1
|
Buono L, Martinez-Morales JR. Retina Development in Vertebrates: Systems Biology Approaches to Understanding Genetic Programs: On the Contribution of Next-Generation Sequencing Methods to the Characterization of the Regulatory Networks Controlling Vertebrate Eye Development. Bioessays 2020; 42:e1900187. [PMID: 31997389 DOI: 10.1002/bies.201900187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/16/2020] [Indexed: 12/18/2022]
Abstract
The ontogeny of the vertebrate retina has been a topic of interest to developmental biologists and human geneticists for many decades. Understanding the unfolding of the genetic program that transforms a field of progenitors cells into a functionally complex and multi-layered sensory organ is a formidable challenge. Although classical genetic studies succeeded in identifying the key regulators of retina specification, understanding the architecture of their gene network and predicting their behavior are still a distant hope. The emergence of next-generation sequencing platforms revolutionized the field unlocking the access to genome-wide datasets. Emerging techniques such as RNA-seq, ChIP-seq, ATAC-seq, or single cell RNA-seq are used to characterize eye developmental programs. These studies provide valuable information on the transcriptional and cis-regulatory profiles of precursors and differentiated cells, outlining the trajectories that connect each intermediate state. Here, recent systems biology efforts are reviewed to understand the genetic programs shaping the vertebrate retina.
Collapse
Affiliation(s)
- Lorena Buono
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA) , Seville, 41013 , Spain
| | | |
Collapse
|
2
|
Woods SM, Mountjoy E, Muir D, Ross SE, Atan D. A comparative analysis of rod bipolar cell transcriptomes identifies novel genes implicated in night vision. Sci Rep 2018; 8:5506. [PMID: 29615777 PMCID: PMC5883057 DOI: 10.1038/s41598-018-23901-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
In the mammalian retina, rods and a specialised rod-driven signalling pathway mediate visual responses under scotopic (dim light) conditions. As rods primarily signal to rod bipolar cells (RBCs) under scoptic conditions, disorders that affect rod or RBC function are often associated with impaired night vision. To identify novel genes expressed by RBCs and, therefore, likely to be involved in night vision, we took advantage of the adult Bhlhe23−/− mouse retina (that lacks RBCs) to derive the RBC transcriptome. We found that genes expressed by adult RBCs are mainly involved in synaptic structure and signalling, whereas genes that influence RBC development are also involved in the cell cycle and transcription/translation. By comparing our data with other published retinal and bipolar cell transcriptomes (where we identify RBCs by the presence of Prkca and/or Pcp2 transcripts), we have derived a consensus for the adult RBC transcriptome. These findings ought to facilitate further research into physiological mechanisms underlying mammalian night vision as well as proposing candidate genes for patients with inherited causes of night blindness.
Collapse
Affiliation(s)
- Sasha M Woods
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK.
| | - Edward Mountjoy
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Duncan Muir
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK
| | - Sarah E Ross
- Departments of Neurobiology and Anesthesiology and the Center for Pain Research, University of Pittsburgh, Pittsburgh, 15213-2536, USA
| | - Denize Atan
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
3
|
Chen Y, Brooks MJ, Gieser L, Swaroop A, Palczewski K. Transcriptome profiling of NIH3T3 cell lines expressing opsin and the P23H opsin mutant identifies candidate drugs for the treatment of retinitis pigmentosa. Pharmacol Res 2016; 115:1-13. [PMID: 27838510 DOI: 10.1016/j.phrs.2016.10.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 01/01/2023]
Abstract
Mammalian cells are commonly employed in screening assays to identify active compounds that could potentially affect the progression of different human diseases including retinitis pigmentosa (RP), a class of inherited diseases causing retinal degeneration with compromised vision. Using transcriptome analysis, we compared NIH3T3 cells expressing wildtype (WT) rod opsin with a retinal disease-causing single P23H mutation. Surprisingly, heterologous expression of WT opsin in NIH3T3 cells caused more than a 2-fold change in 783 out of 16,888 protein coding transcripts. The perturbed genes encoded extracellular matrix proteins, growth factors, cytoskeleton proteins, glycoproteins and metalloproteases involved in cell adhesion, morphology and migration. A different set of 347 transcripts was either up- or down-regulated when the P23H mutant opsin was expressed suggesting an altered molecular perturbation compared to WT opsin. Transcriptome perturbations elicited by drug candidates aimed at mitigating the effects of the mutant protein revealed that different drugs targeted distinct molecular pathways that resulted in a similar phenotype selected by a cell-based high-throughput screen. Thus, transcriptome profiling can provide essential information about the therapeutic potential of a candidate drug to restore normal gene expression in pathological conditions.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Matthew J Brooks
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory (N-NRL), National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD 20892, United States
| | - Krzysztof Palczewski
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
4
|
Yang HJ, Ratnapriya R, Cogliati T, Kim JW, Swaroop A. Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease. Prog Retin Eye Res 2015; 46:1-30. [PMID: 25668385 PMCID: PMC4402139 DOI: 10.1016/j.preteyeres.2015.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 01/10/2023]
Abstract
Genomics and genetics have invaded all aspects of biology and medicine, opening uncharted territory for scientific exploration. The definition of "gene" itself has become ambiguous, and the central dogma is continuously being revised and expanded. Computational biology and computational medicine are no longer intellectual domains of the chosen few. Next generation sequencing (NGS) technology, together with novel methods of pattern recognition and network analyses, has revolutionized the way we think about fundamental biological mechanisms and cellular pathways. In this review, we discuss NGS-based genome-wide approaches that can provide deeper insights into retinal development, aging and disease pathogenesis. We first focus on gene regulatory networks (GRNs) that govern the differentiation of retinal photoreceptors and modulate adaptive response during aging. Then, we discuss NGS technology in the context of retinal disease and develop a vision for therapies based on network biology. We should emphasize that basic strategies for network construction and analyses can be transported to any tissue or cell type. We believe that specific and uniform guidelines are required for generation of genome, transcriptome and epigenome data to facilitate comparative analysis and integration of multi-dimensional data sets, and for constructing networks underlying complex biological processes. As cellular homeostasis and organismal survival are dependent on gene-gene and gene-environment interactions, we believe that network-based biology will provide the foundation for deciphering disease mechanisms and discovering novel drug targets for retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyun-Jin Yang
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Tiziana Cogliati
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Jung-Woong Kim
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892-0610, USA.
| |
Collapse
|
5
|
Asato R, Yoshida S, Ogura A, Nakama T, Ishikawa K, Nakao S, Sassa Y, Enaida H, Oshima Y, Ikeo K, Gojobori T, Kono T, Ishibashi T. Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes. PLoS One 2013; 8:e54191. [PMID: 23372684 PMCID: PMC3553111 DOI: 10.1371/journal.pone.0054191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/07/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Proliferative vitreoretinopathy (PVR) is a destructive complication of retinal detachment and vitreoretinal surgery which can lead to severe vision reduction by tractional retinal detachments. The purpose of this study was to determine the gene expression profile of epiretinal membranes (ERMs) associated with a PVR (PVR-ERM) and to compare it to the expression profile of less-aggressive secondary ERMs. METHODOLOGY/PRINCIPAL FINDINGS A PCR-amplified complementary DNA (cDNA) library was constructed using the RNAs isolated from ERMs obtained during vitrectomy. The sequence from the 5' end was obtained for randomly selected clones and used to generate expressed sequence tags (ESTs). We obtained 1116 nonredundant clusters representing individual genes expressed in PVR-ERMs, and 799 clusters representing the genes expressed in secondary ERMs. The transcriptome of the PVR-ERMs was subdivided by functional subsets of genes related to metabolism, cell adhesion, cytoskeleton, signaling, and other functions, by FatiGo analysis. The genes highly expressed in PVR-ERMs were compared to those expressed in the secondary ERMs, and these were subdivided by cell adhesion, proliferation, and other functions. Querying 10 cell adhesion-related genes against the STRING database yielded 70 possible physical relationships to other genes/proteins, which included an additional 60 genes that were not detected in the PVR-ERM library. Of these, soluble CD44 and soluble vascular cellular adhesion molecule-1 were significantly increased in the vitreous of patients with PVR. CONCLUSIONS/SIGNIFICANCE Our results support an earlier hypothesis that a PVR-ERM, even from genomic points of view, is an aberrant form of wound healing response. Genes preferentially expressed in PVR-ERMs may play an important role in the progression of PVR and could be served as therapeutic targets.
