1
|
Zhang LY, Yang C, Wu ZC, Zhang XJ, Fan SJ. Comprehensive Time-Course Transcriptome Reveals the Crucial Biological Pathways Involved in the Seasonal Branch Growth in Siberian Elm ( Ulmus pumila). Int J Mol Sci 2023; 24:14976. [PMID: 37834427 PMCID: PMC10573607 DOI: 10.3390/ijms241914976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Timber, the most prevalent organic material on this planet, is the result of a secondary xylem emerging from vascular cambium. Yet, the intricate processes governing its seasonal generation are largely a mystery. To better understand the cyclic growth of vascular tissues in elm, we undertook an extensive study examining the anatomy, physiology, and genetic expressions in Ulmus pumila. We chose three robust 15-year-old elm trees for our study. The cultivars used in this study were collected from the Inner Mongolia Autonomous Region in China and nurtured in the tree farm of Shandong Normal University. Monthly samples of 2-year-old elm branches were taken from the tree from February to September. Marked seasonal shifts in elm branch vascular tissues were observed by phenotypic observation: In February, the cambium of the branch emerged from dormancy, spurring growth. By May, elms began generating secondary xylem, or latewood, recognized by its tiny pores and dense cell structure. From June to August, there was a marked increase in the thickness of the secondary xylem. Transcriptome sequencing provides a potential molecular mechanism for the thickening of elm branches and their response to stress. In February, the tree enhanced its genetic responses to cold and drought stress. The amplified expression of CDKB, CYCB, WOX4, and ARF5 in the months of February and March reinforced their essential role in the development of the vascular cambium in elm. Starting in May, the elm deployed carbohydrates as a carbon resource to synthesize the abundant cellulose and lignin necessary for the formation of the secondary wall. Major genes participating in cellulose (SUC and CESA homologs), xylan (UGD, UXS, IRX9, IRX10, and IRX14), and lignin (PAL, C4H, 4CL, HCT, C3H, COMT, and CAD) biosynthetic pathways for secondary wall formation were up-regulated by May or/and June. In conclusion, our findings provided a foundation for an in-depth exploration of the molecular processes dictating the seasonal growth of elm timber.
Collapse
Affiliation(s)
| | | | | | - Xue-Jie Zhang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Ji’nan 250014, China; (L.-Y.Z.); (C.Y.); (Z.-C.W.)
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, No. 88 Wenhuadong Road, Ji’nan 250014, China; (L.-Y.Z.); (C.Y.); (Z.-C.W.)
| |
Collapse
|
2
|
Analysis of Homologous Regions of Small RNAs MIR397 and MIR408 Reveals the Conservation of Microsynteny among Rice Crop-Wild Relatives. Cells 2022; 11:cells11213461. [DOI: 10.3390/cells11213461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
MIRNAs are small non-coding RNAs that play important roles in a wide range of biological processes in plant growth and development. MIR397 (involved in drought, low temperature, and nitrogen and copper (Cu) starvation) and MIR408 (differentially expressed in response to environmental stresses such as copper, light, mechanical stress, dehydration, cold, reactive oxygen species, and drought) belong to conserved MIRNA families that either negatively or positively regulate their target genes. In the present study, we identified the homologs of MIR397 and MIR408 in Oryza sativa and its six wild progenitors, three non-Oryza species, and one dicot species. We analyzed the 100 kb segments harboring MIRNA homologs from 11 genomes to obtain a comprehensive view of their community evolution around these loci in the farthest (distant) relatives of rice. Our study showed that mature MIR397 and MIR408 were highly conserved among all Oryza species. Comparative genomics analyses also revealed that the microsynteny of the 100 kb region surrounding MIRNAs was only conserved in Oryza spp.; disrupted in Sorghum, maize, and wheat; and completely lost in Arabidopsis. There were deletions, rearrangements, and translocations within the 100 kb segments in Oryza spp., but the overall microsynteny of the region was maintained. The phylogenetic analyses of the precursor regions of all MIRNAs under study revealed a bimodal clade of common origin. This comparative analysis of miRNA involved in abiotic stress tolerance in plants provides a powerful tool for future Oryza research. Crop wild relatives (CWRs) offer multiple traits with potential to decrease the amount of yield loss owing to biotic and abiotic stresses. Using a comparative genomics approach, the exploration of CWRs as a source of tolerance to these stresses by understanding their evolution can be further used to leverage their yield potential.
Collapse
|
3
|
Karyotype Reorganization in Wheat-Rye Hybrids Obtained via Unreduced Gametes: Is There a Limit to the Chromosome Number in Triticale? PLANTS 2021; 10:plants10102052. [PMID: 34685861 PMCID: PMC8538156 DOI: 10.3390/plants10102052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
To date, few data have been accumulated on the contribution of meiotic restitution to the formation of Triticum aestivum hybrid karyotypes. In this study, based on FISH and C-banding, karyotype reorganization was observed in three groups of F5 wheat–rye hybrids 1R(1A) × R. Aberrations, including aneuploidy, telocentrics, and Robertsonian translocations, were detected in all groups. Some of the Group 1 plants and all of the Group 2 plants only had a 4R4R pair (in addition to 1R1R), which was either added or substituted for its homeolog in ABD subgenomes. In about 82% of meiocytes, 4R4R formed bivalents, which indicates its competitiveness. The rest of the Group 1 plants had 2R and 7R chromosomes in addition to 1R1R. Group 3 retained all their rye chromosomes, with a small aneuploidy on the wheat chromosomes. A feature of the meiosis in the Group 3 plants was asynchronous cell division and omission of the second division. Diploid gametes did not form because of the significant disturbances during gametogenesis. As a result, the frequency of occurrence of the formed dyads was negatively correlated (r = −0.73) with the seed sets. Thus, meiotic restitution in the 8n triticale does not contribute to fertility or increased ploidy in subsequent generations.
Collapse
|
4
|
Mota APZ, Fernandez D, Arraes FBM, Petitot AS, de Melo BP, de Sa MEL, Grynberg P, Saraiva MAP, Guimaraes PM, Brasileiro ACM, Albuquerque EVS, Danchin EGJ, Grossi-de-Sa MF. Evolutionarily conserved plant genes responsive to root-knot nematodes identified by comparative genomics. Mol Genet Genomics 2020; 295:1063-1078. [PMID: 32333171 DOI: 10.1007/s00438-020-01677-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/04/2020] [Indexed: 01/11/2023]
Abstract
Root-knot nematodes (RKNs, genus Meloidogyne) affect a large number of crops causing severe yield losses worldwide, more specifically in tropical and sub-tropical regions. Several plant species display high resistance levels to Meloidogyne, but a general view of the plant immune molecular responses underlying resistance to RKNs is still lacking. Combining comparative genomics with differential gene expression analysis may allow the identification of widely conserved plant genes involved in RKN resistance. To identify genes that are evolutionary conserved across plant species, we used OrthoFinder to compared the predicted proteome of 22 plant species, including important crops, spanning 214 Myr of plant evolution. Overall, we identified 35,238 protein orthogroups, of which 6,132 were evolutionarily conserved and universal to all the 22 plant species (PLAnts Common Orthogroups-PLACO). To identify host genes responsive to RKN infection, we analyzed the RNA-seq transcriptome data from RKN-resistant genotypes of a peanut wild relative (Arachis stenosperma), coffee (Coffea arabica L.), soybean (Glycine max L.), and African rice (Oryza glaberrima Steud.) challenged by Meloidogyne spp. using EdgeR and DESeq tools, and we found 2,597 (O. glaberrima), 743 (C. arabica), 665 (A. stenosperma), and 653 (G. max) differentially expressed genes (DEGs) during the resistance response to the nematode. DEGs' classification into the previously characterized 35,238 protein orthogroups allowed identifying 17 orthogroups containing at least one DEG of each resistant Arachis, coffee, soybean, and rice genotype analyzed. Orthogroups contain 364 DEGs related to signaling, secondary metabolite production, cell wall-related functions, peptide transport, transcription regulation, and plant defense, thus revealing evolutionarily conserved RKN-responsive genes. Interestingly, the 17 DEGs-containing orthogroups (belonging to the PLACO) were also universal to the 22 plant species studied, suggesting that these core genes may be involved in ancestrally conserved immune responses triggered by RKN infection. The comparative genomic approach that we used here represents a promising predictive tool for the identification of other core plant defense-related genes of broad interest that are involved in different plant-pathogen interactions.
Collapse
Affiliation(s)
- Ana Paula Zotta Mota
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- Departamento de Biologia Celular e Molecular, UFRGS, Porto Alegre-RS, Brazil
| | - Diana Fernandez
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- IRD, Cirad, Univ Montpellier, IPME, 911, Montpellier, France
| | - Fabricio B M Arraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- Departamento de Biologia Celular e Molecular, UFRGS, Porto Alegre-RS, Brazil
| | | | - Bruno Paes de Melo
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- Departamento de Bioquímica e Biologia Molecular/Bioagro, UFV, Viçosa-MG, Brazil
| | - Maria E Lisei de Sa
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil
- Empresa de Pesquisa Agropecuária de Minas Gerais, EPAMIG, Uberaba-MG, Brazil
| | | | | | | | | | | | | | - Maria Fatima Grossi-de-Sa
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília-DF, Brazil.
- Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|
5
|
Bonnot T, Martre P, Hatte V, Dardevet M, Leroy P, Bénard C, Falagán N, Martin-Magniette ML, Deborde C, Moing A, Gibon Y, Pailloux M, Bancel E, Ravel C. Omics Data Reveal Putative Regulators of Einkorn Grain Protein Composition under Sulfur Deficiency. PLANT PHYSIOLOGY 2020; 183:501-516. [PMID: 32295821 PMCID: PMC7271774 DOI: 10.1104/pp.19.00842] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
Understanding the molecular mechanisms controlling the accumulation of grain storage proteins in response to nitrogen (N) and sulfur (S) nutrition is essential to improve cereal grain nutritional and functional properties. Here, we studied the grain transcriptome and metabolome responses to postanthesis N and S supply for the diploid wheat einkorn (Triticum monococcum). During grain filling, 848 transcripts and 24 metabolites were differentially accumulated in response to N and S availability. The accumulation of total free amino acids per grain and the expression levels of 241 genes showed significant modifications during most of the grain filling period and were upregulated in response to S deficiency. Among them, 24 transcripts strongly responded to S deficiency and were identified in coexpression network analyses as potential coordinators of the grain response to N and S supply. Sulfate transporters and genes involved in sulfate and Met metabolism were upregulated, suggesting regulation of the pool of free amino acids and of the grain N-to-S ratio. Several genes highlighted in this study might limit the impact of S deficiency on the accumulation of grain storage proteins.
