1
|
de Santana MBR, Miranda GO, Carvalho LP. ATP-binding cassette transporters and drug resistance in cutaneous leishmaniasis. Int J Infect Dis 2025; 151:107315. [PMID: 39613252 DOI: 10.1016/j.ijid.2024.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Leishmania spp. are intracellular protozoan parasites causative of visceral and cutaneous leishmaniasis. Recognized as a neglected tropical disease affecting millions of people around the world, this affliction represents a major public health problem. In Brazil, pentavalent antimony (SbV), the main therapy used to treat all clinical forms of leishmaniasis, has become increasingly associated with treatment failure. Many factors can influence leishmaniasis treatment outcome, including low expression aquaglyceroporin by the parasite and high activity of the ATP-binding cassette (ABC) transporters, efflux pumps whose activity has been associated with drug resistance in a variety of diseases. Current evidence suggests that some ABC transporters (e.g., MRP1 and MDR1) play a role in drug resistance in leishmaniasis. One way to potentially overcome SbV resistance may be a combined therapeutic strategy involving anti-Leishmania drugs administered together with ABC transporter inhibitors; however, toxicity poses a major challenge to the adoption of this approach.
Collapse
Affiliation(s)
- Marina B R de Santana
- Laboratório de Pesquisas Clínicas (LAPEC), Gonçalo Moniz Institute (IGM), FIOCRUZ, Salvador, Bahia, Brazil
| | - Giulia O Miranda
- Laboratório de Pesquisas Clínicas (LAPEC), Gonçalo Moniz Institute (IGM), FIOCRUZ, Salvador, Bahia, Brazil
| | - Lucas P Carvalho
- Laboratório de Pesquisas Clínicas (LAPEC), Gonçalo Moniz Institute (IGM), FIOCRUZ, Salvador, Bahia, Brazil; Serviço de Imunologia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil; Instituto Nacional de Ciências e Tecnologia - Doenças Tropicais (CNPq/MCT), Salvador, Bahia, Brazil.
| |
Collapse
|
2
|
Khalife M, Salvagno M, Sosnowski M, Balestra C. Exploring the effects of post operative hyperoxic intermittent stimuli on reticulocyte levels in cancer patients: a randomized controlled study. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:43. [PMID: 38978080 PMCID: PMC11232296 DOI: 10.1186/s44158-024-00179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Anemia is common among hospitalized critically ill and surgical oncological patients. The rising incidence of cancer and aggressive treatments has increased the demand for blood products, further strained by a dwindling donor pool. The normobaric oxygen paradox (NOP) has emerged as a potential avenue to increase EPO levels. While some studies support its efficacy, research remains limited in clinical settings. This study aims to assess the effectiveness of a NOP protocol in stimulating erythropoiesis, as measured by changes in reticulocyte counts, in cancer patients undergoing abdominal surgeries. METHODS This is a post hoc analysis of a prospective, single-center, controlled, randomized study. A total of 49 patients undergoing abdominal surgery were analyzed at the Institut Jules Bordet. Adult patients admitted to the intensive care unit (ICU) for at least 24 h were enrolled, excluding those with severe renal insufficiency or who received transfusions during the study period. Participants were randomized into two groups: a normobaric oxygen paradox (OXY) group who received 60% oxygen for 2 h on days 1, 3, and 5 post-surgery and a control (CTR) group who received standard care. Data on baseline characteristics, surgical details, and laboratory parameters were collected. Statistical analysis included descriptive statistics, chi-square tests, t-tests, Mann-Whitney tests, and linear and logistic regression. RESULTS The final analysis included 33 patients (median age 62 [IQR 58-66], 28 (84.8%) males, with no withdrawals or deaths during the study period. No significant differences were observed in baseline surgical characteristics or perioperative outcomes between the two groups. In the OXY group (n = 16), there was a significant rise (p = 0.0237) in the percentage of reticulocyte levels in comparison to the CTR group (n = 17), with median values of 36.1% (IQR 20.3-57.8) versus - 5.3% (IQR - 19.2-57.8), respectively. The increases in hemoglobin and hematocrit levels did not significantly differ between the groups when compared to their baselines' values. CONCLUSIONS This study provides preliminary evidence supporting the potential of normobaric oxygen therapy in stimulating erythropoiesis in cancer patients undergoing abdominal surgeries. While the OXY group resulted in increased reticulocyte counts, further research with larger sample sizes and multi-center trials is warranted to confirm these findings. TRIAL REGISTRATION The study was retrospectively registered under NCT number 06321874 on The 10th of April 2024.
Collapse
Affiliation(s)
- Maher Khalife
- Institut Jules Bordet, Anaesthesiology, H.U.B, Brussels, Belgium.
| | - Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (H.U.B), 1070, Brussels, Belgium
| | | | - Costantino Balestra
- Environmental, Occupational & Ageing "Integrative Physiology" Laboratory, Haute Ecole Bruxelles-Brabant, Brussels, Belgium
| |
Collapse
|
3
|
Endesfelder S, Schmitz T, Bührer C. Bilirubin Exerts Protective Effects on Alveolar Type II Pneumocytes in an In Vitro Model of Oxidative Stress. Int J Mol Sci 2024; 25:5323. [PMID: 38791361 PMCID: PMC11121655 DOI: 10.3390/ijms25105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Newborn infants face a rapid surge of oxygen and a more protracted rise of unconjugated bilirubin after birth. Bilirubin has a strong antioxidant capacity by scavenging free radicals, but it also exerts direct toxicity. This study investigates whether cultured rat alveolar epithelial cells type II (AEC II) react differently to bilirubin under different oxygen concentrations. The toxic threshold concentration of bilirubin was narrowed down by means of a cell viability test. Subsequent analyses of bilirubin effects under 5% oxygen and 80% oxygen compared to 21% oxygen, as well as pretreatment with bilirubin after 4 h and 24 h of incubation, were performed to determine the induction of apoptosis and the gene expression of associated transcripts of cell death, proliferation, and redox-sensitive transcription factors. Oxidative stress led to an increased rate of cell death and induced transcripts of redox-sensitive signaling pathways. At a non-cytotoxic concentration of 400 nm, bilirubin attenuated oxidative stress-induced responses and possibly mediated cellular antioxidant defense by influencing Nrf2/Hif1α- and NFκB-mediated signaling pathways. In conclusion, the study demonstrates that rat AEC II cells are protected from oxidative stress-induced impairment by low-dose bilirubin.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.S.); (C.B.)
| | | | | |
Collapse
|
4
|
Arief Waskito B, Sargowo D, Kalsum U, Tjokroprawiro A. Anti-atherosclerotic activity of aqueous extract of Ipomoea batatas (L.) leaves in high-fat diet-induced atherosclerosis model rats. J Basic Clin Physiol Pharmacol 2023; 34:725-734. [PMID: 34986543 DOI: 10.1515/jbcpp-2021-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cardiovascular diseases, especially atherosclerosis, are the leading cause of human mortality in Indonesia. Ipomoea batatas (L.) is a food plant used in Indonesian traditional medicine to treat cardiovascular diseases and related conditions. We assessed the anti-atherosclerotic activity of the aqueous extract of I. batatas leaves in a rat model of high-fat diet-induced atherosclerosis and its mechanism. METHODS The presence of amino acid content in the I. batatas L. purple variant was determined by liquid chromatography high-resolution mass spectrometry (LC-HRMS). Thirty male Wistar rats were divided into five groups (n=6/group), i.e., standard diet group (SD), high-fat diet group (HF), and HF plus I. batatas L. extracts orally (625; 1,250; or 2,500 mg/kg) groups. The numbers of macrophages and aortic wall thickness were analyzed histologically. Immunohistochemical analyses were performed to assess foam cells-oxidized low-density lipoprotein (oxLDL), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF) expression in the aorta. RESULTS LC-HRMS analysis showed nine amino acid content were identified from I. batatas L. In vivo study revealed that oral administration of I. batatas L. leaf extract alleviated foam cells-oxLDL formation and aortic wall thickness caused by high-fat diet atherosclerosis rats. Further, I. batatas L. leaf extract promoted the number of macrophages and modulated VEGF and eNOS expression in the aorta. CONCLUSIONS I. batatas L. leaf extract shows a positive anti-atherosclerosis effect. Furthermore, the mechanism may promote the macrophages, eNOS, VEGF expressions, and inhibition of foam cells-oxLDL formation and aortic wall thickness with the best dosage at 2,500 mg/kg. This could represent a novel approach to prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Budi Arief Waskito
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Wijaya Kusuma University, Surabaya, East Java, Indonesia
| | - Djanggan Sargowo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Umi Kalsum
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Askandar Tjokroprawiro
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Dr. Soetomo Hospital, Surabaya, East Java, Indonesia
| |
Collapse
|
5
|
Invited Commentary: Prolyl Hydroxylase Inhibitors for Cardioprotection: A Cautiously Optimistic Outlook. J Am Coll Surg 2022; 235:254-256. [PMID: 35839399 DOI: 10.1097/xcs.0000000000000266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Redox Control of Signalling Responses to Contractile Activity and Ageing in Skeletal Muscle. Cells 2022; 11:cells11101698. [PMID: 35626735 PMCID: PMC9139227 DOI: 10.3390/cells11101698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
Research over almost 40 years has established that reactive oxygen species are generated at different sites in skeletal muscle and that the generation of these species is increased by various forms of exercise. Initially, this was thought to be potentially deleterious to skeletal muscle and other tissues, but more recent data have identified key roles of these species in muscle adaptations to exercise. The aim of this review is to summarise our current understanding of these redox signalling roles of reactive oxygen species in mediating responses of muscle to contractile activity, with a particular focus on the effects of ageing on these processes. In addition, we provide evidence that disruption of the redox status of muscle mitochondria resulting from age-associated denervation of muscle fibres may be an important factor leading to an attenuation of some muscle responses to contractile activity, and we speculate on potential mechanisms involved.
