1
|
Li A, Liu P, Gan J, Fang W, Liu A. Phellodendrine Exerts Protective Effects on Intra-abdominal Sepsis by Inactivating AKT/NF-kB Signaling. Cell Biochem Biophys 2025; 83:2489-2497. [PMID: 39953352 DOI: 10.1007/s12013-024-01658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 02/17/2025]
Abstract
Acute kidney injury (AKI) and acute lung injury (ALI) are major complications of intra-abdominal sepsis, leading to increased mortality. Phellodendrine (PHE) is a characteristic and important active ingredient of Phellodendri Cortex, possessing multiple pharmacological properties. This study intends to explore the effect of PHE on intra-abdominal sepsis-induced AKI and ALI. An intra-abdominal infection-induced rat model of sepsis was established by fecal intraperitoneal injection, followed by the administration of PHE. ELISA was used to determine plasma levels of inflammatory cytokines. Hematoxylin-eosin, Periodic acid Schiff, and Masson trichrome staining were employed for histopathological analysis of rat kidney and lung tissues. Western blotting was used to estimate the AKT/NF-κB signaling-related protein levels. The results showed that PHE improved the survival rate of septic rats and reduced plasma levels of proinflammatory cytokines. PHE administration attenuated pathological lesions in the kidneys and lungs of septic rats. Mechanistically, PHE treatment blocked AKT/NF-κB signaling in septic rats' kidneys and lungs. In conclusion, PHE ameliorates intra-abdominal sepsis-induced kidney and lung injury possibly by inactivating AKT/NF-kB signaling.
Collapse
Affiliation(s)
- Ang Li
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Liu
- Department of Emergency, Wuhan Fourth Hospital, Wuhan, China
| | - Jiaohong Gan
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weijun Fang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Anjie Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Fu H, Gao B, Zhou X, Hao Y, Liu C, Lan A, Tang J, Zhou F. DNA dioxygenase TET2 deficiency aggravates sepsis-induced acute lung injury by targeting ITGA10 via the PI3K/AKT signaling pathway. Cell Mol Biol Lett 2025; 30:60. [PMID: 40389853 PMCID: PMC12090539 DOI: 10.1186/s11658-025-00739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 05/06/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is a clinical condition with high morbidity and mortality, and impaired endothelial function is the main pathological characteristic. As a member of DNA demethylases, ten-eleven translocation protein 2 (TET2) is involved in a variety of biological processes. However, the role of TET2 in endothelial dysfunction of sepsis-induced ALI remains unclear. METHODS We used cecal ligation and puncture (CLP) to establish a sepsis-induced acute lung injury mouse model and screened out Tet2 from TET family proteins. The results suggested that Tet2 was obviously declined. We used lipopolysaccharide (LPS) to stimulate human pulmonary microvascular endothelial cells (HPMECs) as an in vitro model, and we found the expression of TET2 was also decreased. Then we used small interfering RNAs and adenovirus to knockdown or overexpress TET2 to investigate the effect of TET2 on the function of HPMECs. The changes in sepsis-induced ALI symptoms were also analyzed in Tet2-deficient mice generated by adeno-associated virus 6 (AAV6). Next, RNA sequencing and KEGG analysis were used to find the TET2-regulated downstream target genes and signaling pathways under LPS stimulation. Finally, the rescue experiments were performed to analyze the role of target genes and signaling pathways modulated by TET2 in LPS-treated HPMECs. RESULTS TET2 and 5-hmC levels were significantly decreased in both in vitro and in vivo models of sepsis-induced ALI. TET2 knockdown exacerbated the dysfunction and apoptosis of HPMECs induced by LPS. Conversely, TET2 overexpression significantly alleviated these dysfunctions and reduced apoptosis. Meanwhile, the lung injury of Tet2-deficient mice was aggravated by increased inflammation and apoptosis. RNA sequencing and subsequent experiments showed that TET2 overexpression could increase the expression of Integrin α10 (ITGA10) by reducing the methylation level of ITGA10 promoter. This, in turn, activated the PI3K-AKT signaling pathway. Knocking down ITGA10 weakened the beneficial effects of TET2 overexpression in LPS-stimulated endothelial cells. CONCLUSIONS In our study, we demonstrated that TET2 deficiency aggravates endothelial cell dysfunction and promotes acute lung injury by targeting ITGA10 via the PI3K-AKT pathway. These findings indicate that TET2 may be a promising therapeutic target for treating sepsis-induced ALI.
Collapse
Affiliation(s)
- Hongxue Fu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bin Gao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xin Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yingting Hao
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chang Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ailin Lan
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingyi Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Fachun Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Xiao ZF, Chai WH, Shu XL, Yuan HR, Guo F. Immune cell traits and causal relationships with cholecystitis: a mendelian randomization analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3817-3827. [PMID: 39358644 DOI: 10.1007/s00210-024-03493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cholecystitis, characterized by inflammation of the gallbladder, is intricately linked to immune cells and the cytokines they produce. Despite this association, the specific contributions of immune cells to the onset and progression of cholecystitis remain to be fully understood. To delineate this relationship, we utilized the Mendelian randomization (MR) method to scrutinize the causal connections between 731 immune cell phenotypes and cholecystitis. By conducting MR analysis on 731 immune cell markers from public datasets, this study seeks to understand their potential impact on the risk of cholecystitis. It aims to elucidate the interactions between immune phenotypes and the disease, aiming to lay the groundwork for advancing precision medicine and developing effective treatment strategies for cholecystitis. Taking immune cell phenotypes as the exposure factor and cholecystitis as the outcome event, this study used single nucleotide polymorphisms (SNPs) closely associated with both immune cell phenotypes and cholecystitis as genetic instrumental variables. We conducted a two-sample MR analysis on genome-wide association studies (GWAS) data. Our research thoroughly examined 731 immune cell markers, to determine potential causal relationships with susceptibility to cholecystitis. Sensitivity analyses were performed to ensure the robustness of our findings, excluding the potential impacts of heterogeneity and pleiotropy. To avoid reverse causality, we conducted reverse MR analyses with cholecystitis as the exposure factor and immune cell phenotypes as the outcome event. Among the 731 immune phenotypes, our study identified 21 phenotypes with a causal relationship to cholecystitis (P < 0.05). Of these, eight immune phenotypes exhibited a protective effect against cholecystitis (odds ratio (OR) < 1), while the other 13 immune phenotypes were associated with an increased risk of developing cholecystitis (OR > 1). Additionally, employing the false discovery rate (FDR) method at a significance level of 0.2, no significant causal relationship was found between cholecystitis and immune phenotypes. Our research has uncovered a significant causal relationship between immune cell phenotypes and cholecystitis. This discovery not only enhances our understanding of the role of immune cells in the onset and progression of cholecystitis but also establishes a foundation for developing more precise biomarkers and targeted therapeutic strategies. It provides a scientific basis for more effective and personalized treatments in the future. These findings are expected to substantially improve the quality of life for patients with cholecystitis and mitigate the impact of the disease on patients and their families.
Collapse
Affiliation(s)
- Ze-Fa Xiao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei-Hao Chai
- Department of Graduate School, Xinjiang Medical University, Urumqi, China
| | - Xiao-Long Shu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong-Rui Yuan
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fei Guo
- Department of Emergency Trauma Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| |
Collapse
|
4
|
Bai Y, Zhan X, Zhu Q, Ji X, Lu Y, Gao Y, Li F, Guan Z, Zhou H, Rao Z. ATG16L1 restrains macrophage NLRP3 activation and alveolar epithelial cell injury during septic lung injury. Clin Transl Med 2025; 15:e70289. [PMID: 40211890 PMCID: PMC11986372 DOI: 10.1002/ctm2.70289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The lung is the organ most commonly affected by sepsis. Additionally, acute lung injury (ALI) resulting from sepsis is a major cause of death in intensive care units. Macrophages are essential for maintaining normal lung physiological functions and are implicated in various pulmonary diseases. An essential autophagy protein, autophagy-related protein 16-like 1 (ATG16L1), is crucial for the inflammatory activation of macrophages. METHODS ATG16L1 expression was measured in lung from mice with sepsis. ALI was induced in myeloid ATG16L1-, NLRP3- and STING-deficient mice by intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg). Using immunofluorescence and flow cytometry to assess the inflammatory status of LPS-treated bone marrow-derived macrophages (BMDMs). A co-culture system of BMDMs and MLE-12 cells was established in vitro. RESULTS Myeloid ATG16L1-deficient mice exhibited exacerbated septic lung injury and a more intense inflammatory response following LPS treatment. Mechanistically, ATG16L1-deficient macrophages exhibited impaired LC3B lipidation, damaged mitochondria and reactive oxygen species (ROS) accumulation. These abnormalities led to the activation of NOD-like receptor family pyrin domain-containing protein 3 (NLRP3), subsequently enhancing proinflammatory response. Overactivated ATG16L1-deficient macrophages aggravated the damage to alveolar epithelial cells and enhanced the release of double-stranded DNA (dsDNA), thereby promoting STING activation and subsequent NLRP3 activation in macrophages, leading to positive feedback activation of macrophage NLRP3 signalling. Scavenging mitochondrial ROS or inhibiting STING activation effectively suppresses NLRP3 activation in macrophages and alleviates ALI. Furthermore, overexpression of myeloid ATG16L1 limits NLRP3 activation and reduces the severity of ALI. CONCLUSIONS Our findings reveal a new role for ATG16L1 in regulating macrophage NLRP3 feedback activation during sepsis, suggesting it as a potential therapeutic target for treating sepsis-induced ALI. KEY POINTS Myeloid-specific ATG16L1 deficiency exacerbates sepsis-induced lung injury. ATG16L1-deficient macrophages exhibit impaired LC3B lipidation and ROS accumulation, leading to NLRP3 inflammasome activation. Uncontrolled inflammatory responses in ATG16L1-deficient macrophages aggravate alveolar epithelial cell damage. Alveolar epithelial cells release dsDNA, activating the cGAS-STING-NLRP3 signaling pathway, which subsequently triggers a positive feedback activation of NLRP3. Overexpression of ATG16L1 helps mitigate lung tissue inflammation, offering a novel therapeutic direction for sepsis-induced lung injury.