Collapse
Affiliation(s)
- Titouan Bonnot
- Genetics Diversity and Ecophysiology of Cereals, Institut National de l'Agriculture, de l'Alimentation et de l'Environnement (INRAE), Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Pierre Martre
- Genetics Diversity and Ecophysiology of Cereals, Institut National de l'Agriculture, de l'Alimentation et de l'Environnement (INRAE), Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Victor Hatte
- Genetics Diversity and Ecophysiology of Cereals, Institut National de l'Agriculture, de l'Alimentation et de l'Environnement (INRAE), Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Mireille Dardevet
- Genetics Diversity and Ecophysiology of Cereals, Institut National de l'Agriculture, de l'Alimentation et de l'Environnement (INRAE), Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Philippe Leroy
- Genetics Diversity and Ecophysiology of Cereals, Institut National de l'Agriculture, de l'Alimentation et de l'Environnement (INRAE), Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Camille Bénard
- Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, Plateforme Métabolome Bordeaux, MetaboHUB-PHENOME, 33140 Villenave d'Ornon, France
| | - Natalia Falagán
- Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, Plateforme Métabolome Bordeaux, MetaboHUB-PHENOME, 33140 Villenave d'Ornon, France
| | - Marie-Laure Martin-Magniette
- L'Institut des Sciences des Plantes (IPS2), CNRS, INRAE, Université Paris-Sud, Université Evry, Université Paris-Saclay, 91400 Orsay, France
- Mathématiques et informatique appliqués (MIA)-Paris, AgroParisTech, INRAE, Université Paris-Saclay, 75231 Paris, France
| | - Catherine Deborde
- Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, Plateforme Métabolome Bordeaux, MetaboHUB-PHENOME, 33140 Villenave d'Ornon, France
| | - Annick Moing
- Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, Plateforme Métabolome Bordeaux, MetaboHUB-PHENOME, 33140 Villenave d'Ornon, France
| | - Yves Gibon
- Biologie du Fruit et Pathologie, INRAE, Université de Bordeaux, Plateforme Métabolome Bordeaux, MetaboHUB-PHENOME, 33140 Villenave d'Ornon, France
| | - Marie Pailloux
- Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes, Centre National de la Recherche Scientifique (CNRS), Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Emmanuelle Bancel
- Genetics Diversity and Ecophysiology of Cereals, Institut National de l'Agriculture, de l'Alimentation et de l'Environnement (INRAE), Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| | - Catherine Ravel
- Genetics Diversity and Ecophysiology of Cereals, Institut National de l'Agriculture, de l'Alimentation et de l'Environnement (INRAE), Université Clermont-Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
6
|
Zhang R, Huang S, Li S, Song G, Li Y, Li W, Li J, Gao J, Gu T, Li D, Zhang S, Li G. Evolution of PHAS loci in the young spike of Allohexaploid wheat. BMC Genomics 2020; 21:200. [PMID: 32131726 PMCID: PMC7057497 DOI: 10.1186/s12864-020-6582-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND PhasiRNAs (phased secondary siRNAs) play important regulatory roles in the development processes and biotic or abiotic stresses in plants. Some of phasiRNAs involve in the reproductive development in grasses, which include two categories, 21-nt (nucleotide) and 24-nt phasiRNAs. They are triggered by miR2118 and miR2275 respectively, in premeiotic and meiotic anthers of rice, maize and other grass species. Wheat (Triticum aestivum) with three closely related subgenomes (subA, subB and subD), is a model of allopolyploid in plants. Knowledge about the role of phasiRNAs in the inflorescence development of wheat is absent until now, and the evolution of PHAS loci in polyploid plants is also unavailable. RESULTS Using 261 small RNA expression datasets from various tissues, a batch of PHAS (phasiRNA precursors) loci were identified in the young spike of wheat, most of which were regulated by miR2118 and miR2275 in their target site regions. Dissection of PHAS and their trigger miRNAs among the diploid (AA and DD), tetraploid (AABB) and hexaploid (AABBDD) genomes of Triticum indicated that distribution of PHAS loci were dominant randomly in local chromosomes, while miR2118 was dominant only in the subB genome. The diversity of PHAS loci in the three subgenomes of wheat and their progenitor genomes (AA, DD and AABB) suggested that they originated or diverged at least before the occurrence of the tetraploid AABB genome. The positive correlation between the PHAS loci or the trigger miRNAs and the ploidy of genome indicated the expansion of genome was the major drive force for the increase of PHAS loci and their trigger miRNAs in Triticum. In addition, the expression profiles of the PHAS transcripts suggested they responded to abiotic stresses such as cold stress in wheat. CONCLUSIONS Altogether, non-coding phasiRNAs are conserved transcriptional regulators that display quick plasticity in Triticum genome. They may be involved in reproductive development and abiotic stress in wheat. It could be referred to molecular research on male reproductive development in Triticum.
Collapse
Affiliation(s)
- Rongzhi Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China. .,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China. .,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China.
| | - Siyuan Huang
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Guoqi Song
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Yulian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Wei Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Jihu Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Jie Gao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Tiantian Gu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Dandan Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China.,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China
| | - Shujuan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China. .,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China. .,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China.
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China. .,Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture, Jinan, 250100, Shandong, China. .,National Engineering Laboratory for Wheat and Maize, Jinan, 250100, Shandong, China.
| |
Collapse
|
7
|
Azibi T, Hadj-Arab H, Lodé M, Ferreira de Carvalho J, Trotoux G, Nègre S, Gilet MM, Boutte J, Lucas J, Vekemans X, Chèvre AM, Rousseau-Gueutin M. Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. PLANT REPRODUCTION 2020; 33:43-58. [PMID: 32080762 DOI: 10.1007/s00497-020-00385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Collapse
Affiliation(s)
- Thanina Azibi
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Houria Hadj-Arab
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria.
| | - Maryse Lodé
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Gwenn Trotoux
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Sylvie Nègre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Julien Boutte
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Jérémy Lucas
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Anne-Marie Chèvre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | |
Collapse
|
8
|
Azibi T, Hadj-Arab H, Lodé M, Ferreira de Carvalho J, Trotoux G, Nègre S, Gilet MM, Boutte J, Lucas J, Vekemans X, Chèvre AM, Rousseau-Gueutin M. Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. PLANT REPRODUCTION 2020. [PMID: 32080762 DOI: 10.1007/s00697-020-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Collapse
Affiliation(s)
- Thanina Azibi
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Houria Hadj-Arab
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria.
| | - Maryse Lodé
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Gwenn Trotoux
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Sylvie Nègre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Julien Boutte
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Jérémy Lucas
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Anne-Marie Chèvre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | |
Collapse
|
9
|
Singh AK, Singh N, Kumar S, Kumari J, Singh R, Gaba S, Yadav MC, Grover M, Chaurasia S, Kumar R. Identification and evolutionary analysis of polycistronic miRNA clusters in domesticated and wild wheat. Genomics 2020; 112:2334-2348. [PMID: 31926215 DOI: 10.1016/j.ygeno.2020.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/05/2020] [Accepted: 01/07/2020] [Indexed: 12/31/2022]
Abstract
MicroRNAs are ~22 nucleotide long non-coding RNAs that regulate gene expression at posttranscriptional level. Genome-wide analysis was performed to identify polycistronic miRNAs from wheat. Total 89 polycistronic miRNAs were identified in bread wheat which were distributed on three component sub-genomes (A = 26, B = 33 and D = 30). Except some, most of the identified polycistronic miRNAs were also present in other cultivated and wild wheat species. Expression of 11 identified polycistronic miRNAs could be validated using previously assembled transcriptomes, RNA-seq/s-RNA seq data of cultivated and wild wheats and RT-PCR. Polycistronic miRNAs orthologs were also localized on rice and Brachypodium genomes. As a case study, we also analyzed molecular evolution of miR395 family polycistrons in wheat. Both tandem and segmental duplications contributed to expansion of miR395 family polycistrons. Our findings provide a comprehensive view on wheat polycitronic miRNAs that will enable their in-depth functional analysis in the future.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India.
| | - Nidhi Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Sundeep Kumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Jyoti Kumari
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Sonam Gaba
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Mahesh C Yadav
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Monendra Grover
- ICAR-Indian Agricultural Statistics Research Institute, Pusa Campus, New Delhi 110012, India
| | - Shiksha Chaurasia
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| | - Rajesh Kumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
10
|
Loginova DB, Silkova OG. The Genome of Bread Wheat Triticum aestivum L.: Unique Structural and Functional Properties. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418040105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Moazzzam Jazi M, Seyedi SM, Ebrahimie E, Ebrahimi M, De Moro G, Botanga C. A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery. BMC Genomics 2017; 18:627. [PMID: 28814265 PMCID: PMC5559799 DOI: 10.1186/s12864-017-3989-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022] Open
Abstract
Background Pistachio (Pistacia vera L.) is one of the most important commercial nut crops worldwide. It is a salt-tolerant and long-lived tree, with the largest cultivation area in Iran. Climate change and subsequent increased soil salt content have adversely affected the pistachio yield in recent years. However, the lack of genomic/global transcriptomic sequences on P. vera impedes comprehensive researches at the molecular level. Hence, whole transcriptome sequencing is required to gain insight into functional genes and pathways in response to salt stress. Results RNA sequencing of a pooled sample representing 24 different tissues of two pistachio cultivars with contrasting salinity tolerance under control and salt treatment by Illumina Hiseq 2000 platform resulted in 368,953,262 clean 100 bp paired-ends reads (90 Gb). Following creating several assemblies and assessing their quality from multiple perspectives, we found that using the annotation-based metrics together with the length-based parameters allows an improved assessment of the transcriptome assembly quality, compared to the solely use of the length-based parameters. The generated assembly by Trinity was adopted for functional annotation and subsequent analyses. In total, 29,119 contigs annotated against all of five public databases, including NR, UniProt, TAIR10, KOG and InterProScan. Among 279 KEGG pathways supported by our assembly, we further examined the pathways involved in the plant hormone biosynthesis and signaling as well as those to be contributed to secondary metabolite biosynthesis due to their importance under salinity stress. In total, 11,337 SSRs were also identified, which the most abundant being dinucleotide repeats. Besides, 13,097 transcripts as candidate stress-responsive genes were identified. Expression of some of these genes experimentally validated through quantitative real-time PCR (qRT-PCR) that further confirmed the accuracy of the assembly. From this analysis, the contrasting expression pattern of NCED3 and SOS1 genes were observed between salt-sensitive and salt-tolerant cultivars. Conclusion This study, as the first report on the whole transcriptome survey of P. vera, provides important resources and paves the way for functional and comparative genomic studies on this major tree to discover the salinity tolerance-related markers and stress response mechanisms for breeding of new pistachio cultivars with more salinity tolerance. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3989-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Moazzzam Jazi
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Mahdi Seyedi
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Esmaeil Ebrahimie
- School of Medicine, The University of Adelaide, Adelaide, Australia.,Institute of Biotechnology, Shiraz University, Shiraz, Iran.,Division of Information Technology, Engineering and the Environment, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, Australia.,School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, Australia
| | | | - Gianluca De Moro
- Center of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| | - Christopher Botanga
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| |
Collapse
|
12
|
Zhang B, Xu W, Liu X, Mao X, Li A, Wang J, Chang X, Zhang X, Jing R. Functional Conservation and Divergence among Homoeologs of TaSPL20 and TaSPL21, Two SBP-Box Genes Governing Yield-Related Traits in Hexaploid Wheat. PLANT PHYSIOLOGY 2017; 174:1177-1191. [PMID: 28424214 PMCID: PMC5462027 DOI: 10.1104/pp.17.00113] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/15/2017] [Indexed: 05/20/2023]
Abstract
Maintaining high and stable yields has become an increasing challenge in wheat breeding due to climate change. Although Squamosa-promoter binding protein (SBP)-box genes have important roles in plant development, very little is known about the actual biological functions of wheat SBP-box family members. Here, we dissect the functional conservation, divergence, and exploitation of homoeologs of two paralogous TaSPL wheat loci during domestication and breeding. TaSPL20 and TaSPL21 were highly expressed in the lemma and palea. Ectopic expressions of TaSPL20/21 in rice exhibited similar functions in terms of promoting panicle branching but had different functions during seed development. We characterized all six TaSPL20/21 genes located across the three homoeologous (A, B, and D) genomes. According to the functional analysis of naturally occurring variants in 20 environments, four favorable haplotypes were identified. Together, they reduced plant height by up to 27.5%, and TaSPL21-6D-HapII increased 1000-grain weight by 9.73%. Our study suggests that TaSPL20 and TaSPL21 homoeologs underwent diversification in function with each evolving its own distinctive characteristics. During domestication and breeding of wheat in China, favorable haplotypes of each set were selected and exploited to varying degrees due to their large effects on plant height and 1000-grain weight.
