1
|
Fettig R, Gonda Z, Walter N, Sallmann P, Thanisch C, Winter M, Bauer S, Zhang L, Linden G, Litfin M, Khamanaeva M, Storm S, Münzing C, Etard C, Armant O, Vázquez O, Kassel O. Short internal open reading frames repress the translation of N-terminally truncated proteoforms. EMBO Rep 2025; 26:1566-1589. [PMID: 39962229 PMCID: PMC11933307 DOI: 10.1038/s44319-025-00390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Internal translation initiation sites, as revealed by ribosome profiling experiments can potentially drive the translation of many N-terminally truncated proteoforms. We report that internal short open reading frame (sORF) within coding sequences regulate their translation. nTRIP6 represents a short nuclear proteoform of the cytoplasmic protein TRIP6. We have previously reported that nTRIP6 regulates the dynamics of skeletal muscle progenitor differentiation. Here we show that nTRIP6 is generated by translation initiation at an internal AUG after leaky scanning at the canonical TRIP6 AUG. The translation of nTRIP6 is repressed by an internal sORF immediately upstream of the nTRIP6 AUG. Consistent with this representing a more general regulatory feature, we have identified other internal sORFs which repress the translation of N-terminally truncated proteoforms. In an in vitro model of myogenic differentiation, the expression of nTRIP6 is transiently upregulated through a mechanistic Target of Rapamycin Complex 1-dependent increase in translation initiation at the internal AUG. Thus, the translation of N-terminally truncated proteoforms can be regulated independently of the canonical ORF.
Collapse
Affiliation(s)
- Raphael Fettig
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Zita Gonda
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Niklas Walter
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Paul Sallmann
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christiane Thanisch
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Markus Winter
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Susanne Bauer
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Lei Zhang
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
| | - Greta Linden
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
| | - Margarethe Litfin
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Marina Khamanaeva
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Sarah Storm
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christina Münzing
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Christelle Etard
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | - Olalla Vázquez
- Philipps-Universität Marburg, Faculty of Chemistry, Marburg, Germany
- Philipps-Universität Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Olivier Kassel
- Karlsruhe Institute of Technology (KIT), Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe, Germany.
| |
Collapse
|
2
|
N-Glycosylation of LRP6 by B3GnT2 Promotes Wnt/β-Catenin Signalling. Cells 2023; 12:cells12060863. [PMID: 36980204 PMCID: PMC10047360 DOI: 10.3390/cells12060863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Reception of Wnt signals by cells is predominantly mediated by Frizzled receptors in conjunction with a co-receptor, the latter being LRP6 or LRP5 for the Wnt/β-catenin signalling pathway. It is important that cells maintain precise control of receptor activation events in order to properly regulate Wnt/β-catenin signalling as aberrant signalling can result in disease in humans. Phosphorylation of the intracellular domain (ICD) of LRP6 is well known to regulate Wntβ-catenin signalling; however, less is known for regulatory post-translational modification events within the extracellular domain (ECD). Using a cell culture-based expression screen for functional regulators of LRP6, we identified a glycosyltransferase, B3GnT2-like, from a teleost fish (medaka) cDNA library, that modifies LRP6 and regulates Wnt/β-catenin signalling. We provide both gain-of-function and loss-of-function evidence that the single human homolog, B3GnT2, promotes extension of polylactosamine chains at multiple N-glycans on LRP6, thereby enhancing trafficking of LRP6 to the plasma membrane and promoting Wnt/β-catenin signalling. Our findings further highlight the importance of LRP6 as a regulatory hub in Wnt signalling and provide one of the few examples of how a specific glycosyltransferase appears to selectively target a signalling pathway component to alter cellular signalling events.
Collapse
|
3
|
Yang B, Bao W, Zhang W, Wang H, Song C, Chen Y, Jiang X. Reverse engineering gene regulatory network based on complex-valued ordinary differential equation model. BMC Bioinformatics 2021; 22:448. [PMID: 34544363 PMCID: PMC8451084 DOI: 10.1186/s12859-021-04367-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The growing researches of molecular biology reveal that complex life phenomena have the ability to demonstrating various types of interactions in the level of genomics. To establish the interactions between genes or proteins and understand the intrinsic mechanisms of biological systems have become an urgent need and study hotspot. RESULTS In order to forecast gene expression data and identify more accurate gene regulatory network, complex-valued version of ordinary differential equation (CVODE) is proposed in this paper. In order to optimize CVODE model, a complex-valued hybrid evolutionary method based on Grammar-guided genetic programming and complex-valued firefly algorithm is presented. CONCLUSIONS When tested on three real gene expression datasets from E. coli and Human Cell, the experiment results suggest that CVODE model could improve 20-50% prediction accuracy of gene expression data, which could also infer more true-positive regulatory relationships and less false-positive regulations than ordinary differential equation.
