1
|
Worf K, Matosin N, Gerstner N, Fröhlich AS, Koller AC, Degenhardt F, Thiele H, Rietschel M, Udawela M, Scarr E, Dean B, Theis FJ, Mueller NS, Knauer-Arloth J. Exon-variant interplay and multi-modal evidence identify endocrine dysregulation in severe psychiatric disorders impacting excitatory neurons. Transl Psychiatry 2025; 15:153. [PMID: 40253403 PMCID: PMC12009313 DOI: 10.1038/s41398-025-03366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025] Open
Abstract
Bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia share genetic architecture, yet their molecular mechanisms remain elusive. Both common and rare genetic variants contribute to neural dysfunction, impacting cognition and behavior. This study investigates the molecular effects of genetic variants on human cortical single-cell types using a single-exon analysis approach. Integrating exon-level eQTLs (common variants influencing exon expression) and joint exon eQT-Scores (combining polygenic risk scores with exon-level gene expression) from a postmortem psychiatric cohort (BD = 15, MDD = 24, schizophrenia = 68, controls = 62) with schizophrenia-focused rare variant data from the SCHEMA consortium, we identified 110 core genes enriched in pathways including circadian entrainment (FDR = 0.02), cortisol synthesis and secretion (FDR = 0.026), and dopaminergic synapse (FDR = 0.038). Additional enriched pathways included hormone signaling (FDRs < 0.0298, including insulin, GnRH, aldosterone, and growth hormone pathways) and, notably, adrenergic signaling in cardiomyocytes (FDR = 0.0028). These pathways highlight shared molecular mechanisms in the three disorders. Single-nuclei RNA sequencing data from three cortical regions revealed that these core set genes are predominantly expressed in excitatory neuron layers 2-6 of the dorsolateral prefrontal cortex, linking molecular changes to cell types involved in cognitive dysfunction. Our results demonstrate the power of integrating multimodal genetic and transcriptomic data at the exon level. This approach moves beyond symptom-based diagnoses toward molecular classifications, identifying potential therapeutic targets for psychiatric disorders.
Collapse
Affiliation(s)
- Karolina Worf
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Natalie Matosin
- Department of Gene and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Nathalie Gerstner
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- Department of Gene and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna S Fröhlich
- Department of Gene and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna C Koller
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
| | - Madhara Udawela
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- The Department of Florey, The University of Melbourne, Parkville, VIC, Australia
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Nikola S Mueller
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
| | - Janine Knauer-Arloth
- Institute of Computational Biology, Helmholtz Center, Munich, Germany.
- Department of Gene and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
2
|
Pilaka-Akella P, Sadek NH, Fusca D, Cutter AD, Calarco JA. Neuron-specific repression of alternative splicing by the conserved CELF protein UNC-75 in Caenorhabditis elegans. Genetics 2025; 229:iyaf025. [PMID: 40059624 PMCID: PMC12005262 DOI: 10.1093/genetics/iyaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/29/2025] [Indexed: 04/18/2025] Open
Abstract
Tissue-regulated alternative exons are dictated by the interplay between cis-elements and trans-regulatory factors such as RNA-binding proteins (RBPs). Despite extensive research on splicing regulation, the full repertoire of these cis and trans features and their evolutionary dynamics across species are yet to be fully characterized. Members of the CUG-binding protein and ETR-like family (CELF) of RBPs are known to play a key role in the regulation of tissue-biased splicing patterns, and when mutated, these proteins have been implicated in a number of neurological and muscular disorders. In this study, we sought to characterize specific mechanisms that drive tissue-specific splicing in vivo of a model switch-like exon regulated by the neuronal-enriched CELF ortholog in Caenorhabditis elegans, UNC-75. Using sequence alignments, we identified deeply conserved intronic UNC-75 binding motifs overlapping the 5' splice site and upstream of the 3' splice site, flanking a strongly neural-repressed alternative exon in the Zonula Occludens gene zoo-1. We confirmed that loss of UNC-75 or mutations in either of these cis-elements lead to substantial de-repression of the alternative exon in neurons. Moreover, mis-expression of UNC-75 in muscle cells is sufficient to induce the neuron-like robust skipping of this alternative exon. Lastly, we demonstrate that overlapping an UNC-75 motif within a heterologous 5' splice site leads to increased skipping of the adjacent alternative exon in an unrelated splicing event. Together, we have demonstrated that a specific configuration and combination of cis elements bound by this important family of RBPs can achieve robust splicing outcomes in vivo.
Collapse
Affiliation(s)
- Pallavi Pilaka-Akella
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Nour H Sadek
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Daniel Fusca
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
3
|
Zhang X, Guo Z, Li Y, Xu Y. Splicing to orchestrate cell fate. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102416. [PMID: 39811494 PMCID: PMC11729663 DOI: 10.1016/j.omtn.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M. The review also examines AS in cell differentiation, highlighting its effects on mesenchymal stem cells and neurogenesis, and how it regulates differentiation into adipocytes, osteoblasts, and chondrocytes. Additionally, we discuss the role of AS in programmed cell death, including apoptosis and pyroptosis, and its contribution to cancer progression. Importantly, targeting aberrant splicing mechanisms presents promising therapeutic opportunities for restoring normal cellular function. By synthesizing recent findings, this review provides insights into how AS governs cellular fate and offers directions for future research into splicing regulatory networks.
Collapse
Affiliation(s)
- Xurui Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Zhonghao Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yachen Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| |
Collapse
|
4
|
Porter RS, An S, Gavilan MC, Nagai M, Murata-Nakamura Y, Zhou B, Bonefas KM, Dionne O, Manuel JM, St-Germain J, Gascon S, Kim J, Browning L, Laurent B, Cho US, Iwase S. Coordinated neuron-specific splicing events restrict nucleosome engagement of the LSD1 histone demethylase complex. Cell Rep 2025; 44:115213. [PMID: 39817906 PMCID: PMC11864812 DOI: 10.1016/j.celrep.2024.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
Chromatin regulatory proteins are expressed broadly and assumed to exert the same intrinsic function across cell types. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Among them are two components of a histone demethylase complex: LSD1 H3K4 demethylase and the H3K4me0-reader PHF21A. We found that neuronal LSD1 splicing reduces the enzymes' affinity to the nucleosome. Meanwhile, neuronal PHF21A splicing significantly attenuates histone H3 binding and further ablates the DNA-binding function exerted by an AT-hook motif. Furthermore, in vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes, combined with in vivo methylation mapping, identified the neuronal complex as a hypomorphic H3K4 demethylating machinery. The neuronal PHF21A, albeit with its weaker nucleosome binding, is necessary for normal gene expression and the H3K4 landscape in the developing brain. Thus, ubiquitously expressed chromatin regulatory complexes can exert neuron-specific functions via alternative splicing of their subunits.
Collapse
Affiliation(s)
- Robert S Porter
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria C Gavilan
- Genetics and Genomics Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masayoshi Nagai
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yumie Murata-Nakamura
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bo Zhou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Olivier Dionne
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jeru Manoj Manuel
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joannie St-Germain
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Suzanne Gascon
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jacqueline Kim
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Liam Browning
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
5
|
Zhong G, Shen Q, Zheng X, Yu K, Lu H, Wei B, Cui H, Dai Z, Lou W. CPSF4-mediated regulation of alternative splicing of HMG20B facilitates the progression of triple-negative breast cancer. J Transl Med 2024; 22:1149. [PMID: 39731153 PMCID: PMC11673668 DOI: 10.1186/s12967-024-06004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/17/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Aberrant alternative splicing (AS) contributes to tumor progression. A crucial component of AS is cleavage and polyadenylation specificity factor 4 (CPSF4). It remains unclear whether CPSF4 plays a role in triple-negative breast cancer (TNBC) progression through AS regulation. In this study, our objective is to investigate the prognostic value of CPSF4 and pinpoint pivotal AS events governed by CPSF4 specifically in TNBC. METHODS We examined the expression levels and prognostic implications of CPSF4 in patients diagnosed with TNBC through public databases. CPSF4-interacting transcripts, global transcriptome, and alternative splicing were captured through RNA immunoprecipitation sequencing (RIP-seq) and RNA sequencing (RNA-seq). The top 10 CPSF4-regulated alternative splicing events (ASEs) were validated using qRT-PCR. TNBC cells transfected with high mobility group 20B (HMG20B) siRNA were subjected to CCK-8 and transwell assays. RESULTS In TNBC, CPSF4 exhibited heightened expression levels and was correlated with unfavorable prognosis. Overexpression of CPSF4 significantly promoted colony formation and migration, whereas knockdown of CPSF4 had the opposite effect. Inhibition of CPSF4 altered the transcriptome profile of MDA-MB-231 cells. CPSF4-regulated numerous genes showed enrichment in cancer-related functional pathways, including mRNA processing, cell cycle, RNA transport, mRNA surveillance pathway, and apoptosis. CPSF4-regulated ASEs were highly validated by qRT-PCR. CPSF4 modulated selective splicing events by inhibiting alternative 3' splice site events of HMG20B and promoted cell proliferation, migration, and invasion. CONCLUSION CPSF4 promotes TNBC progression by regulating AS of HMG20B. These findings contribute to the development of more useful prognostic, diagnostic and potentially therapeutic biomarkers for TNBC.
Collapse
Affiliation(s)
- Guansheng Zhong
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Qinyan Shen
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, Zhejiang, China
| | - Xinli Zheng
- Department of Eye, Ear, Nose and Throat, The 903 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, 310000, Zhejiang, China
| | - Kun Yu
- Department of Head, Neck & Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310000, Zhejiang, China
| | - Hongjiang Lu
- Department of Radiology, The 903 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Hangzhou, 310000, Zhejiang, China
| | - Bajin Wei
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Haidong Cui
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China
| | - Weiyang Lou
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
6
|
Peter L, Walotka L, Ptok J, Meyer C, Schüller D, Schaal H, Müller L. Bioinformatics-driven refinement of the commonly used TPI nonsense-mediated decay reporter system. RNA (NEW YORK, N.Y.) 2024; 31:32-42. [PMID: 39414360 DOI: 10.1261/rna.080134.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
The cellular nonsense-mediated decay (NMD) pathway recognizes and degrades mRNAs with unusual structural features, such as long 3' UTRs or overlapping reading frames, and therefore serves as a transcript quality control mechanism. A broad spectrum of today's knowledge about the nonsense-mediated mRNA decay pathway has been discovered using NMD reporter systems, mostly consisting of multiple exons, with a wild-type and a premature termination codon-containing variant. In a preliminary NMD study, we used the seven-exon triose phosphate isomerase (TPI) reporter and observed that in this well-known NMD reporter, surprisingly, not all splice sites are used constitutively, but additional cryptic splice sites are used. As this is more frequently observed in the construction of minigenes, especially when unknown splicing regulatory elements (SREs) are removed, for example, by shortening introns, this may affect the reliability of such reporters. To demonstrate how such minigenes can be improved in general with respect to constitutive splice site recognition, we restored an intron length in the TPI reporter or made bioinformatic adjustments to SREs or intrinsic strength of the splice sites themselves. As a result, this NMD reporter could be made more robust and specific for the evaluation of NMD sensitivity within a single transcript. The modifications of the TPI reporter shown here as examples can generally be used for the transfer of cellular multiexon transcripts to minigenes.