Collapse
Affiliation(s)
- Bin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (B.Z., W.X., X.L., A.L., J.W., X.C., X.Z., R.J.); and
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China (X.L.)
| | - Weina Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (B.Z., W.X., X.L., A.L., J.W., X.C., X.Z., R.J.); and
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China (X.L.)
| | - Xia Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (B.Z., W.X., X.L., A.L., J.W., X.C., X.Z., R.J.); and
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China (X.L.)
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (B.Z., W.X., X.L., A.L., J.W., X.C., X.Z., R.J.); and
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China (X.L.)
| | - Ang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (B.Z., W.X., X.L., A.L., J.W., X.C., X.Z., R.J.); and
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China (X.L.)
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (B.Z., W.X., X.L., A.L., J.W., X.C., X.Z., R.J.); and
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China (X.L.)
| | - Xiaoping Chang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (B.Z., W.X., X.L., A.L., J.W., X.C., X.Z., R.J.); and
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China (X.L.)
| | - Xueyong Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (B.Z., W.X., X.L., A.L., J.W., X.C., X.Z., R.J.); and
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China (X.L.)
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (B.Z., W.X., X.L., A.L., J.W., X.C., X.Z., R.J.); and
- Institute of Crop Germplasm Resources, Shanxi Academy of Agricultural Sciences, Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031, Shanxi, China (X.L.)
| |
Collapse
|
13
|
Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization. Sci Rep 2017; 7:2581. [PMID: 28566710 PMCID: PMC5451465 DOI: 10.1038/s41598-017-01857-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
Wheat (Triticum aestivum), one of the world’s most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.
Collapse
|
14
|
Powell JJ, Fitzgerald TL, Stiller J, Berkman PJ, Gardiner DM, Manners JM, Henry RJ, Kazan K. The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:533-543. [PMID: 27735125 PMCID: PMC5362679 DOI: 10.1111/pbi.12651] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/07/2016] [Indexed: 05/20/2023]
Abstract
Bread wheat (Triticum aestivum L.) is an allopolyploid species containing three ancestral genomes. Therefore, three homoeologous copies exist for the majority of genes in the wheat genome. Whether different homoeologs are differentially expressed (homoeolog expression bias) in response to biotic and abiotic stresses is poorly understood. In this study, we applied a RNA-seq approach to analyse homoeolog-specific global gene expression patterns in wheat during infection by the fungal pathogen Fusarium pseudograminearum, which causes crown rot disease in cereals. To ensure specific detection of homoeologs, we first optimized read alignment methods and validated the results experimentally on genes with known patterns of subgenome-specific expression. Our global analysis identified widespread patterns of differential expression among homoeologs, indicating homoeolog expression bias underpins a large proportion of the wheat transcriptome. In particular, genes differentially expressed in response to Fusarium infection were found to be disproportionately contributed from B and D subgenomes. In addition, we found differences in the degree of responsiveness to pathogen infection among homoeologous genes with B and D homoeologs exhibiting stronger responses to pathogen infection than A genome copies. We call this latter phenomenon as 'homoeolog induction bias'. Understanding how homoeolog expression and induction biases operate may assist the improvement of biotic stress tolerance in wheat and other polyploid crop species.
Collapse
Affiliation(s)
- Jonathan J. Powell
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Timothy L. Fitzgerald
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
| | - Jiri Stiller
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
| | - Paul J. Berkman
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
| | - John M. Manners
- Commonwealth Scientific and Industrial Research Organisation AgricultureBlack MountainAustralian Capital TerritoryAustralia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation AgricultureSt LuciaQueenslandAustralia
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandSt LuciaQueenslandAustralia
| |
Collapse
|
15
|
Pont C, Salse J. Wheat paleohistory created asymmetrical genomic evolution. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:29-37. [PMID: 28182971 DOI: 10.1016/j.pbi.2017.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 05/26/2023]
Abstract
Following the triplication reported in Brassiceae ∼10million years ago, and at the basis of rosids ∼100million years ago, bias in organization and regulation, known as subgenome dominance, has been reported between the three post-polyploidy compartments referenced to as less fractionated (LF), medium fractionated (MF1) and more fractionated (MF2), that have been proposed to derive from an hexaploidization event involving ancestors of 7-14-21 chromosomes. Modern bread wheat experienced similar paleohistory during the last half million year of evolution opening a new hypothesis where the wheat genome is at the earliest stages on the road of diploidization through subgenome dominance driving asymmetry in gene content, gene expression abundance, transposable element content as dynamics and epigenetic control between the A, B and D subgenomes.
Collapse
Affiliation(s)
- Caroline Pont
- INRA/UCA UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Laboratory PaleoEVO 'Paleogenomics & Evolution', 5 chemin de Beaulieu, 63100 Clermont Ferrand, France
| | - Jérôme Salse
- INRA/UCA UMR 1095 GDEC 'Génétique, Diversité et Ecophysiologie des Céréales', Laboratory PaleoEVO 'Paleogenomics & Evolution', 5 chemin de Beaulieu, 63100 Clermont Ferrand, France*.
| |
Collapse
|
16
|
Wang Y, Wang X, Wang C, Peng F, Wang R, Xiao X, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y. Transcriptomic Profiles Reveal the Interactions of Cd/Zn in Dwarf Polish Wheat ( Triticum polonicum L.) Roots. Front Physiol 2017; 8:168. [PMID: 28386232 PMCID: PMC5362637 DOI: 10.3389/fphys.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/07/2017] [Indexed: 11/13/2022] Open
Abstract
Different intra- or interspecific wheat show different interactions of Cd/Zn. Normally, Zn has been/being widely utilized to reduce the Cd toxicity. In the present study, the DPW seedlings exhibited strong Cd tolerance. Zn and Cd mutually inhibited their uptake in the roots, showed antagonistic Cd/Zn interactions. However, Zn promoted the Cd transport from the roots to shoots, showed synergistic. In order to discover the interactive molecular responses, a transcriptome, including 123,300 unigenes, was constructed using RNA-Sequencing (RNA-Seq). Compared with CK, the expression of 1,269, 820, and 1,254 unigenes was significantly affected by Cd, Zn, and Cd+Zn, respectively. Only 381 unigenes were co-induced by these three treatments. Several metal transporters, such as cadmium-transporting ATPase and plant cadmium resistance 4, were specifically regulated by Cd+Zn. Other metal-related unigenes, such as ABC transporters, metal chelator, nicotianamine synthase (NAS), vacuolar iron transporters (VIT), metal-nicotianamine transporter YSL (YSL), and nitrate transporter (NRT), were regulated by Cd, but were not regulated by Cd+Zn. These results indicated that these transporters participated in the mutual inhibition of the Cd/Zn uptake in the roots, and also participated in the Cd transport, accumulation and detoxification. Meanwhile, some unigenes involved in other processes, such as oxidation-reduction, auxin metabolism, glutathione (GSH) metabolism nitrate transport, played different and important roles in the detoxification of these heavy metals.
Collapse
Affiliation(s)
- Yi Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Xiaolu Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Fan Peng
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Ruijiao Wang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Xue Xiao
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University Wenjiang, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityWenjiang, China; Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural UniversityWenjiang, China
| |
Collapse
|
17
|
El Baidouri M, Murat F, Veyssiere M, Molinier M, Flores R, Burlot L, Alaux M, Quesneville H, Pont C, Salse J. Reconciling the evolutionary origin of bread wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2017; 213:1477-1486. [PMID: 27551821 DOI: 10.1111/nph.14113] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/18/2016] [Indexed: 05/26/2023]
Abstract
The origin of bread wheat (Triticum aestivum; AABBDD) has been a subject of controversy and of intense debate in the scientific community over the last few decades. In 2015, three articles published in New Phytologist discussed the origin of hexaploid bread wheat (AABBDD) from the diploid progenitors Triticum urartu (AA), a relative of Aegilops speltoides (BB) and Triticum tauschii (DD). Access to new genomic resources since 2013 has offered the opportunity to gain novel insights into the paleohistory of modern bread wheat, allowing characterization of its origin from its diploid progenitors at unprecedented resolution. We propose a reconciled evolutionary scenario for the modern bread wheat genome based on the complementary investigation of transposable element and mutation dynamics between diploid, tetraploid and hexaploid wheat. In this scenario, the structural asymmetry observed between the A, B and D subgenomes in hexaploid bread wheat derives from the cumulative effect of diploid progenitor divergence, the hybrid origin of the D subgenome, and subgenome partitioning following the polyploidization events.
Collapse
Affiliation(s)
- Moaine El Baidouri
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Florent Murat
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Maeva Veyssiere
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Mélanie Molinier
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Raphael Flores
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Laura Burlot
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Michael Alaux
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Hadi Quesneville
- INRA UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, 78026, France
| | - Caroline Pont
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| | - Jérôme Salse
- INRA/UBP UMR 1095 GDEC (Genetics, Diversity and Ecophysiology of Cereals), 5 chemin de Beaulieu, Clermont Ferrand, 63100, France
| |
Collapse
|
18
|
Quraishi UM, Pont C, Ain QU, Flores R, Burlot L, Alaux M, Quesneville H, Salse J. Combined Genomic and Genetic Data Integration of Major Agronomical Traits in Bread Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1843. [PMID: 29184557 PMCID: PMC5694560 DOI: 10.3389/fpls.2017.01843] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/10/2017] [Indexed: 05/18/2023]
Abstract
The high resolution integration of bread wheat genetic and genomic resources accumulated during the last decades offers the opportunity to unveil candidate genes driving major agronomical traits to an unprecedented scale. We combined 27 public quantitative genetic studies and four genetic maps to deliver an exhaustive consensus map consisting of 140,315 molecular markers hosting 221, 73, and 82 Quantitative Trait Loci (QTL) for respectively yield, baking quality, and grain protein content (GPC) related traits. Projection of the consensus genetic map and associated QTLs onto the wheat syntenome made of 99,386 genes ordered on the 21 chromosomes delivered a complete and non-redundant repertoire of 18, 8, 6 metaQTLs for respectively yield, baking quality and GPC, altogether associated to 15,772 genes (delivering 28,630 SNP-based makers) including 37 major candidates. Overall, this study illustrates a translational research approach in transferring information gained from grass relatives to dissect the genomic regions hosting major loci governing key agronomical traits in bread wheat, their flanking markers and associated candidate genes to be now considered as a key resource for breeding programs.