Collapse
|
7
|
Thauvin M, de Sousa RM, Alves M, Volovitch M, Vriz S, Rampon C. An early Shh-H2O2 reciprocal regulatory interaction controls the regenerative program during zebrafish fin regeneration. J Cell Sci 2022; 135:274206. [PMID: 35107164 DOI: 10.1242/jcs.259664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS), originally classified as toxic molecules, have attracted increasing interest given their actions in cell signaling. Hydrogen peroxide (H2O2), the major ROS produced by cells, acts as a second messenger to modify redox-sensitive proteins or lipids. After caudal fin amputation, tight spatiotemporal regulation of ROS is required first for wound healing and later to initiate the regenerative program. However, the mechanisms carrying out this sustained ROS production and their integration with signaling pathways are still poorly understood. We focused on the early dialog between H2O2 and Sonic Hedgehog (Shh) during fin regeneration. We demonstrate that H2O2 controls Shh expression and that Shh in turn regulates the H2O2 level via a canonical pathway. Moreover, the means of this tight reciprocal control change during the successive phases of the regenerative program. Dysregulation of the Hedgehog pathway has been implicated in several developmental syndromes, diabetes and cancer. These data support the existence of an early positive crosstalk between Shh and H2O2 that might be more generally involved in various processes paving the way to improve regenerative processes, particularly in vertebrates.
Collapse
Affiliation(s)
- Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Rodolphe Matias de Sousa
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Marine Alves
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,École Normale Supérieure, PSL Research University, Department of Biology, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| |
Collapse
|
8
|
Jin H, Ge X, Huan Z, Yao H, Xu C, Cai J. Stress-induced phosphoprotein 1 restrains spinal cord ischaemia-reperfusion injury by modulating NF-κB signalling. J Cell Mol Med 2021; 25:11075-11084. [PMID: 34734476 PMCID: PMC8650032 DOI: 10.1111/jcmm.17030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI), a major cause of disability, causes high global disease and economic burdens. Stress-induced phosphoprotein 1 (STIP1) has been identified to be involved in spinal cord ischaemia-reperfusion injury (SCII); however, the effect of STIP1 on SCII remains unclear until now. This study aimed to examine the role of STIP1 in SCII and unravel the possible mechanisms. Western blotting and immunohistochemical staining showed that STIP1 expression rapidly increased and then decreased in rat spinal cord following SCII treatment. Neurological function scoring, HE staining, immunohistochemical staining and Western blotting revealed that STIP1 overexpression alleviated SCII-induced motor dysfunction of hind limbs, neuronal loss and inflammation in spinal cord, and inhibited activity of nuclear factor kappa B (NF-κB) signalling in rats. Immunoprecipitation identified that STIP1 was co-located with Iba-1. In addition, STIP1 was found to ameliorate oxygen and glucose deprivation (OGD)-induced inflammation and activation of NF-κB signalling in mouse microglia BV2 cells, and STIP1 resulted in decrease of heat shock protein family A member 8 (HSPA8), increase of IκBβ expression and reduced binding of IκBβ to HSPA8 in BV2 cells. The results of the present study demonstrate that STIP1 alleviates ischaemia/reperfusion-induced neuronal injury and inflammation in rat spinal cord and mouse microglial cells by deactivating NF-κB signalling. These findings may provide novel insights for the clinical diagnosis and treatment of SCI.
Collapse
Affiliation(s)
- Hongdou Jin
- Department of General SurgeryWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Xin Ge
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Zhirong Huan
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Hao Yao
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Ce Xu
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| | - Jimin Cai
- Department of ICUWuxi 9th Hospital Affiliated to Soochow UniversityWuxi CityJiangsu ProvinceChina
| |
Collapse
|
9
|
Ferreira ÉC, Oliveira ACDR, Garcia CG, Cossenza M, Gonçalves-de-Albuquerque CF, Castro-Faria-Neto HC, Giestal-de-Araujo E, Dos Santos AA. PMA treatment fosters rat retinal ganglion cell survival via TNF signaling. Neurosci Lett 2021; 763:136197. [PMID: 34437989 DOI: 10.1016/j.neulet.2021.136197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
An insult can trigger a protective response or even cell death depending on different factors that include the duration and magnitude of the event and the ability of the cell to activate protective intracellular signals, including inflammatory cytokines. Our previous work showed that the treatment of Lister Hooded rat retinal cell cultures with 50 ng/mL phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, increases the survival of retinal ganglion cells (RGCs) kept in culture for 48 h after axotomy. Here we aim to analyze how PMA modulates the levels of TNF-α and IL-1β (both key inflammatory mediators) and the impact of this modulation on RGCs survival. We hypothesize that the increase in RGCs survival mediated by PMA treatment depends upon modulation of the levels of IL-1β and TNF-α. The effect of PMA treatment was assayed on cell viability, caspase 3 activation, TNF-α and IL-1β release and TNF receptor type I (TNFRI) and TNF receptor type II (TNFRII) levels. PMA treatment increases IL-1β and TNF-α levels in 15 min in culture and increases the release of both cytokines after 30 min and 24 h, respectively. Both IL-1β and TNF-α levels decrease after 48 h of PMA treatment. PMA treatment also induces an increase in TNFRII levels while decreasing TNFRI after 24 h. PMA also inhibited caspase-3 activation, and decreased ROS production and EthD-1/calcein ratio in retinal cell cultures leading to an increase in cell viability. The neutralization of IL-1β (anti-IL1β 0,1ng/mL), the neutralization of TNF-α (anti-TNF-α 0,1ng/mL) and the TNF-α inhibition using a recombinant soluble TNFRII abolished PMA effect on RGCs survival. These data suggest that PMA treatment induces IL1β and TNF-α release and modulation of TNFRI/TNFRII expression promoting RGCs survival after axotomy.
Collapse
Affiliation(s)
- Érica Camila Ferreira
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | | | - Carlos Gustavo Garcia
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Universidade Anhanguera, Av. Visconde do Rio Branco, 123, Niterói, Rio de Janeiro CEP 24020-000, Brazil
| | - Marcelo Cossenza
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas e Laboratório de Farmacologia Molecular, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP: 24020-150, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro CEP 21040900, Brazil; Departamento de Bioquímica - Laboratório de Imunofarmacologia, Instituto Biomédico, UNIRIO Rua Frei Caneca 94, Rio de Janeiro, RJ CEP 20211030, Brazil
| | - Hugo Caire Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro CEP 21040900, Brazil; INCT-NIM - Instituto Oswaldo Cruz-FIOCRUZ, Manguinhos, RJ CEP:21040-360, Brazil
| | - Elizabeth Giestal-de-Araujo
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Departamento de Neurobiologia, Laboratório de Cultura de Tecidos Hertha Meyer, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP: 24020-140, Brazil; INCT-NIM - Instituto Oswaldo Cruz-FIOCRUZ, Manguinhos, RJ CEP:21040-360, Brazil
| | - Aline Araujo Dos Santos
- Programa de Pós-Graduação em Neurociências, Universidade Federal Fluminense, Rio de Janeiro, Brazil; Departamento de Fisiologia e Farmacologia, Laboratório de Interações Neuroquímicas e Laboratório de Farmacologia Molecular, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro CEP: 24020-150, Brazil.
| |
Collapse
|
10
|
Jackson MJ. On the mechanisms underlying attenuated redox responses to exercise in older individuals: A hypothesis. Free Radic Biol Med 2020; 161:326-338. [PMID: 33099002 PMCID: PMC7754707 DOI: 10.1016/j.freeradbiomed.2020.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Responding appropriately to exercise is essential to maintenance of skeletal muscle mass and function at all ages and particularly during aging. Here, a hypothesis is presented that a key component of the inability of skeletal muscle to respond effectively to exercise in aging is a denervation-induced failure of muscle redox signalling. This novel hypothesis proposes that an initial increase in oxidation in muscle mitochondria leads to a paradoxical increase in the reductive state of specific cysteines of signalling proteins in the muscle cytosol that suppresses their ability to respond to normal oxidising redox signals during exercise. The following are presented for consideration:Transient loss of integrity of peripheral motor neurons occurs repeatedly throughout life and is normally rapidly repaired by reinnervation, but this repair process becomes less efficient with aging. Each transient loss of neuromuscular integrity leads to a rapid, large increase in mitochondrial peroxide production in the denervated muscle fibers and in neighbouring muscle fibers. This peroxide may initially act to stimulate axonal sprouting and regeneration, but also stimulates retrograde mitonuclear communication to increase expression of a range of cytoprotective proteins in an attempt to protect the fiber and neighbouring tissues against oxidative damage. The increased peroxide within mitochondria does not lead to an increased cytosolic peroxide, but the increases in adaptive cytoprotective proteins include some located to the muscle cytosol which modify the local cytosol redox environment to induce a more reductive state in key cysteines of specific signalling proteins. Key adaptations of skeletal muscle to exercise involve transient peroxiredoxin oxidation as effectors of redox signalling in the cytosol. This requires sensitive oxidation of key cysteine residues. In aging, the chronic change to a more reductive cytosolic environment prevents the transient oxidation of peroxiredoxin 2 and hence prevents essential adaptations to exercise, thus contributing to loss of muscle mass and function. Experimental approaches suitable for testing the hypothesis are also outlined.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal and Ageing Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
11
|
Marinello WP, Mohseni ZS, Cunningham SJ, Crute C, Huang R, Zhang JJ, Feng L. Perfluorobutane sulfonate exposure disrupted human placental cytotrophoblast cell proliferation and invasion involving in dysregulating preeclampsia related genes. FASEB J 2020; 34:14182-14199. [PMID: 32901980 DOI: 10.1096/fj.202000716rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022]
Abstract
We reported that maternal PFBS, an emerging pollutant, exposure is positively associated with preeclampsia which can result from aberrant trophoblasts invasion and subsequent placental ischemia. In this study, we investigated the effects of PFBS on trophoblasts proliferation/invasion and signaling pathways. We exposed a human trophoblast line, HTR8/SVneo, to PFBS. Cell viability, proliferation, and cell cycle were evaluated by the MTS assay, Ki-67 staining, and flow cytometry, respectively. We assessed cell migration and invasion with live-cell imaging-based migration assay and matrigel invasion assay, respectively. Signaling pathways were examined by Western blot, RNA-seq, and qPCR. PFBS exposure interrupted cell proliferation and invasion in a dose-dependent manner. PFBS (100 μM) did not cause cell death but instead significant cell proliferation without cell cycle disruption. PFBS (10 and 100 μM) decreased cell migration and invasion, while PFBS (0.1 μM) significantly increased cell invasion but not migration. Further, RNA-seq analysis identified dysregulated HIF-1α target genes that are relevant to cell proliferation/invasion and preeclampsia, while Western Blot data showed the activation of HIF-1α, but not Notch, ERK1/2, (PI3K)AKT, and P38 pathways. PBFS exposure altered trophoblast cell proliferation/invasion which might be mediated by preeclampsia-related genes, suggesting a possible association between prenatal PFBS exposure and adverse placentation.