Collapse
Affiliation(s)
- Yan Bai
- Department of AnesthesiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xinyu Zhan
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical UniversityNanjingChina
| | - Qing Zhu
- Department of AnesthesiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Xingyue Ji
- Department of AnesthesiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yingying Lu
- Department of AnesthesiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yiyun Gao
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical UniversityNanjingChina
| | - Fei Li
- Department of AnesthesiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhu Guan
- Department of AnesthesiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Haoming Zhou
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical UniversityNanjingChina
| | - Zhuqing Rao
- Department of AnesthesiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
5
|
Zhang F, Wang F, Zhao L, Wang L, Li W, Huang F, Wang N. Yunvjian decoction attenuates lipopolysaccharide-induced acute lung injury by inhibiting NF-κB/NLRP3 pathway and pyroptosis. Front Pharmacol 2025; 16:1430536. [PMID: 39925847 PMCID: PMC11802820 DOI: 10.3389/fphar.2025.1430536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Yunvjian (YNJ) decoction, a classic traditional Chinese medicine prescription for inflammatory diseases, has demonstrated good therapeutic effects in the clinical treatment of pneumonia. The aim of this study was to clarify the effective ingredients and mechanism of action of YNJ on lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods The effects of YNJ were evaluated in a mouse model of LPS-induced ALI and in LPS-treated MLE-12 murine lung epithelial cells and RAW264.7 macrophages in vitro. The mechanism of action of YNJ on these model systems was studied using RNA sequencing, immunohistochemical analysis, immunoblotting, immunofluorescence, ELISA, and polymerase chain reaction assays. Ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was applied to identify the absorbed components of YNJ. Results YNJ attenuated pulmonary damage in LPS-treated mice, as evidenced by reduced protein content in bronchoalveolar lavage fluid, decreased lung wet/dry weight ratio, and improved respiratory function. Analysis of pneumonia-related lung injury samples from patients in the Gene Expression Omnibus dataset GSE40012 indicated that NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis was a primary mechanism in ALI. YNJ reduced the phosphorylation of nuclear factor-kappa B (NF-κB) and decreased the expression levels of lung NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cleaved caspase-1, and interleukin-1β levels (IL-1β) in vivo. Administration of YNJ-containing mouse serum increased cell viability and decreased malondialdehyde and reactive oxidative species contents in LPS-stimulated MLE-12 cells. YNJ-containing serum also decreased the secretion of tumor necrosis factor-α, IL-6, and IL-1β in LPS-stimulated RAW264.7 macrophages, and promoted macrophage polarization toward an M2 phenotype. A total of 23 absorbed components were identified in YNJ-containing serum. Among those, network analysis and in vitro experiments indicated that diosgenin, timosaponin BII, and mangiferin are anti-inflammatory active substances. Conclusion YNJ attenuates LPS-induced ALI in mice by inhibiting pyroptosis of lung epithelial cells and macrophages via suppression of the NF-κB/NLRP3 pathway. Our findings provide novel insights into the therapeutic effects of YNJ on ALI.
Collapse
Affiliation(s)
- Fanxuan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fang Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lisha Zhao
- Tongde Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Leqian Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenjing Li
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Feihua Huang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Tongde Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Nani Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Tongde Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Hou H, Jiang B, Zhu A, Hou J, Qu Z, Liu R, Li A. Protective effect and mechanism of Sufentanil on acute lung injury in septic mice. Front Pharmacol 2025; 15:1514602. [PMID: 39885929 PMCID: PMC11780379 DOI: 10.3389/fphar.2024.1514602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025] Open
Abstract
This study was designed to investigate the protective effect and mechanism of Sufentanil on acute lung injury in septic mice based on network pharmacology and animal experiments, and to provide new ideas for clinical treatment. To this end, a protein-protein interaction (PPI) network for common targets was first constructed with Swiss Target Prediction Database, GeneCards Database, Draw Venn Diagram Software, STRING 11.5 Database, Cytoscape 3.10.0 Software and Metascape Database, and then key targets were subject to enrichment analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to obtain the key targets of Sufentanil for the treatment of pulmonary sepsis, and then verified by animal experiments. A sepsis model was constructed by cecal ligation and puncture (CLP) in this study, and lung tissues and bronchoalveolar lavage fluid (BALF) were taken from each group of mice. The morphological changes of lung tissues and apoptosis were observed by HE and TUNEL staining, the content of inflammatory factors in the lung tissues was detected by ELISA, and the expression of proteins, such as p-JAK2 and p-STAT3, was detected in the lung tissues by Western blotting. According to the results of network pharmacology, a total of 40 common targets of were screened out for Sufentanil and pulmonary sepsis, and GO enrichment analysis involved 1,483 biological processes (BPs), 84 cellular components (CCs) and 125 molecular functions (MFs); KEGG enrichment analysis identified 137 signaling pathways with p < 0.05 such as JAK-STAT. According to the results of animal experiments, compared with the control group, mice in the model group had severe lung tissue injury and elevated expression of relevant inflammatory factors in lung tissue. Compared with the model group, CLP + Sufentanil group showed reduced pathomorphologic lesions, lower expression of inflammatory factors and apoptosis level, as well as lower expression of p-JAK2 and p-STAT3 proteins in lung tissue. The results of animal experiments were consistent with network pharmacology. In summary, Sufentanil may improve lung injury in septic mice by inhibiting the JAK2-STAT3 signaling pathway, which provides a basis for research on the mechanism of Sufentanil on pulmonary sepsis and clinical treatment.
Collapse
Affiliation(s)
- Hongqiao Hou
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Bowen Jiang
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Aiqing Zhu
- Department of Dermatology and Venereology, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Junjun Hou
- Department of Respiratory and Critical Care Medicine, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Zhe Qu
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Ruping Liu
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Aiqun Li
- Emergency Surgery Department, Yantai Affiliate Hospital of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
7
|
Xingjun F, Ruijiao Z, Peihua Y, Shiyin W, Liqin C, Liangchao Q, Qinghua P. Left T7 paravertebral nerve blockade activate the α7nAChR-Dependent CAP in patients undergoing thoracoscopic lobectomy: a prospective controlled study. BMC Anesthesiol 2024; 24:475. [PMID: 39722047 DOI: 10.1186/s12871-024-02857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE This study aimed to observe the impact of Tthoracic paravertebral nerve blockade(TPVB) at left T7 level on the α7nAChR-dependent cholinergic anti-inflammatory pathway in patients undergoing thoracoscopic lobectomy. METHODS Scheduled thoracoscopic lung surgery patients at the First Affiliated Hospital of Nanchang University from August to September 2023 were divided into two groups according to the surgical site. The experimental group underwent left T7 paravertebral nerve blockade (LTPVB group), while the control group underwent right T7 paravertebral nerve blockade (RTPVB group). Relevant clinical data were collected, and Doppler ultrasound was used to measure the resistive index (RI) of the splenic artery before and after blockade. Additionally, perioperative α7nAChR levels and the expression levels of the inflammatory factors IL-1β, IL-6, and TNF-α were determined. RESULTS There were no significant differences in general conditions, perioperative blood pressure, heart rate, or pain VAS scores between the two groups (p > 0.05). Splenic Doppler ultrasound showed that compared to before blockade, the RI of the splenic artery in the LTPVB group significantly decreased (p < 0.05). The α7nAChR levels at 12 h and 24 h postoperatively were significantly increased (p < 0.05) in both groups, and the levels of IL-1β, IL-6, and TNF-α gradually increased over time in both groups. However, the levels were significantly lower in the LTPVB group compared to the RTPVB group at 12 h and 24 h postoperatively (p < 0.05). CONCLUSION TPVB at left T7 can activate the α7nAChR-dependent cholinergic anti-inflammatory pathway, thereby alleviating the postoperative inflammatory response in patients undergoing thoracoscopic lobectomy.
Collapse
Affiliation(s)
- Fang Xingjun
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
- People's Hospital of Chizhou, Chizhou, 247000, Anhui, China
| | - Zhang Ruijiao
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
| | - Yuan Peihua
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
| | - Wu Shiyin
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
| | - Cheng Liqin
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
| | - Qu Liangchao
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China.
- Ganjiang New Area People's Hospital, 330029, Nanchang, Jiangxi, China.
| | - Peng Qinghua
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China.
| |
Collapse
|
8
|
Lin J, Wei Q, Fang Z. CircRBM33 competitively binds miR-15a-5p to mediate EZH1 expression to ameliorate sepsis-induced acute lung injury. Clinics (Sao Paulo) 2024; 80:100550. [PMID: 39667201 PMCID: PMC11699051 DOI: 10.1016/j.clinsp.2024.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND The study was to investigate circRBM33 in septic acute lung injury (ALI). METHODS Treatment of Murine Lung Epithelial-12 cells (MLE-12) cells was performed using 10 ng/mL Lipopolysaccharide (LPS). circRBM33, miR-15a-5p, and Enhancer of zeste homolog 1 (EZH1) were ascertained through RT-qPCR or Western blot analysis. The viability of MLE-12 cells was measured using the MTT assay, and their rate of apoptosis was ascertained through flow cytometry. B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X (Bax) were determined using Western blot analysis. Oxidative stress levels were assessed with ELISA kits, and levels of malondialdehyde(MDA) content, Superoxide Dismutase (SOD) activity, and glutathione (GSH) were detected. Dual luciferase reporter gene and RIP assays verified the targeting link between miR-15a-5p and circRBM33 or EZH1. The role of circRBM33 in ALI in vivo was determined by performing cecum ligation-perforation (CLP) surgery. HE staining, W/D pulmonary edema, and histological damage scores were taken to assess the extent of lung tissue damage. ELISA was performed to determine proinflammatory factors in lung tissue and cells. RESULTS CircRBM33 downregulation ameliorated ALI-induced edema, apoptotic, and inflammatory reactions in mouse lung tissues. In addition, apoptosis and inflammation mediated by LPS in MLE-12 cells were ameliorated by circRBM33 downregulation, whereas miR-15a-5p knockdown or EZH1 elevation eliminated the action of silencing circRBM33. circRBM33 mediated EZH1 expression by competitive adsorption of miR-15a-5p. CONCLUSION CircRBM33 improves ALI in septic mice by targeting the miR-15a-5p/EZH1 axis.
Collapse
Affiliation(s)
- Jinquan Lin
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou City, Fujian Province, PR China; Department of Trauma Center and Emergency Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou City, Fujian Province, PR China.