Collapse
Affiliation(s)
- Laura Peter
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lara Walotka
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Caroline Meyer
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dominik Schüller
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Tang L, Xu D, Luo L, Ma W, He X, Diao Y, Ke R, Kapranov P. A novel human protein-coding locus identified using a targeted RNA enrichment technique. BMC Biol 2024; 22:273. [PMID: 39593153 PMCID: PMC11590353 DOI: 10.1186/s12915-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Accurate and comprehensive genomic annotation, including the full list of protein-coding genes, is vital for understanding the molecular mechanisms of human biology. We have previously shown that the genome contains a multitude of yet hidden functional exons and transcripts, some of which might represent novel mRNAs. These results resonate with those from other groups and strongly argue that two decades after the completion of the first draft of the human genome sequence, the current annotation of human genes and transcripts remains far from being complete. RESULTS Using a targeted RNA enrichment technique, we showed that one of the novel functional exons previously discovered by us and currently annotated as part of a long non-coding RNA, is actually a part of a novel protein-coding gene, InSETG-4, which encodes a novel human protein with no known homologs or motifs. We found that InSETG-4 is induced by various DNA-damaging agents across multiple cell types and therefore might represent a novel component of DNA damage response. Despite its low abundance in bulk cell populations, InSETG-4 exhibited expression restricted to a small fraction of cells, as demonstrated by the amplification-based single-molecule fluorescence in situ hybridization (asmFISH) analysis. CONCLUSIONS This study argues that yet undiscovered human protein-coding genes exist and provides an example of how targeted RNA enrichment techniques can help to fill this major gap in our knowledge of the information encoded in the human genome.
Collapse
Affiliation(s)
- Lu Tang
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Dongyang Xu
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China.
| | - Lingcong Luo
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Weiyan Ma
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Xiaojie He
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Yong Diao
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China.
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
8
|
Wagner RE, Arnetzl L, Britto-Borges T, Heit-Mondrzyk A, Bakr A, Sollier E, Gkatza NA, Panten J, Delaunay S, Sohn D, Schmezer P, Odom DT, Müller-Decker K, Plass C, Dieterich C, Lutsik P, Bornelöv S, Frye M. SRSF2 safeguards efficient transcription of DNA damage and repair genes. Cell Rep 2024; 43:114869. [PMID: 39446588 DOI: 10.1016/j.celrep.2024.114869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The serine-/arginine-rich splicing factor 2 (SRSF2) plays pivotal roles in pre-mRNA processing and gene transcription. Recurrent mutations, particularly a proline-to-histidine substitution at position 95 (P95H), are common in neoplastic diseases. Here, we assess SRSF2's diverse functions in squamous cell carcinoma. We show that SRSF2 deletion or homozygous P95H mutation both cause extensive DNA damage leading to cell-cycle arrest. Mechanistically, SRSF2 regulates efficient bi-directional transcription of DNA replication and repair genes, independent from its function in splicing. Further, SRSF2 haploinsufficiency induces DNA damage without halting the cell cycle. Exposing mouse skin to tumor-promoting carcinogens enhances the clonal expansion of heterozygous Srsf2 P95H epidermal cells but unexpectedly inhibits tumor formation. To survive carcinogen treatment, Srsf2 P95H+/- cells undergo substantial transcriptional rewiring and restore bi-directional gene expression. Thus, our study underscores SRSF2's importance in regulating transcription to orchestrate the cell cycle and the DNA damage response.
Collapse
Affiliation(s)
- Rebecca E Wagner
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Leonie Arnetzl
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Anke Heit-Mondrzyk
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Jasper Panten
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany; Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sylvain Delaunay
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Daniela Sohn
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Karin Müller-Decker
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Susanne Bornelöv
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, CB2 0RE Cambridge, UK
| | - Michaela Frye
- Division of Mechanisms Regulating Gene Expression, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
9
|
Wu R, Ye Y, Dong D, Zhang Z, Wang S, Li Y, Wright N, Redding-Ochoa J, Chang K, Xu S, Tu X, Zhu C, Ostrow LW, Roca X, Troncoso JC, Wu B, Sun S. Disruption of nuclear speckle integrity dysregulates RNA splicing in C9ORF72-FTD/ALS. Neuron 2024; 112:3434-3451.e11. [PMID: 39181135 PMCID: PMC11502262 DOI: 10.1016/j.neuron.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Expansion of an intronic (GGGGCC)n repeat within the C9ORF72 gene is the most common genetic cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (C9-FTD/ALS), characterized with aberrant repeat RNA foci and noncanonical translation-produced dipeptide repeat (DPR) protein inclusions. Here, we elucidate that the (GGGGCC)n repeat RNA co-localizes with nuclear speckles and alters their phase separation properties and granule dynamics. Moreover, the essential nuclear speckle scaffold protein SRRM2 is sequestered into the poly-GR cytoplasmic inclusions in the C9-FTD/ALS mouse model and patient postmortem tissues, exacerbating the nuclear speckle dysfunction. Impaired nuclear speckle integrity induces global exon skipping and intron retention in human iPSC-derived neurons and causes neuronal toxicity. Similar alternative splicing changes can be found in C9-FTD/ALS patient postmortem tissues. This work identified novel molecular mechanisms of global RNA splicing defects caused by impaired nuclear speckle function in C9-FTD/ALS and revealed novel potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Rong Wu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Physiology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daoyuan Dong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaopeng Wang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yini Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Noelle Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shaohai Xu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Xueting Tu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chengzhang Zhu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lyle W Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19122, USA
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Lee HMT, Lim HY, He H, Lau CY, Zheng C. MBL-1/Muscleblind regulates neuronal differentiation and controls the splicing of a terminal selector in Caenorhabditis elegans. PLoS Genet 2024; 20:e1011276. [PMID: 39423233 PMCID: PMC11524483 DOI: 10.1371/journal.pgen.1011276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
The muscleblind family of mRNA splicing regulators is conserved across species and regulates the development of muscles and the nervous system. However, how Muscleblind proteins regulate neuronal fate specification and neurite morphogenesis at the single-neuron level is not well understood. In this study, we found that the C. elegans Muscleblind/MBL-1 promotes axonal growth in the touch receptor neurons (TRNs) by regulating microtubule stability and polarity. Transcriptomic analysis identified dozens of MBL-1-controlled splicing events in genes related to neuronal differentiation or microtubule functions. Among the MBL-1 targets, the LIM-domain transcription factor mec-3 is the terminal selector for the TRN fate and induces the expression of many TRN terminal differentiation genes. MBL-1 promotes the splicing of the mec-3 long isoform, which is essential for TRN fate specification, and inhibits the short isoforms that have much weaker activities in activating downstream genes. MBL-1 promotes mec-3 splicing through three "YGCU(U/G)Y" motifs located in or downstream of the included exon, which is similar to the mechanisms used by mammalian Muscleblind and suggests a deeply conserved context-dependency of the splicing regulation. Interestingly, the expression of mbl-1 in the TRNs is dependent on the mec-3 long isoform, indicating a positive feedback loop between the splicing regulator and the terminal selector. Finally, through a forward genetic screen, we found that MBL-1 promotes neurite growth partly by inhibiting the DLK-1/p38 MAPK pathway. In summary, our study provides mechanistic understanding of the role of Muscleblind in regulating cell fate specification and neuronal morphogenesis.
Collapse
Affiliation(s)
- Ho Ming Terence Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Hui Yuan Lim
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Haoming He
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Gnatowski ER, Jurmain JL, Dozmorov MG, Wolstenholme JT, Miles MF. Ninein, a candidate gene for ethanol anxiolysis, shows complex exon-specific expression and alternative splicing differences between C57BL/6J and DBA/2J mice. Front Genet 2024; 15:1455616. [PMID: 39323865 PMCID: PMC11422218 DOI: 10.3389/fgene.2024.1455616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Ethanol's anxiolytic actions contribute to increased consumption and the development of Alcohol Use Disorder (AUD). Our laboratory previously identified genetic loci contributing to the anxiolytic-like properties of ethanol in BXD recombinant inbred mice, derived from C57BL/6J (B6) and DBA/2J (D2) progenitor strains. That work identified Ninein (Nin) as a candidate gene underlying ethanol's acute anxiolytic-like properties in BXD mice. Nin has a complex exonic content with known alternative splicing events that alter cellular distribution of the NIN protein. We hypothesize that strain-specific differences in Nin alternative splicing contribute to changes in Nin gene expression and B6/D2 strain differences in ethanol anxiolysis. Using quantitative reverse-transcriptase PCR to target specific Nin splice variants, we identified isoform-specific exon expression differences between B6 and D2 mice in prefrontal cortex, nucleus accumbens and amygdala. We extended this analysis using deep RNA sequencing in B6 and D2 nucleus accumbens samples and found that total Nin expression was significantly higher in D2 mice. Furthermore, exon utilization and alternative splicing analyses identified eight differentially utilized exons and significant exon-skipping events between the strains, including three novel splicing events in the 3' end of the Nin gene that were specific to the D2 strain. Additionally, we document multiple single nucleotide polymorphisms in D2 Nin exons that are predicted to have deleterious effects on protein function. Our studies provide the first in-depth analysis of Nin alternative splicing in brain and identify a potential genetic mechanism altering Nin expression and function between B6 and D2 mice, thus possibly contributing to differences in the anxiolytic-like properties of ethanol between these strains. This work adds novel information to our understanding of genetic differences modulating ethanol actions on anxiety that may contribute to the risk for alcohol use disorder.