Collapse
Affiliation(s)
- Umar M. Quraishi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France
- *Correspondence: Umar M. Quraishi ;
| | - Caroline Pont
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Qurat-ul Ain
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Raphael Flores
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Laura Burlot
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Michael Alaux
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Hadi Quesneville
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Jerome Salse
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France
- Jerome Salse
| |
Collapse
|
19
|
Teng C, Du D, Xiao L, Yu Q, Shang G, Zhao Z. Mapping and Identifying a Candidate Gene ( Bnmfs) for Female-Male Sterility through Whole-Genome Resequencing and RNA-Seq in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:2086. [PMID: 29326731 PMCID: PMC5733364 DOI: 10.3389/fpls.2017.02086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/22/2017] [Indexed: 05/03/2023]
Abstract
In oilseed crops, carpel and stamen development play vital roles in pollination and rapeseed yield, but the genetic mechanisms underlying carpel and stamen development remain unclear. Herein, a male- and female-sterile mutant was obtained in offspring of a (Brassica napus cv. Qingyou 14) × (Qingyou 14 × B. rapa landrace Dahuang) cross. Subsequently, F2-F9 populations were generated through selfing of the heterozygote plants among the progeny of each generation. The male- and female-sterility exhibited stable inheritance in successive generations and was controlled by a recessive gene. The mutant kept the same chromosome number (2n = 38) as B. napus parent but showed abnormal meiosis for male and female. One candidate gene for the sterility was identified by simple sequence repeat (SSR) and insertion deletion length polymorphism (InDel) markers in F7-F9 plants, and whole-genome resequencing with F8 pools and RNA sequencing with F9 pools. Whole-genome resequencing found three candidate intervals (35.40-35.68, 35.74-35.75, and 45.34-46.45 Mb) on chromosome C3 in B. napus and candidate region for Bnmfs was narrowed to approximately 1.11-Mb (45.34-46.45 M) by combining SSR and InDel marker analyses with whole-genome resequencing. From transcriptome profiling in 0-2 mm buds, all of the genes in the candidate interval were detected, and only two genes with significant differences (BnaC03g56670D and BnaC03g56870D) were revealed. BnaC03g56870D was a candidate gene that shared homology with the CYP86C4 gene of Arabidopsis thaliana. Quantitative reverse transcription (qRT)-PCR analysis showed that Bnmfs primarily functioned in flower buds. Thus, sequencing and expression analyses provided evidence that BnaC03g56870D was the candidate gene for male and female sterility in the B. napus mutant.
Collapse
|
20
|
Salse J. Deciphering the evolutionary interplay between subgenomes following polyploidy: A paleogenomics approach in grasses. AMERICAN JOURNAL OF BOTANY 2016; 103:1167-1174. [PMID: 27425631 DOI: 10.3732/ajb.1500459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/01/2016] [Indexed: 06/06/2023]
Abstract
How did plant species emerge from their most recent common ancestors (MRCAs) 250 million years ago? Modern plant genomes help to address such key questions in unveiling precise species genealogies. The field of paleogenomics is undergoing a paradigm shift for investigating species evolution from the study of ancestral genomes from extinct species to deciphering the evolutionary forces (in terms of duplication, fusion, fission, deletion, and translocation) that drove present-day plant diversity (in terms of chromosome/gene number and genome size). In this review, inferred ancestral karyotype genomes are shown to be powerful tools to (1) unravel the past history of extant species by recovering the variations of ancestral genomic compartments and (2) accelerate translational research by facilitating the transfer of genomic information from model systems to species of agronomic interest.
Collapse
Affiliation(s)
- Jérôme Salse
- INRA/UBP UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Laboratory of Paleogenomics & Evolution, 5 chemin de Beaulieu 63100 Clermont Ferrand, France
| |
Collapse
|
21
|
Wang Y, Xiao X, Wang X, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y. RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.). Int J Biol Sci 2016; 12:653-66. [PMID: 27194943 PMCID: PMC4870709 DOI: 10.7150/ijbs.14577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively. Among of these DEGs and DEPs, 6 DEGs and 6 DEPs were found to be involved in flavonoid and S-adenosyl-methionine (SAM) metabolisms; 5 DEGs and 3 DEPs were involved in cellulose metabolism, cell wall plasticity and cell expansion; 2 DEGs were auxin transporters; 2 DEPs were histones; 1 DEP was a peroxidase. These DEGs and DEPs reduced lignin and cellulose contents, increased flavonoid content, possibly decreased S-adenosyl-methionine (SAM) and polyamine contents and increased S-adenosyl-L-homocysteine hydrolase (SAHH) content in DPW stems, which could limit auxin transport and reduce extensibility of the cell wall, finally limited cell expansion (the cell size of DPW was significantly smaller than HPW cells) and caused dwarfism in DPW.
Collapse
Affiliation(s)
- Yi Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xiaolu Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- 2. College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| |
Collapse
|
22
|
Hao Y, Wang T, Wang K, Wang X, Fu Y, Huang L, Kang Z. Transcriptome Analysis Provides Insights into the Mechanisms Underlying Wheat Plant Resistance to Stripe Rust at the Adult Plant Stage. PLoS One 2016; 11:e0150717. [PMID: 26991894 PMCID: PMC4798760 DOI: 10.1371/journal.pone.0150717] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/18/2016] [Indexed: 12/28/2022] Open
Abstract
Stripe rust (or yellow rust), which is caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. The wheat cultivar Xingzi 9104 (XZ) is an elite wheat germplasm that possesses adult plant resistance (APR), which is non–race-specific and durable. Thus, to better understand the mechanism underlying APR, we performed transcriptome sequencing of wheat seedlings and adult plants without Pst infection, and a total of 157,689 unigenes were obtained as a reference. In total, 2,666, 783 and 2,587 differentially expressed genes (DEGs) were found to be up- or down-regulated after Pst infection at 24, 48 and 120 hours post-inoculation (hpi), respectively, based on a comparison of Pst- and mock-infected plants. Among these unigenes, the temporal pattern of the up-regulated unigenes exhibited transient expression patterns during Pst infection, as determined through a Gene Ontology (GO) enrichment analysis. In addition, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that many biological processes, including phenylpropanoid biosynthesis, reactive oxygen species, photosynthesis and thiamine metabolism, which mainly control the mechanisms of lignification, reactive oxygen species and sugar, respectively, are involved in APR. In particular, the continuous accumulation of reactive oxygen species may potentially contribute to the ability of the adult plant to inhibit fungal growth and development. To validate the bioinformatics results, 6 candidate genes were selected for further functional identification using the virus-induced gene silencing (VIGS) system, and 4 candidate genes likely contribute to plant resistance against Pst infection. Our study provides new information concerning the transcriptional changes that occur during the Pst-wheat interaction at the adult stage and will help further our understanding of the detailed mechanisms underlying APR to Pst.
Collapse
Affiliation(s)
- Yingbin Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Ting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
- * E-mail: (ZK); (XW)
| | - Yanping Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, PR China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, PR China
- * E-mail: (ZK); (XW)
| |
Collapse
|
23
|
Chandra S, Singh D, Pathak J, Kumari S, Kumar M, Poddar R, Balyan HS, Gupta PK, Prabhu KV, Mukhopadhyay K. De Novo Assembled Wheat Transcriptomes Delineate Differentially Expressed Host Genes in Response to Leaf Rust Infection. PLoS One 2016; 11:e0148453. [PMID: 26840746 PMCID: PMC4739524 DOI: 10.1371/journal.pone.0148453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/17/2016] [Indexed: 11/20/2022] Open
Abstract
Pathogens like Puccinia triticina, the causal organism for leaf rust, extensively damages wheat production. The interaction at molecular level between wheat and the pathogen is complex and less explored. The pathogen induced response was characterized using mock- or pathogen inoculated near-isogenic wheat lines (with or without seedling leaf rust resistance gene Lr28). Four Serial Analysis of Gene Expression libraries were prepared from mock- and pathogen inoculated plants and were subjected to Sequencing by Oligonucleotide Ligation and Detection, which generated a total of 165,767,777 reads, each 35 bases long. The reads were processed and multiple k-mers were attempted for de novo transcript assembly; 22 k-mers showed the best results. Altogether 21,345 contigs were generated and functionally characterized by gene ontology annotation, mining for transcription factors and resistance genes. Expression analysis among the four libraries showed extensive alterations in the transcriptome in response to pathogen infection, reflecting reorganizations in major biological processes and metabolic pathways. Role of auxin in determining pathogenesis in susceptible and resistant lines were imperative. The qPCR expression study of four LRR-RLK (Leucine-rich repeat receptor-like protein kinases) genes showed higher expression at 24 hrs after inoculation with pathogen. In summary, the conceptual model of induced resistance in wheat contributes insights on defense responses and imparts knowledge of Puccinia triticina-induced defense transcripts in wheat plants.
Collapse
Affiliation(s)
- Saket Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Dharmendra Singh
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Jyoti Pathak
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Supriya Kumari
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Manish Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Raju Poddar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Harindra Singh Balyan
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Puspendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut 200005, Uttar Pradesh, India
| | - Kumble Vinod Prabhu
- Division of Genetics, Indian Agricultural Research Institute, New Delhi 110012, India
| | - Kunal Mukhopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
24
|
Wang X, Zhang H, Li Y, Zhang Z, Li L, Liu B. Transcriptome asymmetry in synthetic and natural allotetraploid wheats, revealed by RNA-sequencing. THE NEW PHYTOLOGIST 2016; 209:1264-77. [PMID: 26436593 DOI: 10.1111/nph.13678] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/20/2015] [Indexed: 05/20/2023]
Abstract
Allopolyploidization has occurred frequently within the Triticum-Aegilops complex which provides a suitable system to investigate how allopolyploidization shapes the expression patterns of duplicated homeologs. We have conducted transcriptome-profiling of leaves and young inflorescences in wild and domesticated tetraploid wheats, Triticum turgidum ssp. dicoccoides (BBAA) and ssp. durum (BBAA), an extracted tetraploid (BBAA), and a synthetic tetraploid (S(l) S(l) AA) wheat together with its diploid parents, Aegilops longissima (S(l) S(l) ) and Triticum urartu (AA). The two diploid species showed tissue-specific differences in genome-wide ortholog expression, which plays an important role in transcriptome shock-mediated homeolog expression rewiring and hence transcriptome asymmetry in the synthetic tetraploid. Further changes of homeolog expression apparently occurred in natural tetraploid wheats, which led to novel transcriptome asymmetry between the two subgenomes. In particular, our results showed that extremely biased homeolog expression can occur rapidly upon the allotetraploidzation and this trend is further enhanced in the course of domestication and evolution of polyploid wheats. Our results suggest that allopolyploidization is accompanied by distinct phases of homeolog expression changes, with parental legacy playing major roles in the immediate rewiring of homeolog expression upon allopolyploidization, while evolution and domestication under allotetraploidy drive further homeolog-expression changes toward re-established subgenome expression asymmetry.