| | - Qiongying Wei
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, PR China; Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou City, Fujian Province, PR China
| | - Zhipeng Fang
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou City, Fujian Province, PR China
| |
Collapse
|
9
|
Zhang G, Sun N, Li X. Spleen tyrosine kinase inhibition mitigates radiation-induced lung injury through anti-inflammatory effects and downregulation of p38 MAPK and p53. Front Oncol 2024; 14:1406759. [PMID: 39575431 PMCID: PMC11578954 DOI: 10.3389/fonc.2024.1406759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
Background To explore new modulatory intervention targets for radiation-induced lung injury, bioinformatics analysis technology was used to search for the core driving genes in the pathogenesis of radiation pneumonitis, and the results were verified by a radiation-induced murine lung injury model to find possible new targets for the treatment of radiation lung injury. Method Gene Expression Omnibus Database was used to identify differentially expressed genes in radiation pneumonitis. DAVID database was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) enrichment analysis. Gene Set Enrichment Analysis was used to analyze abnormal expressions. Protein-protein interaction networks were constructed using STRING and Cytoscape. Discovery Studio 4.5 software was used to find the preferred inhibitor of the specific gene. A radiation-induced lung injury model was induced in female C57BL/6N mice. The specific inhibitors were administered by intraperitoneal injection 24 h before and for 7 consecutive days after radiation. Lungs were harvested for further analysis 14 days and 10 weeks post-irradiation. Results We screened Syk as one of the most important driver genes of radiation pneumonitis by bioinformatics analysis and screened the preferred Syk inhibitor fostamatinib from the drug database. Syk was highly expressed in irradiated lung tissue, and fostamatinib inhibited the level of Syk expression. Syk inhibitor significantly alleviated the radiation-induced lung injury and downregulated the increased expression of p38 MAPK, p53, IL-1β, and IL-6 in lung tissue at 2 weeks after radiation. The levels of TGF-β, COL1A1, and α-SMA and degree of pulmonary fibrosis at 10 weeks after radiation were also decreased by Syk inhibitor. Conclusion Syk inhibitor may have a potential to be used as a targeted drug to mitigate radiation pneumonitis and inhibit radiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Guoxing Zhang
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Ni Sun
- Department of Intensive Care Unit, Jilin Province Tumor Hospital, Changchun, China
| | - Xiaohua Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Xu R, Wang D, Shao Z, Li X, Cao Q. Neoastilbin ameliorates sepsis-induced liver and kidney injury by blocking the TLR4/NF-κB pathway. Histol Histopathol 2024; 39:1329-1342. [PMID: 38372079 DOI: 10.14670/hh-18-719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sepsis frequently causes systemic inflammatory response syndrome and multiple organ failure in patients. Neoastilbin (NAS) is a flavonoid that plays vital functions in inflammation. This work aims to investigate the protective effects of NAS against sepsis-induced liver and kidney injury and elucidate its underlying mechanisms. The mouse model was established using cecal ligation puncture (CLP) induction. NAS was given to mice by gavage for 7 consecutive days before surgery. Liver and kidney function, oxidative stress, and inflammatory factors in serum or tissues were examined by ELISA or related kits. The expression of relevant proteins was assessed by Western blot. Hematoxylin and eosin and/or periodic acid-Schiff staining revealed that NAS ameliorated the pathological damage in liver and kidney tissues of CLP-induced mice. NAS improved liver and kidney functions, as evidenced by elevated levels of blood urea nitrogen, Creatinine, ALT, and AST in the serum of septic mice. TUNEL assay and the expression of Bcl-2 and Bax showed that NAS dramatically reduced apoptosis in liver and renal tissues. NAS treatment lowered the levels of myeloperoxidase and malondialdehyde, while elevated the superoxide dismutase content in liver and kidney tissues of CLP-induced mice. The levels of inflammatory cytokines (IL-6, TNF-α, and IL-1β) in the serum and both tissues of CLP-injured mice were markedly decreased by NAS. Mechanically, NAS downregulated TLR4 expression and inhibited NF-κB activation, and overexpression of TLR4 reversed the protective effects of NAS against liver and kidney injury. Collectively, NAS attenuated CLP-induced apoptosis, oxidative stress, inflammation, and dysfunction in the liver and kidney by restraining the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Ruiming Xu
- Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dawei Wang
- Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhengyi Shao
- Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiangbo Li
- Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiumei Cao
- Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
12
|
Sun Y, Lu Y, Pan X, Zhang C, Wang L, Zhang L. Early B lymphocyte subsets in blood predict prognosis in sepsis. Front Immunol 2024; 15:1437864. [PMID: 39359725 PMCID: PMC11445034 DOI: 10.3389/fimmu.2024.1437864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Background B lymphocytes play a key role in immunosuppression. This study investigated the prognostic value of B cell subsets in sepsis. Methods Flow cytometry was used to assess peripheral B cell subsets from patients with sepsis on the first and seventh days following admission, as well as 111 healthy controls. The patients were divided into survivors and non-survivors, based on 28-day prognosis. Results The analysis showed abnormal distribution and selective depletion of B cells and its subsets in the early stages of sepsis. On day 1, compared with survivors, non-survivors showed significant decreases in the proportion and absolute count of transitional (Tr) B cells, reductions in the proportion of CD5+ B cells, and increases in the proportion of double-negative (DN) B cells. On day 7, the proportions and absolute counts of Tr and CD5+ B cells significantly decreased whereas the proportion of DN B cells significantly increased in non-survivors. Ninety-four survivors and 15 non-survivors were included in our paired-sample rank-sum test. Compared to day 1, only the survivors showed significant increases in absolute B, Tr B, and CD5+ B cell counts by day 7. Multivariate Cox regression analysis showed that the proportion of DN B cells on day 1 (hazard ratio = 1.092 [95% confidence interval: 1.035-1.152], P = 0.001) was a risk factor for mortality, and Kaplan-Meier survival curve analysis showed that patients with proportions of DN B cells > 11.81% on day 1 had poorer prognoses. Receiver operating characteristic curve analysis showed that B cell subset parameters could predict mortality (area under the receiver operating characteristic curve [AUC], 0.741) and enhanced the prognostic value of the Acute Physiology and Chronic Health Evaluation II score (AUC, 0.840). Conclusion Our study revealed that deficiencies of B, Tr B, and CD5+ B cells, as well as a persistent increase in the proportion of DN B cells, were associated with poor prognosis-and that B cell subsets showed predictive value to mortality. These results provide new insights into the roles of B cell subsets in sepsis, as well as ways to better manage its progression and predict its course.
Collapse
Affiliation(s)
- Yingqian Sun
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yan Lu
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chengliang Zhang
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Liang Wang
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Longyi Zhang
- Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| |
Collapse
|
13
|
Mattos MS, Vandendriessche S, Waisman A, Marques PE. The immunology of B-1 cells: from development to aging. Immun Ageing 2024; 21:54. [PMID: 39095816 PMCID: PMC11295433 DOI: 10.1186/s12979-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.
Collapse
Affiliation(s)
- Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
14
|
Tan C, Reilly B, Ma G, Murao A, Jha A, Aziz M, Wang P. Neutrophils disrupt B-1a cell homeostasis by targeting Siglec-G to exacerbate sepsis. Cell Mol Immunol 2024; 21:707-722. [PMID: 38789529 PMCID: PMC11214631 DOI: 10.1038/s41423-024-01165-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
B-1a cells, an innate-like cell population, are crucial for pathogen defense and the regulation of inflammation through their release of natural IgM and IL-10. In sepsis, B-1a cell numbers are decreased in the peritoneal cavity as they robustly migrate to the spleen. Within the spleen, migrating B-1a cells differentiate into plasma cells, leading to alterations in their original phenotype and functionality. We discovered a key player, sialic acid-binding immunoglobulin-like lectin-G (Siglec-G), which is expressed predominantly on B-1a cells and negatively regulates B-1a cell migration to maintain homeostasis. Siglec-G interacts with CXCR4/CXCL12 to modulate B-1a cell migration. Neutrophils aid B-1a cell migration via neutrophil elastase (NE)-mediated Siglec-G cleavage. Human studies revealed increased NE expression in septic patients. We identified an NE cleavage sequence in silico, leading to the discovery of a decoy peptide that protects Siglec-G, preserves peritoneal B-1a cells, reduces inflammation, and enhances sepsis survival. The role of Siglec-G in inhibiting B-1a cell migration to maintain their inherent phenotype and function is compromised by NE in sepsis, offering valuable insights into B-1a cell homeostasis. Employing a small decoy peptide to prevent NE-mediated Siglec-G cleavage has emerged as a promising strategy to sustain peritoneal B-1a cell homeostasis, alleviate inflammation, and ultimately improve outcomes in sepsis patients.
Collapse
Affiliation(s)
- Chuyi Tan
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bridgette Reilly
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Gaifeng Ma
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Alok Jha
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, the Feinstein Institutes for Medical Research, Manhasset, New York, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York, USA.
| |
Collapse
|
15
|
Sturek JM, Hannan RT, Upadhye A, Otoupalova E, Faron ET, Atya AAE, Thomas C, Johnson V, Miller A, Garmey JC, Burdick MD, Barker TH, Kadl A, Shim YM, McNamara CA. A protective role for B-1 cells and oxidation-specific epitope IgM in lung fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589137. [PMID: 38659897 PMCID: PMC11042183 DOI: 10.1101/2024.04.11.589137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a morbid fibrotic lung disease with limited treatment options. The pathophysiology of IPF remains poorly understood, and elucidation of the cellular and molecular mechanisms of IPF pathogenesis is key to the development of new therapeutics. B-1 cells are an innate B cell population which play an important role linking innate and adaptive immunity. B-1 cells spontaneously secrete natural IgM and prevent inflammation in several disease states. One class of these IgM recognize oxidation-specific epitopes (OSE), which have been shown to be generated in lung injury and to promote fibrosis. A main B-1 cell reservoir is the pleural space, adjacent to the typical distribution of fibrosis in IPF. In this study, we demonstrate that B-1 cells are recruited to the lung during injury where they secrete IgM to OSE (IgM OSE ). We also show that the pleural B-1 cell reservoir responds to lung injury through regulation of the chemokine receptor CXCR4. Mechanistically we show that the transcription factor Id3 is a novel negative regulator of CXCR4 expression. Using mice with B-cell specific Id3 deficiency, a model of increased B-1b cells, we demonstrate decreased bleomycin-induced fibrosis compared to littermate controls. Furthermore, we show that mice deficient in secretory IgM ( sIgM -/- ) have higher mortality in response to bleomycin-induced lung injury, which is partially mitigated through airway delivery of the IgM OSE E06. Additionally, we provide insight into potential mechanisms of IgM in attenuation of fibrosis through RNA sequencing and pathway analysis, highlighting complement activation and extracellular matrix deposition as key differentially regulated pathways.
Collapse
|
16
|
Liu R, Wang Q, Li Y, Wan R, Yang P, Yang D, Tang J, Lu J. Ginsenoside Rg1 Alleviates Sepsis-Induced Acute Lung Injury by Reducing FBXO3 Stability in an m 6A-Dependent Manner to Activate PGC-1α/Nrf2 Signaling Pathway. AAPS J 2024; 26:47. [PMID: 38622374 DOI: 10.1208/s12248-024-00919-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is one of the serious life-threatening complications of sepsis and is pathologically associated with mitochondrial dysfunction. Ginsenoside Rg1 has good therapeutic effects on ALI. Herein, the pharmacological effects of Rg1 in sepsis-induced ALI were investigated. METHODS Sepsis-induced ALI models were established by CLP operation and LPS treatment. HE staining was adopted to analyze lung pathological changes. The expression and secretion of cytokines were measured by RT-qPCR and ELISA. Cell viability and apoptosis were assessed by MTT assay, flow cytometry and TUNEL staining. ROS level and mitochondrial membrane potential (MMP) were analyzed using DHE probe and JC-1 staining, respectively. FBXO3 m6A level was assessed using MeRIP assay. The interactions between FBXO3, YTHDF1, and PGC-1α were analyzed by Co-IP or RIP. RESULTS Rg1 administration ameliorated LPS-induced epithelial cell inflammation, apoptosis, and mitochondrial dysfunction in a dose-dependent manner. Mechanically, Rg1 reduced PGC-1α ubiquitination modification level by inhibiting FBXO3 expression m6A-YTHDF1 dependently. As expected, Rg1's mitigative effect on LPS-induced inflammation, apoptosis and mitochondrial dysfunction in lung epithelial cells was abolished by FBXO3 overexpression. Moreover, FBXO3 upregulation eliminated the restoring effect of Rg1 on CLP-induced lung injury in rats. CONCLUSION Rg1 activated PGC-1α/Nrf2 signaling pathway by reducing FBXO3 stability in an m6A-YTHDF1-dependent manner to improve mitochondrial function in lung epithelial cells during sepsis-induced ALI progression.