Collapse
Affiliation(s)
- William P Marinello
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Zahra S Mohseni
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Sarah J Cunningham
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Christine Crute
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.,Integrated Toxicology and Environmental Health Program, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Rong Huang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Jun J Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Jackson MJ, Stretton C, McArdle A. Hydrogen peroxide as a signal for skeletal muscle adaptations to exercise: What do concentrations tell us about potential mechanisms? Redox Biol 2020; 35:101484. [PMID: 32184060 PMCID: PMC7284923 DOI: 10.1016/j.redox.2020.101484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Hydrogen peroxide appears to be the key reactive oxygen species involved in redox signalling, but comparisons of the low concentrations of hydrogen peroxide that are calculated to exist within cells with those previously shown to activate common signalling events in vitro indicate that direct oxidation of key thiol groups on "redox-sensitive" signalling proteins is unlikely to occur. A number of potential mechanisms have been proposed to explain how cells overcome this block to hydrogen peroxide-stimulated redox signalling and these will be discussed in the context of the redox-stimulation of specific adaptations of skeletal muscle to contractile activity and exercise. It is argued that current data implicate a role for currently unidentified effector molecules (likely to be highly reactive peroxidases) in propagation of the redox signal from sites of hydrogen peroxide generation to common adaptive signalling pathways.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L87TX, UK.
| | - Clare Stretton
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L87TX, UK
| | - Anne McArdle
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L87TX, UK
| |
Collapse
|
13
|
Jackson MJ. Mechanistic models to guide redox investigations and interventions in musculoskeletal ageing. Free Radic Biol Med 2020; 149:2-7. [PMID: 31981622 DOI: 10.1016/j.freeradbiomed.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 10/25/2022]
Abstract
Age is the greatest risk factor for the major chronic musculoskeletal disorders, osteoarthritis, osteoporosis and age-related loss of skeletal muscle mass and function (sarcopenia). Dramatic advances in understanding of the fundamental mechanisms underlying the ageing process are being exploited to understand the causes of these age-related disorders and identify approaches to prevent or treat these disorders. This review will focus on one of these fundamental mechanisms, redox regulation, and the role of redox changes in age-related loss of skeletal muscle mass and function (sarcopenia). Key to understanding the role of such pathways has been the development and study of experimental models of musculoskeletal ageing that are designed to examine the effect of modification of ROS regulatory enzymes. These have primarily involved genetic deletion of regulatory enzymes for ROS in mice. Many of the models studied show increased oxidative damage in tissues, but no clear relationship with skeletal muscle aging has been seen The exception to this has been mice with disruption of the superoxide dismutases and, in particular, deletion of Cu,ZnSOD (SOD1) localised in the cytosol and mitochondrial intermembrane space. Studies of tissue specific models lacking SOD1 have highlighted the potential role that disrupted redox pathways can play in muscle loss and weakness and have demonstrated the need to study both motor neurons and muscle to understand age-related loss of skeletal muscle. The complex interplay that has been identified between changes in redox homeostasis in the motor neuron and skeletal muscle and their role in premature loss of muscle mass and function illustrates the utility of modifiable models to establish key pathways that may contribute to age-related changes and identify potential logical approaches to intervention.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool, L78TX, UK.
| |
Collapse
|
14
|
Yoshida S, Kawai H, Eguchi T, Sukegawa S, Oo MW, Anqi C, Takabatake K, Nakano K, Okamoto K, Nagatsuka H. Tumor Angiogenic Inhibition Triggered Necrosis (TAITN) in Oral Cancer. Cells 2019; 8:cells8070761. [PMID: 31336612 PMCID: PMC6678844 DOI: 10.3390/cells8070761] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 01/09/2023] Open
Abstract
CXCR4 is a chemokine receptor crucial in tumor progression, although the angiogenic role of CXCR4 in oral squamous cell carcinoma (OSCC) has not been investigated. Here we show that CXCR4 is crucial for tumor angiogenesis, thereby supporting tumor survival in OSCC. Immunohistochemistry on human clinical specimens revealed that CXCR4 and a tumor vasculature marker CD34 were co-distributed in tumor vessels in human OSCC specimens. To uncover the effects of CXCR4 inhibition, we treated the OSCC-xenografted mice with AMD3100, so-called plerixafor, an antagonist of CXCR4. Notably, we found a unique pathophysiological structure defined as tumor angiogenic inhibition triggered necrosis (TAITN), which was induced by the CXCR4 antagonism. Treatment with AMD3100 increased necrotic areas with the induction of hypoxia-inducible factor-1α in the xenografted tumors, suggesting that AMD3100-induced TAITN was involved in hypoxia and ischemia. Taken together, we demonstrated that CXCR4 plays a crucial role in tumor angiogenesis required for OSCC progression, whereas TAITN induced by CXCR4 antagonism could be an effective anti-angiogenic therapeutic strategy in OSCC treatment.
Collapse
Affiliation(s)
- Saori Yoshida
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Division of Oral and Maxillofacial Surgery, Kagawa Prefectural Central Hospital, Takamatsu, Kagawa 760-8557, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Chang Anqi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Department of Anatomy, Basic Medicine Science College, Harbin Medical University, Harbin 150076, China
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
15
|
Norman KC, Freeman CM, Bidthanapally NS, Han MK, Martinez FJ, Curtis JL, Arnold KB. Inference of Cellular Immune Environments in Sputum and Peripheral Blood Associated with Acute Exacerbations of COPD. Cell Mol Bioeng 2019; 12:165-177. [PMID: 31719907 DOI: 10.1007/s12195-019-00567-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Introduction Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States, with high associated costs. Most of the cost burden results from acute exacerbations of COPD (AE-COPD), events associated with heightened symptoms and mortality. Cellular mechanisms underlying AE-COPD are poorly understood, likely because they arise from dysregulation of complex immune networks across multiple tissue compartments. Methods To gain systems-level insight into cellular environments relevant to exacerbation, we applied data-driven modeling approaches to measurements of immune factors (cytokines and flow cytometry) measured previously in two different human tissue environments (sputum and peripheral blood) during the stable and exacerbated state. Results Using partial least squares discriminant analysis, we identified a unique signature of cytokines in serum that differentiated stable and AE-COPD better than individual measurements. Furthermore, we found that models integrating data across tissue compartments (serum and sputum) trended towards being more accurate. The resulting paracrine signature defining AE-COPD events combined elevations of proteins associated with cell adhesion (sVCAM-1, sICAM-1) and increased levels of neutrophils and dendritic cells in blood with elevated chemoattractants (IP-10 and MCP-2) in sputum. Conclusions Our results supported a new hypothesis that AE-COPD is driven by immune cell trafficking into the lung, which requires expression of cell adhesion molecules and raised levels of innate immune cells in blood, with parallel upregulated expression of specific chemokines in pulmonary tissue. Overall, this work serves as a proof-of-concept for using data-driven modeling approaches to generate new insights into cellular processes involved in complex pulmonary diseases.
Collapse
Affiliation(s)
- Katy C Norman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Christine M Freeman
- Division of Pulmonary & Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA.,Research Service, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105 USA.,Graduate Program in Immunology, Rackham Graduate School, University of Michigan, Ann Arbor, MI 48109 USA
| | - Neha S Bidthanapally
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - MeiLan K Han
- Division of Pulmonary & Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Fernando J Martinez
- Joan & Sanford I. Weill Department of Medicine, Division of Pulmonary & Critical Care Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| | - Jeffrey L Curtis
- Division of Pulmonary & Critical Care, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109 USA.,Graduate Program in Immunology, Rackham Graduate School, University of Michigan, Ann Arbor, MI 48109 USA.,Medicine Service, Pulmonary & Critical Care Section, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105 USA
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
16
|
Van Vliet EDS, Kinney PL, Owusu-Agyei S, Schluger NW, Ae-Ngibise KA, Whyatt RM, Jack DW, Agyei O, Chillrud SN, Boamah EA, Mujtaba M, Asante KP. Current respiratory symptoms and risk factors in pregnant women cooking with biomass fuels in rural Ghana. ENVIRONMENT INTERNATIONAL 2019; 124:533-540. [PMID: 30685455 PMCID: PMC7069526 DOI: 10.1016/j.envint.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND More than 75% of the population in Ghana relies on biomass fuels for cooking and heating. Household air pollution (HAP) emitted from the incomplete combustion of these fuels has been associated with adverse health effects including respiratory effects in women that can lead to chronic obstructive pulmonary disease (COPD), a major contributor to global HAP-related mortality. HAP is a modifiable risk factor in the global burden of disease, exposure to which can be reduced. OBJECTIVE This study assessed the prevalence of respiratory symptoms, as well as associations between respiratory symptoms and HAP exposure, as measured using continuous personal carbon monoxide (CO), in nonsmoking pregnant women in rural Ghana. METHODS We analyzed current respiratory health symptoms and CO exposures upon enrollment in a subset (n = 840) of the population of pregnant women cooking with biomass fuels and enrolled in the GRAPHS randomized clinical control trial. Personal CO was measured using Lascar continuous monitors. Associations between CO concentrations as well as other sources of pollution exposures and respiratory health symptoms were estimated using logistic regression models. CONCLUSION There was a positive association between CO exposure per 1 ppm increase and a composite respiratory symptom score of current cough (lasting >5 days), wheeze and/or dyspnea (OR: 1.2, p = 0.03). CO was also positively associated with wheeze (OR: 1.3, p = 0.05), phlegm (OR: 1.2, p = 0.08) and reported clinic visit for respiratory infection in past 4 weeks (OR: 1.2, p = 0.09). Multivariate models showed significant associations between second-hand tobacco smoke and a composite outcome (OR: 2.1, p < 0.01) as well as individual outcomes of cough >5 days (OR: 3.1, p = 0.01), wheeze (OR: 2.7, p < 0.01) and dyspnea (OR: 2.2, p = 0.01). Other covariates found to be significantly associated with respiratory outcomes include involvement in charcoal production business and dyspnea, and involvement in burning grass/field and wheeze. Results suggest that exposure to HAP increases the risk of adverse respiratory symptoms among pregnant women using biomass fuels for cooking in rural Ghana.
