO, WU JIANBO, ZHANG JING, ZHANG YING, JIANG XIAN. Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88-dependent Toll-like receptor 4 signaling pathway. Mol Med Rep 2014; 10:101-6. [DOI: 10.3892/mmr.2014.2226] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 02/25/2014] [Indexed: 11/05/2022] Open
|
28
|
Boyle AJ, McNamee JJ, McAuley DF. Biological therapies in the acute respiratory distress syndrome. Expert Opin Biol Ther 2014; 14:969-81. [PMID: 24702248 DOI: 10.1517/14712598.2014.905536] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The acute respiratory distress syndrome (ARDS) is characterised by life-threatening respiratory failure requiring mechanical ventilation, and multiple organ failure. It has a mortality of up to 30 - 45% and causes a long-term reduction in quality of life for survivors, with only approximately 50% of survivors able to return to work 12 months after hospital discharge. AREAS COVERED In this review we discuss the complex pathophysiology of ARDS, describe the mechanistic pathways implicated in the development of ARDS and how these are currently being targeted with novel biological therapies. These include therapies targeted against inflammatory cytokines, mechanisms mediating increased alveolar permeability and disordered coagulation, as well as the potential of growth factors, gene therapy and mesenchymal stem cells. EXPERT OPINION Although understanding of the pathophysiology of ARDS has improved, to date there are no effective pharmacological interventions that target a specific mechanism, with the only potentially effective therapies to date aiming to limit ventilator-associated lung injury. However, we believe that through this improved mechanistic insight and better clinical trial design, there is cautious optimism for the future of biological therapies in ARDS, and expect current and future biological compounds to provide treatment options to clinicians managing this devastating condition.
Collapse
Affiliation(s)
- Andrew James Boyle
- Queen's University Belfast, Centre for Infection and Immunity , Belfast , UK
| | | | | |
Collapse
|
29
|
Chen J, Li C, Gao X, Li C, Liang Z, Yu L, Li Y, Xiao X, Chen L. Keratinocyte growth factor gene delivery via mesenchymal stem cells protects against lipopolysaccharide-induced acute lung injury in mice. PLoS One 2013; 8:e83303. [PMID: 24367590 PMCID: PMC3867420 DOI: 10.1371/journal.pone.0083303] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 11/09/2013] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high morbidity and mortality, and have no specific therapy. Keratinocyte growth factor (KGF) is a critical factor for pulmonary epithelial repair and acts via the stimulation of epithelial cell proliferation. Mesenchymal stem cells (MSCs) have been proved as good therapeutic vectors. Thus, we hypothesized that MSC-based KGF gene therapy would have beneficial effects on lipopolysaccharide(LPS)-induced lung injury. After two hours of intratracheal LPS administration to induce lung injury, mice received saline, MSCs alone, empty vector-engineered MSCs (MSCs-vec) or KGF-engineered MSCs (MSCs-kgf) via the tail vein. The MSCs-kgf could be detected in the recipient lungs and the level of KGF expression significantly increased in the MSCs-kgf mice. The MSC-mediated administration of KGF not only improved pulmonary microvascular permeability but also mediated a down-regulation of proinflammatory responses (reducing IL-1β and TNF-α) and an up-regulation of anti-inflammatory responses (increasing cytokine IL-10). Furthermore, the total severity scores of lung injury were significantly reduced in the MSCs-kgf group compared with the other three groups. The underlying mechanism of the protective effect of KGF on ALI may be attributed to the promotion of type II lung epithelial cell proliferation and the enhancement of surfactant synthesis. These findings suggest that MSCs-based KGF gene therapy may be a promising strategy for ALI treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chunsun Li
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaofang Gao
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chonghui Li
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhixin Liang
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ling Yu
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yanqin Li
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoyi Xiao
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Liangan Chen
- Department of Respiratory Medicine, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
30
|
Therapeutic Effect of Chung-Pae, an Experimental Herbal Formula, on Acute Lung Inflammation Is Associated with Suppression of NF- κ B and Activation of Nrf2. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:659459. [PMID: 24062787 PMCID: PMC3770013 DOI: 10.1155/2013/659459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is an inflammatory disease with high mortality, but therapeutics against it is unavailable. Recently, we elaborated a formula, named Chung-pae (CP), that comprises four ethnic herbs commonly prescribed against various respiratory diseases in Asian traditional medicine. CP is being administered in aerosol to relieve various respiratory symptoms of patients in our clinic. Here, we sought to examine whether CP has a therapeutic effect on ALI and to uncover the mechanism behind it. Reporter assays show that CP suppressed the transcriptional activity of proinflammatory NF-κB and activated that of anti-inflammatory Nrf2. Similarly, CP suppressed the expression of NF-κB dependent, proinflammatory cytokines and induced that of Nrf2 dependent genes in RAW 264.7. An aerosol intratracheal administration of CP effectively reduced neutrophilic infiltration and the expression of pro-inflammatory cytokines, hallmarks of ALI, in the lungs of mice that received a prior intraperitoneal injection of lipopolysaccharide. The intratracheal CP administration concomitantly enhanced the expression of Nrf2 dependent genes in the lung. Therefore, our results evidenced a therapeutic effect of CP on ALI, in which differential regulation of the two key inflammatory factors, NF-κB and Nrf2, was involved. We propose that CP can be a new therapeutic formula against ALI.