Collapse
Affiliation(s)
- Ryo Asato
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeo Yoshida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Atsushi Ogura
- Institute for Genome Research, The University of Tokushima, Tokushima, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukio Sassa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Enaida
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuji Oshima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuho Ikeo
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan
| | - Takashi Gojobori
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan
| | - Toshihiro Kono
- Department of Ophthalmology, Chikushi Hospital, Chikusino-shi, Fukuoka University, Fukuoka, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Mustafi D, Kevany BM, Genoud C, Okano K, Cideciyan AV, Sumaroka A, Roman AJ, Jacobson SG, Engel A, Adams MD, Palczewski K. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. FASEB J 2011; 25:3157-76. [PMID: 21659555 PMCID: PMC3157681 DOI: 10.1096/fj.11-186767] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 05/26/2011] [Indexed: 11/11/2022]
Abstract
Enhanced S-cone syndrome (ESCS), featuring an excess number of S cones, manifests as a progressive retinal degeneration that leads to blindness. Here, through optical imaging, we identified an abnormal interface between photoreceptors and the retinal pigment epithelium (RPE) in 9 patients with ESCS. The neural retina leucine zipper transcription factor-knockout (Nrl(-/-)) mouse model demonstrates many phenotypic features of human ESCS, including unstable S-cone-positive photoreceptors. Using massively parallel RNA sequencing, we identified 6203 differentially expressed transcripts between wild-type (Wt) and Nrl(-/-) mouse retinas, with 6 highly significant differentially expressed genes of the Pax, Notch, and Wnt canonical pathways. Changes were also obvious in expression of 30 genes involved in the visual cycle and 3 key genes in photoreceptor phagocytosis. Novel high-resolution (100 nm) imaging and reconstruction of Nrl(-/-) retinas revealed an abnormal packing of photoreceptors that contributed to buildup of photoreceptor deposits. Furthermore, lack of phagosomes in the RPE layer of Nrl(-/-) retina revealed impairment in phagocytosis. Cultured RPE cells from Wt and Nrl(-/-) mice illustrated that the phagocytotic defect was attributable to the aberrant interface between ESCS photoreceptors and the RPE. Overcoming the retinal phagocytosis defect could arrest the progressive degenerative component of this disease.
Collapse
Affiliation(s)
- Debarshi Mustafi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Freeman NE, Templeton JP, Orr WE, Lu L, Williams RW, Geisert EE. Genetic networks in the mouse retina: growth associated protein 43 and phosphatase tensin homolog network. Mol Vis 2011; 17:1355-72. [PMID: 21655357 PMCID: PMC3108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/21/2011] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The present study examines the structure and covariance of endogenous variation in gene expression across the recently expanded family of C57BL/6J (B) X DBA/2J (D) Recombinant Inbred (BXD RI) strains of mice. This work is accompanied by a highly interactive database that can be used to generate and test specific hypotheses. For example, we define the genetic network regulating growth associated protein 43 (Gap43) and phosphatase tensin homolog (Pten). METHODS The Hamilton Eye Institute (HEI) Retina Database within GeneNetwork features the data analysis of 346 Illumina Sentrix BeadChip Arrays (mouse whole genome-6 version 2). Eighty strains of mice are presented, including 75 BXD RI strains, the parental strains (C57BL/6J and DBA/2J), the reciprocal crosses, and the BALB/cByJ mice. Independent biologic samples for at least two animals from each gender were obtained with a narrow age range (48 to 118 days). Total RNA was prepared followed by the production of biotinylated cRNAs, which were pipetted into the Mouse WG-6V2 arrays. The data was globally normalized with rank invariant and stabilization (2z+8). RESULTS The HEI Retina Database is located on the GeneNetwork website. The database was used to extract unique transcriptome signatures for specific cell types in the retina (retinal pigment epithelial, amacrine, and retinal ganglion cells). Two genes associated with axonal outgrowth (Gap43 and Pten) were used to display the power of this new retina database. Bioinformatic tools located within GeneNetwork in conjunction with the HEI Retina Database were used to identify the unique signature Quantitative Trait Loci (QTLs) for Gap43 and Pten on chromosomes 1, 2, 12, 15, 16, and 19. Gap43 and Pten possess networks that are similar to ganglion cell networks that may be associated with axonal growth in the mouse retina. This network involves high correlations of transcription factors (SRY sex determining region Y-box 2 [Sox2], paired box gene 6 [Pax6], and neurogenic differentiation 1 [Neurod1]), and genes involved in DNA binding (proliferating cell nuclear antigen [Pcna] and zinc finger, BED-type containing 4 [Zbed4]), as well as an inhibitor of DNA binding (inhibitor of DNA binding 2, dominant negative helix-loop-helix protein [Id2]). Furthermore, we identified the potential upstream modifiers on chromosome 2 (teashirt zinc finger homeobox 2 [Tshz2], RNA export 1 homolog [Rae1] and basic helix-loop-helix domain contatining, class B4 [Bhlhb4]) on chromosome 15 (RAB, member of RAS oncogene family-like 2a [Rabl2a], phosphomannomutase 1 [Pmm1], copine VIII [Cpne8], and fibulin 1 [Fbln1]). CONCLUSIONS The endogenous variation in mRNA levels among BXD RI strains can be used to explore and test expression networks underlying variation in retina structure, function, and disease susceptibility. The Gap43 and Pten network highlights the covariance of gene expression and forms a molecular network associated with axonal outgrowth in the adult retina.