Collapse
Affiliation(s)
| | | | | | - Neil W Schluger
- Columbia University College of Physicians and Surgeons, New York, NY, USA; Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Robin M Whyatt
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Darby W Jack
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Oscar Agyei
- Kintampo Health Research Centre, Kintampo, Ghana
| | - Steven N Chillrud
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
| | | | | | | |
Collapse
|
17
|
Zhang Z, Li P, Wang Y, Yan H. Hypoxia‑induced expression of CXCR4 favors trophoblast cell migration and invasion via the activation of HIF‑1α. Int J Mol Med 2018; 42:1508-1516. [PMID: 29786753 PMCID: PMC6089771 DOI: 10.3892/ijmm.2018.3701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/17/2018] [Indexed: 12/17/2022] Open
Abstract
The placenta initially develops in a low‑oxygen environment up to week 8‑10 of gestation, and a low oxygen level is a critical factor in the regulation of trophoblast migration and invasion. CXC chemokine receptor 4 (CXCR4) is transcriptionally activated by hypoxia in cancer cells. However, whether CXCR4 is involved in hypoxia‑inducible factor (HIF)‑1α‑dependent trophoblastic migration and invasion in a physiologically hypoxic environment (3% O2) remains to be fully elucidated and requires further investigation. In the present study, the expression of CXCR4 in first‑trimester villi was investigated, as was the response of the trophoblast to hypoxia, and the role of CXCR4 and HIF‑1α in trophoblast migration and invasion. CXCR4 was significantly elevated in the first‑trimester villi compared with normal full‑term placentas. In vitro, the expression of CXCR4 at the mRNA and protein levels was increased in JEG3 cells exposed to 3% O2 in a time‑dependent manner, and the migratory and invasive abilities of the JEG3 cells were upregulated. In addition, CXCR4 knockdown by transfection with CXCR4‑specific small interfering (si)RNA decreased the migration and invasion of JEG3 cells exposed to 3% O2. Furthermore, synthetic siRNA specific for HIF‑1α significantly suppressed the expression of CXCR4 in JEG3 cells exposed to 3% O2, whereas pcDNA‑HIF‑1α significantly increased the expression of CXCR4. These results indicated that the hypoxia‑induced expression of CXCR4 promoted trophoblast cell migration and invasion via the activation of HIF‑1α, which is crucial during placentation.
Collapse
Affiliation(s)
- Zhan Zhang
- Department of Clinical Laboratory
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | | | - Yan Wang
- Department of Clinical Laboratory
| | - Huan Yan
- Department of Clinical Laboratory
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
18
|
Yang YQ, Yan XT, Wang K, Tian RM, Lu ZY, Wu LL, Xu HT, Wu YS, Liu XS, Mao W, Xu P, Liu B. Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-κB Signaling Pathways. Front Pharmacol 2018; 9:999. [PMID: 30210350 PMCID: PMC6124152 DOI: 10.3389/fphar.2018.00999] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Nrf2 (Nuclear Factor Erythroid 2 Related Factor 2) transcription factor not only regulates oxidative stress response, but also represses inflammation by regulating cytokines production and cross-talking with NF-κB signaling pathways. Nrf2 plays an essential role in liver injury induced by oxidative stress and inflammation. Triptriolide (T11) is a minor component of Tripterygium wilfordii Hook F. (TwHF), which can be obtained by hydrolysis reaction of triptolide (T9). The major purpose of this study is to clarify the regulating effects of T11 on oxidative stress and inflammation in vivo and in vitro. LPS-stimulated RAW 264.7 cells were used to verify the regulating effects of T11 on oxidative stress (ROS and Nrf2 signaling pathway) and inflammatory cytokines production (TNF-α, IL-6 and IL-1β). The antioxidant responsive element (ARE) luciferase assay was employed to evaluate Nrf2 activation effect of T11 in HEK-293T cells. Lipopolysaccharides (LPS) induced acute liver injury (ALI) in BALB/c mice were used to study the protective effects (ALT, AST, MDA, SOD, histopathology and neutrophils/macrophages filtration) and the underlying protection mechanisms of ALI amelioration (Nrf2 and NF-κB signaling pathway) of T11. Firstly, the results showed that T11 can not only effectively decrease the productions of inflammatory cytokines (TNF-α, IL-6 and IL-1β), ROS and NO in LPS-stimulated RAW 264.7 cells, but also further significantly increase the activity of Nrf2 in HEK-293T cells. Secondly, the results suggested that T11 could dramatically decrease the oxidative stress responses (SOD and MDA) and inflammation (histopathology, neutrophils/macrophages filtration, TNF-α, IL-6 and IL-1β production) in LPS-induced ALI in BALB/c mice. Finally, the results implied that T11 could dramatically increase Nrf2 protein expression and decrease p-TAK1, p-IκBα and NF-κB protein expression both in vivo and in vitro. In conclusion, our findings indicated that T11 could alleviate LPS induced oxidative stress and inflammation by regulating Nrf2 and NF-κB signaling pathways in vitro and in vivo, which offers a novel insights for the application of TwHF in clinical.
Collapse
Affiliation(s)
- Yi-Qi Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Teng Yan
- Affiliated Huai'an Hospital, Xuzhou Medical University, Huai'an, China
| | - Kai Wang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Min Tian
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Zhao-Yu Lu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Li-Lan Wu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Hong-Tao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yun-Shan Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xu-Sheng Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Wei Mao
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Peng Xu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Bo Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
19
|
Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2018; 16:80. [PMID: 30126412 PMCID: PMC6102891 DOI: 10.1186/s12958-018-0391-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, the study of oxidative stress (OS) has become increasingly popular. In particular, the role of OS on female fertility is very important and has been focused on closely. The occurrence of OS is due to the excessive production of reactive oxygen species (ROS). ROS are a double-edged sword; they not only play an important role as secondary messengers in many intracellular signaling cascades, but they also exert indispensable effects on pathological processes involving the female genital tract. ROS and antioxidants join in the regulation of reproductive processes in both animals and humans. Imbalances between pro-oxidants and antioxidants could lead to a number of female reproductive diseases. This review focuses on the mechanism of OS and a series of female reproductive processes, explaining the role of OS in female reproduction and female reproductive diseases caused by OS, including polycystic ovary syndrome (PCOS), endometriosis, preeclampsia and so on. Many signaling pathways involved in female reproduction, including the Keap1-Nrf2, NF-κB, FOXO and MAPK pathways, which are affected by OS, are described, providing new ideas for the mechanism of reproductive diseases.
Collapse
Affiliation(s)
- Jiayin Lu
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Zixu Wang
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Jing Cao
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Animal Medicine, China Agricultural University, Haidian, Beijing, 100193 People’s Republic of China
| |
Collapse
|
20
|
Lee HY, Kim IK, Lee HI, Lee HY, Kang HS, Yeo CD, Kang HH, Moon HS, Lee SH. Combination of carboplatin and intermittent normobaric hyperoxia synergistically suppresses benzo[a]pyrene-induced lung cancer. Korean J Intern Med 2018; 33:541-551. [PMID: 29237253 PMCID: PMC5943660 DOI: 10.3904/kjim.2016.334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/14/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIMS We explored the effects of intermittent normobaric hyperoxia alone or combined with chemotherapy on the growth, general morphology, oxidative stress, and apoptosis of benzo[a]pyrene (B[a]P)-induced lung tumors in mice. METHODS Female A/J mice were given a single dose of B[a]P and randomized into four groups: control, carboplatin (50 mg/kg intraperitoneally), hyperoxia (95% fraction of inspired oxygen), and carboplatin and hyperoxia. Normobaric hyperoxia (95%) was applied for 3 hours each day from weeks 21 to 28. Tumor load was determined as the average total tumor numbers and volumes. Several markers of oxidative stress and apoptosis were evaluated. RESULTS Intermittent normobaric hyperoxia combined with chemotherapy reduced the tumor number by 59% and the load by 72% compared with the control B[a]P group. Intermittent normobaric hyperoxia, either alone or combined with chemotherapy, decreased the levels of superoxide dismutase and glutathione and increased the levels of catalase and 8-hydroxydeoxyguanosine. The Bax/Bcl-2 mRNA ratio, caspase 3 level, and number of transferase-mediated dUTP nick end-labeling positive cells increased following treatment with hyperoxia with or without chemotherapy. CONCLUSIONS Intermittent normobaric hyperoxia was found to be tumoricidal and thus may serve as an adjuvant therapy for lung cancer. Oxidative stress and its effects on DNA are increased following exposure to hyperoxia and even more with chemotherapy, and this may lead to apoptosis of lung tumors.