Collapse
Affiliation(s)
- E. R. Gnatowski
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, United States
| | - J. L. Jurmain
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, United States
| | - M. G. Dozmorov
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, United States
- Department of Biostatistics, Virginia Commonwealth University, Richmond, United States
| | - J. T. Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, United States
| | - M. F. Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, United States
| |
Collapse
|
12
|
Lin TC, Tsai CH, Shiau CK, Huang JH, Tsai HK. Predicting splicing patterns from the transcription factor binding sites in the promoter with deep learning. BMC Genomics 2024; 25:830. [PMID: 39227799 PMCID: PMC11373144 DOI: 10.1186/s12864-024-10667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/25/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Alternative splicing is a pivotal mechanism of post-transcriptional modification that contributes to the transcriptome plasticity and proteome diversity in metazoan cells. Although many splicing regulations around the exon/intron regions are known, the relationship between promoter-bound transcription factors and the downstream alternative splicing largely remains unexplored. RESULTS In this study, we present computational approaches to unravel the regulatory relationship between promoter-bound transcription factor binding sites (TFBSs) and the splicing patterns. We curated a fine dataset that includes DNase I hypersensitive site sequencing and transcriptomes across fifteen human tissues from ENCODE. Specifically, we proposed different representations of TF binding context and splicing patterns to examine the associations between the promoter and downstream splicing events. While machine learning models demonstrated potential in predicting splicing patterns based on TFBS occupancies, the limitations in the generalization of predicting the splicing forms of singleton genes across diverse tissues was observed with carefully examination using different cross-validation methods. We further investigated the association between alterations in individual TFBS at promoters and shifts in exon splicing efficiency. Our results demonstrate that the convolutional neural network (CNN) models, trained on TF binding changes in the promoters, can predict the changes in splicing patterns. Furthermore, a systemic in silico substitutions analysis on the CNN models highlighted several potential splicing regulators. Notably, using empirical validation using K562 CTCFL shRNA knock-down data, we showed the significant role of CTCFL in splicing regulation. CONCLUSION In conclusion, our finding highlights the potential role of promoter-bound TFBSs in influencing the regulation of downstream splicing patterns and provides insights for discovering alternative splicing regulations.
Collapse
Affiliation(s)
- Tzu-Chieh Lin
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Hung Tsai
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Cheng-Kai Shiau
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Jia-Hsin Huang
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan.
- Taiwan AI Labs & Foundation, Taipei, 10351, Taiwan.
| | - Huai-Kuang Tsai
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan.
- Taiwan AI Labs & Foundation, Taipei, 10351, Taiwan.
| |
Collapse
|
13
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
14
|
Netherton JK, Ogle RA, Robinson BR, Molloy M, Krisp C, Velkov T, Casagranda F, Dominado N, Silva Balbin Villaverde AI, Zhang XD, Hime GR, Baker MA. The role of HnrnpF/H as a driver of oligoteratozoospermia. iScience 2024; 27:110198. [PMID: 39092172 PMCID: PMC11292545 DOI: 10.1016/j.isci.2024.110198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024] Open
Abstract
Male subfertility or infertility is a common condition often characterized by men producing a low number of sperm with poor quality. To gain insight into this condition, we performed a quantitative proteomic analysis of semen samples obtained from infertile and fertile men. At least 6 proteins showed significant differences in regulation of alternatively spliced isoforms. To investigate this link between aberrant alternative splicing and production of poor-quality spermatozoa, we overexpressed the hnrnpH/F-orthologue Glorund (Glo) in Drosophila, which was also found to be abundant in poor quality human sperm. Transgenic animals produced low numbers of morphologically defective spermatozoa and aberrant formation of the "dense body," an organelle akin to the mammalian manchette. Furthermore, fertility trials demonstrated that transgenic flies were either completely infertile or highly subfertile. These findings suggest that dysregulation of hnrnpH/F is likely to result in the production of low-quality semen, leading to subfertility or infertility in men.
Collapse
Affiliation(s)
- Jacob K. Netherton
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rachel A. Ogle
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Benjamin R. Robinson
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Christoph Krisp
- Australian Proteome Analysis Facility, Department of Biomolecular Sciences, Macquarie University, NSW 2109 Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, VIC 3168, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicole Dominado
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Gary R. Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A. Baker
- School of Biomedical Sciences and Pharmacy, Faculty of Medicine and Health, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
15
|
Haj Abdullah Alieh L, Cardoso de Toledo B, Hadarovich A, Toth-Petroczy A, Calegari F. Characterization of alternative splicing during mammalian brain development reveals the extent of isoform diversity and potential effects on protein structural changes. Biol Open 2024; 13:bio061721. [PMID: 39387301 PMCID: PMC11554263 DOI: 10.1242/bio.061721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Regulation of gene expression is critical for fate commitment of stem and progenitor cells during tissue formation. In the context of mammalian brain development, a plethora of studies have described how changes in the expression of individual genes characterize cell types across ontogeny and phylogeny. However, little attention has been paid to the fact that different transcripts can arise from any given gene through alternative splicing (AS). Considered a key mechanism expanding transcriptome diversity during evolution, assessing the full potential of AS on isoform diversity and protein function has been notoriously difficult. Here, we capitalize on the use of a validated reporter mouse line to isolate neural stem cells, neurogenic progenitors and neurons during corticogenesis and combine the use of short- and long-read sequencing to reconstruct the full transcriptome diversity characterizing neurogenic commitment. Extending available transcriptional profiles of the mammalian brain by nearly 50,000 new isoforms, we found that neurogenic commitment is characterized by a progressive increase in exon inclusion resulting in the profound remodeling of the transcriptional profile of specific cortical cell types. Most importantly, we computationally infer the biological significance of AS on protein structure by using AlphaFold2, revealing how radical protein conformational changes can arise from subtle changes in isoforms sequence. Together, our study reveals that AS has a greater potential to impact protein diversity and function than previously thought, independently from changes in gene expression.
Collapse
Affiliation(s)
| | | | - Anna Hadarovich
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies Dresden, School of Medicine, TU Dresden, Germany
| |
Collapse
|
16
|
Gallo CM, Kistler SA, Natrakul A, Labadorf AT, Beffert U, Ho A. APOER2 splicing repertoire in Alzheimer's disease: Insights from long-read RNA sequencing. PLoS Genet 2024; 20:e1011348. [PMID: 39038048 PMCID: PMC11293713 DOI: 10.1371/journal.pgen.1011348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/01/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Disrupted alternative splicing plays a determinative role in neurological diseases, either as a direct cause or as a driver in disease susceptibility. Transcriptomic profiling of aged human postmortem brain samples has uncovered hundreds of aberrant mRNA splicing events in Alzheimer's disease (AD) brains, associating dysregulated RNA splicing with disease. We previously identified a complex array of alternative splicing combinations across apolipoprotein E receptor 2 (APOER2), a transmembrane receptor that interacts with both the neuroprotective ligand Reelin and the AD-associated risk factor, APOE. Many of the human APOER2 isoforms, predominantly featuring cassette splicing events within functionally important domains, are critical for the receptor's function and ligand interaction. However, a comprehensive repertoire and the functional implications of APOER2 isoforms under both physiological and AD conditions are not fully understood. Here, we present an in-depth analysis of the splicing landscape of human APOER2 isoforms in normal and AD states. Using single-molecule, long-read sequencing, we profiled the entire APOER2 transcript from the parietal cortex and hippocampus of Braak stage IV AD brain tissues along with age-matched controls and investigated several functional properties of APOER2 isoforms. Our findings reveal diverse patterns of cassette exon skipping for APOER2 isoforms, with some showing region-specific expression and others unique to AD-affected brains. Notably, exon 15 of APOER2, which encodes the glycosylation domain, showed less inclusion in AD compared to control in the parietal cortex of females with an APOE ɛ3/ɛ3 genotype. Also, some of these APOER2 isoforms demonstrated changes in cell surface expression, APOE-mediated receptor processing, and synaptic number. These variations are likely critical in inducing synaptic alterations and may contribute to the neuronal dysfunction underlying AD pathogenesis.
Collapse
Affiliation(s)
- Christina M. Gallo
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Sabrina A. Kistler
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Anna Natrakul
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Adam T. Labadorf
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| | - Uwe Beffert
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Angela Ho
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
17
|
Moakley DF, Campbell M, Anglada-Girotto M, Feng H, Califano A, Au E, Zhang C. Reverse engineering neuron type-specific and type-orthogonal splicing-regulatory networks using single-cell transcriptomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.597128. [PMID: 38915499 PMCID: PMC11195221 DOI: 10.1101/2024.06.13.597128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cell type-specific alternative splicing (AS) enables differential gene isoform expression between diverse neuron types with distinct identities and functions. Current studies linking individual RNA-binding proteins (RBPs) to AS in a few neuron types underscore the need for holistic modeling. Here, we use network reverse engineering to derive a map of the neuron type-specific AS regulatory landscape from 133 mouse neocortical cell types defined by single-cell transcriptomes. This approach reliably inferred the regulons of 350 RBPs and their cell type-specific activities. Our analysis revealed driving factors delineating neuronal identities, among which we validated Elavl2 as a key RBP for MGE-specific splicing in GABAergic interneurons using an in vitro ESC differentiation system. We also identified a module of exons and candidate regulators specific for long- and short-projection neurons across multiple neuronal classes. This study provides a resource for elucidating splicing regulatory programs that drive neuronal molecular diversity, including those that do not align with gene expression-based classifications.
Collapse
Affiliation(s)
- Daniel F Moakley
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Melissa Campbell
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Present address: Department of Neurosciences, University of California, San Diego, USA
| | - Miquel Anglada-Girotto
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Present address: Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Huijuan Feng
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Present address: Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Edmund Au
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Columbia Translational Neuroscience Initiative Scholar, New York, NY 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| |
Collapse
|
18
|
Brandão-Teles C, Antunes ASLM, de Moraes Vrechi TA, Martins-de-Souza D. The Roles of hnRNP Family in the Brain and Brain-Related Disorders. Mol Neurobiol 2024; 61:3578-3595. [PMID: 37999871 DOI: 10.1007/s12035-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil.
| |
Collapse
|
19
|
Wang X, Guo S, Xiong L, Wu X, Bao P, Kang Y, Cao M, Ding Z, Liang C, Pei J, Guo X. Complete characterization of the yak testicular development using accurate full-length transcriptome sequencing. Int J Biol Macromol 2024; 271:132400. [PMID: 38759851 DOI: 10.1016/j.ijbiomac.2024.132400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| |
Collapse
|
20
|
Inamo J, Suzuki A, Ueda MT, Yamaguchi K, Nishida H, Suzuki K, Kaneko Y, Takeuchi T, Hatano H, Ishigaki K, Ishihama Y, Yamamoto K, Kochi Y. Long-read sequencing for 29 immune cell subsets reveals disease-linked isoforms. Nat Commun 2024; 15:4285. [PMID: 38806455 PMCID: PMC11133395 DOI: 10.1038/s41467-024-48615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Alternative splicing events are a major causal mechanism for complex traits, but they have been understudied due to the limitation of short-read sequencing. Here, we generate a full-length isoform annotation of human immune cells from an individual by long-read sequencing for 29 cell subsets. This contains a number of unannotated transcripts and isoforms such as a read-through transcript of TOMM40-APOE in the Alzheimer's disease locus. We profile characteristics of isoforms and show that repetitive elements significantly explain the diversity of unannotated isoforms, providing insight into the human genome evolution. In addition, some of the isoforms are expressed in a cell-type specific manner, whose alternative 3'-UTRs usage contributes to their specificity. Further, we identify disease-associated isoforms by isoform switch analysis and by integration of several quantitative trait loci analyses with genome-wide association study data. Our findings will promote the elucidation of the mechanism of complex diseases via alternative splicing.