Collapse
Affiliation(s)
| | | | - William E. Orr
- Department of Ophthalmology and Center for Vision Research, Memphis, TN
| | - Lu Lu
- Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN
| | - Robert W. Williams
- Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, TN
| | - Eldon E. Geisert
- Department of Ophthalmology and Center for Vision Research, Memphis, TN
| |
Collapse
|
8
|
Luo H, Li Y, Sun C, Wu Q, Song J, Sun Y, Steinmetz A, Chen S. Comparison of 454-ESTs from Huperzia serrata and Phlegmariurus carinatus reveals putative genes involved in lycopodium alkaloid biosynthesis and developmental regulation. BMC PLANT BIOLOGY 2010; 10:209. [PMID: 20854695 PMCID: PMC2956558 DOI: 10.1186/1471-2229-10-209] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 09/21/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plants of the Huperziaceae family, which comprise the two genera Huperzia and Phlegmariurus, produce various types of lycopodium alkaloids that are used to treat a number of human ailments, such as contusions, swellings and strains. Huperzine A, which belongs to the lycodine type of lycopodium alkaloids, has been used as an anti-Alzheimer's disease drug candidate. Despite their medical importance, little genomic or transcriptomic data are available for the members of this family. We used massive parallel pyrosequencing on the Roche 454-GS FLX Titanium platform to generate a substantial EST dataset for Huperzia serrata (H. serrata) and Phlegmariurus carinatus (P. carinatus) as representative members of the Huperzia and Phlegmariurus genera, respectively. H. serrata and P. carinatus are important plants for research on the biosynthesis of lycopodium alkaloids. We focused on gene discovery in the areas of bioactive compound biosynthesis and transcriptional regulation as well as genetic marker detection in these species. RESULTS For H. serrata, 36,763 unique putative transcripts were generated from 140,930 reads totaling over 57,028,559 base pairs; for P. carinatus, 31,812 unique putative transcripts were generated from 79,920 reads totaling over 30,498,684 base pairs. Using BLASTX searches of public databases, 16,274 (44.3%) unique putative transcripts from H. serrata and 14,070 (44.2%) from P. carinatus were assigned to at least one protein. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology annotations revealed that the functions of the unique putative transcripts from these two species cover a similarly broad set of molecular functions, biological processes and biochemical pathways.In particular, a total of 20 H. serrata candidate cytochrome P450 genes, which are more abundant in leaves than in roots and might be involved in lycopodium alkaloid biosynthesis, were found based on the comparison of H. serrata and P. carinatus 454-ESTs and real-time PCR analysis. Four unique putative CYP450 transcripts (Hs01891, Hs04010, Hs13557 and Hs00093) which are the most likely to be involved in the biosynthesis of lycopodium alkaloids were selected based on a phylogenetic analysis. Approximately 115 H. serrata and 98 P. carinatus unique putative transcripts associated with the biosynthesis of triterpenoids, alkaloids and flavones/flavonoids were located in the 454-EST datasets. Transcripts related to phytohormone biosynthesis and signal transduction as well as transcription factors were also obtained. In addition, we discovered 2,729 and 1,573 potential SSR-motif microsatellite loci in the H. serrata and P. carinatus 454-ESTs, respectively. CONCLUSIONS The 454-EST resource allowed for the first large-scale acquisition of ESTs from H. serrata and P. carinatus, which are representative members of the Huperziaceae family. We discovered many genes likely to be involved in the biosynthesis of bioactive compounds and transcriptional regulation as well as a large number of potential microsatellite markers. These results constitute an essential resource for understanding the molecular basis of developmental regulation and secondary metabolite biosynthesis (especially that of lycopodium alkaloids) in the Huperziaceae, and they provide an overview of the genetic diversity of this family.
Collapse
Affiliation(s)
- Hongmei Luo
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, HaiDian District, Beijing 100193, China
| | - Ying Li
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, HaiDian District, Beijing 100193, China
| | - Chao Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, HaiDian District, Beijing 100193, China
| | - Qiong Wu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, HaiDian District, Beijing 100193, China
| | - Jingyuan Song
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, HaiDian District, Beijing 100193, China
| | - Yongzhen Sun
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, HaiDian District, Beijing 100193, China
| | - André Steinmetz
- Centre de Recherche Public-Santé, Luxembourg, L-1526 Luxembourg
| | - Shilin Chen
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, HaiDian District, Beijing 100193, China
| |
Collapse
|
9
|
Feng B, Dong L, Niu D, Meng S, Zhang B, Liu D, Hu S, Li J. Identification of immune genes of the Agamaki clam (Sinonovacula constricta) by sequencing and bioinformatic analysis of ESTs. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:282-291. [PMID: 19590922 DOI: 10.1007/s10126-009-9216-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 06/18/2009] [Indexed: 05/28/2023]
Abstract
The Agamaki clam (Sinonovacula constricta) is an economically important shellfish in Asia. However, genomic research on this species is still in its infancy, and genomic resources are largely unavailable. The objective of this study was to generate expressed sequence tags (ESTs) from a normalized liver complementary DNA library and to identify genes that function in immune defense. A total of 5,296 ESTs were sequenced, from which 540 contigs and 3,473 singletons were identified. BLAST homology analysis indicated that only 20.7% of these ESTs were homologues of known genes while the remaining 79.3% appeared to be novel sequences. Based on sequence similarities, 43 putative immune genes were identified that encode proteases and protease inhibitors, adhesive proteins, stress proteins, lysosomal enzymes, and signal transduction regulators. Our study thus provides both a large collection of novel transcripts and a detailed annotation of immune genes for an important bivalve species.
Collapse
Affiliation(s)
- Bingbing Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bai Z, Yin Y, Hu S, Wang G, Zhang X, Li J. Identification of genes involved in immune response, microsatellite, and SNP markers from expressed sequence tags generated from hemocytes of freshwater pearl mussel (Hyriopsis cumingii). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:520-530. [PMID: 19039623 DOI: 10.1007/s10126-008-9163-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/02/2008] [Indexed: 05/27/2023]
Abstract
Triangle sail mussel (Hyriopsis cumingii) is the most important mussel species commercially exploited for freshwater pearl production in China. However, its genome research is still at the infantry. Genomic resources for this species are largely not available. The objectives of this study was to generate expressed sequence tags from a hemocyte cDNA library, to identify genes involved in defense mechanisms, and to identify polymorphic markers from the expressed sequence tag (EST) resources for genetic analysis. A total of 5,290 ESTs were sequenced, obtaining 481 contigs and 1,165 singletons. BLAST similarity analysis indicated almost half (46.5%) of these ESTs were homologs of known genes while 53.5% were transcripts of unknown identities. Based on sequence similarities, 50 genes were identified as putative genes involved in immune and defense functions such as hemocyte immune process, stress proteins, adhesive proteins, proteases and protease regulators, antimicrobial peptides, lysosomal enzymes, cell apoptosis, and cell cycle proteins. A total of 201 microsatellites were identified from these ESTs, with 31 having sufficient flanking sequences for primer design. Polymerase chain reaction amplification was successful for 18 primer pairs and 14 of them were polymorphic. A total of 987 putative single nucleotide polymorphisms were identified including 204 transitions, 611 transversions, and 172 indels; 12 of them were involved in nine genes of defense mechanisms. These resources provide the material basis for future marker validation and genetic linkage and quantitative trait loci analysis in the freshwater pearl mussel.