Collapse
Affiliation(s)
- Hea Yon Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Kyoung Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye In Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwa Young Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Seon Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyun Hui Kang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwa Sik Moon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Sang Haak Lee, M.D. Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, St. Paul’s Hospital, The Catholic University of Korea, 180 Wangsan-ro, Dongdaemun-gu, Seoul 02559, Korea Tel: +82-2-961-4500 Fax: +82-2-958-2494 E-mail:
| |
Collapse
|
21
|
Hirayama T, Tsuboi H, Niwa M, Miki A, Kadota S, Ikeshita Y, Okuda K, Nagasawa H. A universal fluorogenic switch for Fe(ii) ion based on N-oxide chemistry permits the visualization of intracellular redox equilibrium shift towards labile iron in hypoxic tumor cells. Chem Sci 2017; 8:4858-4866. [PMID: 28959409 PMCID: PMC5603896 DOI: 10.1039/c6sc05457a] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Iron (Fe) species play a number of biologically and pathologically important roles. In particular, iron is a key element in oxygen sensing in living tissue where its metabolism is intimately linked with oxygen metabolism. Regulation of redox balance of labile iron species to prevent the generation of iron-catalyzed reactive oxygen species (ROS) is critical to survival. However, studies on the redox homeostasis of iron species are challenging because of a lack of a redox-state-specific detection method for iron, in particular, labile Fe2+. In this study, a universal fluorogenic switching system is established, which is responsive to Fe2+ ion based on a unique N-oxide chemistry in which dialkylarylamine N-oxide is selectively deoxygenized by Fe2+ to generate various fluorescent probes of Fe2+-CoNox-1 (blue), FluNox-1 (green), and SiRhoNox-1 (red). All the probes exhibited fluorescence enhancement against Fe2+ with high selectivity both in cuvette and in living cells. Among the probes, SiRhoNox-1 showed an excellent fluorescence response with respect to both reaction rate and off/on signal contrast. Imaging studies were performed showing the intracellular redox equilibrium shift towards labile iron in response to reduced oxygen tension in living cells and 3D tumor spheroids using SiRhoNox-1, and it was found that the hypoxia induction of labile Fe2+ is independent of iron uptake, hypoxia-induced signaling, and hypoxia-activated enzymes. The present studies demonstrate the feasibility of developing sensitive and specific fluorescent probes for Fe2+ with refined photophysical characteristics that enable their broad application in the study of iron in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-nishi, Gifu-shi , Gifu , 501-1196 , Japan . ;
| | - Hitomi Tsuboi
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-nishi, Gifu-shi , Gifu , 501-1196 , Japan . ;
| | - Masato Niwa
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-nishi, Gifu-shi , Gifu , 501-1196 , Japan . ;
| | - Ayaji Miki
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-nishi, Gifu-shi , Gifu , 501-1196 , Japan . ;
| | - Satoki Kadota
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-nishi, Gifu-shi , Gifu , 501-1196 , Japan . ;
| | - Yukie Ikeshita
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-nishi, Gifu-shi , Gifu , 501-1196 , Japan . ;
| | - Kensuke Okuda
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-nishi, Gifu-shi , Gifu , 501-1196 , Japan . ;
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry , Gifu Pharmaceutical University , 1-25-4, Daigaku-nishi, Gifu-shi , Gifu , 501-1196 , Japan . ;
| |
Collapse
|
22
|
Knockdown of Host Antioxidant Defense Genes Enhances the Effect of Glucantime on Intracellular Leishmania braziliensis in Human Macrophages. Antimicrob Agents Chemother 2017; 61:AAC.02099-16. [PMID: 28461312 DOI: 10.1128/aac.02099-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/23/2017] [Indexed: 01/01/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease that affects millions of people worldwide and represents a major public health problem. Information on protein expression patterns and functional roles within the context of Leishmania-infected human monocyte-derived macrophages (MDMs) under drug treatment conditions is essential for understanding the role of these cells in leishmaniasis treatment. We analyzed functional changes in the expression of human MDM genes and proteins during in vitro infection by Leishmania braziliensis and treatment with Glucantime (SbV), using quantitative PCR (qPCR) arrays, Western blotting, confocal microscopy, and small interfering RNA (siRNA) human gene inhibition assays. Comparison of the results from gene transcription and protein expression analyses revealed that glutathione S-transferase π1 (GSTP1), glutamate-cysteine ligase modifier subunit (GCLM), glutathione reductase (GSR), glutathione synthetase (GSS), thioredoxin (TRX), and ATP-binding cassette, subfamily B, member 5 (ABCB5), were strongly upregulated at both the mRNA and protein levels in human MDMs that were infected and treated, compared to the control group. Subcellular localization studies showed a primarily phagolysosomal location for the ABCB5 transporter, indicating that this protein may be involved in the transport of SbV By inducing a decrease in L. braziliensis intracellular survival in THP-1 macrophages, siRNA silencing of GSTP1, GSS, and ABCB5 resulted in an increased leishmanicidal effect of SbV exposure in vitro Our results suggest that human MDMs infected with L. braziliensis and treated with SbV express increased levels of genes participating in antioxidant defense, whereas our functional analyses provide evidence for the involvement of human MDMs in drug detoxification. Therefore, we conclude that GSS, GSTP1, and ABCB5 proteins represent potential targets for enhancing the leishmanicidal activity of Glucantime.
Collapse
|
23
|
Jackson RA, Chen ES. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharmacol Ther 2016; 162:69-85. [DOI: 10.1016/j.pharmthera.2016.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Gonchar OA, Nosar VI, Bratus LV, Tymchenko IN, Steshenko NN, Mankovska IN. [ENERGETIC AND ANTIOXIDANT STATUS OF RAT LIVER MITOCHONDRIA DURING HYPOXIA-REOXYGENATION OF DIFFERENT DURATION]. ACTA ACUST UNITED AC 2016; 61:35-45. [PMID: 27025043 DOI: 10.15407/fz61.06.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dynamics of changes in activity and protein expression of antiradical (MnSOD), glutathione-dependent (glutathione peroxidase, glutathione reductase) and NADP⁺-generated (isocitrate dehydrogenase) enzymes as well as in the energy metabolism indeces in rat liver mitochondria under hypoxia- reoxygenation of different duration (1, 3, 7 14 days) were studied. Prolonged hypoxia-reoxygenation was characterized by phase changes of the corticosterone concentration in rat blood, which corresponded to the changes in energy metabolism as well as in pro- and antioxidant balance in rat liver mitochondria. It has been shown that short-term (1 day) hypoxia-reoxygenation (5% O2 in the gas mixture) led to an increase in the blood corticosterone concentration and a significant activation of oxidative processes and energy metabolism in rat liver mitochondria, the intensity of which was reduced to 3rd day. Long- term hypoxia--reoxygenation (7-14th days) led to the gradual depletion of the organism adaptive capabilities, as evidenced by a significant decline in the blood corticosterone concentration, an increase in the content of secondary products of lipid peroxidation, an imbalance in pro- and antioxidant reactions and reduction of energy capacity in liver cells mitochondria. It has been shown that the glutathione peroxidase protein expression and enzymatic activity increased constantly during the whole experimental period and correlated positively with the level of H₂O₂. The amount of Mn-SOD protein as well as it's enzymatic activity was lower in the first seven days of experiment, and it was increased in consequent days up to the control level on 14thday. Increased activity of glutathione peroxidase, glutathione reductase and NADP+⁺dependent isocitrate dehydrogenase during prolonged hypoxia - eoxygenation indicates that glutathione- and NADPH-generating enzymes, were actively involved in the antioxidant protect.
Collapse
|
25
|
Bertea CM, Narayana R, Agliassa C, Rodgers CT, Maffei ME. Geomagnetic Field (Gmf) and Plant Evolution: Investigating the Effects of Gmf Reversal on Arabidopsis thaliana Development and Gene Expression. J Vis Exp 2015. [PMID: 26649488 PMCID: PMC4692770 DOI: 10.3791/53286] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
One of the most stimulating observations in plant evolution is a correlation between the occurrence of geomagnetic field (GMF) reversals (or excursions) and the moment of the radiation of Angiosperms. This led to the hypothesis that alterations in GMF polarity may play a role in plant evolution. Here, we describe a method to test this hypothesis by exposing Arabidopsis thaliana to artificially reversed GMF conditions. We used a three-axis magnetometer and the collected data were used to calculate the magnitude of the GMF. Three DC power supplies were connected to three Helmholtz coil pairs and were controlled by a computer to alter the GMF conditions. Plants grown in Petri plates were exposed to both normal and reversed GMF conditions. Sham exposure experiments were also performed. Exposed plants were photographed during the experiment and images were analyzed to calculate root length and leaf areas. Arabidopsis total RNA was extracted and Quantitative Real Time-PCR (qPCR) analyses were performed on gene expression of CRUCIFERIN 3 (CRU3), copper transport protein1 (COTP1), Redox Responsive Transcription Factor1 (RRTF1), Fe Superoxide Dismutase 1, (FSD1), Catalase3 (CAT3), Thylakoidal Ascorbate Peroxidase (TAPX), a cytosolic Ascorbate Peroxidase1 (APX1), and NADPH/respiratory burst oxidase protein D (RbohD). Four different reference genes were analysed to normalize the results of the qPCR. The best of the four genes was selected and the most stable gene for normalization was used. Our data show for the first time that reversing the GMF polarity using triaxial coils has significant effects on plant growth and gene expression. This supports the hypothesis that GMF reversal contributes to inducing changes in plant development that might justify a higher selective pressure, eventually leading to plant evolution.
Collapse
Affiliation(s)
- Cinzia M Bertea
- Department of Life Sciences and Systems Biology, University of Turin
| | | | - Chiara Agliassa
- Department of Life Sciences and Systems Biology, University of Turin
| | | | - Massimo E Maffei
- Department of Life Sciences and Systems Biology, University of Turin;
| |
Collapse
|
26
|
Macias DM, Coughlin MJ, Zang K, Stevens FR, Jastifer JR, Doty JF. Low-Level Laser Therapy at 635 nm for Treatment of Chronic Plantar Fasciitis: A Placebo-Controlled, Randomized Study. J Foot Ankle Surg 2015; 54:768-72. [PMID: 25769363 DOI: 10.1053/j.jfas.2014.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Indexed: 02/03/2023]
Abstract
Plantar fasciitis affects nearly 1 million persons in the United States at any one time. Conservative therapies have been reported to successfully treat 90% of plantar fasciitis cases; however, for the remaining cases, only invasive therapeutic solutions remain. This investigation studied newly emerging technology, low-level laser therapy. From September 2011 to June 2013, 69 subjects were enrolled in a placebo-controlled, randomized, double-blind, multicenter study that evaluated the clinical utility of low-level laser therapy for the treatment of unilateral chronic fasciitis. The volunteer participants were treated twice a week for 3 weeks for a total of 6 treatments and were evaluated at 5 separate time points: before the procedure and at weeks 1, 2, 3, 6, and 8. The pain rating was recorded using a visual analog scale, with 0 representing "no pain" and 100 representing "worst pain." Additionally, Doppler ultrasonography was performed on the plantar fascia to measure the fascial thickness before and after treatment. Study participants also completed the Foot Function Index. At the final follow-up visit, the group participants demonstrated a mean improvement in heel pain with a visual analog scale score of 29.6 ± 24.9 compared with the placebo subjects, who reported a mean improvement of 5.4 ± 16.0, a statistically significant difference (p < .001). Although additional studies are warranted, these data have demonstrated that low-level laser therapy is a promising treatment of plantar fasciitis.
Collapse
Affiliation(s)
- David M Macias
- Orthopaedic Surgeon, Saint Alphonsus Coughlin Clinic, Boise, ID.
| | | | - Kerry Zang
- Podiatrist, Arizona Institute of Foot Care Physicians, Mesa, AZ
| | | | | | - Jesse F Doty
- Orthopaedic Surgeon, University of Tennesse Erlanger, Chattanooga, TN
| |
Collapse
|
27
|
El-Mekawy HS, ElDeeb AM, Ghareib HO. Effect of laser acupuncture combined with a diet-exercise intervention on metabolic syndrome in post-menopausal women. J Adv Res 2014; 6:757-63. [PMID: 26425364 PMCID: PMC4563594 DOI: 10.1016/j.jare.2014.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 12/14/2022] Open
Abstract
This study aimed to evaluate the effect of laser acupuncture combined with a diet-exercise intervention on features of the metabolic syndrome (MetS). Twenty-eight obese post-menopausal women were randomly distributed to the control and laser acupuncture group. The control group received the diet-exercise intervention and the study group received the same intervention and sessions of laser acupuncture, 3 times/week for 12 weeks. Anthropometric measurement, fasting blood glucose and insulin levels, homeostatic model assessment-insulin resistance (HOMA-IR), and lipid profile were assessed before and after the treatment course. Both groups showed a significant decrease in the anthropometric and metabolic parameters. However, laser acupuncture group showed a greater decrease in the waist (P = 0.001) and hip (P = 0.001) circumferences, cholesterol (P = 0.04), and insulin levels (P = 0.043) than the control group. These results suggest that laser acupuncture is a valuable approach that could be added to the diet-exercise intervention to correct features of the MetS.