Collapse
Affiliation(s)
- Jun Inamo
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kensuke Yamaguchi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Biomedical Engineering Research Innovation Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hiroshi Nishida
- Department of Molecular Systems Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Katsuya Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Tsutomu Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Saitama Medical University, 38 Morohongo, Moroyama, Iruma, Saitama, 350-0495, Japan
| | - Hiroaki Hatano
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
21
|
Romeo-Cardeillac C, Trovero MF, Radío S, Smircich P, Rodríguez-Casuriaga R, Geisinger A, Sotelo-Silveira J. Uncovering a multitude of stage-specific splice variants and putative protein isoforms generated along mouse spermatogenesis. BMC Genomics 2024; 25:295. [PMID: 38509455 PMCID: PMC10953240 DOI: 10.1186/s12864-024-10170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.
Collapse
Affiliation(s)
- Carlos Romeo-Cardeillac
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - María Fernanda Trovero
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Santiago Radío
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay
| | - Adriana Geisinger
- Laboratory of Molecular Biology of Reproduction, Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11,600, Montevideo, Uruguay.
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11,400, Montevideo, Uruguay.
| | - José Sotelo-Silveira
- Department of Genomics, IIBCE, 11,600, Montevideo, Uruguay.
- Department of Cell and Molecular Biology, Facultad de Ciencias, UdelaR, 11,400, Montevideo, Uruguay.
| |
Collapse
|
22
|
Werren EA, LaForce GR, Srivastava A, Perillo DR, Li S, Johnson K, Baris S, Berger B, Regan SL, Pfennig CD, de Munnik S, Pfundt R, Hebbar M, Jimenez-Heredia R, Karakoc-Aydiner E, Ozen A, Dmytrus J, Krolo A, Corning K, Prijoles EJ, Louie RJ, Lebel RR, Le TL, Amiel J, Gordon CT, Boztug K, Girisha KM, Shukla A, Bielas SL, Schaffer AE. TREX tetramer disruption alters RNA processing necessary for corticogenesis in THOC6 Intellectual Disability Syndrome. Nat Commun 2024; 15:1640. [PMID: 38388531 PMCID: PMC10884030 DOI: 10.1038/s41467-024-45948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Geneva R LaForce
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226014, India
| | - Delia R Perillo
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Shaokun Li
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Katherine Johnson
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Safa Baris
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Brandon Berger
- Advanced Precision Medicine Laboratory, The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Christian D Pfennig
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Centre Nijmegen, Nijmegen, 6524, the Netherlands
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, 98195, Seattle, WA, USA
| | - Raúl Jimenez-Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Elif Karakoc-Aydiner
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Ahmet Ozen
- Division of Pediatric Allergy and Immunology, School of Medicine, Marmara University, Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, The Isil Berat Barlan Center for Translational Medicine, Istanbul, 34722, Turkey
| | - Jasmin Dmytrus
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
| | - Ana Krolo
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
| | - Ken Corning
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | - E J Prijoles
- Greenwood Genetic Center, Greenwood, SC, 29646, USA
| | | | - Robert Roger Lebel
- Section of Medical Genetics, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thuy-Linh Le
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
| | - Jeanne Amiel
- Imagine Institute, INSERM U1163, Paris Cité University, Paris, 75015, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, 75015, France
| | | | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, 1090, Austria
- Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, 1090, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, 1090, Austria
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, 1090, Austria
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Ashleigh E Schaffer
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
23
|
Durydivka O, Gazdarica M, Vecerkova K, Radenkovic S, Blahos J. Multiple Sgip1 splice variants inhibit cannabinoid receptor 1 internalization. Gene 2024; 892:147851. [PMID: 37783296 DOI: 10.1016/j.gene.2023.147851] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Alternative splicing can often result in the expression of distinct protein isoforms from a single gene, with specific composition and properties. SH3-containing GRB2-like protein 3-interacting protein 1 (Sgip1) is a brain-enriched protein that regulates clathrin-mediated endocytosis and interferes with the internalization of cannabinoid receptor 1. Several research groups have studied the physiological importance of Sgip1, and four Sgip1 protein isoforms have been described to date, while the NCBI Gene database predicts the expression of 20 splice variants from the Sgip1 gene in mice. In this work, we cloned 15 Sgip1 splice variants from the mouse brain, including 11 novel splice variants. The cloned splice variants differed in exon composition within two Sgip1 regions: the membrane phospholipid-binding domain and the proline-rich region. All the Sgip1 splice isoforms had similar stability and comparable ability to inhibit the internalization of cannabinoid receptor 1. None of the isoforms influenced the internalization of the µ-opioid receptor. We confirm the expression of Sgip1 splice variants described in previous studies or predicted in silico. Our data provide a basis for further studies exploring the significance of Sgip1 splicing, and we suggest a new classification of Sgip1 splice variants to unify their nomenclature.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Matej Gazdarica
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Katerina Vecerkova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; Department of Informatics and Chemistry, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic
| | - Silvia Radenkovic
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
24
|
Liharska L, Charney A. Transcriptomics : Approaches to Quantifying Gene Expression and Their Application to Studying the Human Brain. Curr Top Behav Neurosci 2024; 68:129-176. [PMID: 38972894 DOI: 10.1007/7854_2024_466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
To date, the field of transcriptomics has been characterized by rapid methods development and technological advancement, with new technologies continuously rendering older ones obsolete.This chapter traces the evolution of approaches to quantifying gene expression and provides an overall view of the current state of the field of transcriptomics, its applications to the study of the human brain, and its place in the broader emerging multiomics landscape.
Collapse
Affiliation(s)
- Lora Liharska
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | |
Collapse
|
25
|
Sheng M, Zhang Y, Wang Y, Liu W, Wang X, Ke T, Liu P, Wang S, Shao W. Decoding the role of aberrant RNA alternative splicing in hepatocellular carcinoma: a comprehensive review. J Cancer Res Clin Oncol 2023; 149:17691-17708. [PMID: 37898981 DOI: 10.1007/s00432-023-05474-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023]
Abstract
During eukaryotic gene expression, alternative splicing of messenger RNA precursors is critical in increasing protein diversity and regulatory complexity. Multiple transcript isoforms could be produced by alternative splicing from a single gene; they could eventually be translated into protein isoforms with deleted, added, or altered domains or produce transcripts containing premature termination codons that could be targeted by nonsense-mediated mRNA decay. Alternative splicing can generate proteins with similar, different, or even opposite functions. Increasingly strong evidence indicates that abnormal RNA splicing is a prevalent and crucial occurrence in cellular differentiation, tissue advancement, and the development and progression of cancer. Aberrant alternative splicing could affect cancer cell activities such as growth, apoptosis, invasiveness, drug resistance, angiogenesis, and metabolism. This systematic review provides a comprehensive overview of the impact of abnormal RNA alternative splicing on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mengfei Sheng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yaoyun Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weiyi Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xingyu Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tiaoying Ke
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Pingyang Liu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Sihan Wang
- Department of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Wiedner HJ, Blue RE, Sadovsky M, Mills CA, Wehrens XH, Herring LE, Giudice J. RBFOX2 regulated EYA3 isoforms partner with SIX4 or ZBTB1 to control transcription during myogenesis. iScience 2023; 26:108258. [PMID: 38026174 PMCID: PMC10665822 DOI: 10.1016/j.isci.2023.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Alternative splicing is a prevalent gene-regulatory mechanism, with over 95% of multi-exon human genes estimated to be alternatively spliced. Here, we describe a tissue-specific, developmentally regulated, highly conserved, and disease-associated alternative splicing event in exon 7 of the eyes absent homolog 3 (Eya3) gene. We discovered that EYA3 expression is vital to the proliferation and differentiation of myoblasts. Genome-wide transcriptomic analysis and mass spectrometry-based proteomic studies identified SIX homeobox 4 (SIX4) and zinc finger and BTB-domain containing 1 (ZBTB1), as major transcription factors that interact with EYA3 to dictate gene expression. EYA3 isoforms differentially regulate transcription, indicating that splicing aids in temporal control of gene expression during muscle cell differentiation. Finally, we identified RNA-binding fox-1 homolog 2 (RBFOX2) as the main regulator of EYA3 splicing. Together, our findings illustrate the interplay between alternative splicing and transcription during myogenesis.
Collapse
Affiliation(s)
- Hannah J. Wiedner
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R. Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matheus Sadovsky
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C. Allie Mills
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Porter RS, Nagai M, An S, Gavilan MC, Murata-Nakamura Y, Bonefas KM, Zhou B, Dionne O, Manuel JM, St-Germain J, Browning L, Laurent B, Cho US, Iwase S. A neuron-specific microexon ablates the novel DNA-binding function of a histone H3K4me0 reader PHF21A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563357. [PMID: 37904995 PMCID: PMC10614952 DOI: 10.1101/2023.10.20.563357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
How cell-type-specific chromatin landscapes emerge and progress during metazoan ontogenesis remains an important question. Transcription factors are expressed in a cell-type-specific manner and recruit chromatin-regulatory machinery to specific genomic loci. In contrast, chromatin-regulatory proteins are expressed broadly and are assumed to exert the same intrinsic function across cell types. However, human genetics studies have revealed an unexpected vulnerability of neurodevelopment to chromatin factor mutations with unknown mechanisms. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Of the 14 chromatin regulators, two are integral components of a histone H3K4 demethylase complex; the catalytic subunit LSD1 and an H3K4me0-reader protein PHF21A adopt neuron-specific forms. We found that canonical PHF21A (PHF21A-c) binds to DNA by AT-hook motif, and the neuronal counterpart PHF21A-n lacks this DNA-binding function yet maintains H3K4me0 recognition intact. In-vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes identified the neuronal complex as a hypomorphic H3K4 demethylating machinery with reduced nucleosome engagement. Furthermore, an autism-associated PHF21A missense mutation, 1285 G>A, at the last nucleotide of the common exon immediately upstream of the neuronal microexon led to impaired splicing of PHF21A -n. Thus, ubiquitous chromatin regulatory complexes exert unique intrinsic functions in neurons via alternative splicing of their subunits and potentially contribute to faithful human brain development.