Collapse
Affiliation(s)
- Zhiyi Bai
- Key Laboratory of Aquatic Genetic Resources and Aquacultural Ecology Certificated by Ministry of Agriculture, E-Institute of Shanghai Universities, Shanghai Ocean University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
11
|
Trimarchi JM, Stadler MB, Cepko CL. Individual retinal progenitor cells display extensive heterogeneity of gene expression. PLoS One 2008; 3:e1588. [PMID: 18270576 PMCID: PMC2220035 DOI: 10.1371/journal.pone.0001588] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/15/2008] [Indexed: 12/28/2022] Open
Abstract
The development of complex tissues requires that mitotic progenitor cells integrate information from the environment. The highly varied outcomes of such integration processes undoubtedly depend at least in part upon variations among the gene expression programs of individual progenitor cells. To date, there has not been a comprehensive examination of these differences among progenitor cells of a particular tissue. Here, we used comprehensive gene expression profiling to define these differences among individual progenitor cells of the vertebrate retina. Retinal progenitor cells (RPCs) have been shown by lineage analysis to be multipotent throughout development and to produce distinct types of daughter cells in a temporal, conserved order. A total of 42 single RPCs were profiled on Affymetrix arrays. In situ hybridizations performed on both retinal sections and dissociated retinal cells were used to validate the results of the microarrays. An extensive amount of heterogeneity in gene expression among RPCs, even among cells isolated from the same developmental time point, was observed. While many classes of genes displayed heterogeneity of gene expression, the expression of transcription factors constituted a significant amount of the observed heterogeneity. In contrast to previous findings, individual RPCs were found to express multiple bHLH transcription factors, suggesting alternative models to those previously developed concerning how these factors may be coordinated. Additionally, the expression of cell cycle related transcripts showed differences among those associated with G2 and M, versus G1 and S phase, suggesting different levels of regulation for these genes. These data provide insights into the types of processes and genes that are fundamental to cell fate choices, proliferation decisions, and, for cells of the central nervous system, the underpinnings of the formation of complex circuitry.
Collapse
Affiliation(s)
- Jeffrey M. Trimarchi
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael B. Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Constance L. Cepko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- *E-mail:
| |
Collapse
|
12
|
Hecker LA, Alcon TC, Honavar VG, Greenlee MHW. Using a seed-network to query multiple large-scale gene expression datasets from the developing retina in order to identify and prioritize experimental targets. Bioinform Biol Insights 2008; 2:401-12. [PMID: 19812791 PMCID: PMC2735966 DOI: 10.4137/bbi.s417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Understanding the gene networks that orchestrate the differentiation of retinal progenitors into photoreceptors in the developing retina is important not only due to its therapeutic applications in treating retinal degeneration but also because the developing retina provides an excellent model for studying CNS development. Although several studies have profiled changes in gene expression during normal retinal development, these studies offer at best only a starting point for functional studies focused on a smaller subset of genes. The large number of genes profiled at comparatively few time points makes it extremely difficult to reliably infer gene networks from a gene expression dataset. We describe a novel approach to identify and prioritize from multiple gene expression datasets, a small subset of the genes that are likely to be good candidates for further experimental investigation. We report progress on addressing this problem using a novel approach to querying multiple large-scale expression datasets using a 'seed network' consisting of a small set of genes that are implicated by published studies in rod photoreceptor differentiation. We use the seed network to identify and sort a list of genes whose expression levels are highly correlated with those of multiple seed network genes in at least two of the five gene expression datasets. The fact that several of the genes in this list have been demonstrated, through experimental studies reported in the literature, to be important in rod photoreceptor function provides support for the utility of this approach in prioritizing experimental targets for further experimental investigation. Based on Gene Ontology and KEGG pathway annotations for the list of genes obtained in the context of other information available in the literature, we identified seven genes or groups of genes for possible inclusion in the gene network involved in differentiation of retinal progenitor cells into rod photoreceptors. Our approach to querying multiple gene expression datasets using a seed network constructed from known interactions between specific genes of interest provides a promising strategy for focusing hypothesis-driven experiments using large-scale 'omics' data.
Collapse
Affiliation(s)
- Laura A Hecker
- Interdepartmental Neuroscience Program, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
13
|
Bonnet A, Iannuccelli E, Hugot K, Benne F, Bonaldo MF, Soares MB, Hatey F, Tosser-Klopp G. A pig multi-tissue normalised cDNA library: large-scale sequencing, cluster analysis and 9K micro-array resource generation. BMC Genomics 2008; 9:17. [PMID: 18194535 PMCID: PMC2257943 DOI: 10.1186/1471-2164-9-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 01/14/2008] [Indexed: 11/30/2022] Open
Abstract
Background Domestic animal breeding and product quality improvement require the control of reproduction, nutrition, health and welfare in these animals. It is thus necessary to improve our knowledge of the major physiological functions and their interactions. This would be greatly enhanced by the availability of expressed gene sequences in the databases and by cDNA arrays allowing the transcriptome analysis of any function. The objective within the AGENAE French program was to initiate a high-throughput cDNA sequencing program of a 38-tissue normalised library and generate a diverse microarray for transcriptome analysis in pig species. Results We constructed a multi-tissue cDNA library, which was normalised and subtracted to reduce the redundancy of the clones. Expressed Sequence Tags were produced and 24449 high-quality sequences were released in EMBL database. The assembly of all the public ESTs (available through SIGENAE website) resulted in 40786 contigs and 54653 singletons. At least one Agenae sequence is present in 11969 contigs (12.5%) and in 9291 of the deeper-than-one-contigs (22.8%). Sequence analysis showed that both normalisation and subtraction processes were successful and that the initial tissue complexity was maintained in the final libraries. A 9K nylon cDNA microarray was produced and is available through CRB-GADIE. It will allow high sensitivity transcriptome analyses in pigs. Conclusion In the present work, a pig multi-tissue cDNA library was constructed and a 9K cDNA microarray designed. It contributes to the Expressed Sequence Tags pig data, and offers a valuable tool for transcriptome analysis.
Collapse
Affiliation(s)
- Agnès Bonnet
- Laboratoire de Génétique Cellulaire, INRA, UMR444, Institut National de la Recherche Agronomique, F-31326 Castanet-Tolosan, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang HL, Cho EY, Han KH, Kim H, Kim SJ. Characterization of a novel mouse brain gene (mbu-1) identified by digital differential display. Gene 2007; 395:144-50. [PMID: 17433858 DOI: 10.1016/j.gene.2007.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 03/08/2007] [Accepted: 03/12/2007] [Indexed: 01/19/2023]
Abstract
Using in silico approaches, we cloned a novel mouse gene (mbu-1) that was strictly expressed in the central nervous system. mbu-1 was first identified as an EST after carrying out digital differential display for unigene libraries from various mouse tissues. The full-length cDNA sequence was obtained by extending the ends of EST by RACE. The cDNA sequence was 2611 bp long and contained an ORF of 597 AA. A positive cis-acting region was found in the neuroblastomaxglioma hybrid, NG108-15, and in human embryonic kidney HEK293 cell lines. RT-PCR and in situ hybridization analysis showed that the mbu-1 gene was only expressed in the brain and spinal cord during the embryonic stages, and throughout all regions of the adult brain, showing higher levels in the hippocampus and hypothalamus.