Collapse
Affiliation(s)
- Hanan S El-Mekawy
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Abeer M ElDeeb
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Hassan O Ghareib
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
28
|
Spencer NY, Engelhardt JF. The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry 2014; 53:1551-64. [PMID: 24555469 PMCID: PMC3985689 DOI: 10.1021/bi401719r] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Redox
reactions have been established as major biological players
in many cellular signaling pathways. Here we review mechanisms of
redox signaling with an emphasis on redox-active signaling endosomes.
Signals are transduced by relatively few reactive oxygen species (ROS),
through very specific redox modifications of numerous proteins and
enzymes. Although ROS signals are typically associated with cellular
injury, these signaling pathways are also critical for maintaining
cellular health at homeostasis. An important component of ROS signaling
pertains to localization and tightly regulated signal transduction
events within discrete microenvironments of the cell. One major aspect
of this specificity is ROS compartmentalization within membrane-enclosed
organelles such as redoxosomes (redox-active endosomes) and the nuclear
envelope. Among the cellular proteins that produce superoxide are
the NADPH oxidases (NOXes), transmembrane proteins that are implicated
in many types of redox signaling. NOXes produce superoxide on only
one side of a lipid bilayer; as such, their orientation dictates the
compartmentalization of ROS and the local control of signaling events
limited by ROS diffusion and/or movement through channels associated
with the signaling membrane. NOX-dependent ROS signaling pathways
can also be self-regulating, with molecular redox sensors that limit
the local production of ROS required for effective signaling. ROS
regulation of the Rac-GTPase, a required co-activator of many NOXes,
is an example of this type of sensor. A deeper understanding of redox
signaling pathways and the mechanisms that control their specificity
will provide unique therapeutic opportunities for aging, cancer, ischemia-reperfusion
injury, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Netanya Y Spencer
- Department of Anatomy and Cell Biology, The University of Iowa , Iowa City, Iowa 52242-1009, United States
| | | |
Collapse
|
29
|
Choe YH, Kim YS, Kim IS, Bae MJ, Lee EJ, Kim YH, Park HM, Yoon HS. Homologous expression of γ-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:610-8. [PMID: 23294545 DOI: 10.1016/j.jplph.2012.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/03/2012] [Accepted: 12/03/2012] [Indexed: 05/17/2023]
Abstract
Various environmental stresses induce reactive oxygen species (ROS), causing deleterious effects on plant cells. Glutathione (GSH), a critical antioxidant, is used to combat ROS. GSH is produced by γ-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the Oryza sativa L. Japonica cv. Ilmi ECS (OsECS) gene, we generated transgenic rice plants overexpressing OsECS under the control of an inducible promoter (Rab21). When grown under saline conditions (100mM) for 4 weeks, 2-independent transgenic (TGR1 and TGR2) rice plants remained bright green in comparison to control wild-type (WT) rice plants. TGR1 and TGR2 rice plants also showed a higher GSH/GSSG ratio than did WT rice plants in the presence of 100mM NaCl, which led to enhanced redox homeostasis. TGR1 and TGR2 rice plants also showed lower ion leakage and higher chlorophyll-fluorescence when exposed to 10μM methyl viologen (MV). Furthermore, the TGR1 and TGR2 rice seeds had approximately 1.5-fold higher germination rates in the presence of 200mM salt. Under paddy field conditions, OsECS-overexpression in transgenic rice plants increased rice grain yield (TGW) and improved biomass. Overall, our results show that OsECS overexpression in transgenic rice increases tolerance and germination rate in the presence of abiotic stress by improving redox homeostasis via an enhanced GSH pool. Our findings suggest that increases in grain yield by OsECS overexpression could improve crop yields under natural environmental conditions.
Collapse
MESH Headings
- Acclimatization
- Agrobacterium/genetics
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Epistasis, Genetic
- Gene Expression Regulation, Plant
- Glutamate-Cysteine Ligase/genetics
- Glutamate-Cysteine Ligase/metabolism
- Glutathione/genetics
- Glutathione/metabolism
- Homeostasis
- Oryza/genetics
- Oryza/growth & development
- Oryza/physiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- Plants, Genetically Modified/physiology
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Salt Tolerance
- Stress, Physiological
Collapse
Affiliation(s)
- Yong-Hoe Choe
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Grodzki ACG, Giulivi C, Lein PJ. Oxygen tension modulates differentiation and primary macrophage functions in the human monocytic THP-1 cell line. PLoS One 2013; 8:e54926. [PMID: 23355903 PMCID: PMC3552948 DOI: 10.1371/journal.pone.0054926] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/20/2012] [Indexed: 01/08/2023] Open
Abstract
The human THP-1 cell line is widely used as an in vitro model system for studying macrophage differentiation and function. Conventional culture conditions for these cells consist of ambient oxygen pressure (∼20% v/v) and medium supplemented with the thiol 2-mercaptoethanol (2-ME) and serum. In consideration of the redox activities of O₂ and 2-ME, and the extensive experimental evidence supporting a role for reactive oxygen species (ROS) in the differentiation and function of macrophages, we addressed the question of whether culturing THP-1 cells under a more physiologically relevant oxygen tension (5% O₂) in the absence of 2-ME and serum would alter THP-1 cell physiology. Comparisons of cultures maintained in 18% O₂versus 5% O₂ indicated that reducing oxygen tension had no effect on the proliferation of undifferentiated THP-1 cells. However, decreasing the oxygen tension to 5% O₂ significantly increased the rate of phorbol ester-induced differentiation of THP-1 cells into macrophage-like cells as well as the metabolic activity of both undifferentiated and PMA-differentiated THP-1 cells. Removal of both 2-ME and serum from the medium decreased the proliferation of undifferentiated THP-1 cells but increased metabolic activity and the rate of differentiation under either oxygen tension. In differentiated THP-1 cells, lowering the oxygen tension to 5% O₂ decreased phagocytic activity, the constitutive release of β-hexosaminidase and LPS-induced NF-κB activation but enhanced LPS-stimulated release of cytokines. Collectively, these data demonstrate that oxygen tension influences THP-1 cell differentiation and primary macrophage functions, and suggest that culturing these cells under tightly regulated oxygen tension in the absence of exogenous reducing agent and serum is likely to provide a physiologically relevant baseline from which to study the role of the local redox environment in regulating THP-1 cell physiology.
Collapse
Affiliation(s)
- Ana Cristina G. Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Carroll JL, Kim I. Carotid chemoreceptor "resetting" revisited. Respir Physiol Neurobiol 2012; 185:30-43. [PMID: 22982216 DOI: 10.1016/j.resp.2012.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/03/2012] [Accepted: 09/06/2012] [Indexed: 12/16/2022]
Abstract
Carotid body (CB) chemoreceptors transduce low arterial O(2) tension into increased action potential activity on the carotid sinus nerves, which contributes to resting ventilatory drive, increased ventilatory drive in response to hypoxia, arousal responses to hypoxia during sleep, upper airway muscle activity, blood pressure control and sympathetic tone. Their sensitivity to O(2) is low in the newborn and increases during the days or weeks after birth to reach adult levels. This postnatal functional maturation of the CB O(2) response has been termed "resetting" and it occurs in every mammalian species studied to date. The O(2) environment appears to play a key role; the fetus develops in a low O(2) environment throughout gestation and initiation of CB "resetting" after birth is modulated by the large increase in arterial oxygen tension occurring at birth. Although numerous studies have reported age-related changes in various components of the O(2) transduction cascade, how the O(2) environment shapes normal CB prenatal development and postnatal "resetting" remains unknown. Viewing CB "resetting" as environment-driven (developmental) phenotypic plasticity raises important mechanistic questions that have received little attention. This review examines what is known (and not known) about mechanisms of CB functional maturation, with a focus on the role of the O(2) environment.
Collapse
Affiliation(s)
- John L Carroll
- Division of Pediatric Pulmonary Medicine, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, 1 Children's Way, Little Rock, AR 72202, United States.
| | | |
Collapse
|
32
|
Gabrielli A, Svegliati S, Moroncini G, Amico D. New insights into the role of oxidative stress in scleroderma fibrosis. Open Rheumatol J 2012; 6:87-95. [PMID: 22802906 PMCID: PMC3395898 DOI: 10.2174/1874312901206010087] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 01/25/2023] Open
Abstract
Systemic sclerosis (Scleroderma – SSc) is a connective tissue disorder of unknown aetiology characterized by extensive fibrosis of the skin and visceral organs, by vascular abnormalities and immunological manifestations. Recent evidence suggest that the cellular redox state may play a significant role in the progression of scleroderma fibrosis. Mechanisms involved include an autoamplification circuit linking ROS, Ras and ERK 1-2 which in turn amplifies and maintains the autocrine loop made up by cytokines, growth factors and their cognate receptors. This review summarizes the recent progress on the role of oxidative stress in the pathophysiology of scleroderma and disorders characterised by organ fibrosis
Collapse
Affiliation(s)
- Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari - Clinica Medica - Università Politecnica delle Marche, Ancona, Italy
| | | | | | | |
Collapse
|
33
|
Kim I, Yang D, Tang X, Carroll JL. Reference gene validation for qPCR in rat carotid body during postnatal development. BMC Res Notes 2011; 4:440. [PMID: 22023793 PMCID: PMC3224571 DOI: 10.1186/1756-0500-4-440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/24/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The carotid bodies are the main arterial oxygen chemoreceptors in mammals. Afferent neural output from the carotid bodies to brainstem respiratory and cardiovascular nuclei provides tonic input and mediates important protective responses to acute and chronic hypoxia. It is widely accepted that the selection of reference genes for mRNA normalization in quantitative real-time PCR must be validated for a given tissue and set of conditions. This is particularly important for studies in carotid body during early postnatal maturation as the arterial oxygen tension undergoes major changes from fetal to postnatal life, which may affect reference gene expression. In order to determine the most stable and suitable reference genes for the study of rat carotid body during development, six commonly used reference genes, β-actin, RPII (RNA polymerase II), PPIA (peptidyl-proyl-isomerase A), TBP (TATA-box binding protein), GAPDH, and 18s rRNA, were evaluated in two age groups (P0-1 and P14-16) under three environmental oxygen conditions (normoxia, chronic hypoxia and chronic hyperoxia) using the three most commonly used software programs, geNorm, NormFinder and BestKeeper. FINDINGS The three programs produced similar results but the reference gene rankings were not identical between programs or experimental conditions. Overall, 18s rRNA was the least stable reference gene for carotid body and, when hyperoxia and/or hypoxia conditions were included, actin was similarly unstable. CONCLUSIONS Reference or housekeeping gene expression for qPCR studies of carotid body during postnatal development may vary with developmental stage and environmental conditions. Selection of the best reference gene or combination of reference genes for carotid body development studies should take environmental conditions into account. Two commonly used reference genes, 18s rRNA and actin, may be unsuitable for studies of carotid body maturation, especially if the study design includes altered oxygen conditions.