Collapse
Affiliation(s)
- Bin Yang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Wenzheng Bao
- School of Information and Electrical Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Wei Zhang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Haifeng Wang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Chuandong Song
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Yuehui Chen
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Xiuying Jiang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| |
Collapse
|
4
|
Fontinha BM, Zekoll T, Al-Rawi M, Gallach M, Reithofer F, Barker AJ, Hofbauer M, Fischer RM, von Haeseler A, Baier H, Tessmar-Raible K. TMT-Opsins differentially modulate medaka brain function in a context-dependent manner. PLoS Biol 2021; 19:e3001012. [PMID: 33411725 PMCID: PMC7837489 DOI: 10.1371/journal.pbio.3001012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/26/2021] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Vertebrate behavior is strongly influenced by light. Light receptors, encoded by functional opsin proteins, are present inside the vertebrate brain and peripheral tissues. This expression feature is present from fishes to human and appears to be particularly prominent in diurnal vertebrates. Despite their conserved widespread occurrence, the nonvisual functions of opsins are still largely enigmatic. This is even more apparent when considering the high number of opsins. Teleosts possess around 40 opsin genes, present from young developmental stages to adulthood. Many of these opsins have been shown to function as light receptors. This raises the question of whether this large number might mainly reflect functional redundancy or rather maximally enables teleosts to optimally use the complex light information present under water. We focus on tmt-opsin1b and tmt-opsin2, c-opsins with ancestral-type sequence features, conserved across several vertebrate phyla, expressed with partly similar expression in non-rod, non-cone, non-retinal-ganglion-cell brain tissues and with a similar spectral sensitivity. The characterization of the single mutants revealed age- and light-dependent behavioral changes, as well as an impact on the levels of the preprohormone sst1b and the voltage-gated sodium channel subunit scn12aa. The amount of daytime rest is affected independently of the eyes, pineal organ, and circadian clock in tmt-opsin1b mutants. We further focused on daytime behavior and the molecular changes in tmt-opsin1b/2 double mutants, and found that-despite their similar expression and spectral features-these opsins interact in part nonadditively. Specifically, double mutants complement molecular and behavioral phenotypes observed in single mutants in a partly age-dependent fashion. Our work provides a starting point to disentangle the highly complex interactions of vertebrate nonvisual opsins, suggesting that tmt-opsin-expressing cells together with other visual and nonvisual opsins provide detailed light information to the organism for behavioral fine-tuning. This work also provides a stepping stone to unravel how vertebrate species with conserved opsins, but living in different ecological niches, respond to similar light cues and how human-generated artificial light might impact on behavioral processes in natural environments.
Collapse
Affiliation(s)
- Bruno M. Fontinha
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Theresa Zekoll
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Mariam Al-Rawi
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | - Miguel Gallach
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Florian Reithofer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
| | | | - Maximilian Hofbauer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- loopbio, Vienna, Austria
| | - Ruth M. Fischer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna and Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Herwig Baier
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Kristin Tessmar-Raible
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- Research Platform ‘‘Rhythms of Life,” University of Vienna, Vienna, Austria
- FENS-Kavli Network of Excellence, Brussels, Belgium
| |
Collapse
|
5
|
Fuhrmann JF, Buono L, Adelmann L, Martinez-Morales JR, Centanin L. Genetic developmental timing revealed by inter-species transplantations in fish. Development 2020; 147:dev.192500. [PMID: 33033120 DOI: 10.1242/dev.192500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/02/2020] [Indexed: 12/22/2022]
Abstract
The path from a fertilised egg to an embryo involves the coordinated formation of cell types, tissues and organs. Developmental modules comprise discrete units specified by self-sufficient genetic programs that can interact with each other during embryogenesis. Here, we have taken advantage of the different span of embryonic development between two distantly related teleosts, zebrafish (Danio rerio) and medaka (Oryzias latipes) (3 and 9 days, respectively), to explore modularity principles. We report that inter-species blastula transplantations result in the ectopic formation of a retina formed by donor cells - a module. We show that the time taken for the retina to develop follows a genetic program: an ectopic zebrafish retina in medaka develops with zebrafish dynamics. Heterologous transplantation results in a temporal decoupling between the donor retina and host organism, illustrated by two paradigms that require retina-host interactions: lens recruitment and retino-tectal projections. Our results uncover a new experimental system for addressing temporal decoupling along embryonic development, and highlight the presence of largely autonomous but interconnected developmental modules that orchestrate organogenesis.
Collapse
Affiliation(s)
- Jana Franziska Fuhrmann
- Laboratory of Clonal Analysis, Center for Organismal Studies, Universität Heidelberg, INF230, 69120 Heidelberg, Germany
| | - Lorena Buono
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Seville, Spain
| | - Leonie Adelmann
- Laboratory of Clonal Analysis, Center for Organismal Studies, Universität Heidelberg, INF230, 69120 Heidelberg, Germany
| | - Juan Ramón Martinez-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Seville, Spain
| | - Lazaro Centanin
- Laboratory of Clonal Analysis, Center for Organismal Studies, Universität Heidelberg, INF230, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Covello G, Rossello FJ, Filosi M, Gajardo F, Duchemin A, Tremonti BF, Eichenlaub M, Polo JM, Powell D, Ngai J, Allende ML, Domenici E, Ramialison M, Poggi L. Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB Bioadv 2020; 2:434-448. [PMID: 32676583 PMCID: PMC7354691 DOI: 10.1096/fba.2020-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the bHLH transcription protein Atoh7 is a crucial factor conferring competence to retinal progenitor cells for the development of retinal ganglion cells. Several studies have emerged establishing ATOH7 as a retinal disease gene. Remarkably, such studies uncovered ATOH7 variants associated with global eye defects including optic nerve hypoplasia, microphthalmia, retinal vascular disorders, and glaucoma. The complex genetic networks and cellular decisions arising downstream of atoh7 expression, and how their dysregulation cause development of such disease traits remains unknown. To begin to understand such Atoh7-dependent events in vivo, we performed transcriptome analysis of wild-type and atoh7 mutant (lakritz) zebrafish embryos at the onset of retinal ganglion cell differentiation. We investigated in silico interplays of atoh7 and other disease-related genes and pathways. By network reconstruction analysis of differentially expressed genes, we identified gene clusters enriched in retinal development, cell cycle, chromatin remodeling, stress response, and Wnt pathways. By weighted gene coexpression network, we identified coexpression modules affected by the mutation and enriched in retina development genes tightly connected to atoh7. We established the groundwork whereby Atoh7-linked cellular and molecular processes can be investigated in the dynamic multi-tissue environment of the developing normal and diseased vertebrate eye.