Collapse
Affiliation(s)
- Hye Lim Yang
- Department of Life Science, Dongguk University, Seoul 100-715, South Korea
| | | | | | | | | |
Collapse
|
15
|
Baker ML, Indiviglio S, Nyberg AM, Rosenberg GH, Lindblad-Toh K, Miller RD, Papenfuss AT. Analysis of a set of Australian northern brown bandicoot expressed sequence tags with comparison to the genome sequence of the South American grey short tailed opossum. BMC Genomics 2007; 8:50. [PMID: 17298671 PMCID: PMC1802078 DOI: 10.1186/1471-2164-8-50] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 02/13/2007] [Indexed: 12/21/2022] Open
Abstract
Background Expressed sequence tags (ESTs) have been used for rapid gene discovery in a variety of organisms and provide a valuable resource for whole genome annotation. Although the genome of one marsupial, the opossum Monodelphis domestica, has now been sequenced, no EST datasets have been reported from any marsupial species. In this study we describe an EST dataset from the bandicoot, Isoodon macrourus, providing information on the transcriptional profile of the bandicoot thymus and the opportunity for a genome wide comparison between the bandicoot and opossum, two distantly related marsupial species. Results A set of 1319 ESTs was generated from sequencing randomly chosen clones from a bandicoot thymus cDNA library. The nucleic acid and deduced amino acid sequences were compared with sequences both in GenBank and the recently completed whole genome sequence of M. domestica. This study provides information on the transcriptional profile of the bandicoot thymus with the identification of genes involved in a broad range of activities including protein metabolism (24%), transcription and/or nucleic acid metabolism (10%), metabolism/energy pathways (9%), immunity (5%), signal transduction (5%), cell growth and maintenance (3%), transport (3%), cell cycle (0.7%) and apoptosis (0.5%) and a proportion of genes whose function is unknown (5.8%). Thirty four percent of the bandicoot ESTs found no match with annotated sequences in any of the public databases. Clustering and assembly of the 1319 bandicoot ESTs resulted in a set of 949 unique sequences of which 375 were unannotated ESTs. Of these, seventy one unannotated ESTs aligned to non-coding regions in the opossum, human, or both genomes, and were identified as strong non-coding RNA candidates. Eighty-four percent of the 949 assembled ESTs aligned with the M. domestica genome sequence indicating a high level of conservation between these two distantly related marsupials. Conclusion This study is among the first reported marsupial EST datasets with a significant inter-species genome comparison between marsupials, providing a valuable resource for transcriptional analyses in marsupials and for future annotation of marsupial whole genome sequences.
Collapse
Affiliation(s)
- Michelle L Baker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sandra Indiviglio
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - April M Nyberg
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - George H Rosenberg
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
16
|
Roni V, Carpio R, Wissinger B. Mapping of transcription start sites of human retina expressed genes. BMC Genomics 2007; 8:42. [PMID: 17286855 PMCID: PMC1802077 DOI: 10.1186/1471-2164-8-42] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 02/07/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The proper assembly of the transcriptional initiation machinery is a key regulatory step in the execution of the correct program of mRNA synthesis. The use of alternative transcription start sites (TSSs) provides a mechanism for cell and tissue specific gene regulation. Our knowledge of transcriptional initiation sequences in the human genome is limited despite the availability of the complete genome sequence. While genome wide experimental and bioinformatic approaches are improving our knowledge of TSSs, they lack information concerning genes expressed in a restricted manner or at very low levels, such as tissue specific genes. RESULTS In this study we describe the mapping of TSSs of genes expressed in human retina. Genes have been selected on the basis of their physiological or developmental role in this tissue. Our work combines in silico analysis of ESTs and known algorithm predictions together with their experimental validation via Cap-finder RACE. We report here the TSSs mapping of 54 retina expressed genes: we retrieved new sequences for 41 genes, some of which contain un-annotated exons. Results can be grouped into five categories, compared to the RefSeq; (i) TSS located in new first exons, (ii) splicing variation of the second exon, (iii) extension of the annotated first exon, (iv) shortening of the annotated first exon, (v) confirmation of previously annotated TSS. CONCLUSION In silico and experimental analysis of the transcripts proved to be essential for the ultimate mapping of TSSs. Our results highlight the necessity of a tissue specific approach to complete the existing gene annotation. The new TSSs and transcribed sequences are essential for further exploration of the promoter and other cis-regulatory sequences at the 5'end of genes.
Collapse
Affiliation(s)
- Valeria Roni
- Molecular Genetics Laboratory, University Eye Hospital, Roentgenweg 11, 72076 Tuebingen, Germany
| | - Ronald Carpio
- Molecular Genetics Laboratory, University Eye Hospital, Roentgenweg 11, 72076 Tuebingen, Germany
| | - Bernd Wissinger
- Molecular Genetics Laboratory, University Eye Hospital, Roentgenweg 11, 72076 Tuebingen, Germany
| |
Collapse
|
17
|
Bian ZM, Elner SG, Elner VM. Regulation of VEGF mRNA expression and protein secretion by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res 2007; 84:812-22. [PMID: 17331500 PMCID: PMC2094015 DOI: 10.1016/j.exer.2006.12.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 12/20/2022]
Abstract
VEGF secretion by the human retinal pigment epithelium (hRPE) plays an important role in retinal and choroidal neovascularization. In this study, transforming growth factor-beta2 (TGF-beta2)-induced vascular endothelial growth factor (VEGF) gene expression was investigated in hRPE cells. Treatment of hRPE cells with TGF-beta2 for 24 and 48h as compared to 8h resulted in markedly increased VEGF secretion by fivefold and nine-fold, respectively. Induced VEGF mRNA peaked within 3h of stimulation and remained above the basal at 36h. Stimulation of VEGF expression by TGF-beta2 was blocked by cycloheximide, suggesting that de novo protein synthesis is required. Induced VEGF production was strongly inhibited by anti-inflammatory agents, dexamethasone and cyclosporin A. Despite of the weak stimulation of VEGF expression by TNF-alpha or bFGF alone, co-administration of either of these two cytokines synergized the effect of TGF-beta2 on VEGF mRNA expression and protein production. Quantitative RT-PCR revealed that the synergy was predominantly at the level of VEGF transcription. Moreover, TGF-beta2-induced RPE VEGF secretion was significantly reduced by inhibitors of mitogen-activated protein (MAP) kinase (MEK) (U0126), p38 (SB202190), c-Jun NH2-terminal kinase (JNK), Sp600125, protein tyrosine kinase (PTK) (Genistein), and phosphatidylinositol 3-kinase (PI3K) (Ly294002). Induced VEGF expression was completely abrogated by inhibitors of protein kinase C (PKC) (Ro318220), nuclear factor-kappaB (NF-kappaB) [caffeic acid phenethyl ester (CAPE)], and reactive oxygen species (ROS) [N-acetyl-cysteine (Nac) and diphenyleneiodonium (DPI)]. These results suggest that MEK, p38, JNK, PI3K, and NF-kappaB as well as multiple essential signaling intermediates, including PKC, PTK and ROS, are involved in hRPE VEGF up regulation by TGF-beta2.
Collapse
Affiliation(s)
- Zong-Mei Bian
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105
| | - Susan G. Elner
- Department of Ophthalmology, University of Michigan, Ann Arbor, MI 48105
| | - Victor M. Elner
- Department of pathology, University of Michigan, Ann Arbor, MI 48105
| |
Collapse
|
18
|
Storvik M, Tiikkainen P, van Iersel M, Wong G. Distinct gene expression profiles in adult rat brains after acute MK-801 and cocaine treatments. Eur Neuropsychopharmacol 2006; 16:211-9. [PMID: 16242920 DOI: 10.1016/j.euroneuro.2005.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/27/2005] [Accepted: 08/23/2005] [Indexed: 01/28/2023]
Abstract
Uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists have been suggested to attenuate the self-administration and rewarding effects of psychostimulants. Microarrays containing 14,500 rat cDNAs were hybridized to identify alterations in gene expression levels in rat brain regions elicited by the uncompetitive NMDA receptor antagonist MK-801 (dizocilpine, 1 mg/kg), the dopamine agonist cocaine (20 mg/kg), or combined treatment (MK-801 15 min prior to cocaine) 4 h after injections. Total genes up regulated (Z-ratio >2) in parietal cortex and nucleus accumbens were 111 and 158, respectively. Total genes down regulated (Z-ratio <2) in the same tissues were 360 and 166, respectively. These genes fell into multiple molecular function gene ontology (GO) categories, but were highly represented in catalytic activities (44% of all genes), signal transduction (14%), protein (20%), nucleotide (18%), and nucleic acid (15%) binding. In nucleus accumbens, genes up regulated by MK-801 (87 genes) did not overlap those up regulated by cocaine (46 genes). Genes down regulated by MK-801 (33 genes) consisted of 2 overlapping genes with those down regulated by cocaine (89 genes). In parietal cortex, low numbers of overlapping regulated genes were also observed. Combined treatments also indicated low numbers (0-10) of genes commonly regulated when compared with single treatments alone. In situ hybridisation studies indicated significant increases in b-ZIP transcription factors (CREM, ICER, CBP, and c-fos) elicited by MK-801 and decreases in c-fos elicited by cocaine. The results indicate independent gene expression signatures following acute MK-801 and cocaine administration that appears to be largely non-overlapping and context dependent.