Collapse
Affiliation(s)
- Rong Liu
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China.
| | - Qiang Wang
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Yao Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650034, Yunnan Province, People's Republic of China
| | - Ruixue Wan
- Department of Reproductive Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Ping Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, Yunnan Province, People's Republic of China
| | - Dexing Yang
- Department of Emergency Room of Internal, The First People's Hospital of Yunnan Province, Kunming, 650034, Yunnan Province, People's Republic of China
| | - Jiefu Tang
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China
| | - Jiafei Lu
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Yunnan Geriatric Medical Center, No.295, Xichang Road, Wuhua District, Kunming, 650032, Yunnan Province, People's Republic of China
| |
Collapse
|
17
|
Dennis E, Murach M, Blackburn CM, Marshall M, Root K, Pattarabanjird T, Deroissart J, Erickson LD, Binder CJ, Bekiranov S, McNamara CA. Loss of TET2 increases B-1 cell number and IgM production while limiting CDR3 diversity. Front Immunol 2024; 15:1380641. [PMID: 38601144 PMCID: PMC11004297 DOI: 10.3389/fimmu.2024.1380641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Recent studies have demonstrated a role for Ten-Eleven Translocation-2 (TET2), an epigenetic modulator, in regulating germinal center formation and plasma cell differentiation in B-2 cells, yet the role of TET2 in regulating B-1 cells is largely unknown. Here, B-1 cell subset numbers, IgM production, and gene expression were analyzed in mice with global knockout of TET2 compared to wildtype (WT) controls. Results revealed that TET2-KO mice had elevated numbers of B-1a and B-1b cells in their primary niche, the peritoneal cavity, as well as in the bone marrow (B-1a) and spleen (B-1b). Consistent with this finding, circulating IgM, but not IgG, was elevated in TET2-KO mice compared to WT. Analysis of bulk RNASeq of sort purified peritoneal B-1a and B-1b cells revealed reduced expression of heavy and light chain immunoglobulin genes, predominantly in B-1a cells from TET2-KO mice compared to WT controls. As expected, the expression of IgM transcripts was the most abundant isotype in B-1 cells. Yet, only in B-1a cells there was a significant increase in the proportion of IgM transcripts in TET2-KO mice compared to WT. Analysis of the CDR3 of the BCR revealed an increased abundance of replicated CDR3 sequences in B-1 cells from TET2-KO mice, which was more clearly pronounced in B-1a compared to B-1b cells. V-D-J usage and circos plot analysis of V-J combinations showed enhanced usage of VH11 and VH12 pairings. Taken together, our study is the first to demonstrate that global loss of TET2 increases B-1 cell number and IgM production and reduces CDR3 diversity, which could impact many biological processes and disease states that are regulated by IgM.
Collapse
Affiliation(s)
- Emily Dennis
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Maria Murach
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Cassidy M.R. Blackburn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Melissa Marshall
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Katherine Root
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Tanyaporn Pattarabanjird
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
| | - Justine Deroissart
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Loren D. Erickson
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, United States
| | - Christoph J. Binder
- Department for Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Bekiranov
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Coleen A. McNamara
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Xu B, Huang M, Qi H, Xu H, Cai L. Tomatidine activates autophagy to improve lung injury and inflammation in sepsis by inhibiting NF-κB and MAPK pathways. Mol Genet Genomics 2024; 299:14. [PMID: 38400847 DOI: 10.1007/s00438-024-02109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening medical condition with high mortality and morbidity. Autophagy is involved in the pathophysiological process of sepsis-induced ALI, including inflammation, which indicates that regulating autophagy may be beneficial for this disease. Tomatidine, a natural compound abundant in unripe tomatoes, has been reported to have anti-inflammatory, anti-tumorigenic, and lipid-lowering effects. However, the biological functions and mechanisms of tomatidine in sepsis-induced ALI remain unknown. The principal objective of this study was to investigate the effect of tomatidine on sepsis-induced ALI. Cecal ligation and puncture (CLP) was used to induce septic lung injury in mice, and 10 mg/kg tomatidine was intraperitoneally injected into mice 2 h after the operation. The results of hematoxylin and eosin staining and assessment of lung edema and total protein levels in bronchoalveolar lavage fluid (BALF) demonstrated that tomatidine alleviated CLP-induced severe lung injuries such as hemorrhage, infiltration of inflammatory cells, and interstitial and alveolar edema in mice. Additionally, the levels of proinflammatory cytokines in BALF and lung tissues were measured by enzyme-linked immunosorbent assay (ELISA), and the results showed that tomatidine inhibited CLP-induced inflammatory damage to lungs. Moreover, the results of western blotting showed that tomatidine promoted autophagy during CLP-induced ALI. Mechanistically, immunofluorescence staining and western blotting were used to measure the protein levels of TLR4, phosphorylated NF-κB, phosphorylated IκBα, and phosphorylated MAPKs, showing that tomatidine inactivated NF-κB and MAPK signaling in lung tissues of CLP-induced ALI mice. In conclusion, tomatidine exerts protective effects against sepsis-induced severe damage to the lungs by inhibiting inflammation and activating autophagy in CLP-treated mice through inactivating the NF-κB and MAPK pathways, which may be an effective candidate for treating septic ALI.
Collapse
Affiliation(s)
- Bo Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China.
| | - Min Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 230000, China
| | - Hang Qi
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Hongzhou Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| | - Liang Cai
- Department of Emergency Medicine, The First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui, 230000, China
| |
Collapse
|
19
|
Pan Y, Zhang H, Liu Q, Wu H, Du S, Song W, Zhang F, Liu H. Photobiomodulation with 630-nm LED Inhibits M1 Macrophage Polarization via STAT1 Pathway Against Sepsis-Induced Acute Lung Injury. Photobiomodul Photomed Laser Surg 2024; 42:148-158. [PMID: 38301209 DOI: 10.1089/photob.2023.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Background: Sepsis-induced acute lung injury (ALI) is a clinical syndrome characterized by excessive uncontrolled inflammation. Photobiomodulation such as light-emitting diode (LED) irradiation has been used to attenuate inflammatory disease. Objective: The protective effect of 630 nm LED irradiation on sepsis-induced ALI remains unknown. The purpose of this study was to investigate the role of 630 nm LED irradiation in sepsis-induced ALI and its underlying mechanism. Methods and results: C57BL/6 mice were performed cecal ligation and puncture (CLP) for 12 h to generate experimental sepsis models. Histopathology analysis showed that alveolar injury, inflammatory cells infiltration, and hemorrhage were suppressed in CLP mice after 630 nm LED irradiation. The ratio of wet/dry weigh of lung tissue was significantly inhibited by irradiation. The number of leukocytes was reduced in bronchoalveolar lavage fluid. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results and enzyme-linked immunosorbent assay showed that 630 nm LED irradiation significantly inhibited the mRNA and protein levels of M1 macrophage-related genes in the lung of CLP-induced septic mice. Meanwhile, LED irradiation significantly inhibited signal transducer and activator of transcription 1 (STAT1) phosphorylation in the lung of septic mice. In vitro experiments showed that 630 nm LED irradiation significantly inhibited M1 genes mRNA and protein expression in THP-1-derived M1 macrophages without affecting the cell viability. LED irradiation also significantly inhibited the level of STAT1 phosphorylation in THP-1-derived M1 macrophages. Conclusions: We concluded that 630 nm LED is promising as a treatment against ALI through inhibiting M1 macrophage polarization, which is associated with the downregulation of STAT1 phosphorylation.
Collapse
Affiliation(s)
- Yue Pan
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
- Departments of Laboratory Diagnosis, Daqing Oilfield General Hospital, Daqing, China
| | - Hanxu Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Qiannan Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Hao Wu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Siqi Du
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Wuqi Song
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Fengmin Zhang
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| | - Hailiang Liu
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Harbin, P.R. China
| |
Collapse
|
20
|
Bruno MEC, Mukherjee S, Sturgill JL, Cornea V, Yeh P, Hawk GS, Saito H, Starr ME. PAI-1 as a critical factor in the resolution of sepsis and acute kidney injury in old age. Front Cell Dev Biol 2024; 11:1330433. [PMID: 38304613 PMCID: PMC10830627 DOI: 10.3389/fcell.2023.1330433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Elevated plasma levels of plasminogen activator inhibitor type 1 (PAI-1) are documented in patients with sepsis and levels positively correlate with disease severity and mortality. Our prior work demonstrated that PAI-1 in plasma is positively associated with acute kidney injury (AKI) in septic patients and mice. The objective of this study was to determine if PAI-1 is causally related to AKI and worse sepsis outcomes using a clinically-relevant and age-appropriate murine model of sepsis. Sepsis was induced by cecal slurry (CS)-injection to wild-type (WT, C57BL/6) and PAI-1 knockout (KO) mice at young (5-9 months) and old (18-22 months) age. Survival was monitored for at least 10 days or mice were euthanized for tissue collection at 24 or 48 h post-insult. Contrary to our expectation, PAI-1 KO mice at old age were significantly more sensitive to CS-induced sepsis compared to WT mice (24% vs. 65% survival, p = 0.0037). In comparison, loss of PAI-1 at young age had negligible effects on sepsis survival (86% vs. 88% survival, p = 0.8106) highlighting the importance of age as a biological variable. Injury to the kidney was the most apparent pathological consequence and occurred earlier in aged PAI-1 KO mice. Coagulation markers were unaffected by loss of PAI-1, suggesting thrombosis-independent mechanisms for PAI-1-mediated protection. In summary, although high PAI-1 levels are clinically associated with worse sepsis outcomes, loss of PAI-1 rendered mice more susceptible to kidney injury and death in a CS-induced model of sepsis using aged mice. These results implicate PAI-1 as a critical factor in the resolution of sepsis in old age.
Collapse
Affiliation(s)
- Maria E. C. Bruno
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Sujata Mukherjee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Jamie L. Sturgill
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Virgilius Cornea
- Department of Pathology, University of Kentucky, Lexington, KY, United States
| | - Peng Yeh
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Gregory S. Hawk
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Hiroshi Saito
- Department of Surgery, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, Graduate Faculty of Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Marlene E. Starr
- Department of Surgery, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
21
|
Davies K, McLaren J. Destabilisation of T cell-dependent humoral immunity in sepsis. Clin Sci (Lond) 2024; 138:65-85. [PMID: 38197178 PMCID: PMC10781648 DOI: 10.1042/cs20230517] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For some, sepsis presents as a predominantly suppressive disorder, whilst others experience a pro-inflammatory condition which can culminate in a 'cytokine storm'. Frequently, patients experience signs of concurrent hyper-inflammation and immunosuppression, underpinning the difficulty in directing effective treatment. Although intensive care unit mortality rates have improved in recent years, one-third of discharged patients die within the following year. Half of post-sepsis deaths are due to exacerbation of pre-existing conditions, whilst half are due to complications arising from a deteriorated immune system. It has been suggested that the intense and dysregulated response to infection may induce irreversible metabolic reprogramming in immune cells. As a critical arm of immune protection in vertebrates, alterations to the adaptive immune system can have devastating repercussions. Indeed, a marked depletion of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such sepsis-induced lymphopenia has profound consequences on how T cells respond to infection but equally on the humoral immune response that is both elicited by B cells and supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of cells expressing dysfunctional or exhausted phenotypes. This review will specifically focus on how sepsis destabilises the adaptive immune system, with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral immunity.