Collapse
Affiliation(s)
- Giuseppina Covello
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of BiologyUniversity of PadovaPadovaItaly
| | - Fernando J. Rossello
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- Present address:
University of Melbourne Centre for Cancer ResearchUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Felipe Gajardo
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | | | - Beatrice F. Tremonti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michael Eichenlaub
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Jose M. Polo
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- BDIMonash University Clayton VICClaytonAustralia
| | - David Powell
- Monash Bioinformatics PlatformMonash University Clayton VICClaytonAustralia
| | - John Ngai
- Department of Molecular and Cell Biology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Miguel L. Allende
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems BiologyTrentoItaly
| | - Mirana Ramialison
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Centre for Organismal StudyHeidelberg UniversityHeidelbergGermany
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
7
|
Mattes B, Dang Y, Greicius G, Kaufmann LT, Prunsche B, Rosenbauer J, Stegmaier J, Mikut R, Özbek S, Nienhaus GU, Schug A, Virshup DM, Scholpp S. Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates. eLife 2018; 7:36953. [PMID: 30060804 PMCID: PMC6086664 DOI: 10.7554/elife.36953] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Signaling filopodia, termed cytonemes, are dynamic actin-based membrane structures that regulate the exchange of signaling molecules and their receptors within tissues. However, how cytoneme formation is regulated remains unclear. Here, we show that Wnt/planar cell polarity (PCP) autocrine signaling controls the emergence of cytonemes, and that cytonemes subsequently control paracrine Wnt/β-catenin signal activation. Upon binding of the Wnt family member Wnt8a, the receptor tyrosine kinase Ror2 becomes activated. Ror2/PCP signaling leads to the induction of cytonemes, which mediate the transport of Wnt8a to neighboring cells. In the Wnt-receiving cells, Wnt8a on cytonemes triggers Wnt/β-catenin-dependent gene transcription and proliferation. We show that cytoneme-based Wnt transport operates in diverse processes, including zebrafish development, murine intestinal crypt and human cancer organoids, demonstrating that Wnt transport by cytonemes and its control via the Ror2 pathway is highly conserved in vertebrates. Communication helps the cells that make up tissues and organs to work together as a team. One way that cells share information with each other as tissues grow and develop is by exchanging signaling proteins. These interact with receptors on the surface of other cells; this causes the cell to change how it behaves. The Wnt family of signaling proteins orchestrate organ development. Wnt proteins influence which types of cells develop, how fast they divide, and how and when they move. Relatively few cells, or small groups of cells, in developing tissues produce Wnt proteins, while larger groups nearby respond to the signals. We do not fully understand how Wnt proteins travel between cells, but recent work revealed an unexpected mechanism – cells seem to hand-deliver their messages. Finger-like structures called cytonemes grow out of the cell membrane and carry Wnt proteins to their destination. If the cytonemes do not form properly the target cells do not behave correctly, which can lead to severe tissue malformation. Mattes et al. have now investigated how cytonemes form using a combination of state-of-the-art genetic and high-resolution imaging techniques. In initial experiments involving zebrafish cells that were grown in the laboratory, Mattes et al. found that the Wnt proteins kick start their own transport; before they travel to their destination, they act on the cells that made them. A Wnt protein called Wnt8a activates the receptor Ror2 on the surface of the signal-producing cell. Ror2 then triggers signals inside the cell that begin the assembly of the cytonemes. The more Ror2 is activated, the more cytonemes the cell makes, and the more Wnt signals it can send out. This mechanism operates in various tissues: Ror2 also controls the cytoneme transport process in living zebrafish embryos, the mouse intestine and human stomach tumors. This knowledge will help researchers to develop new ways to control Wnt signaling, which could help to produce new treatments for diseases ranging from cancers (for example in the stomach and bowel) to degenerative diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yonglong Dang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gediminas Greicius
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Benedikt Prunsche
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jakob Rosenbauer
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Jülich, Germany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Suat Özbek
- Centre of Organismal Studies, University of Heidelberg, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Jülich, Germany.,Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
8
|
Liu Y, Hu H, Liang M, Xiong Y, Li K, Chen M, Fan Z, Kuang X, Deng F, Liu X, Xu C, Li K, Ge J. Regulated differentiation of WERI-Rb-1 cells into retinal neuron-like cells. Int J Mol Med 2017; 40:1172-1184. [PMID: 28848998 PMCID: PMC5593461 DOI: 10.3892/ijmm.2017.3102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
The encouraging response and improved survival of acute promyelocytic leukemia patients following retinoic acid treatment has rendered differentiation therapy an attractive option in cancer treatment. Given that terminal differentiation represents a considerable barrier in retinoblastoma tumorigenesis and that retinoblastoma has a significantly higher spontaneous degeneration rate compared with other tumors (1,000-fold change), differentiation therapy represents a promising alternative in the treatment of retinoblastoma. However, the full differentiation potential of retinoblastoma still unknown. The present study was designed to investigate the extend differentiation of the classical retinoblastoma cell line WERI-Rb-1 (W-RBCs). Several critical cell signaling pathways and key genes related to cell proliferation and differentiation were comprehensively regulated to control the fate of W-RBCs. Various strategies were applied to optimize simple and time-saving methods to induce W-RBCs into different types of retinal neuron-like cells (RNLCs) in vitro. Further, the tumorigenesis of these differentiated W-RBCs was tested in nude mice in vivo. W-RBCs were found to inherently express both retinal progenitor cell- and embryonic stem cell-related genes or proteins. Moreover, the addition of antagonists of critical cell signals (Wnt, Nodal, BMP4 and Notch), even without atonal bHLH transcription factor 7 gene transfection, could directly induce W-RBCs into RNLCs, and especially into photoreceptor-like and retinal ganglion-like cells. Interestingly, the differentiated cells showed remarkably poorer tumorigenesis in vivo. These findings may offer new insights on the oriented differentiation of W-RBCs into RNLCs with low tumorigenicity and provide potential targets for retinoblastoma differentiation therapy.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Huiling Hu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen, Guangdong 518034, P.R. China
| | - Meixin Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yunfan Xiong
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Kang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Mengfei Chen
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Zhigang Fan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Fei Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaohong Liu
- Department of Ophthalmology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Chaochao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Kaijing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
9
|
Vetter ML, Hitchcock PF. Report on the National Eye Institute Audacious Goals Initiative: Replacement of Retinal Ganglion Cells from Endogenous Cell Sources. Transl Vis Sci Technol 2017; 6:5. [PMID: 28316878 PMCID: PMC5354473 DOI: 10.1167/tvst.6.2.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/22/2022] Open
Abstract
This report emerges from a workshop convened by the National Eye Institute (NEI) as part of the "Audacious Goals Initiative" (AGI). The workshop addressed the replacement of retinal ganglion cells (RGCs) from exogenous and endogenous sources, and sought to identify the gaps in our knowledge and barriers to progress in devising cellular replacement therapies for diseases where RGCs die. Here, we briefly review relevant literature regarding common diseases associated with RGC death, the genesis of RGCs in vivo, strategies for generating transplantable RGCs in vitro, and potential endogenous cellular sources to regenerate these cells. These topics provided the clinical and scientific context for the discussion among the workshop participants and are relevant to efforts that may lead to therapeutic approaches for replacing RGCs. This report also summarizes the content of the workshop discussion, which focused on: (1) cell sources for RGC replacement and regeneration, (2) optimizing integration, survival, and synaptogenesis of new RGCs, and (3) approaches for assessing the outcomes of RGC replacement therapies. We conclude this report with a summary of recommendations, based on the workshop discussions, which may guide vision scientists seeking to develop therapies for replacing RGCs in humans.