Collapse
Affiliation(s)
- Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yaling Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Linfeng Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biology, Washington University in St Louis, St Louis, MO, 63130, USA
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
25
|
Springer NM, Lisch D, Li Q. Creating Order from Chaos: Epigenome Dynamics in Plants with Complex Genomes. THE PLANT CELL 2016; 28:314-25. [PMID: 26869701 PMCID: PMC4790878 DOI: 10.1105/tpc.15.00911] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/10/2016] [Indexed: 05/02/2023]
Abstract
Flowering plants have strikingly distinct genomes, although they contain a similar suite of expressed genes. The diversity of genome structures and organization is largely due to variation in transposable elements (TEs) and whole-genome duplication (WGD) events. We review evidence that chromatin modifications and epigenetic regulation are intimately associated with TEs and likely play a role in mediating the effects of WGDs. We hypothesize that the current structure of a genome is the result of various TE bursts and WGDs and it is likely that the silencing mechanisms and the chromatin structure of a genome have been shaped by these events. This suggests that the specific mechanisms targeting chromatin modifications and epigenomic patterns may vary among different species. Many crop species have likely evolved chromatin-based mechanisms to tolerate silenced TEs near actively expressed genes. These interactions of heterochromatin and euchromatin are likely to have important roles in modulating gene expression and variability within species.
Collapse
Affiliation(s)
- Nathan M Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Qing Li
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108
| |
Collapse
|
26
|
Dong L, Liu H, Zhang J, Yang S, Kong G, Chu JSC, Chen N, Wang D. Single-molecule real-time transcript sequencing facilitates common wheat genome annotation and grain transcriptome research. BMC Genomics 2015; 16:1039. [PMID: 26645802 PMCID: PMC4673716 DOI: 10.1186/s12864-015-2257-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022] Open
Abstract
Background The large and complex hexaploid genome has greatly hindered genomics studies of common wheat (Triticum aestivum, AABBDD). Here, we investigated transcripts in common wheat developing caryopses using the emerging single-molecule real-time (SMRT) sequencing technology PacBio RSII, and assessed the resultant data for improving common wheat genome annotation and grain transcriptome research. Results We obtained 197,709 full-length non-chimeric (FLNC) reads, 74.6 % of which were estimated to carry complete open reading frame. A total of 91,881 high-quality FLNC reads were identified and mapped to 16,188 chromosomal loci, corresponding to 13,162 known genes and 3026 new genes not annotated previously. Although some FLNC reads could not be unambiguously mapped to the current draft genome sequence, many of them are likely useful for studying highly similar homoeologous or paralogous loci or for improving chromosomal contig assembly in further research. The 91,881 high-quality FLNC reads represented 22,768 unique transcripts, 9591 of which were newly discovered. We found 180 transcripts each spanning two or three previously annotated adjacent loci, suggesting that they should be merged to form correct gene models. Finally, our data facilitated the identification of 6030 genes differentially regulated during caryopsis development, and full-length transcripts for 72 transcribed gluten gene members that are important for the end-use quality control of common wheat. Conclusions Our work demonstrated the value of PacBio transcript sequencing for improving common wheat genome annotation through uncovering the loci and full-length transcripts not discovered previously. The resource obtained may aid further structural genomics and grain transcriptome studies of common wheat. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2257-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingli Dong
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hongfang Liu
- Frasergen, Wuhan East Lake High-tech Zone, Wuhan, 430075, China.
| | - Juncheng Zhang
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shuangjuan Yang
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guanyi Kong
- Frasergen, Wuhan East Lake High-tech Zone, Wuhan, 430075, China.
| | - Jeffrey S C Chu
- Frasergen, Wuhan East Lake High-tech Zone, Wuhan, 430075, China. .,School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Nansheng Chen
- School of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430075, China. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Daowen Wang
- The State Key Laboratory of Plant cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,The Collaborative Innovation Center for Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
27
|
Wang M, Wang S, Xia G. From genome to gene: a new epoch for wheat research? TRENDS IN PLANT SCIENCE 2015; 20:380-387. [PMID: 25887708 DOI: 10.1016/j.tplants.2015.03.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
Genetic research for bread wheat (Triticum aestivum), a staple crop around the world, has been impeded by its complex large hexaploid genome that contains a high proportion of repetitive DNA. Recent advances in sequencing technology have now overcome these challenges and led to genome drafts for bread wheat and its progenitors as well as high-resolution transcriptomes. However, the exploitation of these data for identifying agronomically important genes in wheat is lagging behind. We review recent wheat genome sequencing achievements and focus on four aspects of strategies and future hotspots for wheat improvement: positional cloning, 'omics approaches, combining forward and reverse genetics, and epigenetics.
Collapse
Affiliation(s)
- Meng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
| | - Shubin Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, P.R. China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, P.R. China.
| |
Collapse
|
28
|
Castagnone-Sereno P, Danchin EGJ. Parasitic success without sex – the nematode experience. J Evol Biol 2015; 27:1323-33. [PMID: 25105196 DOI: 10.1111/jeb.12337] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Asexual reproduction is usually considered as an evolutionary dead end, and difficulties for asexual lineages to adapt to a fluctuating environment are anticipated due to the lack of sufficient genetic plasticity. Yet, unlike their sexual congeners, mitotic parthenogenetic root-knot nematode species, Meloidogyne spp., are remarkably widespread and polyphagous, with the ability to parasitize most flowering plants. Although this may reflect in part the short-term stability of agricultural environments, the extreme parasitic success of these clonal species points them as an outstanding evolutionary paradox regarding current theories on the benefits of sex. The discovery that most of the genome of the clonal species M. incognita is composed of pairs of homologous but divergent segments that have presumably been evolving independently in the absence of sexual recombination has shed new light on this evolutionary paradox. Together with recent studies on other biological systems, including the closely related sexual species M. hapla and the ancient asexual bdelloid rotifers, this observation suggests that functional innovation could emerge from such a peculiar genome architecture, which may in turn account for the extreme adaptive capacities of these asexual parasites. Additionally, the higher proportion of transposable elements in M. incognita compared to M. hapla and other nematodes may also be responsible in part for genome plasticity in the absence of sexual reproduction. We foresee that ongoing sequencing efforts should lead soon to a genomic framework involving genetically diverse Meloidogyne species with various different reproductive modes. This will undoubtedly promote the entire genus as a unique and valuable model system to help deciphering the evolution of asexual reproduction in eukaryotes.
Collapse
|
29
|
Lesur I, Le Provost G, Bento P, Da Silva C, Leplé JC, Murat F, Ueno S, Bartholomé J, Lalanne C, Ehrenmann F, Noirot C, Burban C, Léger V, Amselem J, Belser C, Quesneville H, Stierschneider M, Fluch S, Feldhahn L, Tarkka M, Herrmann S, Buscot F, Klopp C, Kremer A, Salse J, Aury JM, Plomion C. The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics 2015; 16:112. [PMID: 25765701 PMCID: PMC4350297 DOI: 10.1186/s12864-015-1331-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 02/09/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Many northern-hemisphere forests are dominated by oaks. These species extend over diverse environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic toolbox is an important asset for exploring the functional variation associated with natural selection. RESULTS The assembly of previously available and newly developed long and short sequence reads for two sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships, making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their phenology to the environment. CONCLUSION In addition to providing a vast array of expressed genes, this study generated essential information about oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for forward genetics approaches aiming to link genotypes with adaptive phenotypes.
Collapse
Affiliation(s)
- Isabelle Lesur
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- HelixVenture, F-33700, Mérignac, France.
| | - Grégoire Le Provost
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Pascal Bento
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Corinne Da Silva
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Jean-Charles Leplé
- INRA, UR0588 Amélioration Génétique et Physiologie Forestières, F-45075, Orléans, France.
| | - Florent Murat
- INRA/UBP UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, F-63039, Clermont-Ferrand, France.
| | - Saneyoshi Ueno
- Forestry and Forest Products Research Institute, Department of Forest Genetics, Tree Genetics Laboratory, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Jerôme Bartholomé
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- CIRAD, UMR AGAP, F-34398, Montpellier, France.
| | - Céline Lalanne
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - François Ehrenmann
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Céline Noirot
- Plateforme bioinformatique Toulouse Midi-Pyrénées, UBIA, INRA, F-31326, Auzeville Castanet-Tolosan, France.
| | - Christian Burban
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Valérie Léger
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Joelle Amselem
- INRA, Unité de Recherche Génomique Info (URGI), F78026, Versailles, France.
| | - Caroline Belser
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Hadi Quesneville
- INRA, Unité de Recherche Génomique Info (URGI), F78026, Versailles, France.
| | | | - Silvia Fluch
- AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Str 24, 3430, Tulln, Austria.
| | - Lasse Feldhahn
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, DE-06120, Halle/Saale, Germany.
| | - Mika Tarkka
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, DE-06120, Halle/Saale, Germany.
- iDiv - German Centre for Integrative Biodiversity Research, Halle Jena Leipzig, DE-04103, Leipzig, Germany.
| | - Sylvie Herrmann
- iDiv - German Centre for Integrative Biodiversity Research, Halle Jena Leipzig, DE-04103, Leipzig, Germany.
- Department of Community Ecology, UFZ - Helmholtz Centre for Environmental Research, 06120, Halle/Saale, Germany.
| | - François Buscot
- Department of Soil Ecology, UFZ - Helmholtz Centre for Environmental Research, DE-06120, Halle/Saale, Germany.
- iDiv - German Centre for Integrative Biodiversity Research, Halle Jena Leipzig, DE-04103, Leipzig, Germany.
| | - Christophe Klopp
- Plateforme bioinformatique Toulouse Midi-Pyrénées, UBIA, INRA, F-31326, Auzeville Castanet-Tolosan, France.
| | - Antoine Kremer
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| | - Jérôme Salse
- INRA/UBP UMR 1095, Laboratoire Génétique, Diversité et Ecophysiologie des Céréales, F-63039, Clermont-Ferrand, France.
| | - Jean-Marc Aury
- CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, F-91057, Evry Cedex, France.
| | - Christophe Plomion
- INRA, UMR1202, BIOGECO, F-33610, Cestas, France.