Collapse
Affiliation(s)
- Kate Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| |
Collapse
|
22
|
Du W, Ren N, Xu Y, Chen X. Programmed cell death 4 governs NLRP3-mediated pyroptosis in septic lung disorders. Mol Biol Rep 2024; 51:77. [PMID: 38183433 DOI: 10.1007/s11033-023-08948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/21/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION Sepsis is a pathogenic syndrome of prolonged excessive inflammation and immunosuppression produced by invading pathogens. Programmed cell death 4 (PDCD4) may be implicated in a range of inflammatory lesions, and this study aimed to confirm the involvement of PDCD4 in septic lung injury. MATERIALS AND METHODS Mice and bronchial epithelial 16HBE cells were separately subjected to CLP and LPS to generate in vivo and in vitro models. Following the level of PDCD4 was determined, the impacts of PDCD4 knockdown on mouse lung injury degree, inflammation, apoptosis, and pyroptosis levels were evaluated. Afterward, cells were treated with the NLRP3 agonist, and the influences of NLRP3 activation on the regulations of PDCD4 knockdown were determined. RESULTS PDCD4 was elevated following mice developed septic lung injury, PDCD4 knockdown ameliorated septic lung injury and reduced lung inflammation and apoptosis. Moreover, PDCD4 knockdown suppressed NLRP3-mediated pyroptosis, indicating that PDCD4 also mediated pyroptosis. According to cellular models, NLRP3 activation broke the effects of PDCD4 knockdown on cells. CONCLUSIONS The current study reveals that PDCD4 governs NLRP3-mediated pyroptosis in septic lung injury. PDCD4 is not only related to apoptosis and expands the knowledge of PDCD4 regulation of different cell death modes.
Collapse
Affiliation(s)
- Wenjie Du
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, 266000, Shandong, China
| | - Na Ren
- Department of Emergency Internal Medicine, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, 266033, Shandong, China
| | - Yan Xu
- Quality Control Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, 266033, Shandong, China
| | - Xiao Chen
- Department of Emergency Internal Medicine, the Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
23
|
Alibeg AAA, Mohammed MH. Molecular docking, synthesis, characteristics and preliminary cytotoxic study of new coumarin-sulfonamide derivatives as histone deacetylase inhibitors. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:514-525. [PMID: 38691794 DOI: 10.36740/wlek202403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
OBJECTIVE Aim: To evaluate the cytotoxic activity of newly synthesized a series of novel HDAC inhibitors comprising sulfonamide as zinc binding group and Coumarin as cap groups. PATIENTS AND METHODS Materials and Methods: The utilization of sulfonamide as zinc binding group and Coumarin as cap groups known to possess antitumor activity in the designed of new histone deacetylase inhibitors and using the docking and MTT assay to evaluate the compounds. RESULTS Results: Four compounds have been synthesized and characterized successfully by ART-FTIR, NMR and ESI-Ms. The synthesized compound assessed for their cytotoxic activity against hepatoblastoma HepG2 (IC50, I=0.094, II=0.040, III=0.032, IV=0.046, SAHA=0.141) and human colon adenocarcinoma MCF-7 (IC50, I=0.135, II=0.050, III= 0.065, IV=0.059, SAHA=0.107). The binding mode to the active site of [HDAC6] were determined by docking study which give results that they might be good inhibitors for [HDAC6]. CONCLUSION Conclusions: The synthesized compounds (I, II, III and IV) showed a comparable cytotoxic result with FDA approved drug (SAHA) toward HepG2 and MCF-7 cancer cell lines and their docking analysis provided a preliminary indication that they are viable [HDAC6] candidates.
Collapse
|
24
|
Chang B, Wang Z, Cheng H, Xu T, Chen J, Wu W, Li Y, Zhang Y. Acacetin protects against sepsis-induced acute lung injury by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis. Innate Immun 2024; 30:11-20. [PMID: 38043934 PMCID: PMC10720600 DOI: 10.1177/17534259231216852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
Acute lung injury (ALI) is the leading cause of death in patients with sepsis syndrome and without effective protective or therapeutic treatments. Acacetin, a natural dietary flavonoid, reportedly exerts several biological effects, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, acacetin's effect and underlying mechanism on sepsis-induced ALI remain unclear. Here, the mouse model was established to explore the impact of acacetin on sepsis-induced ALI. Acacetin significantly increased ALI murine survival and attenuated lung injury in histological examinations. Additionally, acacetin down-regulated myeloperoxidase activity, protein concentration, and number of neutrophils and macrophages in bronchoalveolar lavage fluid. Subsequently, inflammatory cytokines, including TNF-α, IL-1β, and IL-6, were examined. Results showed that acacetin dramatically suppressed the production of TNF-α, IL-1β, and IL-6. These above results indicated that acacetin attenuated sepsis-induced ALI by inhibiting the inflammatory response. Moreover, acacetin inhibited the expression of markers for M1-type (iNOS, CD86) macrophages and promoted the expression of markers for M2-type (CD206, Arg1) macrophages by western blot. In addition, acacetin down-regulated the expression TRAF6, NF-κB, and Cyclooxygenase-2 (COX2) by western blot. The high concentration of acacetin had a better effect than the low concentration. Besides, over-expression of TRAF6 up-regulated the expression of COX2, CD86, and iNOS, and the ratio of p-NF-κB to NF-κB increased the mRNA levels of TNF-α, IL-1β, and IL-6, down-regulated the expression of CD206 and Arg1. The effects of TRAF6 were the opposite of acacetin. And TRAF6 could offset the impact of acacetin. This study demonstrated that acacetin could prevent sepsis-induced ALI by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis.
Collapse
Affiliation(s)
- Binbin Chang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Zhang Wang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hui Cheng
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Tingyuan Xu
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jieyu Chen
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wan Wu
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yizhi Li
- Department of Anesthesiology, The 944 Hospital of the PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Ma N, Zhang M, Xu G, Zhang L, Luo M, Luo M, Wang X, Tang H, Wang X, Liu L, Zhong X, Feng J, Li Y. Mesenchymal Stem Cell-derived Type II Alveolar Epithelial Progenitor Cells Attenuate LPS-induced Acute Lung Injury and Reduce P63 Expression. Curr Stem Cell Res Ther 2024; 19:245-256. [PMID: 37138488 DOI: 10.2174/1574888x18666230501234836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 05/05/2023]
Abstract
AIM Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a severe clinical respiratory-failure disease mainly characterized by acute damage to the alveolar epithelium and pulmonary vascular endothelial cells. Stem cell therapy has emerged as a potential regenerative strategy for ARDS/ALI, however, the outcome is limited, and the underlying mechanisms are unclear. INTRODUCTION We established a differentiation system for bone marrow-derived mesenchymal stem cellderived (BM-MSC) type II alveolar epithelial progenitor cells (AECIIs) and assessed their regulatory effects on lipopolysaccharide (LPS)-induced ALI. METHODS We induced BM-MSC differentiation into AECIIs using a specific conditioned medium. After 26 days of differentiation, 3×105 BM-MSC-AECIIs were used to treat mice with LPS-induced ALI through tracheal injection. RESULTS After tracheal injection, BM-MSC-AECIIs migrated to the perialveolar area and reduced LPSinduced lung inflammation and pathological injury. RNA-seq suggested that P63 protein was involved in the effects of BM-MSC-AECIIs on lung inflammation. CONCLUSION Our results suggest that BM-MSC-AECIIs may reduce LPS-induced acute lung injury by decreasing P63 expression.
Collapse
Affiliation(s)
- Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Mengwei Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lifang Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Min Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Meihua Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Li Liu
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yuying Li
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| |
Collapse
|
26
|
Chen Y, Wang L, Liu M, Zhao J, Xu X, Wei D, Chen J. Mechanism of exosomes from adipose-derived mesenchymal stem cells on sepsis-induced acute lung injury by promoting TGF-β secretion in macrophages. Surgery 2023; 174:1208-1219. [PMID: 37612209 DOI: 10.1016/j.surg.2023.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 06/18/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Acute lung injury (ALI) caused by sepsis is a life-threatening condition characterized by uncontrollable lung inflammation. The current study sought to investigate the mechanism of adipose-derived mesenchymal stem cell-derived exosomes (ADMSC-Exos) in attenuating sepsis-induced ALI through TGF-β secretion in macrophages. METHODS Adipose-derived mesenchymal stem cell-derived exosomes (ADMSC-Exos) were extracted from ADMSCs and identified. Septic ALI mouse models were established via cecal ligation and puncture (CLP), followed by administration of ADMSC-Exos or sh-TGF-β lentiviral vector. Mouse macrophages (cell line RAW 264.7) were treated with lipopolysaccharide (LPS), co-cultured with Exos and splenic T cells, and transfected with TGF-β siRNA. The lung injury of CLP mice was evaluated, and levels of inflammatory indicators and macrophage markers were measured. The localization of macrophage markers and TGF-β was determined, and the level of TGF-β in lung tissues was measured. The effect of TGF-β knockdown on sepsis-induced ALI in CLP mice was evaluated, and the percentages of CD4+CD25+Foxp3+ Tregs in mononuclear cells/macrophages and Foxp3 levels in lung tissues/co-cultured splenic T cells were examined. RESULTS ADMSC-Exos were found to alleviate sepsis-induced ALI, inhibit inflammatory responses, and induce macrophages to secrete TGF-β in CLP mice. TGF-β silencing reversed the alleviating effect of ADMSC-Exos on sepsis-induced ALI. ADMSC-Exos also increased the number of Tregs in the spleen of CLP mice and promoted M2 polarization and TGF-β secretion in LPS-induced macrophages. After knockdown of TGF-β in macrophages in the co-culture system, the number of Tregs decreased, suggesting that ADMSC-Exos increased the Treg number by promoting macrophages to secrete TGF-β. CONCLUSION Our findings suggest ADMSC-Exos can effectively alleviate sepsis-induced ALI in CLP mice by promoting TGF-β secretion in macrophages.
Collapse
Affiliation(s)
- Yin Chen
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China; Department of Thoracic Surgery, Shanghai General Hospital of Nanjing Medical University, No.100 Haining Road, Shanghai, 200080, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200082, China
| | - Mingzhao Liu
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China
| | - Jin Zhao
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China
| | - Xiangnan Xu
- Department of Thoracic Surgery, Shanghai General Hospital of Nanjing Medical University, No.100 Haining Road, Shanghai, 200080, China
| | - Dong Wei
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China.
| | - Jingyu Chen
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
27
|
Ibadi MH, Majeed S, Ghafil FA, Hadi NR. Regorafenib modulation of the angiopoietin/TIE2 axis in a mouse model of sepsis-induced lung injury. J Med Life 2023; 16:1639-1645. [PMID: 38406775 PMCID: PMC10893570 DOI: 10.25122/jml-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/07/2023] [Indexed: 02/27/2024] Open
Abstract
Sepsis, often resulting from an immune response overreaction to microorganisms and their products, can lead to acute lung injury through inflammation mediated by excessive cytokines. This study aimed to investigate the effects of regorafenib on lung injury in mice following the induction of sepsis. We divided mice into four groups (n=6 each): a sham group (undergoing laparotomy without cecal ligation and puncture [CLP]), a CLP group, a vehicle group, and a regorafenib-treated group (30 mg/kg IP, administered one hour before CLP). TNF-α, IL-1β, VEGF, MPO, caspase-11, and Ang-2 levels were significantly increased (p<0.05) in the CLP group compared to the sham group, while the regorafenib group showed significant reductions in these markers versus the CLP group (p< 0.05). In contrast, Ang-1 levels, which were reduced in the CLP group (p<0.05) compared to the sham group, were elevated in the regorafenib group compared to the CLP group. Quantitative real-time PCR revealed a significant decrease in TIE2 and VE-cadherin mRNA expression in the lung tissue of the CLP group compared to the sham group. There were no significant differences in mRNA expression of the TIE2 gene between the regorafenib and CLP group. However, VE-cadherin significantly increased after regorafenib treatment. Regorafenib demonstrated lung-protective effects through its anti-inflammatory and antiangiogenic activities and its influence on lung tissue mRNA expression of the cadherin gene.