Collapse
Affiliation(s)
- Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Peter F Hitchcock
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA ; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
10
|
Aghaallaei N, Gruhl F, Schaefer CQ, Wernet T, Weinhardt V, Centanin L, Loosli F, Baumbach T, Wittbrodt J. Identification, visualization and clonal analysis of intestinal stem cells in fish. Development 2016; 143:3470-3480. [PMID: 27578784 PMCID: PMC5087619 DOI: 10.1242/dev.134098] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 08/08/2016] [Indexed: 01/09/2023]
Abstract
Recently, a stochastic model of symmetrical stem cell division followed by neutral drift has been proposed for intestinal stem cells (ISCs), which has been suggested to represent the predominant mode of stem cell progression in mammals. In contrast, stem cells in the retina of teleost fish show an asymmetric division mode. To address whether the mode of stem cell division follows phylogenetic or ontogenetic routes, we analysed the entire gastrointestinal tract of the teleost medaka (Oryzias latipes). X-ray microcomputed tomography shows a correlation of 3D topography with the functional domains. Analysis of ISCs in proliferation assays and via genetically encoded lineage tracing highlights a stem cell niche in the furrow between the long intestinal folds that is functionally equivalent to mammalian intestinal crypts. Stem cells in this compartment are characterized by the expression of homologs of mammalian ISC markers – sox9, axin2 and lgr5 – emphasizing the evolutionary conservation of the Wnt pathway components in the stem cell niche of the intestine. The stochastic, sparse initial labelling of ISCs ultimately resulted in extended labelled or unlabelled domains originating from single stem cells in the furrow niche, contributing to both homeostasis and growth. Thus, different modes of stem cell division co-evolved within one organism, and in the absence of physical isolation in crypts, ISCs contribute to homeostatic growth. Summary: Adult medaka intestinal stem cells (ISCs) proliferate within a niche functionally equivalent to that in the mammal. Like mammalian ISCs, but unlike medaka retinal stem cells, their mode of division is largely symmetric.
Collapse
Affiliation(s)
- Narges Aghaallaei
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Franziska Gruhl
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Colin Q Schaefer
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Tobias Wernet
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany Laboratory for applications of synchrotron radiation, Karslruhe Institute for Technology (KIT), 76131 Karlsruhe, Germany
| | - Venera Weinhardt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany Laboratory for applications of synchrotron radiation, Karslruhe Institute for Technology (KIT), 76131 Karlsruhe, Germany
| | - Lázaro Centanin
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Felix Loosli
- Laboratory for applications of synchrotron radiation, Karslruhe Institute for Technology (KIT), 76131 Karlsruhe, Germany
| | - Tilo Baumbach
- Laboratory for applications of synchrotron radiation, Karslruhe Institute for Technology (KIT), 76131 Karlsruhe, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Lust K, Sinn R, Pérez Saturnino A, Centanin L, Wittbrodt J. De novo neurogenesis by targeted expression of atoh7 to Müller glia cells. Development 2016; 143:1874-83. [PMID: 27068106 PMCID: PMC4920165 DOI: 10.1242/dev.135905] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
Regenerative responses in the vertebrate CNS depend on quiescent radial glia stem cells, which re-enter the cell cycle and eventually differentiate into neurons. The entry into the cell cycle and the differentiation into neurons are events of opposite nature, and therefore efforts to force quiescent radial glia into neurons require different factors. Here, we use fish to show that a single neurogenic factor, Atoh7, directs retinal radial glia (Müller glia, MG) into proliferation. The resulting neurogenic clusters differentiate in vivo into various retinal neurons. We use signaling reporters to demonstrate that the Atoh7-induced regeneration-like response of MG cells is mimicked by Notch, resembling the behavior of early progenitors during retinogenesis. Activation of Notch signaling in MG cells is sufficient to trigger proliferation and differentiation. Our results uncover a new role for Atoh7 as a universal neurogenic factor, and illustrate how signaling modules are re-employed in diverse contexts to trigger different biological responses. Highlighted article: Induced activation of atoh7 in Müller glia cells in vivo is sufficient to drive cell cycle re-entry and proliferation, followed by the formation of neurogenic clusters and de novo neurogenesis.
Collapse
Affiliation(s)
- Katharina Lust
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Rebecca Sinn
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Alicia Pérez Saturnino
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Lázaro Centanin
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| |
Collapse
|
12
|
Valdivia LE, Lamb DB, Horner W, Wierzbicki C, Tafessu A, Williams AM, Gestri G, Krasnow AM, Vleeshouwer-Neumann TS, Givens M, Young RM, Lawrence LM, Stickney HL, Hawkins TA, Schwarz QP, Cavodeassi F, Wilson SW, Cerveny KL. Antagonism between Gdf6a and retinoic acid pathways controls timing of retinal neurogenesis and growth of the eye in zebrafish. Development 2016; 143:1087-98. [PMID: 26893342 PMCID: PMC4852494 DOI: 10.1242/dev.130922] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye. Summary: In the vertebrate eye, dorsally expressed Gdf6a limits RA pathway activity to control the transition from proliferation to differentiation, thereby regulating eye size.