Collapse
Affiliation(s)
- Insook Kim
- University of Arkansas for Medical Sciences, Department of Pediatrics, Division of Pulmonary Medicine, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA
| | - Dongjin Yang
- University of Arkansas for Medical Sciences, Department of Pediatrics, Division of Pulmonary Medicine, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA
| | - Xinyu Tang
- University of Arkansas for Medical Sciences, Department of Pediatrics, Division of Biostatistics, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA
| | - John L Carroll
- University of Arkansas for Medical Sciences, Department of Pediatrics, Division of Pulmonary Medicine, Arkansas Children's Hospital Research Institute, Little Rock, Arkansas, USA
| |
Collapse
|
34
|
Al-Abdul-Wahid MS, Evanics F, Prosser RS. Dioxygen transmembrane distributions and partitioning thermodynamics in lipid bilayers and micelles. Biochemistry 2011; 50:3975-83. [PMID: 21510612 DOI: 10.1021/bi200168n] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cellular respiration, mediated by the passive diffusion of oxygen across lipid membranes, is key to many basic cellular processes. In this work, we report the detailed distribution of oxygen across lipid bilayers and examine the thermodynamics of oxygen partitioning via NMR studies of lipids in a small unilamellar vesicle (SUV) morphology. Dissolved oxygen gives rise to paramagnetic chemical shift perturbations and relaxation rate enhancements, both of which report on local oxygen concentration. From SUVs containing the phospholipid sn-2-perdeuterio-1-myristelaidoyl, 2-myristoyl-sn-glycero-3-phosphocholine (MLMPC), an analogue of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), we deduced the complete trans-bilayer oxygen distribution by measuring (13)C paramagnetic chemical shifts perturbations for 18 different sites on MLMPC arising from oxygen at a partial pressure of 30 bar. The overall oxygen solubility at 45 °C spans a factor of 7 between the bulk water (23.7 mM) and the bilayer center (170 mM) and is lowest in the vicinity of the phosphocholine headgroup, suggesting that oxygen diffusion across the glycerol backbone should be the rate-limiting step in diffusion-mediated passive transport of oxygen across the lipid bilayer. Lowering of the temperature from 45 to 25 °C gave rise to a slight decrease of the oxygen solubility within the hydrocarbon interior of the membrane. An analysis of the temperature dependence of the oxygen solubility profile, as measured by (1)H paramagnetic relaxation rate enhancements, reveals that oxygen partitioning into the bilayer is entropically favored (ΔS° = 54 ± 3 J K(-1) mol(-1)) and must overcome an enthalpic barrier (ΔH° = 12.0 ± 0.9 kJ mol(-1)).
Collapse
Affiliation(s)
- M Sameer Al-Abdul-Wahid
- Department of Chemistry, University of Toronto, UTM, North Mississauga, Ontario, Canada L5L 1C6
| | | | | |
Collapse
|
35
|
Momeni M, De Kock M, Devuyst O, Liistro G. Effect of N-acetyl-cysteine and hyperoxia on erythropoietin production. Eur J Appl Physiol 2011; 111:2681-6. [PMID: 21394639 DOI: 10.1007/s00421-011-1893-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 02/25/2011] [Indexed: 01/24/2023]
Abstract
Previous studies in healthy subjects have shown an increase in erythropoietin (EPO) production after administration of N-acetyl-cysteine (NAC). These authors hypothesized that NAC increases intracellular reduced glutathione, decreasing reactive oxygen species and enabling EPO production. We investigated if EPO production could be stimulated with a single dose of NAC, after 90 min of pure oxygen breathing. Thirty-eight healthy volunteers were randomized into either the control (C) group or the NAC group, which received 600 mg NAC PO dissolved in a glass of orange juice, 60 min before breathing 15 L/min of 100% normobaric oxygen. Orange juice was administered to both groups. Blood samples for EPO measurement were taken at T0, before the orange juice administration, and T1, T2, T3 and T4, respectively, 8, 24, 32 and 48 h after the orange juice. The EPO concentrations of the NAC group decreased significantly at T1, followed by a significant increase compared to baseline, which was obvious until T4. The EPO concentrations of the C group did not show any significant variations. In this study, a significant increase of EPO production was observed after a short-term hyperoxic stimulus only when preceded with the administration of a single dose of NAC.
Collapse
Affiliation(s)
- Mona Momeni
- Department of Anesthesiology, Université Catholique de Louvain, Cliniques Universitaires Saint Luc, Avenue Hippocrate 10/1821, 1200, Brussels, Belgium.
| | | | | | | |
Collapse
|
36
|
The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 2010; 42:1634-50. [DOI: 10.1016/j.biocel.2010.06.001] [Citation(s) in RCA: 504] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/13/2010] [Accepted: 06/01/2010] [Indexed: 12/18/2022]
|
37
|
Hyperglycemia and hypoxia are interrelated in their teratogenic mechanism: studies on cultured rat embryos. ACTA ACUST UNITED AC 2010; 89:106-15. [PMID: 20127827 DOI: 10.1002/bdrb.20230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Hyperglycemia and hypoxia are well-known teratogens that may affect many animal species, including man. One of the main mechanisms of teratogenic action of both seems to be increased oxidative stress. The purpose of this study was to evaluate the hypothesis that in the developing embryo hyperglycemia also leads to hypoxia, both resulting in oxidative damage. METHODS The study was performed on 10.5-day-old rat embryos of the regular Sabra strain cultured for 28 hours in hyperglycemic or hypoxic conditions. Embryonic growth and rate of anomalies was assessed at the end of the culture period. The embryonic oxidative damage was investigated by studying the levels of Malondialdehyde (MDA) to determine the lipid peroxidation. The redox status was studied by measuring the activity of Catalase-like (CAT) and Super Oxide Dismutase (SOD) enzymes and the amount of Low Molecular Weight Antioxidants (LMWA). In addition, we studied by immunohistochemistry in the embryos and yolk sacs the amount of nitrotyrosine as an additional marker for the extent of oxidative stress. The amounts of the redox and hypoxia sensitive transcription factors HIF1alpha, NFkB, and IkB were also studied by immunohistochemistry. RESULTS Both hyperglycemia and hypoxia increased the rate of congenital anomalies mainly of the heart, neural tube, and brain. Embryonic growth and scoring were decreased only by hypoxia. Both hyperglycemia and hypoxia increased embryonic oxidative stress as evidenced by increased lipid peroxidation, increased nitrotyrosine and LMWA, but only minimal changes in CAT and SOD activity. Severe hyperglycemia also caused hypoxia, as evidenced by increased HIF1alpha. Thus, there seems to be an interrelation between hyperglycemia and hypoxia, both resulting in embryonic damage apparently by enhanced oxidative stress. CONCLUSIONS Both hyperglycemia and hypoxia seem to exert their embryotoxicity through a similar mechanism of increased oxidative stress in the embryo in a stage when its antioxidant capacity is still weak. Moreover, hyperglycemia also seems to induce hypoxia, intensifying diabetes-induced embryopathy.
Collapse
|
38
|
Jackson RF, Dedo DD, Roche GC, Turok DI, Maloney RJ. Low-level laser therapy as a non-invasive approach for body contouring: A randomized, controlled study. Lasers Surg Med 2009; 41:799-809. [PMID: 20014253 DOI: 10.1002/lsm.20855] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Systemic oxidative stress in patients with pulmonary sarcoidosis. Pulm Pharmacol Ther 2009; 22:603-7. [DOI: 10.1016/j.pupt.2009.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/11/2009] [Accepted: 09/03/2009] [Indexed: 11/18/2022]
|
40
|
Sabirzhanova IB, Sabirzhanov BE, Keifer J, Clark TG. Activation of mammalian Tolloid-like 1 expression by hypoxia in human neuroblastoma SH-SY5Y cells. Biochem Biophys Res Commun 2009; 389:338-42. [PMID: 19723501 DOI: 10.1016/j.bbrc.2009.08.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 08/24/2009] [Indexed: 12/20/2022]
Abstract
Mammalian Tolloid-like 1 (mTll-1) is an astacin metalloprotease that is a member of the Tolloid family of proteins. mTll-1 cleaves chordin, an inhibitor of bone morphogenetic proteins (BMPs) and potentiates activity of the BMPs. Prenatal stress and glucocorticoids decrease mTll-1 expression whereas voluntary exercise increase mTll-1 gene expression in the mouse hippocampus. Here, we studied the underlying molecular mechanisms by which hypoxia regulates human mTll-1 gene expression. When cells were subjected to hypoxia, the expression of endogenous mTll-1 was upregulated in SH-SY5Y human neuroblastoma cells. Dual-luciferase assay and site-directed mutagenesis showed the presence of hypoxia responsive elements (HREs) at position 625 that was essential for activation of mTll-1 expression under hypoxic conditions. The binding of hypoxia-inducible factor (HIF-1) protein to the HREs was confirmed by gel shift assay. These results indicate that the HRE motif is directly involved in the activation of the mTll-1 transcription under hypoxic conditions.