Collapse
Affiliation(s)
| | - Sahar Majeed
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Fadhaa Abdulameer Ghafil
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| |
Collapse
|
28
|
Xiao H, Zhao Q, Yuan J, Liang W, Wu R, Wen Y, Du S, Wang Y, Zhao S, Lang Y, Yan Q, Huang X, Cao S. IFN-γ promotes PANoptosis in Pasteurella multocida toxin-induced pneumonia in mice. Vet Microbiol 2023; 285:109848. [PMID: 37722207 DOI: 10.1016/j.vetmic.2023.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023]
Abstract
Interferon-γ (IFN-γ) is a pleiotropic cytokine that regulates diverse biological functions, including modulation of inflammatory response and innate and adaptive immunity. In our study, we found that IFN-γ plays an important role in the regulation of Pasteurella multocida toxin-associated pneumonia. In work described here, we demonstrated that rPMT induced a lethal pneumonia in WT mice and the severity of the pneumonia was substantially alleviated in IFN-γ-deficient mice, IFN-γ deficiency significantly elevated the survival rate and reduced the pathological lesions of the lungs after rPMT challenged. Notably, IFN-γ deficiency significantly decreased myeloperoxidase (MPO) expression abundance in the lung tissue, and the MPO was mainly expressed in the lung tissue injury region of WT mice. More importantly, IFN-γ deficiency impaired the activation of PANoptosis specific markers, including the caspase 3, GSDMD, and MLKL, and reduced the expression of IL-1β. Cumulatively, this study demonstrates that IFN-γ promotes PANoptosis in PMT induced pneumonia in mice, providing a basis for studying the pathogenic mechanism of PMT.
Collapse
Affiliation(s)
- Hang Xiao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qin Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Jianlin Yuan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Liang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Wu
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Yiping Wen
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Senyan Du
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Yiping Wang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Shan Zhao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Yifei Lang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Qigui Yan
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Xiaobo Huang
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China
| | - Sanjie Cao
- Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Science-Observation Experimental Station of Veterinary Drugs and Veterinary Diagnostic Technique, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China; National Demonstration Center for Experimental Animal Education, Chengdu 611130, China.
| |
Collapse
|
29
|
Liu N, Zhong Y, Pang X, Li M, Cannon RD, Mei L, Cai X, Ji P. The nano-windmill exerts superior anti-inflammatory effects via reducing choline uptake to inhibit macrophage activation. Cell Prolif 2023; 56:e13470. [PMID: 37051938 PMCID: PMC10542611 DOI: 10.1111/cpr.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Macrophages' activation plays a central role during the development and progression of inflammation, while the regulation of metabolic reprogramming of macrophages has been recently identified as a novel strategy for anti-inflammatory therapies. Our previous studies have found that tetrahedral framework nucleic acid (tFNA) plays a mild anti-inflammatory effect by inhibiting macrophage activation, but the specific mechanism remains unclear. Here, by metabolomics and RNA sequencing, choline uptake is identified to be significantly repressed by decreased slc44a1 expression in tFNA-treated activated macrophages. Inspired by this result, combined with the excellent delivery capacities of tFNA, siR-slc44a1 is loaded into the tFNA to develop a new tFNA-based small interfering RNA (siRNA) delivery system named 'nano-windmill,' which exhibits a synergetic role by targeting slc44a1, finally blowing up the anti-inflammatory effects of tFNA to inhibit macrophages activation via reducing choline uptake. By confirming its anti-inflammatory effects in chronic (periodontitis) and acute (sepsis) inflammatory disease, the tFNA-based nanomedicine developed for inflammatory diseases may provide broad prospects for tFNA upgrading and various biological applications such as anti-inflammatory.
Collapse
Affiliation(s)
- Nanxin Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingP. R. China
| | - Yuke Zhong
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingP. R. China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingP. R. China
| | - Mingzheng Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingP. R. China
| | - Richard D. Cannon
- Department of Oral SciencesSir John Walsh Research Institute, Faculty of Dentistry, University of OtagoDunedinNew Zealand
| | - Li Mei
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingP. R. China
- Department of Oral SciencesSir John Walsh Research Institute, Faculty of Dentistry, University of OtagoDunedinNew Zealand
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology Sichuan UniversityChengduP. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingP. R. China
| |
Collapse
|
30
|
Dong S, Liu S, Gao Q, Shi J, Song K, Wu Y, Liu H, Guo C, Huang Y, Du S, Li X, Ge L, Yu J. Interleukin-17D produced by alveolar epithelial type II cells alleviates LPS-induced acute lung injury via the Nrf2 pathway. Clin Sci (Lond) 2023; 137:1499-1512. [PMID: 37708335 DOI: 10.1042/cs20230354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Sepsis engenders an imbalance in the body's inflammatory response, with cytokines assuming a pivotal role in its progression. A relatively recent addition to the interleukin-17 family, denominated interleukin-17D (IL-17D), is notably abundant within pulmonary confines. Nevertheless, its implication in sepsis remains somewhat enigmatic. The present study endeavors to scrutinize the participation of IL-17D in sepsis-induced acute lung injury (ALI). METHODS The levels of IL-17D in the serum and bronchoalveolar lavage fluid (BALF) of both healthy cohorts and septic patients were ascertained through an ELISA protocol. For the creation of a sepsis-induced ALI model, intraperitoneal lipopolysaccharide (LPS) injections were administered to male C57/BL6 mice. Subsequently, we examined the fluctuations and repercussions associated with IL-17D in sepsis-induced ALI, probing its interrelation with nuclear factor erythroid 2-related factor 2 (Nrf2), alveolar epithelial permeability, and heme oxygenase-1. RESULTS IL-17D levels exhibited significant reduction both in the serum and BALF of septic patients (P<0.001). Similar observations manifested in mice subjected to LPS-induced acute lung injury (ALI) (P=0.002). Intraperitoneal administration of recombinant interleukin 17D protein (rIL-17D) prompted increased expression of claudin 18 and concomitant enhancement of alveolar epithelial permeability, thus, culminating in improved lung injury (P<0.001). Alveolar epithelial type II (ATII) cells were identified as the source of IL-17D, regulated by Nrf2. Furthermore, a deficiency in HO-1 yielded elevated IL-17D levels (P=0.004), albeit administration of rIL-17D ameliorated the exacerbated pulmonary damage resulting from HO-1 deficiency. CONCLUSION Nrf2 fosters IL-17D production within AT II cells, thereby conferring a protective role in sepsis-induced ALI.
Collapse
Affiliation(s)
- Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Qiaoying Gao
- Department of Clinical Laboratory, Tianjin Nankai Hospital, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Kai Song
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ya Wu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Huayang Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Chenxu Guo
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shihan Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Lixiu Ge
- Department of Clinical Laboratory, Tianjin Nankai Hospital, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Suchanek O, Clatworthy MR. Homeostatic role of B-1 cells in tissue immunity. Front Immunol 2023; 14:1106294. [PMID: 37744333 PMCID: PMC10515722 DOI: 10.3389/fimmu.2023.1106294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/27/2023] [Indexed: 09/26/2023] Open
Abstract
To date, studies of tissue-resident immunity have mainly focused on innate immune cells and T cells, with limited data on B cells. B-1 B cells are a unique subset of B cells with innate-like properties, enriched in murine pleural and peritoneal cavities and distinct from conventional B-2 cells in their ontogeny, phenotype and function. Here we discuss how B-1 cells represent exemplar tissue-resident immune cells, summarizing the evidence for their long-term persistence & self-renewal within tissues, differential transcriptional programming shaped by organ-specific environmental cues, as well as their tissue-homeostatic functions. Finally, we review the emerging data supporting the presence and homeostatic role of B-1 cells across non-lymphoid organs (NLOs) both in mouse and human.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
32
|
Dong X, Tu H, Bai X, Qin S, Li Z. INTRINSIC/EXTRINSIC APOPTOSIS AND PYROPTOSIS CONTRIBUTE TO THE SELECTIVE DEPLETION OF B CELL SUBSETS IN SEPTIC SHOCK PATIENTS. Shock 2023; 60:345-353. [PMID: 37477437 PMCID: PMC10510799 DOI: 10.1097/shk.0000000000002174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/22/2023]
Abstract
ABSTRACT The depletion of peripheral blood B cells is associated with immunosuppression and poor prognosis during sepsis, and selective depletion occurs when B cell subsets are specifically targeted. In this study, we examined the mechanisms underlying the selective depletion of B cell subsets in the immunosuppressive phase of septic shock patients. Thirty-two septic shock patients were recruited as a septic shock group and 10 healthy volunteers as a control group. The expression of Bcl-2, CD95, cleaved caspase-9/8, and activated caspase-3/1 in the B cell subsets were measured by flow cytometry. Another 23 septic shock patients were recruited to test the remission of caspase-3 (Z-DEVD-FMK) and caspase-1 (VX-765) inhibitors on B cell subset depletion in vitro . In septic shock patients, the Bcl-2 levels in immature/transitional (IM) B cells decreased and the levels of cleaved caspase-9 in IM B cells increased; the levels of CD95 in IM, naive, resting memory (RM), and activated memory (AM) B cells and the levels of cleaved caspase-8 in IM, RM, and AM B cells increased; the levels of activated caspase-3 and caspase-1 in IM, RM, and AM B cells increased. Activated caspase-1 levels in IM B cells were higher compared with activated caspase-3 in septic shock patients, whereas the levels of activated caspase-1 in AM B cells were lower compared with activated caspase-3. Moreover, in vitro experiments showed that Z-DEVD-FMK and VX-765 could alleviate the depletion of IM, AM, and RM B cells. The selective reduction of circulating B cell subsets in septic shock patients could be attributed to intrinsic and extrinsic apoptosis as well as pyroptosis.