Collapse
|
28
|
Liao SE, Sudarshan M, Regev O. Deciphering RNA splicing logic with interpretable machine learning. Proc Natl Acad Sci U S A 2023; 120:e2221165120. [PMID: 37796983 PMCID: PMC10576025 DOI: 10.1073/pnas.2221165120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
Machine learning methods, particularly neural networks trained on large datasets, are transforming how scientists approach scientific discovery and experimental design. However, current state-of-the-art neural networks are limited by their uninterpretability: Despite their excellent accuracy, they cannot describe how they arrived at their predictions. Here, using an "interpretable-by-design" approach, we present a neural network model that provides insights into RNA splicing, a fundamental process in the transfer of genomic information into functional biochemical products. Although we designed our model to emphasize interpretability, its predictive accuracy is on par with state-of-the-art models. To demonstrate the model's interpretability, we introduce a visualization that, for any given exon, allows us to trace and quantify the entire decision process from input sequence to output splicing prediction. Importantly, the model revealed uncharacterized components of the splicing logic, which we experimentally validated. This study highlights how interpretable machine learning can advance scientific discovery.
Collapse
Affiliation(s)
- Susan E. Liao
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| | - Mukund Sudarshan
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| | - Oded Regev
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| |
Collapse
|
29
|
Keuthan CJ, Karma S, Zack DJ. Alternative RNA Splicing in the Retina: Insights and Perspectives. Cold Spring Harb Perspect Med 2023; 13:a041313. [PMID: 36690463 PMCID: PMC10547393 DOI: 10.1101/cshperspect.a041313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alternative splicing is a fundamental and highly regulated post-transcriptional process that enhances transcriptome and proteome diversity. This process is particularly important in neuronal tissues, such as the retina, which exhibit some of the highest levels of differentially spliced genes in the body. Alternative splicing is regulated both temporally and spatially during neuronal development, can be cell-type-specific, and when altered can cause a number of pathologies, including retinal degeneration. Advancements in high-throughput sequencing technologies have facilitated investigations of the alternative splicing landscape of the retina in both healthy and disease states. Additionally, innovations in human stem cell engineering, specifically in the generation of 3D retinal organoids, which recapitulate many aspects of the in vivo retinal microenvironment, have aided studies of the role of alternative splicing in human retinal development and degeneration. Here we review these advances and discuss the ongoing development of strategies for the treatment of alternative splicing-related retinal disease.
Collapse
Affiliation(s)
- Casey J Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Sadik Karma
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Donald J Zack
- Departments of Ophthalmology, Wilmer Eye Institute, Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
30
|
Hackl LM, Fenn A, Louadi Z, Baumbach J, Kacprowski T, List M, Tsoy O. Alternative splicing impacts microRNA regulation within coding regions. NAR Genom Bioinform 2023; 5:lqad081. [PMID: 37705830 PMCID: PMC10495541 DOI: 10.1093/nargab/lqad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that bind to target sites in different gene regions and regulate post-transcriptional gene expression. Approximately 95% of human multi-exon genes can be spliced alternatively, which enables the production of functionally diverse transcripts and proteins from a single gene. Through alternative splicing, transcripts might lose the exon with the miRNA target site and become unresponsive to miRNA regulation. To check this hypothesis, we studied the role of miRNA target sites in both coding and non-coding regions using six cancer data sets from The Cancer Genome Atlas (TCGA) and Parkinson's disease data from PPMI. First, we predicted miRNA target sites on mRNAs from their sequence using TarPmiR. To check whether alternative splicing interferes with this regulation, we trained linear regression models to predict miRNA expression from transcript expression. Using nested models, we compared the predictive power of transcripts with miRNA target sites in the coding regions to that of transcripts without target sites. Models containing transcripts with target sites perform significantly better. We conclude that alternative splicing does interfere with miRNA regulation by skipping exons with miRNA target sites within the coding region.
Collapse
Affiliation(s)
- Lena Maria Hackl
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| | - Amit Fenn
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Zakaria Louadi
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
- Computational BioMedicine Lab, University of Southern Denmark, Campusvej 50, 5230 Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Rebenring 56, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, Notkestrasse 9, 22607 Hamburg, Germany
| |
Collapse
|
31
|
Dery KJ, Kojima H, Kageyama S, Kadono K, Hirao H, Cheng B, Zhai Y, Farmer DG, Kaldas FM, Yuan X, Eltzschiasg HK, Kupiec-Weglinski JW. Alternative splicing of CEACAM1 by hypoxia-inducible factor-1α enhances tolerance to hepatic ischemia in mice and humans. Sci Transl Med 2023; 15:eadf2059. [PMID: 37531413 PMCID: PMC11164245 DOI: 10.1126/scitranslmed.adf2059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Although alternative splicing (AS) drives transcriptional responses and cellular adaptation to environmental stresses, its contributions in organ transplantation have not been appreciated. We have shown that carcinoembryonic antigen-related cell adhesion molecule (Ceacam1; CD66a), a transmembrane biliary glycoprotein expressed in epithelial, endothelial, and immune cells, determines donor liver transplant quality. Here, we studied how AS of Ceacam1 affects ischemia-reperfusion injury (IRI) in mouse and human livers. We found that the short cytoplasmic isoform Ceacam1-S increased during early acute and late resolution phases of warm IRI injury in mice. Transfection of Ceacam1-deficient mouse hepatocytes with adenoviral Ceacam1-S mitigated hypoxia-induced loss of cellular adhesion by repressing the Ask1/p-p38 cell death pathway. Nucleic acid-blocking morpholinos, designed to selectively induce Ceacam1-S, protected hepatocyte cultures against temperature-induced stress in vitro. Luciferase and chromatin immunoprecipitation assays identified direct binding of hypoxia-inducible factor-1α (Hif-1α) to the mouse polypyrimidine tract binding protein 1 (Ptbp1) promoter region. Dimethyloxalylglycine protected mouse livers from warm IR stress and hepatocellular damage by inhibiting prolyl hydroxylase domain-containing protein 1 and promoting AS of Ceacam1-S. Last, analysis of 46 human donor liver grafts revealed that CEACAM1-S positively correlated with pretransplant HIF1A expression. This also correlated with better transplant outcomes, including reduced TIMP1, total bilirubin, proinflammatory MCP1, CXCL10 cytokines, immune activation markers IL17A, and incidence of delayed complications from biliary anastomosis. This translational study identified mouse Hif-1α-controlled AS of Ceacam1, through transcriptional regulation of Ptbp1 promoter region, as a functional underpinning of hepatoprotection against IR stress and tissue damage in liver transplantation.
Collapse
Affiliation(s)
- Kenneth J. Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Hidenobu Kojima
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Shoichi Kageyama
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Kentaro Kadono
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Hirofumi Hirao
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Brian Cheng
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Yuan Zhai
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Douglas G. Farmer
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Fady M. Kaldas
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School at UTHealth; Houston, TX, 77030 USA
| | - Holger K. Eltzschiasg
- Department of Anesthesiology, McGovern Medical School at UTHealth; Houston, TX, 77030 USA
| | - Jerzy W. Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
| |
Collapse
|
32
|
Nikom D, Zheng S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat Rev Neurosci 2023; 24:457-473. [PMID: 37336982 DOI: 10.1038/s41583-023-00717-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Alternative splicing generates a myriad of RNA products and protein isoforms of different functions from a single gene. Dysregulated alternative splicing has emerged as a new mechanism broadly implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer disease, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson disease and repeat expansion diseases. Understanding the mechanisms and functional outcomes of abnormal splicing in neurological disorders is vital in developing effective therapies to treat mis-splicing pathology. In this Review, we discuss emerging research and evidence of the roles of alternative splicing defects in major neurodegenerative diseases and summarize the latest advances in RNA-based therapeutic strategies to target these disorders.
Collapse
Affiliation(s)
- David Nikom
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA
| | - Sika Zheng
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA.
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA.
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
33
|
Mullari M, Fossat N, Skotte NH, Asenjo-Martinez A, Humphreys DT, Bukh J, Kirkeby A, Scheel TKH, Nielsen ML. Characterising the RNA-binding protein atlas of the mammalian brain uncovers RBM5 misregulation in mouse models of Huntington's disease. Nat Commun 2023; 14:4348. [PMID: 37468457 DOI: 10.1038/s41467-023-39936-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
RNA-binding proteins (RBPs) are key players regulating RNA processing and are associated with disorders ranging from cancer to neurodegeneration. Here, we present a proteomics workflow for large-scale identification of RBPs and their RNA-binding regions in the mammalian brain identifying 526 RBPs. Analysing brain tissue from males of the Huntington's disease (HD) R6/2 mouse model uncovered differential RNA-binding of the alternative splicing regulator RBM5. Combining several omics workflows, we show that RBM5 binds differentially to transcripts enriched in pathways of neurodegeneration in R6/2 brain tissue. We further find these transcripts to undergo changes in splicing and demonstrate that RBM5 directly regulates these changes in human neurons derived from embryonic stem cells. Finally, we reveal that RBM5 interacts differently with several known huntingtin interactors and components of huntingtin aggregates. Collectively, we demonstrate the applicability of our method for capturing RNA interactor dynamics in the contexts of tissue and disease.