Collapse
Affiliation(s)
- Leonardo E Valdivia
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Dayna B Lamb
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Wilson Horner
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Claudia Wierzbicki
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Amanuel Tafessu
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Audrey M Williams
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Gaia Gestri
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Anna M Krasnow
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | | | - McKenzie Givens
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Lisa M Lawrence
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Heather L Stickney
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Quenten P Schwarz
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Kara L Cerveny
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| |
Collapse
|
13
|
Beccari L, Marco-Ferreres R, Tabanera N, Manfredi A, Souren M, Wittbrodt B, Conte I, Wittbrodt J, Bovolenta P. A trans-Regulatory Code for the Forebrain Expression of Six3.2 in the Medaka Fish. J Biol Chem 2015; 290:26927-26942. [PMID: 26378230 PMCID: PMC4646366 DOI: 10.1074/jbc.m115.681254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/11/2015] [Indexed: 12/16/2022] Open
Abstract
A well integrated and hierarchically organized gene regulatory network is responsible for the progressive specification of the forebrain. The transcription factor Six3 is one of the central components of this network. As such, Six3 regulates several components of the network, but its upstream regulators are still poorly characterized. Here we have systematically identified such regulators, taking advantage of the detailed functional characterization of the regulatory region of the medaka fish Six3.2 ortholog and of a time/cost-effective trans-regulatory screening, which complemented and overcame the limitations of in silico prediction approaches. The candidates resulting from this search were validated with dose-response luciferase assays and expression pattern criteria. Reconfirmed candidates with a matching expression pattern were also tested with chromatin immunoprecipitation and functional studies. Our results confirm the previously proposed direct regulation of Pax6 and further demonstrate that Msx2 and Pbx1 are bona fide direct regulators of early Six3.2 distribution in distinct domains of the medaka fish forebrain. They also point to other transcription factors, including Tcf3, as additional regulators of different spatial-temporal domains of Six3.2 expression. The activity of these regulators is discussed in the context of the gene regulatory network proposed for the specification of the forebrain.
Collapse
Affiliation(s)
- Leonardo Beccari
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,.
| | - Raquel Marco-Ferreres
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Noemi Tabanera
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Anna Manfredi
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain
| | - Marcel Souren
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Beate Wittbrodt
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ivan Conte
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,; the Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli, Naples, 80078, Italy
| | - Jochen Wittbrodt
- the Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, c/ Nicolas Cabrera 1, Madrid 28049, Spain,; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), c/ Nicolas Cabrera 1, Madrid 28049, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda. Dr. Arce 37, Madrid, 28002, Spain,.
| |
Collapse
|
14
|
Zhang P, Kratz AS, Salama M, Elabd S, Heinrich T, Wittbrodt J, Blattner C, Davidson G. Expression screening using a Medaka cDNA library identifies evolutionarily conserved regulators of the p53/Mdm2 pathway. BMC Biotechnol 2015; 15:92. [PMID: 26450685 PMCID: PMC4599741 DOI: 10.1186/s12896-015-0208-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/30/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The p53 tumor suppressor protein is mainly regulated by alterations in the half-life of the protein, resulting in significant differences in p53 protein levels in cells. The major regulator of this process is Mdm2, which ubiquitinates p53 and targets it for proteasomal degradation. This process can be enhanced or reduced by proteins that associate with p53 or Mdm2 and several proteins have been identified with such an activity. Furthermore, additional ubiquitin ligases for p53 have been identified in recent years. Nevertheless, our understanding of how p53 abundance and Mdm2 activity are regulated remains incomplete. Here we describe a cell culture based overexpression screen to identify evolutionarily conserved regulators of the p53/Mdm2 circuit. The results from this large-scale screening method will contribute to a better understanding of the regulation of these important proteins. METHODS Expression screening was based on co-transfection of H1299 cells with pools of cDNA's from a Medaka library together with p53, Mdm2 and, as internal control, Ror2. After cell lysis, SDS-PAGE/WB analysis was used to detect alterations in these proteins. RESULTS More than one hundred hits that altered the abundance of either p53, Mdm2, or both were identified in the primary screen. Subscreening of the library pools that were identified in the primary screen identified several potential novel regulators of p53 and/or Mdm2. We also tested whether the human orthologues of the Medaka genes regulate p53 and/or Mdm2 abundance. All human orthologues regulated p53 and/or Mdm2 abundance in the same manner as the proteins from Medaka, which underscores the suitability of this screening methodology for the identification of new modifiers of p53 and Mdm2. CONCLUSIONS Despite enormous efforts in the last two decades, many unknown regulators for p53 and Mdm2 abundance are predicted to exist. This cross-species approach to identify evolutionarily conserved regulators demonstrates that our Medaka unigene cDNA library represents a powerful tool to screen for these novel regulators of the p53/Mdm2 pathway.