Collapse
Affiliation(s)
- Inna B Sabirzhanova
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
41
|
Pechánová O, Jendeková L, Vranková S. Effect of chronic apocynin treatment on nitric oxide and reactive oxygen species production in borderline and spontaneous hypertension. Pharmacol Rep 2009; 61:116-22. [PMID: 19307699 DOI: 10.1016/s1734-1140(09)70013-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/19/2009] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to investigate the effect of NAD(P)H oxidase inhibitor - apocynin (4-hydroxy-3-methoxyacetophenone) on the increase of systolic blood pressure (SBP) in borderline (BHR) and spontaneously hypertensive rats (SHR). Young 6-week-old male BHR (offspring of SHR dams and Wistar Kyoto sires) and SHR were treated with apocynin (30 mg/kg/day) for six weeks. SBP was measured by tail-cuff plethysmography. Nitric oxide synthase (NOS) activity was determined in the left ventricle and aorta. Protein expression of nuclear factor kappa B (NF-kappaB) and NAD(P)H oxidase subunits p67phox and p22phox as well as concentration of cGMP were determined for the left ventricle. Apocynin significantly decreased SBP in all groups investigated. Administration of apocynin had no effect on NOS activity in either tissue studied. However, apocynin decreased protein expression of NF-kappaB (p65) and NAD(P)H oxidase subunit p22phox in both hypertensive groups and p67phox subunit in the SHR group. Moreover, apocynin was able to prevent a decrease in cGMP concentration in the left ventricle of both hypertensive groups. In conclusion, our study demonstrated that apocynin treatment partially prevented SBP rise in borderline and spontaneously hypertensive rats, yet without increasing activity of NOS in the left ventricle and aorta. However, apocynin was able to decrease production of reactive oxygen species in hypertensive rats; thus preventing the decrease in cGMP formation.
Collapse
Affiliation(s)
- Olga Pechánová
- Institute of Normal and Pathological Physiology, Center of Excellence for Cardiovascular Research, Slovak Academy of Sciences, Sienkiewiczova 1, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Armando Gabrielli
- Department of Medical Science and Surgery, Section of Clinical Medicine, Università Politecnica delle Marche, and Ospedali Riuniti, Ancona, Italy.
| | | | | |
Collapse
|
43
|
Soldatov AA, Savina MV. Effect of hypoxia on the content and stoichiometry of cytochromes in muscle of the gray mullet Liza aurata. J EVOL BIOCHEM PHYS+ 2008. [DOI: 10.1134/s0022093008050095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Novitsky VV, Ryazantseva NV, Chasovskih NY, Starikova EG, Kaygorodova EV, Starikov YV, Jukova OB. Modulation of apoptosis of mononuclear cells under conditions of oxidative stress. Bull Exp Biol Med 2008; 145:283-6. [PMID: 19039924 DOI: 10.1007/s10517-008-0071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We studied mitochondrial and type 1 tumor necrosis factor-a receptor (TNFR1)-mediated pathways triggering the apoptotic program in mononuclear cells under conditions of oxidative stress. Intensification of intracellular production of reactive oxygen forms is accompanied by an increase in the number of annexin-positive TNFRI-presenting cells and mononuclear cells with reduced mitochondrial transmembrane potential in case of induction of oxidative stress with 1 mM H2O2 in vitro and in patients with pneumonia.
Collapse
Affiliation(s)
- V V Novitsky
- Department of Pathophysiology, Department of Fundamentals of Clinical Medicine, Siberian State Medical University, Federal Agency for Health Care and Social Development, Tomsk
| | | | | | | | | | | | | |
Collapse
|
45
|
Ryazantseva NV, Novitsky VV, Chasovskih NY, Kaygorodova EV, Starikova EG, Starikov YV, Radzivil TT. Role of recombinant mitogen-activated protein kinases JNK and p38 in the regulation of apoptosis in blood mononuclear cells under conditions of oxidative stress in vitro. Bull Exp Biol Med 2008; 145:569-72. [DOI: 10.1007/s10517-008-0145-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Effects of Leucine-enkephalin on Catalase Activity and Glutathione Level in Haemolymph of the Scallop Chlamys farreri. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
A Three Stage Integrative Pathway Search (TIPS) framework to identify toxicity relevant genes and pathways. BMC Bioinformatics 2007; 8:202. [PMID: 17570844 PMCID: PMC1906836 DOI: 10.1186/1471-2105-8-202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 06/14/2007] [Indexed: 03/31/2023] Open
Abstract
Background The ability to obtain profiles of gene expressions, proteins and metabolites with the advent of high throughput technologies has advanced the study of pathway and network reconstruction. Genome-wide network reconstruction requires either interaction measurements or large amount of perturbation data, often not available for mammalian cell systems. To overcome these shortcomings, we developed a Three Stage Integrative Pathway Search (TIPS©) approach to reconstruct context-specific active pathways involved in conferring a specific phenotype, from limited amount of perturbation data. The approach was tested on human liver cells to identify pathways that confer cytotoxicity. Results This paper presents a systems approach that integrates gene expression and cytotoxicity profiles to identify a network of pathways involved in free fatty acid (FFA) and tumor necrosis factor-α (TNF-α) induced cytotoxicity in human hepatoblastoma cells (HepG2/C3A). Cytotoxicity relevant genes were first identified and then used to reconstruct a network using Bayesian network (BN) analysis. BN inference was used subsequently to predict the effects of perturbing a gene on the other genes in the network and on the cytotoxicity. These predictions were subsequently confirmed through the published literature and further experiments. Conclusion The TIPS© approach is able to reconstruct active pathways that confer a particular phenotype by integrating gene expression and phenotypic profiles. A web-based version of TIPS© that performs the analysis described herein can be accessed at .
Collapse
|
48
|
Milton SL, Prentice HM. Beyond anoxia: the physiology of metabolic downregulation and recovery in the anoxia-tolerant turtle. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:277-90. [PMID: 17049896 PMCID: PMC1975785 DOI: 10.1016/j.cbpa.2006.08.041] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/17/2006] [Accepted: 08/21/2006] [Indexed: 01/05/2023]
Abstract
The freshwater turtle Trachemys scripta is among the most anoxia-tolerant of vertebrates, a true facultative anaerobe able to survive without oxygen for days at room temperature to weeks or months during winter hibernation. Our good friend and colleague Peter Lutz devoted nearly 25 years to the study of the physiology of anoxia tolerance in these and other model organisms, promoting not just the basic science but also the idea that understanding the physiology and molecular mechanisms behind anoxia tolerance provides insights into critical survival pathways that may be applicable to the hypoxic/ischemic mammalian brain. Work by Peter and his colleagues focused on the factors which enable the turtle to enter a deep hypometabolic state, including decreases in ion flux ("channel arrest"), increases in inhibitory neuromodulators like adenosine and GABA, and the maintenance of low extracellular levels of excitatory compounds such as dopamine and glutamate. Our attention has recently turned to molecular mechanisms of anoxia tolerance, including the upregulation of such protective factors as heat shock proteins (Hsp72, Hsc73), the reversible downregulation of voltage gated potassium channels, and the modulation of MAP kinase pathways. In this review we discuss three phases of anoxia tolerance, including the initial metabolic downregulation over the first several hours, the long-term maintenance of neuronal function over days to weeks of anoxia, and finally recovery upon reoxygenation, with necessary defenses against reactive oxygen stress.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | | |
Collapse
|
49
|
Chronic inhalation of carbon monoxide: effects on the respiratory and cardiovascular system at doses corresponding to tobacco smoking. Toxicology 2006; 228:280-90. [PMID: 17056171 DOI: 10.1016/j.tox.2006.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/07/2006] [Accepted: 09/20/2006] [Indexed: 11/24/2022]
Abstract
Carbon monoxide (CO) is a dangerous poison in high concentrations, but the long-term effects of low doses of CO, as in the gaseous component of tobacco smoke, are not well known. The aims of our study were to evaluate the long-term effects of inhaled CO on the respiratory and cardiovascular system at doses corresponding to tobacco smoking and its effect on tumourigenesis and pulmonary neuroendocrine (NE) cells. Female Wistar rats were exposed to either CO (200 ppm) for 20 h/day (n=51) or air (n=26) for 72 weeks. Carboxyhaemoglobin was 14.7+/-0.3% in CO exposed animals and 0.3+/-0.1% in controls. In the lungs, no signs of pathology similar to that associated with cigarette smoking were observed, and no differences in number of pulmonary NE cells were observed between the groups. Chronic CO inhalation induced a 20% weight increase of the right ventricle (p=0.001) and a 14% weight increase of the left ventricle and interventricular septum (p<0.001). Histological examination of the myocardium did not reveal any signs of scarring. In the aorta and femoral artery, no signs of atherosclerosis were observed in CO exposed rats. No exposure related carcinogenic effects were observed. Spontaneous tumours were identified in 29% of CO exposed animals and in 28% of the controls. Our results suggest that low dose CO exposure is probably not responsible for the respiratory pathology associated with tobacco smoking. The effects on the cardiovascular system seem to involve myocardial hypertrophy, but not atherogenesis.
Collapse
|
50
|
Carter KC, Hutchison S, Henriquez FL, Légaré D, Ouellette M, Roberts CW, Mullen AB. Resistance of Leishmania donovani to sodium stibogluconate is related to the expression of host and parasite gamma-glutamylcysteine synthetase. Antimicrob Agents Chemother 2006; 50:88-95. [PMID: 16377672 PMCID: PMC1346807 DOI: 10.1128/aac.50.1.88-95.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequencing studies showed that the gamma-glutamylcysteine synthetase (gamma-GCS) heavy chain genes from sodium stibogluconate (SSG)-resistant (SSG-R) and SSG-susceptible (SSG-S) Leishmania donovani strains were identical, indicating that SSG resistance was related to quantitative differences in gamma-GCS expression rather than gene interstrain polymorphisms. In vitro infection of murine macrophages with the SSG-R strain, but not the SSG-S strain, down regulated expression of host gamma-GCS, which would result in a reduction in intramacrophage glutathione (GSH) levels and promote an oxidative intramacrophage environment. This would inhibit, or minimize, the reduction of SSG pentavalent antimony to its more toxic trivalent form. Macrophage studies showed that the SSG-R strain expressed higher levels of gamma-GCS compared to the SSG-S strain, which would result in higher GSH levels, giving increased protection against oxidative stress and facilitating SSG efflux. However a similar differential effect on host and parasite gamma-GCS expression was not obtained when using tissues from infected mice. In this case gamma-GCS expression was organ and strain dependent for both the host and the parasite, indicating that environmental conditions have a profound effect on gamma-GCS expression. Consistent with the proposed mechanism from in vitro studies, increasing tissue GSH levels in the presence of SSG by cotreatment of L. donovani-infected mice with SSG solution and GSH incorporated into nonionic surfactant vesicles was more effective in reducing liver, spleen, and bone marrow parasite burdens than monotherapy with SSG. Together, these results indicate that SSG resistance is associated with manipulation of both host and parasite GSH levels by L. donovani.
Collapse
Affiliation(s)
- K C Carter
- Department of Immunology, SIBS, University of Strathclyde, 31 Taylor Street, Glasgow G4 0NR, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|