Collapse
Affiliation(s)
- Meeli Mullari
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Niels H Skotte
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Asenjo-Martinez
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - David T Humphreys
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Agnete Kirkeby
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Wallenberg Center for Molecular Medicine (WCMM) and Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- CO-HEP, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Li R, Reiter JL, Chen AB, Chen SX, Foroud T, Edenberg HJ, Lai D, Liu Y. RNA alternative splicing impacts the risk for alcohol use disorder. Mol Psychiatry 2023; 28:2922-2933. [PMID: 37217680 PMCID: PMC10615768 DOI: 10.1038/s41380-023-02111-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Alcohol use disorder (AUD) is a complex genetic disorder characterized by problems arising from excessive alcohol consumption. Identifying functional genetic variations that contribute to risk for AUD is a major goal. Alternative splicing of RNA mediates the flow of genetic information from DNA to gene expression and expands proteome diversity. We asked whether alternative splicing could be a risk factor for AUD. Herein, we used a Mendelian randomization (MR)-based approach to identify skipped exons (the predominant splicing event in brain) that contribute to AUD risk. Genotypes and RNA-seq data from the CommonMind Consortium were used as the training dataset to develop predictive models linking individual genotypes to exon skipping in the prefrontal cortex. We applied these models to data from the Collaborative Studies on Genetics of Alcoholism to examine the association between the imputed cis-regulated splicing outcome and the AUD-related traits. We identified 27 exon skipping events that were predicted to affect AUD risk; six of these were replicated in the Australian Twin-family Study of Alcohol Use Disorder. Their host genes are DRC1, ELOVL7, LINC00665, NSUN4, SRRM2 and TBC1D5. The genes downstream of these splicing events are enriched in neuroimmune pathways. The MR-inferred impacts of the ELOVL7 skipped exon on AUD risk was further supported in four additional large-scale genome-wide association studies. Additionally, this exon contributed to changes of gray matter volumes in multiple brain regions, including the visual cortex known to be involved in AUD. In conclusion, this study provides strong evidence that RNA alternative splicing impacts the susceptibility to AUD and adds new information on AUD-relevant genes and pathways. Our framework is also applicable to other types of splicing events and to other complex genetic disorders.
Collapse
Affiliation(s)
- Rudong Li
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jill L Reiter
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Andy B Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Steven X Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Howard J Edenberg
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
35
|
Sebastian R, Jin K, Pavon N, Bansal R, Potter A, Song Y, Babu J, Gabriel R, Sun Y, Aronow B, Pak C. Schizophrenia-associated NRXN1 deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids. Nat Commun 2023; 14:3770. [PMID: 37355690 PMCID: PMC10290702 DOI: 10.1038/s41467-023-39420-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
De novo mutations and copy number deletions in NRXN1 (2p16.3) pose a significant risk for schizophrenia (SCZ). It is unclear how NRXN1 deletions impact cortical development in a cell type-specific manner and disease background modulates these phenotypes. Here, we leveraged human pluripotent stem cell-derived forebrain organoid models carrying NRXN1 heterozygous deletions in isogenic and SCZ patient genetic backgrounds and conducted single-cell transcriptomic analysis over the course of brain organoid development from 3 weeks to 3.5 months. Intriguingly, while both deletions similarly impacted molecular pathways associated with ubiquitin-proteasome system, alternative splicing, and synaptic signaling in maturing glutamatergic and GABAergic neurons, SCZ-NRXN1 deletions specifically perturbed developmental trajectories of early neural progenitors and accumulated disease-specific transcriptomic signatures. Using calcium imaging, we found that both deletions led to long-lasting changes in spontaneous and synchronous neuronal networks, implicating synaptic dysfunction. Our study reveals developmental-timing- and cell-type-dependent actions of NRXN1 deletions in unique genetic contexts.
Collapse
Affiliation(s)
- Rebecca Sebastian
- Graduate Program in Neuroscience & Behavior, UMass Amherst, Amherst, MA, 01003, USA
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Narciso Pavon
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Ruby Bansal
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Andrew Potter
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yoonjae Song
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Juliana Babu
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Rafael Gabriel
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, UMass Amherst, Amherst, MA, 01003, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, 45229, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, 45256, USA
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
36
|
Ayers KL, Eggers S, Rollo BN, Smith KR, Davidson NM, Siddall NA, Zhao L, Bowles J, Weiss K, Zanni G, Burglen L, Ben-Shachar S, Rosensaft J, Raas-Rothschild A, Jørgensen A, Schittenhelm RB, Huang C, Robevska G, van den Bergen J, Casagranda F, Cyza J, Pachernegg S, Wright DK, Bahlo M, Oshlack A, O'Brien TJ, Kwan P, Koopman P, Hime GR, Girard N, Hoffmann C, Shilon Y, Zung A, Bertini E, Milh M, Ben Rhouma B, Belguith N, Bashamboo A, McElreavey K, Banne E, Weintrob N, BenZeev B, Sinclair AH. Variants in SART3 cause a spliceosomopathy characterised by failure of testis development and neuronal defects. Nat Commun 2023; 14:3403. [PMID: 37296101 PMCID: PMC10256788 DOI: 10.1038/s41467-023-39040-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Squamous cell carcinoma antigen recognized by T cells 3 (SART3) is an RNA-binding protein with numerous biological functions including recycling small nuclear RNAs to the spliceosome. Here, we identify recessive variants in SART3 in nine individuals presenting with intellectual disability, global developmental delay and a subset of brain anomalies, together with gonadal dysgenesis in 46,XY individuals. Knockdown of the Drosophila orthologue of SART3 reveals a conserved role in testicular and neuronal development. Human induced pluripotent stem cells carrying patient variants in SART3 show disruption to multiple signalling pathways, upregulation of spliceosome components and demonstrate aberrant gonadal and neuronal differentiation in vitro. Collectively, these findings suggest that bi-allelic SART3 variants underlie a spliceosomopathy which we tentatively propose be termed INDYGON syndrome (Intellectual disability, Neurodevelopmental defects and Developmental delay with 46,XY GONadal dysgenesis). Our findings will enable additional diagnoses and improved outcomes for individuals born with this condition.
Collapse
Affiliation(s)
- Katie L Ayers
- The Murdoch Children's Research Institute, Melbourne, Australia.
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Stefanie Eggers
- The Victorian Clinical Genetics Services, Melbourne, Australia
| | - Ben N Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Katherine R Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Nadia M Davidson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- School of BioSciences, Faculty of Science, University of Melbourne, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Liang Zhao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Weiss
- Genetics Institute, Rambam Health Care Campus, Rappaport Faculty of Medicine, Institute of Technology, Haifa, Israel
| | - Ginevra Zanni
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Et Laboratoire de Neurogénétique Moléculaire, Département de Génétique et Embryologie Médicale, APHP. Sorbonne Université, Hôpital Trousseau, Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Shay Ben-Shachar
- Genetic Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Jenny Rosensaft
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Annick Raas-Rothschild
- Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anne Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Cheng Huang
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | | | | - Franca Casagranda
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Justyna Cyza
- The Murdoch Children's Research Institute, Melbourne, Australia
| | - Svenja Pachernegg
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
| | - Melanie Bahlo
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Alicia Oshlack
- The Peter MacCallum Cancer Centre, Melbourne, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
| | - Terrence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Alfred Centre, Melbourne, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Australia
| | - Nadine Girard
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Chen Hoffmann
- Radiology Department, Sheba medical Centre, Tel Aviv, Israel
| | - Yuval Shilon
- Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
| | - Amnon Zung
- Pediatrics Department, Kaplan Medical Center, Rehovot, 76100, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical School, Jerusalem, Israel
| | - Enrico Bertini
- Unit of Muscular and Neurodegenerative Disorders and Unit of Developmental Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Mathieu Milh
- Aix-Marseille Université, APHM. Department of Pediatric Neurology, Timone Hospital, Marseille, France
| | - Bochra Ben Rhouma
- Higher Institute of Nursing Sciences of Gabes, University of Gabes, Gabes, Tunisia
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
| | - Neila Belguith
- Laboratory of Human Molecular Genetics, Faculty of Medicine of Sfax, Sfax University, Sfax, Tunisia
- Department of Congenital and Hereditary Diseases, Charles Nicolle Hospital, Tunis, Tunisia
| | - Anu Bashamboo
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Kenneth McElreavey
- Institut Pasteur, Université de Paris, CNRS UMR3738, Human Developmental Genetics, 75015, Paris, France
| | - Ehud Banne
- Genetics Institute, Kaplan Medical Center, Hebrew University Hadassah Medical School, Rehovot, 76100, Israel
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon, 58100, Israel
| | - Naomi Weintrob
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Endocrinology Unit, Dana-Dwek Children's Hospital, Tel Aviv Medical Center, Tel Aviv, Israel
| | | | - Andrew H Sinclair
- The Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
37
|
Pan L, Zheng C, Yang Z, Pawitan Y, Vu TN, Shen X. Hidden Genetic Regulation of Human Complex Traits via Brain Isoforms. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:217-227. [PMID: 37325708 PMCID: PMC10260721 DOI: 10.1007/s43657-023-00100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/17/2023]
Abstract
Alternative splicing exists in most multi-exonic genes, and exploring these complex alternative splicing events and their resultant isoform expressions is essential. However, it has become conventional that RNA sequencing results have often been summarized into gene-level expression counts mainly due to the multiple ambiguous mapping of reads at highly similar regions. Transcript-level quantification and interpretation are often overlooked, and biological interpretations are often deduced based on combined transcript information at the gene level. Here, for the most variable tissue of alternative splicing, the brain, we estimate isoform expressions in 1,191 samples collected by the Genotype-Tissue Expression (GTEx) Consortium using a powerful method that we previously developed. We perform genome-wide association scans on the isoform ratios per gene and identify isoform-ratio quantitative trait loci (irQTL), which could not be detected by studying gene-level expressions alone. By analyzing the genetic architecture of the irQTL, we show that isoform ratios regulate educational attainment via multiple tissues including the frontal cortex (BA9), cortex, cervical spinal cord, and hippocampus. These tissues are also associated with different neuro-related traits, including Alzheimer's or dementia, mood swings, sleep duration, alcohol intake, intelligence, anxiety or depression, etc. Mendelian randomization (MR) analysis revealed 1,139 pairs of isoforms and neuro-related traits with plausible causal relationships, showing much stronger causal effects than on general diseases measured in the UK Biobank (UKB). Our results highlight essential transcript-level biomarkers in the human brain for neuro-related complex traits and diseases, which could be missed by merely investigating overall gene expressions. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00100-6.