Collapse
Affiliation(s)
- Markus Storvik
- Department of Neurobiology, A.I. Virtanen Institute, Kuopio 70211, Finland
| | | | | | | |
Collapse
|
19
|
Kim TH, Kim NS, Lim D, Lee KT, Oh JH, Park HS, Jang GW, Kim HY, Jeon M, Choi BH, Lee HY, Chung HY, Kim H. Generation and analysis of large-scale expressed sequence tags (ESTs) from a full-length enriched cDNA library of porcine backfat tissue. BMC Genomics 2006; 7:36. [PMID: 16504160 PMCID: PMC1444929 DOI: 10.1186/1471-2164-7-36] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 02/27/2006] [Indexed: 11/13/2022] Open
Abstract
Background Genome research in farm animals will expand our basic knowledge of the genetic control of complex traits, and the results will be applied in the livestock industry to improve meat quality and productivity, as well as to reduce the incidence of disease. A combination of quantitative trait locus mapping and microarray analysis is a useful approach to reduce the overall effort needed to identify genes associated with quantitative traits of interest. Results We constructed a full-length enriched cDNA library from porcine backfat tissue. The estimated average size of the cDNA inserts was 1.7 kb, and the cDNA fullness ratio was 70%. In total, we deposited 16,110 high-quality sequences in the dbEST division of GenBank (accession numbers: DT319652-DT335761). For all the expressed sequence tags (ESTs), approximately 10.9 Mb of porcine sequence were generated with an average length of 674 bp per EST (range: 200–952 bp). Clustering and assembly of these ESTs resulted in a total of 5,008 unique sequences with 1,776 contigs (35.46%) and 3,232 singleton (65.54%) ESTs. From a total of 5,008 unique sequences, 3,154 (62.98%) were similar to other sequences, and 1,854 (37.02%) were identified as having no hit or low identity (<95%) and 60% coverage in The Institute for Genomic Research (TIGR) gene index of Sus scrofa. Gene ontology (GO) annotation of unique sequences showed that approximately 31.7, 32.3, and 30.8% were assigned molecular function, biological process, and cellular component GO terms, respectively. A total of 1,854 putative novel transcripts resulted after comparison and filtering with the TIGR SsGI; these included a large percentage of singletons (80.64%) and a small proportion of contigs (13.36%). Conclusion The sequence data generated in this study will provide valuable information for studying expression profiles using EST-based microarrays and assist in the condensation of current pig TCs into clusters representing longer stretches of cDNA sequences. The isolation of genes expressed in backfat tissue is the first step toward a better understanding of backfat tissue on a genomic basis.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Nam-Soon Kim
- Laboratory of Human Genomics, Genome Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Dajeong Lim
- School of Agricultural Biotechnology, Seoul National University San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| | - Kyung-Tai Lee
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Jung-Hwa Oh
- Laboratory of Human Genomics, Genome Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Korea
| | - Hye-Sook Park
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Gil-Won Jang
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Hyung-Yong Kim
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Mina Jeon
- School of Agricultural Biotechnology, Seoul National University San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| | - Bong-Hwan Choi
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Hae-Young Lee
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - HY Chung
- Division of Animal Genomics & Bioinformatics, National LivestockResearch Institute, Rural Development Administration, Omokchun-dong 564, Kwonsun-gu, Suwon, Korea
| | - Heebal Kim
- School of Agricultural Biotechnology, Seoul National University San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
| |
Collapse
|
20
|
Wistow G. The NEIBank project for ocular genomics: data-mining gene expression in human and rodent eye tissues. Prog Retin Eye Res 2005; 25:43-77. [PMID: 16005676 DOI: 10.1016/j.preteyeres.2005.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
NEIBank is a project to gather and organize genomic resources for eye research. The first phase of this project covers the construction and sequence analysis of cDNA libraries from human and animal model eye tissues to develop an overview of the repertoire of genes expressed in the eye and a resource of cDNA clones for further studies. The sequence data are grouped and identified using the tools of bioinformatics and the results are displayed through a web site where they can be interrogated by keyword search, chromosome location, by Blast (sequence comparison) or by alignment on completed genomes. Many novel proteins and novel splice forms of known genes have already emerged from analysis of the accumulating data. This review provides an overview of the current state of the database for human eye tissues, with specific comparisons to some parallel data from mouse and rat, and with illustrative examples of the kinds of insights and discoveries these data can produce. One of the major themes that emerges is that at the molecular level human eye tissues have significant differences from those of rodents, encompassing species specific genes, alternative splice forms and great variation in levels of gene expression. These point to specific adaptations and mechanisms in the human eye and emphasize that care needs to be taken in the application of appropriate animal model systems.
Collapse
Affiliation(s)
- Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Building 7, Room 201, Bethesda, MD 20892-0703, USA.
| |
Collapse
|
21
|
Otteson DC, Lai H, Liu Y, Zack DJ. Zinc-finger domains of the transcriptional repressor KLF15 bind multiple sites in rhodopsin and IRBP promoters including the CRS-1 and G-rich repressor elements. BMC Mol Biol 2005; 6:15. [PMID: 15963234 PMCID: PMC1182371 DOI: 10.1186/1471-2199-6-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 06/17/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the retina, many of the genes that encode components of the visual transduction cascade and retinoid recycling are exclusively expressed in photoreceptor cells and show highly stereotyped temporal and spatial expression patterns. Multiple transcriptional activators of photoreceptor-specific genes have been identified, but little is known about negative regulation of gene expression in the retina. We recently identified KLF15, a member of the Sp/Krüppel-like Factor family of zinc-finger containing transcription factors, as an in vitro repressor of the promoters of the photoreceptor-specific genes rhodopsin and IRBP/Rbp3. To gain further insight into the mechanism of KLF15-mediated regulation of gene expression, we have characterized the binding characteristics and specificity of KLF15's DNA binding domains and defined the KLF15 binding sites in the rhodopsin and IRBP promoters. RESULTS In EMSA and DNAseI footprinting assays, a KLF15-GST fusion protein containing the C-terminal zinc-finger domains (123 amino acids) showed zinc-dependent and sequence-specific binding to a 9 bp consensus sequence containing a core CG/TCCCC. Both the bovine rhodopsin and IRBP promoters contained multiple KLF15 binding sites that included the previously identified CRS-1 and G-rich repressor elements. KLF15 binding sites were highly conserved between the bovine, human, chimp and dog rhodopsin promoters, but less conserved in rodents. KLF15 reduced luciferase expression by bRho130-luc (containing 4 KLF15 sites) and repressed promoter activation by CRX (cone rod homeobox) and/or NRL (neural retina leucine zipper), although the magnitude of the reduction was smaller than previously reported for a longer bRho225-luc (containing 6 KFL15 sites). CONCLUSION KLF15 binds to multiple 9 bp consensus sites in the Rhodospin and IRBP promoters including the CRS-1 and G-rich repressor elements. Based on the known expression pattern of KLF15 in non-photoreceptor cells, we hypothesize an in vivo role for KLF15 in repressing photoreceptor-specific gene expression in the inner retina.