Collapse
Affiliation(s)
- Xijie Dong
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Tu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Wang Y, Wang Y, Ma J, Li Y, Cao L, Zhu T, Hu H, Liu H. YuPingFengSan ameliorates LPS-induced acute lung injury and gut barrier dysfunction in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116452. [PMID: 37019161 DOI: 10.1016/j.jep.2023.116452] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yupingfengsan (YPFS) is a traditional Chinese medicine decoction. YPFS comprises Astragalus mongholicus Bunge (Huangqi), Atractylodes rubra Dekker (Baizhu), and Saposhnikovia divaricata (Turcz.ex Ledeb.) Schischk (Fangfeng). YPFS is commonly used to treat chronic obstructive pulmonary disease, asthma, respiratory infections, and pneumonia, but the mechanism of action remains unclear. AIM OF THE STUDY Acute lung injury (ALI) and its severe form of acute respiratory distress syndrome (ARDS) cause morbidity and mortality in critical patients. YPFS is a commonly used herbal soup to treat respiratory and immune system diseases. Nevertheless, the effect of YPFS on ALI remains unclear. This study aimed to investigate the effect of YPFS on lipopolysaccharide (LPS)-induced ALI in mice and elucidate its potential molecular mechanisms. MATERIALS AND METHODS The major components of YPFS were detected by High-performance liquid chromatography (HPLC). C57BL/6J mice were given YPFS for seven days and then treated with LPS. IL-1β, IL-6, TNF-α, IL-8, iNOS, NLRP3, PPARγ, HO-1, ZO-1, Occludin, Claudin-1, AQP3, AQP4, AQP5, ENaCα, ENaCβ, EnaCγ mRNA in lung and ZO-1, Occludin, Claudin-1, AQP3, AQP4, AQP5, ENaCα, ENaCβ, and EnaCγ mRNA in colon tissues were measured by Real-Time Quantitative PCR (RT-qPCR). The expressions of TLR4, MyD88, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC, MAPK signaling pathway, Nrf2, and HO-1 in the lung were detected by Western blot. Plasma inflammatory factors Interleukin (IL)-1β, IL-6, and Tumor Necrosis Factor-α (TNF-α) were determined by Enzyme-linked Immunosorbent Assay (ELISA). Lung tissues were processed for H & E staining, and colon tissues for HE, WGA-FITC, and Alcian Blue staining. RESULTS The results showed that YPFS administration alleviated lung injury and suppressed the production of inflammatory factors, including IL-1β, IL-6, and TNF-α. Additionally, YPFS reduced pulmonary edema by promoting the expressions of aquaporin and sodium channel-related genes (AQP3, AQP4, AQP5, ENaCα, ENaCβ, and EnaCγ). Further, YPFS intervention exhibited a therapeutic effect on ALI by inhibiting the activation of the NLRP3 inflammasome and MAPK signaling pathways. Finally, YPFS improved gut barrier integrity and suppressed intestinal inflammation in LPS-challenged mice. CONCLUSIONS YPFS protected mice against LPS-induced ALI by attenuating lung and intestinal tissue damage. This study sheds light on the potential application of YPFS to treat ALI/ARDS.
Collapse
Affiliation(s)
- Yao Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Yanchun Wang
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Jun Ma
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Yanan Li
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Lu Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan, 430065, PR China.
| |
Collapse
|
34
|
Shi Y, Chen W, Du Y, Zhao L, Li Q. Damage Effects of Bisphenol A against Sepsis Induced Acute Lung Injury. Gene 2023:147575. [PMID: 37343733 DOI: 10.1016/j.gene.2023.147575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
In addition to oxidative damage, sepsis can cause multiple organ dysfunction and poses a life-threatening threat. In addition to severe tissue damage, hypotension, and multiple organ failure, sepsis can cause high morbidity and mortality. It is the lungs that are most vulnerable in abdominal sepsis, with impaired oxygen and nutrient exchange occurring in the pulmonary microcirculation. However, the etiology of sepsis and the link between sepsis and lung injury has not been elucidated. In this work, by exploring the data from the GEO and CTD database, a gene association study was conducted to determine whether sepsis-induced lung injury is caused by BPA. Further analysis demonstrated that MMP9, CEBPA, CYP1B1, CTSD, FKBP5, DGAT2, HP, TIMP2, ARG1 and MGST1 may play an important role in sepsis-induced lung injury. Finally, the single-cell RNA sequence demonstrated that CEBPA is mainly enriched in lung epithelial cells and epithelial cells, whereas CYP1B1 is closely related to basal cells, macrophages, and interstitial cells. In order to maintain lung function, epithelial and alveolar macrophages as well as other lung cells are important. When the lung epithelium is activated for a prolonged period of time, barrier function may be compromised and tissue damage may result, aggravating the lung injury. By using the animal model, we successfully simulated the model of sepsis lung injury. The HE staining demonstrated the rats with BPA-treated septic lung injury showed more alveolar structure to be disordered, pulmonary interstitial edema to be evident, and red blood cells as well as inflammatory cells. For PCR assay, the results demonstrated that the expression level of CEBPA is higher in the lung samples with sepsis compared with the normal samples of the lung. In order to evaluate the expression level of CEBPA and CYP1B1 in lung tissue, we then performed the PCR assay. For CYP1B1, the results demonstrated that the expression level of CYP1B1 in lung samples with sepsis is lower than in normal lung samples. In total, BPA may be a potential contributing factor to sepsis-induced lung injury.
Collapse
Affiliation(s)
- Yan Shi
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an , No.62, Huaihai Road (S.), Huai'an, 223002,China
| | - Wenming Chen
- Department of Emergency, Siyang Hospital of Traditiona Chinese Medicine ,No. 15, North Jiefang Road,Siyang ,223700,Jiangsu Province ,China
| | - Yeping Du
- Department of Emergency, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an , No.62, Huaihai Road (S.), Huai'an, 223002,China
| | - Long Zhao
- Department of Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an , No.62, Huaihai Road (S.), Huai'an, 223002,Jiangsu,China.
| | - Qi Li
- Department of Emergency, Huai'an Hospital, Huai'an, Jiangsu, China.
| |
Collapse
|
35
|
Lin D, Zhang Y, Wang S, Zhang H, Gao C, Lu F, Li M, Chen D, Lin Z, Yang B. Ganoderma lucidum polysaccharide peptides GL-PPSQ 2 alleviate intestinal ischemia-reperfusion injury via inhibiting cytotoxic neutrophil extracellular traps. Int J Biol Macromol 2023:125370. [PMID: 37330081 DOI: 10.1016/j.ijbiomac.2023.125370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Ganoderma lucidum polysaccharides peptides (GLPP) are the main effective ingredients from G. lucidum (Leyss. ex Fr.) Karst with anti-inflammatory, antioxidant, and immunoregulatory activities. We extracted and characterized a novel GLPP, named GL-PPSQ2, which were found to have 18 amino acids and 48 proteins, connected by O-glycosidic bonds. The monosaccharide composition of GL-PPSQ2 was determined to be composed of fucose, mannose, galactose and glucose with a molar ratio of 1: 1.45:2.37:16.46. By using asymmetric field-flow separation technique, GL-PPSQ2 were found to have a highly branched structure. Moreover, in an intestinal ischemia-reperfusion (I/R) mouse model, GL-PPSQ2 significantly increased the survival rate and alleviated intestinal mucosal hemorrhage, pulmonary permeability, and pulmonary edema. Meanwhile, GL-PPSQ2 significantly promoted intestinal tight junction, decreased inflammation, oxidative stress and cellular apoptosis in the ileum and lung. Analysis with Gene Expression Omnibus series indicates that neutrophil extracellular trap (NET) formation plays an important role in intestinal I/R injury. GL-PPSQ2 remarkedly inhibited NETs-related protein myeloperoxidase (MPO) and citrulline-Histone H3 (citH3) expression. GL-PPSQ2 could alleviate intestinal I/R and its induced lung injury via inhibiting oxidative stress, inflammation, cellular apoptosis, and cytotoxic NETs formation. This study proves that GL-PPSQ2 is a novel drug candidate for preventing and treating intestinal I/R injury.
Collapse
Affiliation(s)
- Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yukun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Saizhen Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cai Gao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Feng Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dilong Chen
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing 404120, China
| | - Zhanxi Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
36
|
Feng H, Zheng R. Cigarette smoke prevents M1 polarization of alveolar macrophages by suppressing NLRP3. Life Sci 2023:121854. [PMID: 37307964 DOI: 10.1016/j.lfs.2023.121854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory condition mainly caused by cigarette smoke (CS). Alveolar macrophages (AMs) contribute to its development, although the polarization of AMs is controversial. This study explored the polarization of AMs and mechanisms underlying their involvement in COPD. AM gene expression data from non-smokers, smokers, and COPD patients were downloaded from the GSE13896 and GSE130928 datasets. Macrophage polarization was evaluated by CIBERSORT and gene set enrichment analysis (GSEA). Polarization-related differentially expressed genes (DEGs) were identified in GSE46903. KEGG enrichment analysis and single sample GSEA were performed. M1 polarization levels were decreased in smokers and COPD patients, whereas M2 polarization did not change. In the GSE13896 and GSE130928 datasets, 27 and 19 M1-related DEGs, respectively, showed expression changes opposite to those in M1 macrophages in smokers and COPD patients compared with the control group. These M1-related DEGs were enriched in NOD-like receptor signaling pathway. Next, C57BL/6 mice were divided into control, lipopolysaccharide (LPS), CS, and LPS + CS groups, and cytokine levels in bronchoalveolar lavage fluid (BALF) and AM polarization were determined. The expression of macrophage polarization markers and NLRP3 was determined in AMs treated with CS extract (CSE), LPS, and an NLRP3 inhibitor. Cytokines levels and the percentage of M1 AMs in BALF were lower in the LPS + CS group than in the LPS group. Exposure to CSE downregulated the expression of M1 polarization markers and NLRP3 induced by LPS in AMs. The present results indicate that M1 polarization of AMs is repressed in smokers and COPD patients, and CS may inhibit LPS-induced M1 polarization of AMs by suppressing NLRP3.
Collapse
Affiliation(s)
- Haoshen Feng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
37
|
Zeng J, Zhao G. α-Hederin regulates macrophage polarization to relieve sepsis-induced lung and liver injuries in mice. Open Med (Wars) 2023; 18:20230695. [PMID: 37251537 PMCID: PMC10224612 DOI: 10.1515/med-2023-0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis is one of the most fatal inflammatory diseases with multiple organ failure caused by pathological infection. α-Hederin, a monodesmosidic triterpenoid saponin, has many biological activities including anti-inflammation. This study aimed to investigate the effect of α-Hederin on lung and liver injuries in septic mice. Mice underwent cecal ligation and puncture-induced sepsis were intraperitoneally injected with 0.3 or 3 mg/kg α-Hederin. α-Hederin treatment dose-dependently attenuated the lung and liver injuries in septic mice. Correspondingly, α-Hederin significantly decreased malondialdehyde production, increased the levels of superoxide dismutase and glutathione in lung tissues, reduced serum alanine aminotransferase and aspartate aminotransferase activities, and suppressed the levels of TNF-α and IL-6 in both tissues and in the serum. Moreover, α-Hederin augmented CD206 level and inhibited the productions of CD86 and iNOS in lung and liver tissues of septic mice. Importantly, p-p65/p65 was suppressed, whereas IκB was elevated by α-Hederin. In conclusion, α-Hederin could improve the lung and liver injuries in mice with sepsis by regulating macrophage M1/M2 polarization and inhibiting the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junan Zeng
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi Province, 710061, P.R. China
| | - Guangyu Zhao
- Department of Pediatrics, Xi’an Central Hospital, Xi’an, Shaanxi Province, 710003, P.R. China
| |
Collapse
|
38
|
Li N, Liu B, Xiong R, Li G, Wang B, Geng Q. HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control. Redox Biol 2023; 63:102746. [PMID: 37244125 DOI: 10.1016/j.redox.2023.102746] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023] Open
Abstract
Sepsis is one common cause of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), which is closely associated with high mortality in intensive care units (ICU). Histone deacetylase 3 (HDAC3) serves as an important epigenetic modifying enzyme which could affect chromatin structure and transcriptional regulation. Here, we explored the effects of HDAC3 in type II alveolar epithelial cells (AT2) on lipopolysaccharide (LPS)-induced ALI and shed light on potential molecular mechanisms. We generated ALI mouse model with HDAC3 conditional knockout mice (Sftpc-cre; Hdac3f/f) in AT2 and the roles of HDAC3 in ALI and epithelial barrier integrity were investigated in LPS-treated AT2. The levels of HDAC3 were significantly upregulated in lung tissues from mice with sepsis and in LPS-treated AT2. HDAC3 deficiency in AT2 not only decreased inflammation, apoptosis, and oxidative stress, but also maintained epithelial barrier integrity. Meanwhile, HDAC3 deficiency in LPS-treated AT2 preserved mitochondrial quality control (MQC), evidenced by the shift of mitochondria from fission into fusion, decreased mitophagy, and improved fatty acid oxidation (FAO). Mechanically, HDAC3 promoted the transcription of Rho-associated protein kinase 1 (ROCK1) in AT2. In the context of LPS stimulation, the upregulated ROCK1 elicited by HDAC3 could be phosphorylated by Rho-associated (RhoA), thus disturbing MQC and triggering ALI. Furthermore, we found that forkhead box O1 (FOXO1) was one of transcription factors of ROCK1. HDAC3 directly decreased the acetylation of FOXO1 and promoted its nuclear translocation in LPS-treated AT2. Finally, HDAC3 inhibitor RGFP966 alleviated epithelial damage and improved MQC in LPS-treated AT2. Altogether, HDAC3 deficiency in AT2 alleviated sepsis-induced ALI by preserving mitochondrial quality control via FOXO1-ROCK1 axis, which provided a potential strategy for the treatment of sepsis and ALI.