Collapse
Affiliation(s)
- Lu Pan
- Biostatistics Group, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177 Sweden
| | - Chenqing Zheng
- Biostatistics Group, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhijian Yang
- Biostatistics Group, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177 Sweden
| | - Trung Nghia Vu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177 Sweden
| | - Xia Shen
- Biostatistics Group, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006 China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 17177 Sweden
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458 China
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG UK
| |
Collapse
|
38
|
Gantley L, Stringer BW, Conn VM, Ootsuka Y, Holds D, Slee M, Aliakbari K, Kirk K, Ormsby RJ, Webb ST, Hanson A, Lin H, Selth LA, Conn SJ. Functional Characterisation of the Circular RNA, circHTT(2-6), in Huntington's Disease. Cells 2023; 12:cells12091337. [PMID: 37174737 PMCID: PMC10177161 DOI: 10.3390/cells12091337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Trinucleotide repeat disorders comprise ~20 severe, inherited, human neuromuscular and neurodegenerative disorders, which result from an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington's disease (HD), results from expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Since non-coding RNAs have been implicated in the initiation and progression of many diseases, herein we focused on a circular RNA (circRNA) molecule arising from non-canonical splicing (backsplicing) of HTT pre-mRNA. The most abundant circRNA from HTT, circHTT(2-6), was found to be more highly expressed in the frontal cortex of HD patients, compared with healthy controls, and positively correlated with CAG repeat tract length. Furthermore, the mouse orthologue (mmu_circHTT(2-6)) was found to be enriched within the brain and specifically the striatum, a region enriched for medium spiny neurons that are preferentially lost in HD. Transgenic overexpression of circHTT(2-6) in two human cell lines-SH-SY5Y and HEK293-reduced cell proliferation and nuclear size without affecting cell cycle progression or cellular size, or altering the CAG repeat region length within HTT. CircHTT(2-6) overexpression did not alter total HTT protein levels, but reduced its nuclear localisation. As these phenotypic and genotypic changes resemble those observed in HD patients, our results suggest that circHTT(2-6) may play a functional role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Laura Gantley
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Brett W Stringer
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Vanessa M Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Youichirou Ootsuka
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Centre for Neuroscience, Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Duncan Holds
- Department of Genetics and Molecular Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Mark Slee
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Kamelya Aliakbari
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Kirsty Kirk
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Rebecca J Ormsby
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Stuart T Webb
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Adrienne Hanson
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - He Lin
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
39
|
Hazra A, Pal A, Kundu A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 2023; 23:144. [PMID: 37133618 DOI: 10.1007/s10142-023-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700091, India.
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
40
|
Misra CS, Sousa AGG, Barros PM, Kermanov A, Becker JD. Cell-type-specific alternative splicing in the Arabidopsis germline. PLANT PHYSIOLOGY 2023; 192:85-101. [PMID: 36515615 PMCID: PMC10152659 DOI: 10.1093/plphys/kiac574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 05/03/2023]
Abstract
During sexual reproduction in flowering plants, the two haploid sperm cells (SCs) embedded within the cytoplasm of a growing pollen tube are carried to the embryo sac for double fertilization. Pollen development in flowering plants is a dynamic process that encompasses changes at transcriptome and epigenome levels. While the transcriptome of pollen and SCs in Arabidopsis (Arabidopsis thaliana) is well documented, previous analyses have mostly been based on gene-level expression. In-depth transcriptome analysis, particularly the extent of alternative splicing (AS) at the resolution of SC and vegetative nucleus (VN), is still lacking. Therefore, we performed RNA-seq analysis to generate a spliceome map of Arabidopsis SCs and VN isolated from mature pollen grains. Based on our de novo transcriptome assembly, we identified 58,039 transcripts, including 9,681 novel transcripts, of which 2,091 were expressed in SCs and 3,600 in VN. Four hundred and sixty-eight genes were regulated both at gene and splicing levels, with many having functions in mRNA splicing, chromatin modification, and protein localization. Moreover, a comparison with egg cell RNA-seq data uncovered sex-specific regulation of transcription and splicing factors. Our study provides insights into a gamete-specific AS landscape at unprecedented resolution.
Collapse
Affiliation(s)
- Chandra Shekhar Misra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Anton Kermanov
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
41
|
McCabe SD, Nobel AB, Love MI. ACTOR: a latent Dirichlet model to compare expressed isoform proportions to a reference panel. Biostatistics 2023; 24:388-405. [PMID: 33948626 PMCID: PMC10102900 DOI: 10.1093/biostatistics/kxab013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
The relative proportion of RNA isoforms expressed for a given gene has been associated with disease states in cancer, retinal diseases, and neurological disorders. Examination of relative isoform proportions can help determine biological mechanisms, but such analyses often require a per-gene investigation of splicing patterns. Leveraging large public data sets produced by genomic consortia as a reference, one can compare splicing patterns in a data set of interest with those of a reference panel in which samples are divided into distinct groups, such as tissue of origin, or disease status. We propose A latent Dirichlet model to Compare expressed isoform proportions TO a Reference panel (ACTOR), a latent Dirichlet model with Dirichlet Multinomial observations to compare expressed isoform proportions in a data set to an independent reference panel. We use a variational Bayes procedure to estimate posterior distributions for the group membership of one or more samples. Using the Genotype-Tissue Expression project as a reference data set, we evaluate ACTOR on simulated and real RNA-seq data sets to determine tissue-type classifications of genes. ACTOR is publicly available as an R package at https://github.com/mccabes292/actor.
Collapse
Affiliation(s)
- Sean D McCabe
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
| | - Andrew B Nobel
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, 318 Hanes Hall, Chapel Hill, NC 27599-3260, USA and Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
| | - Michael I Love
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA and Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Rd, Chapel Hill, NC 27514, USA
| |
Collapse
|
42
|
Kwiecien K, Majewski P, Bak M, Brzoza P, Godlewska U, Skulimowska I, Cichy J, Kwitniewski M. Alternative splicing is not a key source of chemerin isoforms diversity. Mol Biol Rep 2023; 50:2521-2529. [PMID: 36609751 PMCID: PMC10011272 DOI: 10.1007/s11033-022-08174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/02/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chemerin is a chemoattractant protein with adipokine and antimicrobial properties encoded by the retinoic acid receptor responder 2 (RARRES2) gene. Chemerin bioactivity largely depends on carboxyl-terminal proteolytic processing that generates chemerin isoforms with different chemotactic, regulatory, and antimicrobial potentials. While these mechanisms are relatively well known, the role of alternative splicing in generating isoform diversity remains obscure. METHODS AND RESULTS Using rapid amplification of cDNA ends (RACE) PCR, we determined RARRES2 transcript variants present in mouse and human tissues and identified novel transcript variant 4 of mouse Rarres2 encoding mChem153K. Moreover, analyses of real-time quantitative PCR (RT-qPCR) and publicly-available next-generation RNA sequencing (RNA-seq) datasets showed that different alternatively spliced variants of mouse Rarres2 are present in mouse tissues and their expression patterns were unaffected by inflammatory and infectious stimuli except brown adipose tissue. However, only one transcript variant of human RARRES2 was present in liver and adipose tissue. CONCLUSION Our findings indicate a limited role for alternative splicing in generating chemerin isoform diversity under all tested conditions.
Collapse
Affiliation(s)
- Kamila Kwiecien
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Pawel Majewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Maciej Bak
- Department of Mathematics, City, University of London, EC1V 0HB, London, United Kingdom
| | - Piotr Brzoza
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Urszula Godlewska
- Laboratory of Host-Microbiota Interactions, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093, Warsaw, Poland
| | - Izabella Skulimowska
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Mateusz Kwitniewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland.
| |
Collapse
|
43
|
Zuniga G, Levy S, Ramirez P, Mange JD, Gonzalez E, Gamez M, Frost B. Tau-induced deficits in nonsense-mediated mRNA decay contribute to neurodegeneration. Alzheimers Dement 2023; 19:405-420. [PMID: 35416419 PMCID: PMC9673995 DOI: 10.1002/alz.12653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION While brains of patients with Alzheimer's disease and related tauopathies have evidence of altered RNA processing, we lack a mechanistic understanding of how altered RNA processing arises in these disorders and if such changes are causally linked to neurodegeneration. METHODS Using Drosophila melanogaster models of tauopathy, we find that overall activity of nonsense-mediated mRNA decay (NMD), a key RNA quality-control mechanism, is reduced. Genetic manipulation of NMD machinery significantly modifies tau-induced neurotoxicity, suggesting that deficits in NMD are causally linked to neurodegeneration. Mechanistically, we find that deficits in NMD are a consequence of aberrant RNA export and RNA accumulation within nuclear envelope invaginations in tauopathy. We identify a pharmacological activator of NMD that suppresses neurodegeneration in tau transgenic Drosophila, indicating that tau-induced deficits in RNA quality control are druggable. DISCUSSION Our studies suggest that NMD activators should be explored for their potential therapeutic value to patients with tauopathies.
Collapse
Affiliation(s)
- Gabrielle Zuniga
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Simon Levy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Paulino Ramirez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Jasmine De Mange
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Elias Gonzalez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Maria Gamez
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| | - Bess Frost
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
44
|
Lobas AA, Solovyeva EM, Levitsky LI, Goncharov AO, Lyssuk EY, Larin SS, Moshkovskii SA, Gorshkov MV. Identification of Alternative Splicing in Proteomes of Human Melanoma Cell Lines without RNA Sequencing Data. Int J Mol Sci 2023; 24:2466. [PMID: 36768787 PMCID: PMC9916885 DOI: 10.3390/ijms24032466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Alternative splicing is one of the main regulation pathways in living cells beyond simple changes in the level of protein expression. Most of the approaches proposed in proteomics for the identification of specific splicing isoforms require a preliminary deep transcriptomic analysis of the sample under study, which is not always available, especially in the case of the re-analysis of previously acquired data. Herein, we developed new algorithms for the identification and validation of protein splice isoforms in proteomic data in the absence of RNA sequencing of the samples under study. The bioinformatic approaches were tested on the results of proteome analysis of human melanoma cell lines, obtained earlier by high-resolution liquid chromatography and mass spectrometry (LC-MS). A search for alternative splicing events for each of the cell lines studied was performed against the database generated from all known transcripts (RefSeq) and the one composed of peptide sequences, which included all biologically possible combinations of exons. The identifications were filtered using the prediction of both retention times and relative intensities of fragment ions in the corresponding mass spectra. The fragmentation mass spectra corresponding to the discovered alternative splicing events were additionally examined for artifacts. Selected splicing events were further validated at the mRNA level by quantitative PCR.