- University Bordeaux, BIOGECO, UMR1202, F-33170, Talence, France.
| |
Collapse
|
30
|
Chopra R, Burow G, Farmer A, Mudge J, Simpson CE, Burow MD. Comparisons of de novo transcriptome assemblers in diploid and polyploid species using peanut (Arachis spp.) RNA-Seq data. PLoS One 2014; 9:e115055. [PMID: 25551607 PMCID: PMC4281230 DOI: 10.1371/journal.pone.0115055] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/28/2014] [Indexed: 12/17/2022] Open
Abstract
The narrow genetic base and limited genetic information on Arachis species have hindered the process of marker-assisted selection of peanut cultivars. However, recent developments in sequencing technologies have expanded opportunities to exploit genetic resources, and at lower cost. To use the genetic information for Arachis species available at the transcriptome level, it is important to have a good quality reference transcriptome. The available Tifrunner 454 FLEX transcriptome sequences have an assembly with 37,000 contigs and low N50 values of 500-751bp. Therefore, we generated de novo transcriptome assemblies, with about 38 million reads in the tetraploid cultivar OLin, and 16 million reads in each of the diploids, A. duranensis K38901 and A. ipaënsis KGBSPSc30076 using three different de novo assemblers, Trinity, SOAPdenovo-Trans and TransAByss. All these assemblers can use single kmer analysis, and the latter two also permit multiple kmer analysis. Assemblies generated for all three samples had N50 values ranging from 1278–1641 bp in Arachis hypogaea (AABB), 1401–1492 bp in Arachis duranensis (AA), and 1107–1342 bp in Arachis ipaënsis (BB). Comparison with legume ESTs and protein databases suggests that assemblies generated had more than 40% full length transcripts with good continuity. Also, on mapping the raw reads to each of the assemblies generated, Trinity had a high success rate in assembling sequences compared to both TransAByss and SOAPdenovo-Trans. De novo assembly of OLin had a greater number of contigs (67,098) and longer contig length (N50 = 1,641) compared to the Tifrunner TSA. Despite having shorter read length (2×50) than the Tifrunner 454FLEX TSA, de novo assembly of OLin proved superior in comparison. Assemblies generated to represent different genome combinations may serve as a valuable resource for the peanut research community.
Collapse
Affiliation(s)
- Ratan Chopra
- Texas Tech University, Department of Plant and Soil Sciences, Lubbock, TX, 79409, United States of America
| | - Gloria Burow
- USDA-ARS-CSRL, 3810 4 Street, Lubbock, TX, 79415, United States of America
| | - Andrew Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, United States of America
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive East, Santa Fe, NM, 87505, United States of America
| | - Charles E. Simpson
- Texas A&M AgriLife Research, 1229 N. U.S. Highway 281, Stephenville, TX, 76401, United States of America
| | - Mark D. Burow
- Texas Tech University, Department of Plant and Soil Sciences, Lubbock, TX, 79409, United States of America
- Texas A&M AgriLife Research, 1102 East FM 1294, Lubbock, TX, 79403, United States of America
- * E-mail:
| |
Collapse
|
31
|
Zhang Y, Cheng Y, Guo J, Yang E, Liu C, Zheng X, Deng K, Zhou J. Comparative transcriptome analysis to reveal genes involved in wheat hybrid necrosis. Int J Mol Sci 2014; 15:23332-44. [PMID: 25522166 PMCID: PMC4284769 DOI: 10.3390/ijms151223332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/01/2023] Open
Abstract
Wheat hybrid necrosis is an interesting genetic phenomenon that is found frequently and results in gradual death or loss of productivity of wheat. However, the molecular basis and mechanisms of this genetic phenomenon are still not well understood. In this study, the transcriptomes of wheat hybrid necrosis F1 and its parents (Neimai 8 and II469) were investigated using digital gene expression (DGE). A total of 1300 differentially expressed genes were identified, indicating that the response to hybrid necrosis in wheat is complicated. The assignments of the annotated genes based on Gene Ontology (GO) revealed that most of the up-regulated genes belong to “universal stress related”, “DNA/RNA binding”, “protein degradation” functional groups, while the down-regulated genes belong to “carbohydrate metabolism” and “translation regulation” functional groups. These findings suggest that these pathways were affected by hybrid necrosis. Our results provide preliminarily new insight into the underlying molecular mechanisms of hybrid necrosis and will help to identify important candidate genes involved in wheat hybrid necrosis.
Collapse
Affiliation(s)
- Yong Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yan Cheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jiahui Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Ji'nan 250100, China.
| | - Xuelian Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Kejun Deng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Jianping Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
32
|
Zhang S, Song G, Gao J, Li Y, Guo D, Fan Q, Sui X, Chu X, Huang C, Liu J, Li G. Transcriptome characterization and differential expression analysis of cold-responsive genes in young spikes of common wheat. J Biotechnol 2014; 189:48-57. [PMID: 25240441 DOI: 10.1016/j.jbiotec.2014.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 01/02/2023]
Abstract
With the frequent occurrence of climatic anomalies, spring frost has become a significant limiting factor on wheat production, especially during the reproductive growth stage. A high-throughput sequencing technology was applied and a total of 54 million clean reads that corresponded to 7.44 Gb of total nucleotides were generated. These reads were then de novo assembled into 120,715 unigenes with an average length of 627 bp. Functional annotations were then obtained by aligning all unigenes with public protein databases. In total, 9657 potential EST-SSRs were identified, and 6310 primer pairs for 1329 SSRs were obtained. Meanwhile, a comparison of four tag-based digital gene expression libraries, which was built from the control and cold-treated young spikes were performed. Overall, 526 up-regulated and 489 down-regulated genes were identified, and GO and KEGG pathway analyses of those genes were further conducted. Based on these results, a series of candidate genes involved in cold response pathways were identified, and 12 of them were confirmed by qRT-PCR. The combination of RNA-Seq and digital gene expression analysis in this study provides a powerful approach for investigating the transcriptional changes and obtained a large number of unigenes annotated to public databases.
Collapse
Affiliation(s)
- Shujuan Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Guoqi Song
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Jie Gao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Yulian Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Dong Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Qingqi Fan
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Xinxia Sui
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Xiusheng Chu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Chengyan Huang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, China; Key Laboratory of Wheat Biology & Genetic Improvement On North Yellow & Huai River Valley, Ministry of Agriculture, China; National Engineering Laboratory For Wheat & Maize, Jinan 250100, Shandong, China.
| |
Collapse
|
33
|
Murat F, Zhang R, Guizard S, Flores R, Armero A, Pont C, Steinbach D, Quesneville H, Cooke R, Salse J. Shared subgenome dominance following polyploidization explains grass genome evolutionary plasticity from a seven protochromosome ancestor with 16K protogenes. Genome Biol Evol 2014; 6:12-33. [PMID: 24317974 PMCID: PMC3914691 DOI: 10.1093/gbe/evt200] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Modern plant genomes are diploidized paleopolyploids. We revisited grass genome paleohistory in response to the diploidization process through a detailed investigation of the evolutionary fate of duplicated blocks. Ancestrally duplicated genes can be conserved, deleted, and shuffled, defining dominant (bias toward duplicate retention) and sensitive (bias toward duplicate erosion) chromosomal fragments. We propose a new grass genome paleohistory deriving from an ancestral karyotype structured in seven protochromosomes containing 16,464 protogenes and following evolutionary rules where 1) ancestral shared polyploidizations shaped conserved dominant (D) and sensitive (S) subgenomes, 2) subgenome dominance is revealed by both gene deletion and shuffling from the S blocks, 3) duplicate deletion/movement may have been mediated by single-/double-stranded illegitimate recombination mechanisms, 4) modern genomes arose through centromeric fusion of protochromosomes, leading to functional monocentric neochromosomes, 5) the fusion of two dominant blocks leads to supradominant neochromosomes (D + D = D) with higher ancestral gene retention compared with D + S = D (i.e., fusion of blocks with opposite sensitivity) or even S + S = S (i.e., fusion of two sensitive ancestral blocks). A new user-friendly online tool named "PlantSyntenyViewer," available at http://urgi.versailles.inra.fr/synteny-cereal, presents the refined comparative genomics data.
Collapse
Affiliation(s)
- Florent Murat
- INRA/UBP UMR 1095 GDEC (Génétique, Diversité et Ecophysiologie des Céréales), Clermont Ferrand, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim J, Lee J, Choi JP, Park I, Yang K, Kim MK, Lee YH, Nou IS, Kim DS, Min SR, Park SU, Kim H. Functional innovations of three chronological mesohexaploid Brassica rapa genomes. BMC Genomics 2014; 15:606. [PMID: 25033750 PMCID: PMC4117954 DOI: 10.1186/1471-2164-15-606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/10/2014] [Indexed: 01/01/2023] Open
Abstract
Background The Brassicaceae family is an exemplary model for studying plant polyploidy. The Brassicaceae knowledge-base includes the well-annotated Arabidopsis thaliana reference sequence; well-established evidence for three rounds of whole genome duplication (WGD); and the conservation of genomic structure, with 24 conserved genomic blocks (GBs). The recently released Brassica rapa draft genome provides an ideal opportunity to update our knowledge of the conserved genomic structures in Brassica, and to study evolutionary innovations of the mesohexaploid plant, B. rapa. Results Three chronological B. rapa genomes (recent, young, and old) were reconstructed with sequence divergences, revealing a trace of recursive WGD events. A total of 636 fast evolving genes were unevenly distributed throughout the recent and young genomes. The representative Gene Ontology (GO) terms for these genes were ‘stress response’ and ‘development’ both through a change in protein modification or signaling, rather than by enhancing signal recognition. In retention patterns analysis, 98% of B. rapa genes were retained as collinear gene pairs; 77% of those were singly-retained in recent or young genomes resulting from death of the ancestral copies, while others were multi-retained as long retention genes. GO enrichments indicated that single retention genes mainly function in the interpretation of genetic information, whereas, multi-retention genes were biased toward signal response, especially regarding development and defense. In the recent genome, 13,302, 5,790, and 20 gene pairs were multi-retained following Brassica whole genome triplication (WGT) events with 2, 3, and 4 homoeologous copies, respectively. Enriched GO-slim terms from B. rapa homomoelogues imply that a major effect of the B. rapa WGT may have been to acquire environmental adaptability or to change the course of development. These homoeologues seem to more frequently undergo subfunctionalization with spatial expression patterns compared with other possible events including nonfunctionalization and neofunctionalization. Conclusion We refined Brassicaceae GB information using the latest genomic resources, and distinguished three chronologically ordered B. rapa genomes. B. rapa genes were categorized into fast evolving, single- and multi-retention genes, and long retention genes by their substitution rates and retention patterns. Representative functions of the categorized genes were elucidated, providing better understanding of B. rapa evolution and the Brassica genus. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-606) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - HyeRan Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| |
Collapse
|
35
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
36
|
Zhang H, Zhu B, Qi B, Gou X, Dong Y, Xu C, Zhang B, Huang W, Liu C, Wang X, Yang C, Zhou H, Kashkush K, Feldman M, Wendel JF, Liu B. Evolution of the BBAA component of bread wheat during its history at the allohexaploid level. THE PLANT CELL 2014; 26:2761-76. [PMID: 24989045 PMCID: PMC4145112 DOI: 10.1105/tpc.114.128439] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Subgenome integrity in bread wheat (Triticum aestivum; BBAADD) makes possible the extraction of its BBAA component to restitute a novel plant type. The availability of such a ploidy-reversed wheat (extracted tetraploid wheat [ETW]) provides a unique opportunity to address whether and to what extent the BBAA component of bread wheat has been modified in phenotype, karyotype, and gene expression during its evolutionary history at the allohexaploid level. We report here that ETW was anomalous in multiple phenotypic traits but maintained a stable karyotype. Microarray-based transcriptome profiling identified a large number of differentially expressed genes between ETW and natural tetraploid wheat (Triticum turgidum), and the ETW-downregulated genes were enriched for distinct Gene Ontology categories. Quantitative RT-PCR analysis showed that gene expression differences between ETW and a set of diverse durum wheat (T. turgidum subsp durum) cultivars were distinct from those characterizing tetraploid cultivars per se. Pyrosequencing revealed that the expression alterations may occur to either only one or both of the B and A homoeolog transcripts in ETW. A majority of the genes showed additive expression in a resynthesized allohexaploid wheat. Analysis of a synthetic allohexaploid wheat and diverse bread wheat cultivars revealed the rapid occurrence of expression changes to the BBAA subgenomes subsequent to allohexaploidization and their evolutionary persistence.