Collapse
Affiliation(s)
- Ping Zhang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany. .,Faculty of Biosciences, University of Heidelberg, 69120, Heidelberg, Germany. .,Present address: Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK.
| | - Anne Sophie Kratz
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany. .,Present address: Cell Cycle Control and Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Mohammed Salama
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany.
| | - Seham Elabd
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany.
| | - Thorsten Heinrich
- Department of Anti-Aging Medicine, University of Tokyo, Tokyo, 113-8865, Japan.
| | - Joachim Wittbrodt
- Department of Developmental Biology and Physiology, University of Heidelberg, 69120, Heidelberg, Germany.
| | - Christine Blattner
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany.
| | - Gary Davidson
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany.
| |
Collapse
|
15
|
Reinhardt R, Centanin L, Tavhelidse T, Inoue D, Wittbrodt B, Concordet JP, Martinez-Morales JR, Wittbrodt J. Sox2, Tlx, Gli3, and Her9 converge on Rx2 to define retinal stem cells in vivo. EMBO J 2015; 34:1572-88. [PMID: 25908840 PMCID: PMC4474531 DOI: 10.15252/embj.201490706] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/01/2015] [Indexed: 12/21/2022] Open
Abstract
Transcriptional networks defining stemness in adult neural stem cells (NSCs) are largely unknown. We used the proximal cis-regulatory element (pCRE) of the retina-specific homeobox gene 2 (rx2) to address such a network. Lineage analysis in the fish retina identified rx2 as marker for multipotent NSCs. rx2-positive cells located in the peripheral ciliary marginal zone behave as stem cells for the neuroretina, or the retinal pigmented epithelium. We identified upstream regulators of rx2 interrogating the rx2 pCRE in a trans-regulation screen and focused on four TFs (Sox2, Tlx, Gli3, and Her9) activating or repressing rx2 expression. We demonstrated direct interaction of the rx2 pCRE with the four factors in vitro and in vivo. By conditional mosaic gain- and loss-of-function analyses, we validated the activity of those factors on regulating rx2 transcription and consequently modulating neuroretinal and RPE stem cell features. This becomes obvious by the rx2-mutant phenotypes that together with the data presented above identify rx2 as a transcriptional hub balancing stemness of neuroretinal and RPE stem cells in the adult fish retina.
Collapse
Affiliation(s)
- Robert Reinhardt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Lázaro Centanin
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Daigo Inoue
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beate Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | | | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene 2015; 34:5729-38. [PMID: 25728675 DOI: 10.1038/onc.2015.21] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/20/2022]
Abstract
P53 is an important tumor suppressor that, upon activation, induces growth arrest and cell death. Control of p53 is thus of prime importance for proliferating cells, but also for cancer therapy, where p53 activity contributes to the eradication of tumors. Mdm2 functionally inhibits p53 and targets the tumor suppressor protein for degradation. In a genetic screen, we identified TRIM25 as a novel regulator of p53 and Mdm2. TRIM25 increased p53 and Mdm2 abundance by inhibiting their ubiquitination and degradation in 26 S proteasomes. TRIM25 co-precipitated with p53 and Mdm2 and interfered with the association of p300 and Mdm2, a critical step for p53 polyubiquitination. Despite the increase in p53 levels, p53 activity was inhibited in the presence of TRIM25. Downregulation of TRIM25 resulted in an increased acetylation of p53 and p53-dependent cell death in HCT116 cells. Upon genotoxic insults, TRIM25 dampened the p53-dependent DNA damage response. The downregulation of TRIM25 furthermore resulted in massive apoptosis during early embryogenesis of medaka, which was rescued by the concomitant downregulation of p53, demonstrating the functional relevance of the regulation of p53 by TRIM25 in an organismal context.
Collapse
|
17
|
Chen Q, Su Y, Wesslowski J, Hagemann AI, Ramialison M, Wittbrodt J, Scholpp S, Davidson G. Tyrosine phosphorylation of LRP6 by Src and Fer inhibits Wnt/β-catenin signalling. EMBO Rep 2014; 15:1254-67. [PMID: 25391905 DOI: 10.15252/embr.201439644] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of β-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6.
Collapse
Affiliation(s)
- Qing Chen
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yi Su
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Janine Wesslowski
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anja I Hagemann
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Gary Davidson
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
18
|
Crespo CL, Vernieri C, Keller PJ, Garrè M, Bender JR, Wittbrodt J, Pardi R. The PAR complex controls the spatiotemporal dynamics of F-actin and the MTOC in directionally migrating leukocytes. J Cell Sci 2014; 127:4381-95. [PMID: 25179599 PMCID: PMC4197085 DOI: 10.1242/jcs.146217] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inflammatory cells acquire a polarized phenotype to migrate towards sites of infection or injury. A conserved polarity complex comprising PAR-3, PAR-6 and atypical protein kinase C (aPKC) relays extracellular polarizing cues to control cytoskeletal and signaling networks affecting morphological and functional polarization. However, there is no evidence that myeloid cells use PAR signaling to migrate vectorially in three-dimensional (3D) environments in vivo. Using genetically encoded bioprobes and high-resolution live imaging, we reveal the existence of F-actin oscillations in the trailing edge and constant repositioning of the microtubule organizing center (MTOC) to direct leukocyte migration in wounded medaka fish larvae (Oryzias latipes). Genetic manipulation in live myeloid cells demonstrates that the catalytic activity of aPKC and the regulated interaction with PAR-3 and PAR-6 are required for consistent F-actin oscillations, MTOC perinuclear mobility, aPKC repositioning and wound-directed migration upstream of Rho kinase (also known as ROCK or ROK) activation. We propose that the PAR complex coordinately controls cytoskeletal changes affecting both the generation of traction force and the directionality of leukocyte migration to sites of injury.
Collapse
Affiliation(s)
- Carolina Lage Crespo
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Vernieri
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Philipp J Keller
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, 20147 VI, USA
| | - Massimiliano Garrè
- IFOM Foundation, Institute FIRC of Molecular Oncology, 20139 Milan, Italy
| | - Jeffrey R Bender
- Department of Medicine, Raymond and Beverly Sackler Foundation Cardiovascular Laboratory, Yale University, New Haven, 06511 CT, USA
| | - Joachim Wittbrodt
- Center for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ruggero Pardi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy Vita-Salute San Raffaele University School of Medicine, 20132 Milan, Italy
| |
Collapse
|
19
|
Sinn R, Peravali R, Heermann S, Wittbrodt J. Differential responsiveness of distinct retinal domains to Atoh7. Mech Dev 2014; 133:218-29. [PMID: 25151399 PMCID: PMC4232737 DOI: 10.1016/j.mod.2014.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/24/2014] [Accepted: 08/11/2014] [Indexed: 02/03/2023]
Abstract
During vertebrate eye development retinal progenitor cells (RPCs) differentiate into all neural cell types of the retina. Retinal ganglion cells (RGCs) represent the first cell type to be generated. For their development, Atoh7, a basic Helix Loop Helix (bHLH) transcription factor is crucial. Atoh7 loss of function results in a massive reduction or even a total loss of RGCs. However, inconsistent results have been obtained in atoh7 gain of function experiments with respect to ganglion cell genesis, implying that the effect of Atoh7 is likely to be dependent on the competence state of the RPC. In this study we addressed the differential susceptibilities of early RPCs to Atoh7 in vivo, using medaka. Unexpectedly, we observed a largely normal development of the dorsal retina, although atoh7 was precociously expressed. However, the development of the retina close to the optic nerve head (part of the ventral retina) was disturbed severely. Photoreceptors were largely absent and the Müller glia cell number was reduced significantly. The majority of cells in this domain were ganglion cells and the abnormal development of this area affected the closure of the optic fissure resulting in coloboma.