Collapse
Affiliation(s)
- Deborah C Otteson
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- College of Optometry, University of Houston; Houston, TX 77204 USA
| | - Hong Lai
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Department of Genetics, Stanford University School of Medicine; Stanford, CA 94305 USA
| | - Yuhui Liu
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
| | - Donald J Zack
- Guerrieri Center for Genetic Engineering and Molecular Ophthalmology at the Wilmer Eye Institute, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
- Departments of Neuroscience, and Molecular Biology and Genetics; Johns Hopkins University School of Medicine; 600 North Wolfe Street; Baltimore, MD 21287 USA
| |
Collapse
|
22
|
McKinney JL, Murdoch DJ, Wang J, Robinson J, Biltcliffe C, Khan HMR, Walker PM, Savage J, Skerjanc I, Hegele RA. Venn analysis as part of a bioinformatic approach to prioritize expressed sequence tags from cardiac libraries. Clin Biochem 2005; 37:953-60. [PMID: 15498521 DOI: 10.1016/j.clinbiochem.2004.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 07/06/2004] [Accepted: 07/24/2004] [Indexed: 11/22/2022]
Abstract
OBJECTIVES We needed to sort expressed sequence tags (ESTs) from human cardiac expression libraries. DESIGN AND METHODS We annotated DNA sequence text files of 35,152 cardiac ESTs using our search and annotation tool called Multiblast.pl. We generated lists of the most prevalent ESTs in each library, and using a novel Venn tool, we grouped ESTs that were common to all or exclusive to particular libraries. RESULTS Hypothetical protein KIAA0553 was expressed 120 times among 917 ESTs from an adult cardiac library (13.1%) compared only once among 8075 ESTs from fetal cardiac libraries (P < 10(-114)), this was confirmed using Northern analysis. We collated biochemical features of KIAA0553 and determined DNA polymorphism frequencies. We also used the Venn tool to specify genes that were uniquely expressed in hypertrophic cardiomyocytes. CONCLUSIONS Annotating ESTs and sorting them using Venn analysis can help specify new candidate disease genes from the current lists of "hypothetical proteins".
Collapse
Affiliation(s)
- James L McKinney
- Vascular Biology Group and London Regional Genomics Centre, Robarts Research Institute, London, Ontario, Canada N6A 5K8
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Regenerative medicine constitutes a potentially promising therapy for blind people suffering from retinal degenerative diseases such as retinitis pigmentosa and age-related macular degeneration. For the realization of retinal regeneration, it is necessary to establish 1) a method to produce functional photoreceptor cells in vitro and 2) successful transplantation of the donor cells to connect their axons to the recipient secondary neurons so that they can function properly. The results of experimental transplantation of human retinal photoreceptor cells from cadaveric eyes or of fetal retinal cells into the retina of RP patients have not been satisfactory, but encouraging enough to indicate that the transplantation of developing retinal cells may have beneficial results. Recently, attempts have been made to generate photoreceptor-like cells from stem cells, but it remains to be seen whether they are in fact photoreceptor cells. It is therefore important to fully understand the mechanisms involved in the development of these cells, and to characterize them not only by transcriptome but also by functional analysis.
Collapse
Affiliation(s)
- Masayuki Akimoto
- Translational Research Center, Kyoto University Hospital, Japan.
| |
Collapse
|
24
|
Zhang SSM, Xu X, Li J, Liu MG, Zhao H, Soares MB, Barnstable CJ, Fu XY. Comprehensive in silico functional specification of mouse retina transcripts. BMC Genomics 2005; 6:40. [PMID: 15777472 PMCID: PMC1083414 DOI: 10.1186/1471-2164-6-40] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Accepted: 03/18/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The retina is a well-defined portion of the central nervous system (CNS) that has been used as a model for CNS development and function studies. The full specification of transcripts in an individual tissue or cell type, like retina, can greatly aid the understanding of the control of cell differentiation and cell function. In this study, we have integrated computational bioinformatics and microarray experimental approaches to classify the tissue specificity and developmental distribution of mouse retina transcripts. RESULTS We have classified a set of retina-specific genes using sequence-based screening integrated with computational and retina tissue-specific microarray approaches. 33,737 non-redundant sequences were identified as retina transcript clusters (RTCs) from more than 81,000 mouse retina ESTs. We estimate that about 19,000 to 20,000 genes might express in mouse retina from embryonic to adult stages. 39.1% of the RTCs are not covered by 60,770 RIKEN full-length cDNAs. Through comparison with 2 million mouse ESTs, spectra of neural, retinal, late-generated retinal, and photoreceptor -enriched RTCs have been generated. More than 70% of these RTCs have data from biological experiments confirming their tissue-specific expression pattern. The highest-grade retina-enriched pool covered almost all the known genes encoding proteins involved in photo-transduction. CONCLUSION This study provides a comprehensive mouse retina transcript profile for further gene discovery in retina and suggests that tissue-specific transcripts contribute substantially to the whole transcriptome.
Collapse
Affiliation(s)
- Samuel Shao-Min Zhang
- Departments of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520, USA
- Departments of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Xuming Xu
- Departments of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520, USA
- Departments of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Jinming Li
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA
| | - Mu-Gen Liu
- Departments of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520, USA
- Departments of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
| | - Hongyu Zhao
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - M Bento Soares
- Departments of Pediatrics, Biochemistry, Orthopaedics, Physiology and Biophysics, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, USA
| | - Colin J Barnstable
- Departments of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520, USA
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Xin-Yuan Fu
- Departments of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Ma TY, Boivin MA, Ye D, Pedram A, Said HM. Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol 2005; 288:G422-30. [PMID: 15701621 DOI: 10.1152/ajpgi.00412.2004] [Citation(s) in RCA: 343] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNF-alpha plays a central role in the intestinal inflammation of various inflammatory disorders including Crohn's disease (CD). TNF-alpha-induced increase in intestinal epithelial tight junction (TJ) permeability has been proposed as one of the proinflammatory mechanisms contributing to the intestinal inflammation. The intracellular mechanisms involved in the TNF-alpha-induced increase in intestinal TJ permeability remain unclear. The purpose of this study was to investigate the possibility that the TNF-alpha-induced increase in intestinal epithelial TJ permeability was regulated by myosin light-chain kinase (MLCK) protein expression, using an in vitro intestinal epithelial model system consisting of the filter-grown Caco-2 intestinal epithelial monolayers. TNF-alpha (10 ng/ml) produced a time-dependent increase in Caco-2 MLCK expression. The TNF-alpha increase in MLCK protein expression paralleled the increase in Caco-2 TJ permeability, and the inhibition of the TNF-alpha-induced MLCK expression (by cycloheximide) prevented the increase in Caco-2 TJ permeability, suggesting that MLCK expression may be required for the increase in Caco-2 TJ permeability. The TNF-alpha increase in MLCK protein expression was preceded by an increase in MLCK mRNA expression but not an alteration in MLCK protein degradation. Actinomycin-D prevented the TNF-alpha increase in MLCK mRNA expression and the subsequent increase in MLCK protein expression and Caco-2 TJ permeability, suggesting that the increase in MLCK mRNA transcription led to the increase in MLCK expression. The TNF-alpha increase in MLCK protein expression was also associated with an increase in Caco-2 MLCK activity. The cycloheximide inhibition of MLCK protein expression prevented the TNF-alpha increase in MLCK activity and Caco-2 TJ permeability. Moreover, inhibitors of MLCK, Mg(2+)-myosin ATPase, and metabolic energy prevented the TNF-alpha increase in Caco-2 TJ permeability, suggesting that the increase in MLCK activity was required for the TNF-alpha-induced opening of the Caco-2 TJ barrier. In conclusion, our results indicate for the first time that 1) the TNF-alpha increase in Caco-2 TJ permeability was mediated by an increase in MLCK protein expression, 2) the increase in MLCK protein expression was regulated by an increase in MLCK mRNA transcription, and 3) the increase in Caco-2 TJ permeability required MLCK protein expression-dependent increase in MLCK activity.