Collapse
Affiliation(s)
- Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bo Zhu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Bao Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yuzhu Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011
| | - Bangjiao Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Wei Huang
- Key Laboratory for Applied Statistics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chang Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xutong Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Hao Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Khalil Kashkush
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Moshe Feldman
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
37
|
Camilios-Neto D, Bonato P, Wassem R, Tadra-Sfeir MZ, Brusamarello-Santos LCC, Valdameri G, Donatti L, Faoro H, Weiss VA, Chubatsu LS, Pedrosa FO, Souza EM. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics 2014; 15:378. [PMID: 24886190 PMCID: PMC4042000 DOI: 10.1186/1471-2164-15-378] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 05/02/2014] [Indexed: 12/20/2022] Open
Abstract
Background The rapid growth of the world’s population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. Results We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. Conclusions PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-378) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Emanuel M Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, PR 81531-990, Brazil.
| |
Collapse
|
38
|
An H, Yang Z, Yi B, Wen J, Shen J, Tu J, Ma C, Fu T. Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. BMC Genomics 2014; 15:258. [PMID: 24707970 PMCID: PMC4051170 DOI: 10.1186/1471-2164-15-258] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Polima (pol) system of cytoplasmic male sterility (CMS) and its fertility restoration gene Rfp have been used in hybrid breeding in Brassica napus, which has greatly improved the yield of rapeseed. However, the mechanism of the male sterility transition in pol CMS remains to be determined. RESULTS To investigate the transcriptome during the male sterility transition in pol CMS, a near-isogenic line (NIL) of pol CMS was constructed. The phenotypic features and sterility stage were confirmed by anatomical analysis. Subsequently, we compared the genomic expression profiles of fertile and sterile young flower buds by RNA-Seq. A total of 105,481,136 sequences were successfully obtained. These reads were assembled into 112,770 unigenes, which composed the transcriptome of the bud. Among these unigenes, 72,408 (64.21%) were annotated using public protein databases and classified into functional clusters. In addition, we investigated the changes in expression of the fertile and sterile buds; the RNA-seq data showed 1,148 unigenes had significantly different expression and they were mainly distributed in metabolic and protein synthesis pathways. Additionally, some unigenes controlling anther development were dramatically down-regulated in sterile buds. CONCLUSIONS These results suggested that an energy deficiency caused by orf224/atp6 may inhibit a series of genes that regulate pollen development through nuclear-mitochondrial interaction. This results in the sterility of pol CMS by leading to the failure of sporogenous cell differentiation. This study may provide assistance for detailed molecular analysis and a better understanding of pol CMS in B. napus.
Collapse
Affiliation(s)
| | | | - Bin Yi
- National Key Lab of Crop Geneticc Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P, R, China.
| | | | | | | | | | | |
Collapse
|
39
|
Singh A, Mantri S, Sharma M, Chaudhury A, Tuli R, Roy J. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions. BMC Genomics 2014; 15:29. [PMID: 24433256 PMCID: PMC3897974 DOI: 10.1186/1471-2164-15-29] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/11/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. RESULTS Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. CONCLUSIONS The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers.
Collapse
Affiliation(s)
| | | | | | | | | | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Department of Biotechnology (DBT), Government of India, C-127 Industrial Area Phase 8, Mohali 160 071, Punjab, India.
| |
Collapse
|
40
|
Pont C, Murat F, Guizard S, Flores R, Foucrier S, Bidet Y, Quraishi UM, Alaux M, Doležel J, Fahima T, Budak H, Keller B, Salvi S, Maccaferri M, Steinbach D, Feuillet C, Quesneville H, Salse J. Wheat syntenome unveils new evidences of contrasted evolutionary plasticity between paleo- and neoduplicated subgenomes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:1030-1044. [PMID: 24164652 DOI: 10.1111/tpj.12366] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 05/27/2023]
Abstract
Bread wheat derives from a grass ancestor structured in seven protochromosomes followed by a paleotetraploidization to reach a 12 chromosomes intermediate and a neohexaploidization (involving subgenomes A, B and D) event that finally shaped the 21 modern chromosomes. Insights into wheat syntenome in sequencing conserved orthologous set (COS) genes unravelled differences in genomic structure (such as gene conservation and diversity) and genetical landscape (such as recombination pattern) between ancestral as well as recent duplicated blocks. Contrasted evolutionary plasticity is observed where the B subgenome appears more sensitive (i.e. plastic) in contrast to A as dominant (i.e. stable) in response to the neotetraploidization and D subgenome as supra-dominant (i.e. pivotal) in response to the neohexaploidization event. Finally, the wheat syntenome, delivered through a public web interface PlantSyntenyViewer at http://urgi.versailles.inra.fr/synteny-wheat, can be considered as a guide for accelerated dissection of major agronomical traits in wheat.
Collapse
Affiliation(s)
- Caroline Pont
- INRA/UBP UMR 1095, Centre de Clermont Ferrand-Theix, 5 Chemin de Beaulieu, 63100, Clermont Ferrand, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang H, Mao X, Zhang J, Chang X, Jing R. Single-nucleotide polymorphisms and association analysis of drought-resistance gene TaSnRK2.8 in common wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:174-81. [PMID: 23774379 DOI: 10.1016/j.plaphy.2013.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/10/2013] [Indexed: 05/21/2023]
Abstract
TaSnRK2.8, an SnRK2 (sucrose non-fermenting1-related protein kinase 2) member of wheat, confers enhanced multi-stress tolerances in carbohydrate metabolism. In the study, two types of genomic sequences of TaSnRK2.8 were detected in common wheat. Sequencing analysis showed that there was a variation-enriched region, designated TaSnRK2.8-A-C, covering the eighth intron, the ninth exon and the 3'-flanking region of TaSnRK2.8-A, and no divergence occurred in TaSnRK2.8-B. Single nucleotide polymorphisms in the TaSnRK2.8-A-C region were investigated in 165 wheat accessions. Three of 751 sequenced nucleotide sites were polymorphic. Nucleotide diversity (π) in the region was 0.00068. Sliding-window analysis demonstrated that the nucleotide diversity was highest in the 3'-flanking sequence. As predicted, the highly frequent SNP was significantly associated with seedling biomass under normal conditions, plant height, flag leaf width and water-soluble carbohydrate content under drought conditions. Analysis of variance of correlated traits between accessions with the A and G genotypes indicated that the A variant was the more favorable allele associated with significantly increased seedling biomass and water-soluble carbohydrates. Based on the SNP, we developed a functional marker of TaSnRK2.8-A-C, that could be utilized in wheat breeding programs aimed at improving seedling biomass and water-soluble carbohydrates, and consequently to enhance stress resistance in wheat.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | | | | | | | | |
Collapse
|
42
|
Identification of glycosyltransferases involved in cell wall synthesis of wheat endosperm. J Proteomics 2013; 78:508-21. [DOI: 10.1016/j.jprot.2012.10.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/24/2012] [Accepted: 10/26/2012] [Indexed: 01/05/2023]
|
43
|
Structural genes of wheat and barley 5-methylcytosine DNA glycosylases and their potential applications for human health. Proc Natl Acad Sci U S A 2012. [PMID: 23184965 DOI: 10.1073/pnas.1217927109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wheat supplies about 20% of the total food calories consumed worldwide and is a national staple in many countries. Besides being a key source of plant proteins, it is also a major cause of many diet-induced health issues, especially celiac disease. The only effective treatment for this disease is a total gluten-free diet. The present report describes an effort to develop a natural dietary therapy for this disorder by transcriptional suppression of wheat DEMETER (DME) homeologs using RNA interference. DME encodes a 5-methylcytosine DNA glycosylase responsible for transcriptional derepression of gliadins and low-molecular-weight glutenins (LMWgs) by active demethylation of their promoters in the wheat endosperm. Previous research has demonstrated these proteins to be the major source of immunogenic epitopes. In this research, barley and wheat DME genes were cloned and localized on the syntenous chromosomes. Nucleotide diversity among DME homeologs was studied and used for their virtual transcript profiling. Functional conservation of DME enzyme was confirmed by comparing the motif and domain structure within and across the plant kingdom. Presence and absence of CpG islands in prolamin gene sequences was studied as a hallmark of hypo- and hypermethylation, respectively. Finally the epigenetic influence of DME silencing on accumulation of LMWgs and gliadins was studied using 20 transformants expressing hairpin RNA in their endosperm. These transformants showed up to 85.6% suppression in DME transcript abundance and up to 76.4% reduction in the amount of immunogenic prolamins, demonstrating the possibility of developing wheat varieties compatible for the celiac patients.
Collapse
|
44
|
Lei MP, Li GR, Liu C, Yang ZJ. Characterization of wheat – Secale africanum introgression lines reveals evolutionary aspects of chromosome 1R in rye. Genome 2012. [DOI: 10.1139/g2012-062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wild Secale species, Secale africanum Stapf., serve as a valuable source for increasing the diversity of cultivated rye (Secale cereale L.) and provide novel genes for wheat improvement. New wheat – S. africanum chromosome 1Rafr addition, 1Rafr(1D) substitution, 1BL.1RafrS and 1DS.1RafrL translocation, and 1RafrL monotelocentric addition lines were identified by chromosome banding and in situ hybridization. Disease resistance screening revealed that chromosome 1RafrS carries resistance gene(s) to new stripe rust races. Twenty-nine molecular markers were localized on S. africanum chromosome 1Rafr by the wheat – S. africanum introgression lines. Twenty markers can also identically amplify other reported wheat – S. cereale chromosome 1R derivative lines, indicating that there is high conservation between the wild and cultivated Secale chromosome 1R. Nine markers displayed polymorphic amplification between S. africanum and S. cereale chromosome 1Rafr derivatives. The comparison of the nucleotide sequences of these polymorphic markers suggested that gene duplication and sequence divergence may have occurred among Secale species during its evolution and domestication.