Collapse
Affiliation(s)
- Rebecca Sinn
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany; Hartmut Hoffmann-Berling International Graduate School (HBIGS), Heidelberg, Germany
| | - Ravindra Peravali
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology, Germany
| | - Stephan Heermann
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany; Institute for Anatomy and Cell Biology, Dept. of Molecular Embryology, University Freiburg, Freiburg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
20
|
Herder C, Swiercz JM, Müller C, Peravali R, Quiring R, Offermanns S, Wittbrodt J, Loosli F. ArhGEF18 regulates RhoA-Rock2 signaling to maintain neuro-epithelial apico-basal polarity and proliferation. Development 2013; 140:2787-97. [PMID: 23698346 DOI: 10.1242/dev.096487] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The vertebrate central nervous system develops from an epithelium where cells are polarized along the apicobasal axis. Loss of this polarity results in abnormal organ architecture, morphology and proliferation. We found that mutations of the guanine nucleotide exchange factor ArhGEF18 affect apicobasal polarity of the retinal neuroepithelium in medaka fish. We show that ArhGEF18-mediated activation of the small GTPase RhoA is required to maintain apicobasal polarity at the onset of retinal differentiation and to control the ratio of neurogenic to proliferative cell divisions. RhoA signals through Rock2 to regulate apicobasal polarity, tight junction localization and the cortical actin cytoskeleton. The human ArhGEF18 homologue can rescue the mutant phenotype, suggesting a conserved function in vertebrate neuroepithelia. Our analysis identifies ArhGEF18 as a key regulator of tissue architecture and function, controlling apicobasal polarity and proliferation through RhoA activation. We thus identify the control of neuroepithelial apicobasal polarity as a novel role for RhoA signaling in vertebrate development.
Collapse
Affiliation(s)
- Cathrin Herder
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Schuhmacher LN, Albadri S, Ramialison M, Poggi L. Evolutionary relationships and diversification of barhl genes within retinal cell lineages. BMC Evol Biol 2011; 11:340. [PMID: 22103894 PMCID: PMC3235082 DOI: 10.1186/1471-2148-11-340] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 11/21/2011] [Indexed: 12/13/2022] Open
Abstract
Background Basic helix-loop-helix and homeodomain transcription factors have been shown to specify all different neuronal cell subtypes composing the vertebrate retina. The appearance of gene paralogs of such retina-specific transcription factors in lower vertebrates, with differently evolved function and/or conserved non-coding elements, might provide an important source for the generation of neuronal diversity within the vertebrate retinal architecture. In line with this hypothesis, we investigated the evolution of the homeobox Barhl family of transcription factors, barhl1 and barhl2, in the teleost and tetrapod lineages. In tetrapod barhl2, but not barhl1, is expressed in the retina and is important for amacrine cell specification. Zebrafish has three barhl paralogs: barhl1.1, barhl1.2 and barhl2, but their precise spatio-temporal retinal expression, as well as their function is yet unknown. Results Here we performed a meticulous expression pattern comparison of all known barhl fish paralogs and described a novel barhl paralog in medaka. Our detailed analysis of zebrafish barhl gene expression in wild type and mutant retinas revealed that only barhl1.2 and barhl2 are present in the retina. We also showed that these two paralogs are expressed in distinct neuronal lineages and are differently regulated by Atoh7, a key retinal-specific transcription factor. Finally, we found that the two retained medaka fish barhl paralogs, barhl1 and barhl2, are both expressed in the retina, in a pattern reminiscent of zebrafish barhl1.2 and barhl2 respectively. By performing phylogenetic and synteny analysis, we provide evidence that barhl retinal expression domain is an ancestral feature, probably lost in tetrapods due to functional redundancy. Conclusions Functional differences among retained paralogs of key retina-specific transcription factors between teleosts and tetrapods might provide important clues for understanding their potential impact on the generation of retinal neuronal diversity. Intriguingly, within teleosts, retention of zebrafish barhl1.2 and its medaka ortholog barhl1 appears to correlate with the acquisition of distinct signalling mechanisms by the two genes within distinct retinal cell lineages. Our findings provide a starting point for the study of barhl gene evolution in relation to the generation of cell diversity in the vertebrate retina.