Collapse
Affiliation(s)
- Thomas Y Ma
- Internal Medicine-Gastroenterology, MSC10 5550, 1 Univ. of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | |
Collapse
|
26
|
Schulz HL, Rahman FA, Fadl El Moula FM, Stojic J, Gehrig A, Weber BHF. Identifying differentially expressed genes in the mammalian retina and the retinal pigment epithelium by suppression subtractive hybridization. Cytogenet Genome Res 2004; 106:74-81. [PMID: 15218245 DOI: 10.1159/000078564] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 03/01/2004] [Indexed: 11/19/2022] Open
Abstract
Retina and retinal pigment epithelium (RPE) cells are of neuroectodermal origin with highly specialized functions in light perception. Identification and characterization of genes differentially expressed in these cells will greatly aid our understanding of their functional roles in retinal biology. As a source enriched for gene transcripts from the retina/RPE, we generated a human retina and a bovine RPE cDNA library applying the PCR-based technique of suppression subtractive hybridization (SSH). Sequencing of 1,080 retina and 2,350 RPE SSH clones resulted in the identification of 321 and 343 non-redundant human transcripts, respectively. Of these, only 27 genes were in common between the two cDNA libraries. One transcript expressed exclusively in retina and RPE is the novel gene C4orf11 which is comprised of four exons on chromosome 4q21.2. We report the full-length cloning of two isoforms of C4orf11, 919 bp and 857 bp in length, both of which contain four identical open reading frames (ORFs). While ORFs 1 to 3 show no homologies to known proteins or protein domains, ORF4 reveals 50% sequence identity to RPE-spondin, a hypothetical protein on 8q13.3 with unknown function. We demonstrate that both the retina and the RPE SSH cDNA libraries are excellent resources for identifying known and novel genes exclusively or abundantly expressed in the retina/RPE complex. In combination with other approaches such as microarray analysis or serial analysis of gene expression (SAGE), the availability of highly sensitive and specific SSH cDNA libraries will facilitate the comprehensive description of the retina/RPE transcriptome.
Collapse
Affiliation(s)
- H L Schulz
- Institut für Humangenetik, Biozentrum, Universität Würzburg, Würzburg Germany
| | | | | | | | | | | |
Collapse
|
27
|
Schulz HL, Goetz T, Kaschkoetoe J, Weber BHF. The Retinome - defining a reference transcriptome of the adult mammalian retina/retinal pigment epithelium. BMC Genomics 2004; 5:50. [PMID: 15283859 PMCID: PMC512282 DOI: 10.1186/1471-2164-5-50] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 07/29/2004] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The mammalian retina is a valuable model system to study neuronal biology in health and disease. To obtain insight into intrinsic processes of the retina, great efforts are directed towards the identification and characterization of transcripts with functional relevance to this tissue. RESULTS With the goal to assemble a first genome-wide reference transcriptome of the adult mammalian retina, referred to as the retinome, we have extracted 13,037 non-redundant annotated genes from nearly 500,000 published datasets on redundant retina/retinal pigment epithelium (RPE) transcripts. The data were generated from 27 independent studies employing a wide range of molecular and biocomputational approaches. Comparison to known retina-/RPE-specific pathways and established retinal gene networks suggest that the reference retinome may represent up to 90% of the retinal transcripts. We show that the distribution of retinal genes along the chromosomes is not random but exhibits a higher order organization closely following the previously observed clustering of genes with increased expression. CONCLUSION The genome wide retinome map offers a rational basis for selecting suggestive candidate genes for hereditary as well as complex retinal diseases facilitating elaborate studies into normal and pathological pathways. To make this unique resource freely available we have built a database providing a query interface to the reference retinome 1.
Collapse
Affiliation(s)
- Heidi L Schulz
- Institute of Human Genetics, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | - Thomas Goetz
- Institute of Human Genetics, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany
- German Cancer Research Center, Central Spectroscopic Department, D-69120 Heidelberg, Germany
| | - Juergen Kaschkoetoe
- Institute of Human Genetics, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany
| | - Bernhard HF Weber
- Institute of Human Genetics, Biocenter, University of Wuerzburg, D-97074 Wuerzburg, Germany
| |
Collapse
|
28
|
Pittler SJ, Zhang Y, Chen S, Mears AJ, Zack DJ, Ren Z, Swain PK, Yao S, Swaroop A, White JB. Functional Analysis of the Rod Photoreceptor cGMP Phosphodiesterase α-Subunit Gene Promoter. J Biol Chem 2004; 279:19800-7. [PMID: 15001570 DOI: 10.1074/jbc.m401864200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the factors controlling expression of the cGMP phosphodiesterase type 6 (PDE6) genes, we have characterized the promoter of the human PDE6A gene that encodes the catalytic alpha-subunit. In vivo DNase I hypersensitivity assays revealed two sites immediately upstream of the PDE6A core promoter region. Transient transfection assay in Y79 cells of constructs containing varying lengths of the promoter region showed a decrease in promoter activity with increasing length. The most active segment contained a 177-bp upstream sequence including apparent Crx and Nrl transcription factor binding sites. Both Crx and Nrl transactivated the PDE6A promoter in HEK293 cells and showed a >100-fold increase when coexpressed. Coexpression of a dominant negative inhibitor of Nrl abolished Nrl transactivation but had no effect on Crx. DNase I footprinting assays identified three potential Crx binding sites within a 55-bp segment beginning 29 bp upstream of the transcription start point. Mutation of two of these sites reduced reporter gene activity by as much as 69%. Gel shifts showed that all three Crx sites required a TAAT sequence for efficient binding. Consistent with a requirement for Crx and Nrl in Pde6a promoter activity, Pde6a mRNA is reduced by 87% in the retina of Crx(-/-) mice and is undetectable in Nrl(-/-) mice at postnatal day 10. These results establish that both Nrl and Crx are required for full transcriptional activity of the PDE6A gene.
Collapse
Affiliation(s)
- Steven J Pittler
- Department of Physiological Optics, Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, 924 18th Street S., Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|