Collapse
Affiliation(s)
- Meng-Ping Lei
- School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 610054 China
| | - Guang-Rong Li
- School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 610054 China
| | - Cheng Liu
- School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 610054 China
| | - Zu-Jun Yang
- School of Life Science and Technology, University of Electronic and Technology of China, Chengdu 610054 China
| |
Collapse
|
45
|
Charon C, Bruggeman Q, Thareau V, Henry Y. Gene duplication within the Green Lineage: the case of TEL genes. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5061-5077. [PMID: 22865910 DOI: 10.1093/jxb/ers181] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent years have witnessed a breathtaking increase in the availability of genome sequence data, providing evidence of the highly duplicate nature of eukaryotic genomes. Plants are exceptional among eukaryotic organisms in that duplicate loci compose a large fraction of their genomes, partly because of the frequent occurrence of polyploidy (or whole-genome duplication) events. Tandem gene duplication and transposition have also contributed to the large number of duplicated genes in plant genomes. Evolutionary analyses allowed the dynamics of duplicate gene evolution to be studied and several models were proposed. It seems that, over time, many duplicated genes were lost and some of those that were retained gained new functions and/or expression patterns (neofunctionalization) or subdivided their functions and/or expression patterns between them (subfunctionalization). Recent studies have provided examples of genes that originated by duplication with successive diversification within plants. In this review, we focused on the TEL (TERMINAL EAR1-like) genes to illustrate such mechanisms. Emerged from the mei2 gene family, these TEL genes are likely to be land plant-specific. Phylogenetic analyses revealed one or two TEL copies per diploid genome. TEL gene degeneration and loss in several Angiosperm species such as in poplar and maize seem to have occurred. In Arabidopsis thaliana, whose genome experienced at least three polyploidy events followed by massive gene loss and genomic reorganization, two TEL genes were retained and two new shorter TEL-like (MCT) genes emerged. Molecular and expression analyses suggest for these genes sub- and neofunctionalization events, but confirmation will come from their functional characterization.
Collapse
Affiliation(s)
- Céline Charon
- Institut de Biologie des Plantes-CNRS (UMR8618), Université Paris-Sud 11, Saclay Plant Sciences, F-91405 Orsay Cedex, France.
| | | | | | | |
Collapse
|
46
|
Duan J, Xia C, Zhao G, Jia J, Kong X. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. BMC Genomics 2012; 13:392. [PMID: 22891638 PMCID: PMC3485621 DOI: 10.1186/1471-2164-13-392] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/03/2012] [Indexed: 11/23/2022] Open
Abstract
Background Rapid advances in next-generation sequencing methods have provided new opportunities for transcriptome sequencing (RNA-Seq). The unprecedented sequencing depth provided by RNA-Seq makes it a powerful and cost-efficient method for transcriptome study, and it has been widely used in model organisms and non-model organisms to identify and quantify RNA. For non-model organisms lacking well-defined genomes, de novo assembly is typically required for downstream RNA-Seq analyses, including SNP discovery and identification of genes differentially expressed by phenotypes. Although RNA-Seq has been successfully used to sequence many non-model organisms, the results of de novo assembly from short reads can still be improved by using recent bioinformatic developments. Results In this study, we used 212.6 million pair-end reads, which accounted for 16.2 Gb, to assemble the hexaploid wheat transcriptome. Two state-of-the-art assemblers, Trinity and Trans-ABySS, which use the single and multiple k-mer methods, respectively, were used, and the whole de novo assembly process was divided into the following four steps: pre-assembly, merging different samples, removal of redundancy and scaffolding. We documented every detail of these steps and how these steps influenced assembly performance to gain insight into transcriptome assembly from short reads. After optimization, the assembled transcripts were comparable to Sanger-derived ESTs in terms of both continuity and accuracy. We also provided considerable new wheat transcript data to the community. Conclusions It is feasible to assemble the hexaploid wheat transcriptome from short reads. Special attention should be paid to dealing with multiple samples to balance the spectrum of expression levels and redundancy. To obtain an accurate overview of RNA profiling, removal of redundancy may be crucial in de novo assembly.
Collapse
Affiliation(s)
- Jialei Duan
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Duan J, Xia C, Zhao G, Jia J, Kong X. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data. BMC Genomics 2012. [PMID: 22891638 DOI: 10.1186/1471‐2164‐13‐392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid advances in next-generation sequencing methods have provided new opportunities for transcriptome sequencing (RNA-Seq). The unprecedented sequencing depth provided by RNA-Seq makes it a powerful and cost-efficient method for transcriptome study, and it has been widely used in model organisms and non-model organisms to identify and quantify RNA. For non-model organisms lacking well-defined genomes, de novo assembly is typically required for downstream RNA-Seq analyses, including SNP discovery and identification of genes differentially expressed by phenotypes. Although RNA-Seq has been successfully used to sequence many non-model organisms, the results of de novo assembly from short reads can still be improved by using recent bioinformatic developments. RESULTS In this study, we used 212.6 million pair-end reads, which accounted for 16.2 Gb, to assemble the hexaploid wheat transcriptome. Two state-of-the-art assemblers, Trinity and Trans-ABySS, which use the single and multiple k-mer methods, respectively, were used, and the whole de novo assembly process was divided into the following four steps: pre-assembly, merging different samples, removal of redundancy and scaffolding. We documented every detail of these steps and how these steps influenced assembly performance to gain insight into transcriptome assembly from short reads. After optimization, the assembled transcripts were comparable to Sanger-derived ESTs in terms of both continuity and accuracy. We also provided considerable new wheat transcript data to the community. CONCLUSIONS It is feasible to assemble the hexaploid wheat transcriptome from short reads. Special attention should be paid to dealing with multiple samples to balance the spectrum of expression levels and redundancy. To obtain an accurate overview of RNA profiling, removal of redundancy may be crucial in de novo assembly.
Collapse
Affiliation(s)
- Jialei Duan
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Murat F, de Peer YV, Salse J. Decoding plant and animal genome plasticity from differential paleo-evolutionary patterns and processes. Genome Biol Evol 2012; 4:917-28. [PMID: 22833223 PMCID: PMC3516226 DOI: 10.1093/gbe/evs066] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Continuing advances in genome sequencing technologies and computational methods for comparative genomics currently allow inferring the evolutionary history of entire plant and animal genomes. Based on the comparison of the plant and animal genome paleohistory, major differences are unveiled in 1) evolutionary mechanisms (i.e., polyploidization versus diploidization processes), 2) genome conservation (i.e., coding versus noncoding sequence maintenance), and 3) modern genome architecture (i.e., genome organization including repeats expansion versus contraction phenomena). This article discusses how extant animal and plant genomes are the result of inherently different rates and modes of genome evolution resulting in relatively stable animal and much more dynamic and plastic plant genomes.
Collapse
Affiliation(s)
- Florent Murat
- INRA/UBP UMR 1095 GDEC ‘Génétique, Diversité et Ecophysiologie des Céréales’, Clermont Ferrand, France
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Jérôme Salse
- INRA/UBP UMR 1095 GDEC ‘Génétique, Diversité et Ecophysiologie des Céréales’, Clermont Ferrand, France
- *Corresponding author: E-mail:
| |
Collapse
|
49
|
Osabe K, Kawanabe T, Sasaki T, Ishikawa R, Okazaki K, Dennis ES, Kazama T, Fujimoto R. Multiple mechanisms and challenges for the application of allopolyploidy in plants. Int J Mol Sci 2012; 13:8696-8721. [PMID: 22942729 PMCID: PMC3430260 DOI: 10.3390/ijms13078696] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/04/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022] Open
Abstract
An allopolyploid is an individual having two or more complete sets of chromosomes derived from different species. Generation of allopolyploids might be rare because of the need to overcome limitations such as co-existing populations of parental lines, overcoming hybrid incompatibility, gametic non-reduction, and the requirement for chromosome doubling. However, allopolyploids are widely observed among plant species, so allopolyploids have succeeded in overcoming these limitations and may have a selective advantage. As techniques for making allopolyploids are developed, we can compare transcription, genome organization, and epigenetic modifications between synthesized allopolyploids and their direct parental lines or between several generations of allopolyploids. It has been suggested that divergence of transcription caused either genetically or epigenetically, which can contribute to plant phenotype, is important for the adaptation of allopolyploids.
Collapse
Affiliation(s)
- Kenji Osabe
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| | - Takahiro Kawanabe
- Watanabe Seed Co., Ltd, Machiyashiki, Misato-cho, Miyagi 987-8607, Japan; E-Mail:
| | - Taku Sasaki
- Watanabe Seed Co., Ltd, Machiyashiki, Misato-cho, Miyagi 987-8607, Japan; E-Mail:
| | - Ryo Ishikawa
- Laboratory of Plant Breeding, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8510, Japan; E-Mail:
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UH, UK; E-Mail:
| | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata 950-2181, Japan; E-Mail:
| | - Elizabeth S. Dennis
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, ACT 2601, Australia; E-Mails: (K.O.); (E.S.D.)
| | - Tomohiko Kazama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981-8555, Japan; E-Mail:
| | - Ryo Fujimoto
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, Niigata 950-2181, Japan; E-Mail:
| |
Collapse
|
50
|
Dibari B, Murat F, Chosson A, Gautier V, Poncet C, Lecomte P, Mercier I, Bergès H, Pont C, Blanco A, Salse J. Deciphering the genomic structure, function and evolution of carotenogenesis related phytoene synthases in grasses. BMC Genomics 2012; 13:221. [PMID: 22672222 PMCID: PMC3413518 DOI: 10.1186/1471-2164-13-221] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/06/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Carotenoids are isoprenoid pigments, essential for photosynthesis and photoprotection in plants. The enzyme phytoene synthase (PSY) plays an essential role in mediating condensation of two geranylgeranyl diphosphate molecules, the first committed step in carotenogenesis. PSY are nuclear enzymes encoded by a small gene family consisting of three paralogous genes (PSY1-3) that have been widely characterized in rice, maize and sorghum. RESULTS In wheat, for which yellow pigment content is extremely important for flour colour, only PSY1 has been extensively studied because of its association with QTLs reported for yellow pigment whereas PSY2 has been partially characterized. Here, we report the isolation of bread wheat PSY3 genes from a Renan BAC library using Brachypodium as a model genome for the Triticeae to develop Conserved Orthologous Set markers prior to gene cloning and sequencing. Wheat PSY3 homoeologous genes were sequenced and annotated, unravelling their novel structure associated with intron-loss events and consequent exonic fusions. A wheat PSY3 promoter region was also investigated for the presence of cis-acting elements involved in the response to abscisic acid (ABA), since carotenoids also play an important role as precursors of signalling molecules devoted to plant development and biotic/abiotic stress responses. Expression of wheat PSYs in leaves and roots was investigated during ABA treatment to confirm the up-regulation of PSY3 during abiotic stress. CONCLUSIONS We investigated the structural and functional determinisms of PSY genes in wheat. More generally, among eudicots and monocots, the PSY gene family was found to be associated with differences in gene copy numbers, allowing us to propose an evolutionary model for the entire PSY gene family in Grasses.
Collapse
Affiliation(s)
- Bianca Dibari
- INRA-UMR 1095 Génétique Diversité Ecophysiologie des Céréales (GDEC), Clermont-Ferrand, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|