Collapse
|
31
|
Wang Q, Lian QQ, Li R, Ying BY, He Q, Chen F, Zheng X, Yang Y, Wu DR, Zheng SX, Huang CJ, Smith FG, Jin SW. Lipoxin A(4) activates alveolar epithelial sodium channel, Na,K-ATPase, and increases alveolar fluid clearance. Am J Respir Cell Mol Biol 2013; 48:610-8. [PMID: 23470626 DOI: 10.1165/rcmb.2012-0274oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Edema fluid resorption is critical for gas exchange, and both alveolar epithelial sodium channel (ENaC) and Na,K-ATPase are accredited with key roles in the resolution of pulmonary edema. Alveolar fluid clearance (AFC) was measured in in situ ventilated lungs by instilling isosmolar 5% BSA solution with Evans Blue-labeled albumin tracer (5 ml/kg) and measuring the change in Evans Blue-labeled albumin concentration over time. Treatment with lipoxin A4 and lipoxin receptor agonist (5(S), 6(R)-7-trihydroxymethyl 17 heptanoate) significantly stimulated AFC in oleic acid (OA)-induced lung injury, with the outcome of decreased pulmonary edema. Lipoxin A4 and 5(S), 6(R)-7-trihydroxymethyl 17 heptanoate not only up-regulated the ENaC α and ENaC γ subunits protein expression, but also increased Na,K-ATPase α1 subunit protein expression and Na,K-ATPase activity in lung tissues. There was no significant difference of intracellular cAMP level between the lipoxin A4 treatment and OA group. However, the intracellular cGMP level was significantly decreased after lipoxin A4 treatment. The beneficial effects of lipoxin A4 were abrogated by butoxycarbonyl-Phe-Leu-Phe-Leu-Ph (lipoxin A4 receptor antagonist) in OA-induced lung injury. In primary rat alveolar type II epithelial cells stimulated with LPS, lipoxin A4 increased ENaC α and ENaC γ subunits protein expression and Na,K-ATPase activity. Lipoxin A4 stimulated AFC through activation of alveolar epithelial ENaC and Na,K-ATPase.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical College, Zhejiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Melo AC, Valença SS, Gitirana LB, Santos JC, Ribeiro ML, Machado MN, Magalhães CB, Zin WA, Porto LC. Redox markers and inflammation are differentially affected by atorvastatin, pravastatin or simvastatin administered before endotoxin-induced acute lung injury. Int Immunopharmacol 2013; 17:57-64. [PMID: 23747588 DOI: 10.1016/j.intimp.2013.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 05/03/2013] [Accepted: 05/20/2013] [Indexed: 11/29/2022]
Abstract
Statins are standard therapy for the treatment of lipid disorders, and the field of redox biology accepts that statins have antioxidant properties. Our aim in this report was to consider the pleiotropic effects of atorvastatin, pravastatin and simvastatin administered prior to endotoxin-induced acute lung injury. Male mice were divided into 5 groups and intraperitoneally injected with LPS (10 mg/kg), LPS plus atorvastatin (10 mg/kg/day; A + LPS group), LPS plus pravastatin (5 mg/kg/day; P + LPS group) or LPS plus simvastatin (20 mg/kg/day; S + LPS group). The control group received saline. All mice were sacrificed one day later. There were fewer leukocytes in the P + LPS and S + LPS groups than in the LPS group. MCP-1 cytokine levels were lower in the P + LPS group, while IL-6 levels were lower in the P + LPS and S + LPS groups. TNF-α was lower in all statin-treated groups. Levels of redox markers (superoxide dismutase and catalase) were lower in the A + LPS group (p < 0.01). The extent of lipid peroxidation (malondialdehyde and hydroperoxides) was reduced in all statin-treated groups (p < 0.05). Myeloperoxidase was lower in the P + LPS group (p < 0.01). Elastance levels were significantly greater in the LPS group compared to the statin groups. Our results suggest that atorvastatin and pravastatin but not simvastatin exhibit anti-inflammatory and antioxidant activity in endotoxin-induced acute lung injury.