Collapse
Affiliation(s)
- Anna A. Lobas
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta M. Solovyeva
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lev I. Levitsky
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anton O. Goncharov
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Elena Y. Lyssuk
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Sergey S. Larin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia
| | - Sergei A. Moshkovskii
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Mikhail V. Gorshkov
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
45
|
Paukszto Ł, Wiśniewska J, Liszewska E, Majewska M, Jastrzębski J, Jankowski J, Ciereszko A, Słowińska M. Specific expression of alternatively spliced genes in the turkey (Meleagris gallopavo) reproductive tract revealed their function in spermatogenesis and post-testicular sperm maturation. Poult Sci 2023; 102:102484. [PMID: 36709584 PMCID: PMC9922982 DOI: 10.1016/j.psj.2023.102484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
The tissue-specific profile of alternatively spliced genes (ASGs) and their involvement in reproduction processes characteristic of turkey testis, epididymis, and ductus deferens were investigated for the first time in birds. Deep sequencing of male turkey reproductive tissue RNA samples (n = 6) was performed using Illumina RNA-Seq with 2 independent methods, rMATs and SUPPA2, for differential alternative splicing (DAS) event prediction. The expression of selected ASGs was validated using quantitative real-time reverse transcriptase-polymerase chain reaction. The testis was found to be the site of the highest number of posttranscriptional splicing events within the reproductive tract, and skipping exons were the most frequently occurring class of alternative splicing (AS) among the reproductive tract. Statistical analysis revealed 86, 229, and 6 DAS events in the testis/epididymis, testis/ductus deferens, and epididymis/ductus deferens comparison, respectively. Alternative splicing was found to be a mechanism of gene expression regulation within the turkey reproduction tract. In testis, modification was observed for spermatogenesis specific genes; the changes in 5' UTR could act as regulator of MEIG1 expression (a player during spermatocytes meiosis), and modification of 3' UTR led to diversification of CREM mRNA (modulator of gene expression related to the structuring of mature spermatozoa). Sperm tail formation can be regulated by changes in the 5' UTR of testicular SLC9A3R1 and gene silencing by producing dysfunctional variants of ODF2 in the testis and ATP1B3 in the epididymis. Predicted differentially ASGs in the turkey reproductive tract seem to be involved in the regulation of spermatogenesis, including acrosome formation and sperm tail formation and binding of sperm to the zona pellucida. Several ASGs were classified as cilia by actin and microtubule cytoskeleton organization. Such genes may play a role in the organization of sperm flagellum and post-testicular motility development. To our knowledge, this is the first functional investigation of alternatively spliced genes associated with tissue-specific processes in the turkey reproductive tract.
Collapse
Affiliation(s)
- Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology; University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum; University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland
| | - Jan Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Jan Jankowski
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland.
| |
Collapse
|
46
|
Liu S, Ma X, Wang Z, Lin F, Li M, Li Y, Yang L, Rushdi HE, Riaz H, Gao T, Yang L, Fu T, Deng T. MAEL gene contributes to bovine testicular development through the m5C-mediated splicing. iScience 2023; 26:105941. [PMID: 36711243 PMCID: PMC9876746 DOI: 10.1016/j.isci.2023.105941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Knowledge of RNA molecules regulating testicular development and spermatogenesis in bulls is essential for elite bull selection and an ideal breeding program. Herein, we performed direct RNA sequencing (DRS) to explore the functional characterization of RNA molecules produced in the testicles of 9 healthy Simmental bulls at three testicular development stages (prepuberty, puberty, and postpuberty). We identified 5,043 differentially expressed genes associated with testicular weight. These genes exhibited more alternative splicing at sexual maturity, particularly alternative 3' (A3) and 5' (A5) splice sites usage and exon skipping (SE). The expression of hub genes in testicular developmental stages was also affected by both m6A and m5C RNA modifications. We found m5C-mediated splicing events significantly (p < 0.05) increased MAEL gene expression at the isoform level, likely promoting spermatogenesis. Our findings highlight the complexity of RNA processing and expression as well as the regulation of transcripts involved in testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Shenhe Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Zichen Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Feng Lin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yali Li
- Wuhan Benagen Technology Co, Ltd, Wuhan 430000, China
| | - Liu Yang
- Wuhan Benagen Technology Co, Ltd, Wuhan 430000, China
| | - Hossam E. Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Hasan Riaz
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Punjab, Pakistan
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Liguo Yang
- China Ministry of Education, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Corresponding author
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China,Corresponding author
| |
Collapse
|
47
|
Zhang J, Lin X, Chen Y, Li T, Lee AC, Chow EY, Cho WC, Chan T. LAFITE Reveals the Complexity of Transcript Isoforms in Subcellular Fractions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203480. [PMID: 36461702 PMCID: PMC9875686 DOI: 10.1002/advs.202203480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Characterization of the subcellular distribution of RNA is essential for understanding the molecular basis of biological processes. Here, the subcellular nanopore direct RNA-sequencing (DRS) of four lung cancer cell lines (A549, H1975, H358, and HCC4006) is performed, coupled with a computational pipeline, Low-abundance Aware Full-length Isoform clusTEr (LAFITE), to comprehensively analyze the full-length cytoplasmic and nuclear transcriptome. Using additional DRS and orthogonal data sets, it is shown that LAFITE outperforms current methods for detecting full-length transcripts, particularly for low-abundance isoforms that are usually overlooked due to poor read coverage. Experimental validation of six novel isoforms exclusively identified by LAFITE further confirms the reliability of this pipeline. By applying LAFITE to subcellular DRS data, the complexity of the nuclear transcriptome is revealed in terms of isoform diversity, 3'-UTR usage, m6A modification patterns, and intron retention. Overall, LAFITE provides enhanced full-length isoform identification and enables a high-resolution view of the RNA landscape at the isoform level.
Collapse
Affiliation(s)
- Jizhou Zhang
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Xiao Lin
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Yuelong Chen
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Tsz‐Ho Li
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| | - Alan Chun‐Kit Lee
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
| | | | | | - Ting‐Fung Chan
- School of Life SciencesThe Chinese University of Hong KongShatinHong Kong SARChina
- State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong SARChina
| |
Collapse
|
48
|
Yuan A, Nixon RA. Posttranscriptional regulation of neurofilament proteins and tau in health and disease. Brain Res Bull 2023; 192:115-127. [PMID: 36441047 PMCID: PMC9907725 DOI: 10.1016/j.brainresbull.2022.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/16/2023]
Abstract
Neurofilament and tau proteins are neuron-specific cytoskeletal proteins that are enriched in axons, regulated by many of the same protein kinases, interact physically, and are the principal constituents of neurofibrillary lesions in major adult-onset dementias. Both proteins share functions related to the modulation of stability and functions of the microtubule network in axons, axonal transport and scaffolding of organelles, long-term synaptic potentiation, and learning and memory. Expression of these proteins is regulated not only at the transcriptional level but also through posttranscriptional control of pre-mRNA splicing, mRNA stability, transport, localization, local translation and degradation. Current evidence suggests that posttranscriptional determinants of their levels are usually regulated by RNA-binding proteins and microRNAs primarily through 3'-untranslated regions of neurofilament and tau mRNAs. Dysregulations of neurofilament and tau expression caused by mutations or pathologies of RNA-binding proteins such as TDP43, FUS and microRNAs are increasingly recognized in association with varied neurological disorders. In this review, we summarize the current understanding of posttranscriptional control of neurofilament and tau by examining the posttranscriptional regulation of neurofilament and tau by RNA-binding proteins and microRNAs implicated in health and diseases.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA; NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY 10962, USA,Department of Psychiatry, New York University Langone Health, New York, NY 10016, USA,Department of Cell Biology, New York University Langone Health, New York, NY 10016, USA,NYU Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA,Correspondence to: Center for Dementia Research, Nathan Kline Institute, New York University Langone Health, New York, NY 10016, USA, (A. Yuan), (R.A. Nixon)
| |
Collapse
|
49
|
Mohaupt P, Roucou X, Delaby C, Vialaret J, Lehmann S, Hirtz C. The alternative proteome in neurobiology. Front Cell Neurosci 2022; 16:1019680. [PMID: 36467612 PMCID: PMC9712206 DOI: 10.3389/fncel.2022.1019680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/02/2022] [Indexed: 10/13/2023] Open
Abstract
Translation involves the biosynthesis of a protein sequence following the decoding of the genetic information embedded in a messenger RNA (mRNA). Typically, the eukaryotic mRNA was considered to be inherently monocistronic, but this paradigm is not in agreement with the translational landscape of cells, tissues, and organs. Recent ribosome sequencing (Ribo-seq) and proteomics studies show that, in addition to currently annotated reference proteins (RefProt), other proteins termed alternative proteins (AltProts), and microproteins are encoded in regions of mRNAs thought to be untranslated or in transcripts annotated as non-coding. This experimental evidence expands the repertoire of functional proteins within a cell and potentially provides important information on biological processes. This review explores the hitherto overlooked alternative proteome in neurobiology and considers the role of AltProts in pathological and healthy neuromolecular processes.
Collapse
Affiliation(s)
- Pablo Mohaupt
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Xavier Roucou
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Constance Delaby
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Jérôme Vialaret
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| |
Collapse
|
50
|
Liu W, Lu X, Zhao ZH, SU R, Li QNL, Xue Y, Gao Z, Sun SMS, Lei WL, Li L, An G, Liu H, Han Z, Ouyang YC, Hou Y, Wang ZB, Sun QY, Liu J. SRSF10 is essential for progenitor spermatogonia expansion by regulating alternative splicing. eLife 2022; 11:e78211. [PMID: 36355419 PMCID: PMC9648972 DOI: 10.7554/elife.78211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Alternative splicing expands the transcriptome and proteome complexity and plays essential roles in tissue development and human diseases. However, how alternative splicing regulates spermatogenesis remains largely unknown. Here, using a germ cell-specific knockout mouse model, we demonstrated that the splicing factor Srsf10 is essential for spermatogenesis and male fertility. In the absence of SRSF10, spermatogonial stem cells can be formed, but the expansion of Promyelocytic Leukemia Zinc Finger (PLZF)-positive undifferentiated progenitors was impaired, followed by the failure of spermatogonia differentiation (marked by KIT expression) and meiosis initiation. This was further evidenced by the decreased expression of progenitor cell markers in bulk RNA-seq, and much less progenitor and differentiating spermatogonia in single-cell RNA-seq data. Notably, SRSF10 directly binds thousands of genes in isolated THY+ spermatogonia, and Srsf10 depletion disturbed the alternative splicing of genes that are preferentially associated with germ cell development, cell cycle, and chromosome segregation, including Nasp, Bclaf1, Rif1, Dazl, Kit, Ret, and Sycp1. These data suggest that SRSF10 is critical for the expansion of undifferentiated progenitors by regulating alternative splicing, expanding our understanding of the mechanism underlying spermatogenesis.
Collapse
Affiliation(s)
- Wenbo Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua UniversityBeijingChina
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ruibao SU
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Qian-Nan Li Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yue Xue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Si-Min Sun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Lei Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Geng An
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Hanyan Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Jianqiao Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
- Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|