Collapse
|
22
|
Eichenlaub MP, Ettwiller L. De novo genesis of enhancers in vertebrates. PLoS Biol 2011; 9:e1001188. [PMID: 22069375 PMCID: PMC3206014 DOI: 10.1371/journal.pbio.1001188] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 09/22/2011] [Indexed: 02/02/2023] Open
Abstract
Whole genome duplication in teleost fish reveals that a few changes in non-regulatory genomic sequences are a source for generating new enhancers. Evolutionary innovation relies partially on changes in gene regulation. While a growing body of evidence demonstrates that such innovation is generated by functional changes or translocation of regulatory elements via mobile genetic elements, the de novo generation of enhancers from non-regulatory/non-mobile sequences has, to our knowledge, not previously been demonstrated. Here we show evidence for the de novo genesis of enhancers in vertebrates. For this, we took advantage of the massive gene loss following the last whole genome duplication in teleosts to systematically identify regions that have lost their coding capacity but retain sequence conservation with mammals. We found that these regions show enhancer activity while the orthologous coding regions have no regulatory activity. These results demonstrate that these enhancers have been de novo generated in fish. By revealing that minor changes in non-regulatory sequences are sufficient to generate new enhancers, our study highlights an important playground for creating new regulatory variability and evolutionary innovation. The genome of each living organism contains thousands of genes, and the precise control of the timing and location of expression of these genes is key for normal development and homeostasis of each individual. Despite the oftentimes high genetic similarity between organisms, the source of phenotypic differences, for example between human and mouse, is thought to originate mainly from changes in how and when genes are expressed. This is partially determined by enhancers, that contribute to the control of gene expression. For decades, duplication of existing genomic enhancers, mobile elements, and changes in the sequence of existing enhancers were believed to be the major ways of increasing the number and modifying the activity of enhancers. In this study, we show that enhancers don't have to be derived from pre-existing ones but can also appear de novo in regions of the genome that were previously not regulating gene expression. We analyzed teleost fish genomes and found three regions for which a limited number of changes in the DNA sequence was sufficient to generate new enhancers. We predict that such a process is frequent in vertebrate genomes, making de novo generation of enhancers an important mechanism for creating variation in gene expression.
Collapse
Affiliation(s)
| | - Laurence Ettwiller
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
23
|
Inoue D, Wittbrodt J. One for all--a highly efficient and versatile method for fluorescent immunostaining in fish embryos. PLoS One 2011; 6:e19713. [PMID: 21603650 PMCID: PMC3094454 DOI: 10.1371/journal.pone.0019713] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/04/2011] [Indexed: 11/17/2022] Open
Abstract
Background For the detection and sub-cellular (co)-localization of proteins in the context of the tissue or organism immunostaining in whole mount preparations or on sections is still the best approach. So far, each antibody required its own fixation and antigen retrieval protocol so that optimizing immunostaining turned out to be tedious and time consuming. Methodology/Principal Finding Here we present a novel method to efficiently retrieve the antigen in a widely applicable standard protocol, facilitating fluorescent immunostaining of both cryosections and whole mount preparations in zebrafish (Danio rerio) and medaka (Oryzias latipes). Conclusions/Significance Our method overcomes the loss of sections and damage of tissue and cell morphology, and allows parallel immunostaining in multiple colors, co-immunostaining with fluorescent proteins in transgenic fish lines and in combination with whole mount in situ hybridization.
Collapse
Affiliation(s)
- Daigo Inoue
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany.
| | | |
Collapse
|
24
|
Maurya AK, Tan H, Souren M, Wang X, Wittbrodt J, Ingham PW. Integration of Hedgehog and BMP signalling by the engrailed2a gene in the zebrafish myotome. Development 2011; 138:755-65. [PMID: 21266411 DOI: 10.1242/dev.062521] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Different levels and timing of Hedgehog (Hh) signalling activity have been proposed to specify three distinct cell types in the zebrafish myotome. Two of these, the medial fast-twitch fibres (MFFs) and the slow-twitch muscle pioneers (MPs) are characterised by expression of eng1a, -1b and -2a and require the highest levels of Hh for their specification. We have defined a minimal eng2a element sufficient to drive reporter expression specifically in MPs and MFFs. This element binds both Gli2a, a mediator of Hh signalling, and activated Smads (pSmads), mediators of bone morphogenic protein (BMP) signalling, in vivo. We found a strict negative correlation between nuclear accumulation of pSmad, and eng2a expression in myotomal cells and show that abrogation of pSmad accumulation results in activation of eng2a, even when Hh signalling is attenuated. Conversely, driving nuclear accumulation of pSmad suppresses the induction of eng expression even when Hh pathway activity is maximal. Nuclear accumulation of pSmads is depleted by maximal Hh pathway activation. We show that a synthetic form of the Gli2 repressor interacts with Smad1 specifically in the nuclei of myotomal cells in the developing embryo and that this interaction depends upon BMP signalling activity. Our results demonstrate that the eng2a promoter integrates repressive and activating signals from the BMP and Hh pathways, respectively, to limit its expression to MPs and MFFs. We suggest a novel basis for crosstalk between the Hh and BMP pathways, whereby BMP-mediated repression of Hh target genes is promoted by a direct interaction between Smads and truncated Glis, an interaction that is abrogated by Hh induced depletion of the latter.
Collapse
Affiliation(s)
- Ashish K Maurya
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | | | | | | | | | | |
Collapse
|
25
|
Mao CA, Tsai WW, Cho JH, Pan P, Barton MC, Klein WH. Neuronal transcriptional repressor REST suppresses an Atoh7-independent program for initiating retinal ganglion cell development. Dev Biol 2010; 349:90-9. [PMID: 20969844 DOI: 10.1016/j.ydbio.2010.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/27/2010] [Accepted: 10/12/2010] [Indexed: 01/15/2023]
Abstract
As neuronal progenitors differentiate into neurons, they acquire a unique set of transcription factors. The transcriptional repressor REST prevents progenitors from undergoing differentiation. Notably, REST binding sites are often associated with retinal ganglion cell (RGC) genes whose expression in the retina is positively controlled by Atoh7, a factor essential for RGC formation. The key regulators that enable a retinal progenitor cell (RPC) to commit to an RGC fate have not been identified. We show here that REST suppresses RGC gene expression in RPCs. REST inactivation causes aberrant expression of RGC transcription factors in proliferating RPCs, independent of Atoh7, resulting in increased RGC formation. Strikingly, inactivating REST in Atoh7-null retinas restores transcription factor expression, which partially activates downstream RGC genes but is insufficient to prevent RGC loss. Our results demonstrate an Atoh7-independent program for initial activation of RGC genes and suggest a novel role for REST in preventing premature expression in RPCs.
Collapse
Affiliation(s)
- Chai-An Mao
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
| | | | | | | | | | | |
Collapse
|