Collapse
Affiliation(s)
- Adriana Correa Melo
- Programa de Pós-graduação em Biologia Humana e Experimental, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Griesenbach U, Alton EWFW. Expert opinion in biological therapy: update on developments in lung gene transfer. Expert Opin Biol Ther 2013; 13:345-60. [PMID: 23289747 DOI: 10.1517/14712598.2013.735656] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Gene therapy may be suitable for a large number of acquired and inherited lung diseases, and research efforts in the field are vast. Although gene transfer to the lung has proven more challenging than initially anticipated, significant progress has been made over the last 10 years. AREAS COVERED Here, we will first review viral and non-viral gene transfer agents that have been assessed for lung gene therapy and discuss key barriers to pulmonary gene transfer. We will then review progress in gene therapy for various lung diseases. EXPERT OPINION In our view, one of the most significant developments in recent years is the generation of lentiviral vectors which efficiently transduce lung tissue. Focused and coordinated efforts assessing lentivirus safety and scaling up lentivirus production will be required to move this vector into clinical lung gene therapy studies. Although market authorization for a lung gene therapy product is not yet available, we are optimistic that this key milestone can be achieved in the next few years.
Collapse
Affiliation(s)
- Uta Griesenbach
- National Heart and Lung Institute, Imperial College London, Department of Gene Therapy, and The UK Cystic Fibrosis Gene Therapy Consortium, London, UK.
| | | |
Collapse
|
34
|
Zhao Y, Yang C, Wang H, Li H, Du J, Gu W, Jiang J. Therapeutic effects of bone marrow-derived mesenchymal stem cells on pulmonary impact injury complicated with endotoxemia in rats. Int Immunopharmacol 2013; 15:246-53. [DOI: 10.1016/j.intimp.2012.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/14/2012] [Accepted: 12/03/2012] [Indexed: 01/05/2023]
|
35
|
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), have high mortality rates with few treatment options. An important regulatory factor in the pathology observed in ALI/ARDS is a disruption of the pulmonary endothelial barrier which, in combination with epithelial barrier disruption, causes leakage of fluid, protein and cells into lung airspaces. Degradation of the glycosaminoglycan, hyaluronan (HA), is involved in reduction of the endothelial glycocalyx, disruption of endothelial cell-cell contacts and activation of HA binding proteins upregulated in ALI/ARDS which promote a loss of pulmonary vascular integrity. In contrast, exogenous administration of high molecular weight HA has been shown to be protective in several models of ALI. This review focuses on the dichotomous role of HA to both promote and inhibit ALI based on its size and the HA binding proteins present. Further, potential therapeutic applications of high molecular weight HA in treating ALI/ARDS are discussed.
Collapse
Affiliation(s)
- Patrick A Singleton
- Department of Medicine, Section of Pulmonary and Critical Care, The University of Chicago, Chicago, IL 60637, USA ; Department of Anesthesia and Critical Care, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
36
|
Lennon FE, Singleton PA. Hyaluronan regulation of vascular integrity. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2011; 1:200-213. [PMID: 22254199 PMCID: PMC3253523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 07/16/2011] [Indexed: 05/31/2023]
Abstract
Vascular integrity or the maintenance of blood vessel continuity is a fundamental process regulated, in part, by the endothelial glycocalyx and cell-cell junctions. Defects in endothelial barrier function are an initiating factor in several disease processes including atherosclerosis, ischemia/reperfusion, tumor angiogenesis, cancer metastasis, diabetes, sepsis and acute lung injury. The glycosaminoglycan, hyaluronan (HA), maintains vascular integrity through endothelial glycocalyx modulation, caveolin-enriched microdomain regulation and interaction with endothelial HA binding proteins. Certain disease states increase hyaluronidase activity and reactive oxygen species (ROS) generation which break down high molecular weight HA to low molecular weight fragments causing damage to the endothelial glycocalyx. Further, these HA fragments can activate specific HA binding proteins upregulated in vascular disease to promote actin cytoskeletal reorganization and inhibition of endothelial cell-cell contacts. This review focuses on the crucial role of HA in vascular integrity and how HA degradation promotes vascular barrier disruption.
Collapse
|