Collapse
Affiliation(s)
- Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Rui Xiong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
39
|
Wang S, Song Y, Xu F, Liu HH, Shen Y, Hu L, Fu Y, Zhu L. Identification and validation of ferroptosis-related genes in lipopolysaccharide-induced acute lung injury. Cell Signal 2023; 108:110698. [PMID: 37149072 DOI: 10.1016/j.cellsig.2023.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Emerging evidence reveals the important role of ferroptosis in the pathophysiological process of acute lung injury (ALI). We aimed to identify and validate the potential ferroptosis-related genes of ALI through bioinformatics analysis and experimental validation. METHODS Murine ALI model was established via intratracheal instillation with LPS and confirmed by H&E staining and transmission electronic microscopy (TEM). RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between control and ALI model mice. The potential differentially expressed ferroptosis-related genes of ALI were identified using the limma R package. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, gene set enrichment analysis (GSEA), and protein-protein interactions (PPI) were applied for the differentially expressed ferroptosis-related genes. CIBERSORT tool was used to conduct immune cell infiltration analysis. Finally, protein expressions and RNA expression of ferroptosis DEGs were validated in vivo and in vitro by western blots and RT-qPCR. RESULTS Among 5009 DEGs, a total of 86 differentially expressed ferroptosis-related genes (45 up-regulated genes and 41 down-regulated genes) were identified in the lungs between control and ALI. GSEA analysis showed that the genes enriched were mainly involved in response to molecule of bacterial origin and fatty acid metabolic process. The GO and KEGG enrichment analysis indicated that the top 40 ferroptosis DEGs were mainly enriched in reactive oxygen species metabolic process, HIF-1signaling pathway, lipid and atherosclerosis, and ferroptosis. The PPI results and Spearman correlation analysis suggested that these ferroptosis-related genes interacted with each other. Immune infiltration analysis confirmed that ferroptosis DEGs were closely related to immune response. Consistent with the RNA-seq data, the western blot and RT-qPCR unveiled increased mRNA expressions of Cxcl2, Il-6, Il-1β, and Tnfα, and protein expressions of FTH1, TLR4 as well as decreased ACSL3 in LPS-induced ALI. In vitro, the upregulated mRNA levels of CXCL2, IL-6, SLC2A1, FTH1, TNFAIP3, and downregulated NQO1 and CAV1 in LPS-stimulated BEAS-2B and A549 cells were verified. CONCLUSION We identified 86 potential ferroptosis-related genes of LPS-induced ALI through RNA-seq. Several pivotal ferroptosis-related genes involved in lipid metabolism and iron metabolism were implicated in ALI. This study may be helpful to expand our understanding of ALI and provide some potential targets to counteract ferroptosis in ALI.
Collapse
Affiliation(s)
- Sijiao Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yansha Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fan Xu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Han Han Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yue Shen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijuan Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yipeng Fu
- Breast Surgery, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.
| | - Lei Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Pulmonary Medicine, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
40
|
Liu Z, Meng Y, Miao Y, Yu L, Yu Q. Artesunate reduces sepsis-mediated acute lung injury in a SIRT1-dependent manner. BIOIMPACTS : BI 2023; 13:219-228. [PMID: 37431481 PMCID: PMC10329753 DOI: 10.34172/bi.2023.23585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 07/12/2023]
Abstract
Introduction Sepsis-mediated acute lung injury (ALI) is a critical clinical condition. Artesunate (AS) is a sesquiterpene lactone endoperoxide that was discovered in Artemisia annua, which is a traditional Chinese herb. AS has a broad set of biological and pharmacological actions; however, its protective effect on lipopolysaccharide (LPS)-induced ALI remains unclear. Methods LPS-mediated ALI was induced in rats through bronchial LPS inhalation. Then NR8383 cells were treated with LPS to establish an in vitro model. Further, we administered different AS doses in vivo and in vitro. Results AS administration significantly decreased LPS-mediated pulmonary cell death and inhibited pulmonary neutrophil infiltration. Additionally, AS administration increased SIRT1 expression in pulmonary sections. Administration of a biological antagonist or shRNA-induced reduction of SIRT1 expression significantly inhibited the protective effect of AS against LPS-induced cellular injury, pulmonary dysfunction, neutrophil infiltration, and apoptosis. This demonstrates that enhanced SIRT1 expression is crucially involved in the observed protective effects. Conclusion Our findings could suggest the use of AS for treating lung disorders through a mechanism involving SIRT1 expression.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yanli Meng
- Department of Gastroenterology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yu Miao
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lili Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Qiannan Yu
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
41
|
Gao P, Duan W, Shi H, Wang Q. Silencing circPalm2 inhibits sepsis-induced acute lung injury by sponging miR-376b-3p and targeting MAP3K1. Toxicol Res 2023; 39:275-294. [PMID: 37008689 PMCID: PMC10050541 DOI: 10.1007/s43188-022-00169-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The apoptosis and inflammation of pulmonary epithelial cells are important pathogenic factors of sepsis-induced acute lung injury (ALI). Upregulation of circPalm2 (circ_0001212) expression levels has been previously detected in the lung tissue of ALI rats. Herein, the biological significance and detailed mechanism of circPalm2 in ALI pathogenesis were investigated. In vivo models of sepsis-induced ALI were established by treating C57BL/6 mice with cecal ligation and puncture (CLP) surgery. Murine pulmonary epithelial cells (MLE-12 cells) were stimulated with lipopolysaccharide (LPS) to establish in vitro septic ALI models. MLE-12 cell viability and apoptosis were evaluated by CCK-8 assay and flow cytometry analysis, respectively. The pathological alterations of the lung tissue were analysed based on hematoxylin-eosin (H&E) staining. Cell apoptosis in the lung tissue samples was examined by TUNEL staining assay. LPS administration suppressed the viability and accelerated the inflammation and apoptotic behaviours of MLE-12 cells. CircPalm2 displayed high expression in LPS-stimulated MLE-12 cells and possessed circular characteristics. The silencing of circPalm2 impeded apoptosis and inflammation in LPS-stimulated MLE-12 cells. Mechanistically, circPalm2 bound with miR-376b-3p, which targeted MAP3K1. In rescue assays, MAP3K1 enhancement reversed the repressive effects of circPalm2 depletion on LPS-triggered inflammatory injury and MLE-12 cell apoptosis. Furthermore, the lung tissue collected from CLP model mice displayed low miR-376b-3p expression and high levels of circPalm2 and MAP3K1. CircPalm2 positively regulated MAP3K1 expression by downregulating miR-376b-3p in murine lung tissues. Importantly, circPalm2 knockdown attenuated CLP-induced inflammation, apoptosis, and pathological alterations in lung tissues collected from mice. Silenced circPalm2 inhibits LPS-induced pulmonary epithelial cell dysfunction and mitigates abnormalities in lung tissues collected from CLP-stimulated mice via the miR-376b-3p/MAP3K1 axis in septic ALI. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-022-00169-7.
Collapse
Affiliation(s)
- Pengfei Gao
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
- Department of Anesthesiology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huaian, Jiangsu 223300 China
| | - Wenying Duan
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
| | - Huiyan Shi
- Jinzhou Medical University, Jinzhou, Liaoning 121001 China
| | - Qingxiu Wang
- Shanghai East Clinical Medical College, Nanjing Medical University, No. 150, Jimo Road, Pudong New Area, Shanghai, 200120 China
- Shanghai East Hopital, Tongji University School of Medicine, Shanghai, 200120 China
| |
Collapse
|
42
|
Ning L, Shishi Z, Bo W, Huiqing L. Targeting immunometabolism against acute lung injury. Clin Immunol 2023; 249:109289. [PMID: 36918041 PMCID: PMC10008193 DOI: 10.1016/j.clim.2023.109289] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening conditions triggered by multiple intra- and extra-pulmonary injury factors, characterized by complicated molecular mechanisms and high mortality. Great strides have been made in the field of immunometabolism to clarify the interplay between intracellular metabolism and immune function in the past few years. Emerging evidence unveils the crucial roles of immunometabolism in inflammatory response and ALI. During ALI, both macrophages and lymphocytes undergo robust metabolic reprogramming and discrete epigenetic changes after activated. Apart from providing ATP and biosynthetic precursors, these metabolic cellular reactions and processes in lung also regulate inflammation and immunity.In fact, metabolic reprogramming involving glucose metabolism and fatty acidoxidation (FAO) acts as a double-edged sword in inflammatory response, which not only drives inflammasome activation but also elicits anti-inflammatory response. Additionally, the features and roles of metabolic reprogramming in different immune cells are not exactly the same. Here, we outline the evidence implicating how adverse factors shape immunometabolism in differentiation types of immune cells during ALI and summarize key proteins associated with energy expenditure and metabolic reprogramming. Finally, novel therapeutic targets in metabolic intermediates and enzymes together with current challenges in immunometabolism against ALI were discussed.
Collapse
Affiliation(s)
- Li Ning
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Zou Shishi
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China
| | - Wang Bo
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| | - Lin Huiqing
- Department of Thoracic Surgery, Renmin Hospital, Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
43
|
Wan Y, Wang S, Niu Y, Duo B, Liu Y, Lu Z, Zhu R. Effect of metformin on sepsis-associated acute lung injury and gut microbiota in aged rats with sepsis. Front Cell Infect Microbiol 2023; 13:1139436. [PMID: 36968119 PMCID: PMC10034768 DOI: 10.3389/fcimb.2023.1139436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundRecent studies reported the association between the changes in gut microbiota and sepsis, but there is unclear for the gut microbes on aged sepsis is associated acute lung injury (SALI), and metformin treatment for the change in gut microbiota. This study aimed to investigate the effect of metformin on gut microbiota and SALI in aged rats with sepsis. It also explored the therapeutic mechanism and the effect of metformin on aged rats with SALI.MethodsAged 20-21 months SD rats were categorized into three groups: sham-operated rats (AgS group), rats with cecal ligation and puncture (CLP)-induced sepsis (AgCLP group), and rats treated with metformin (100 mg/kg) orally 1 h after CLP treatment (AgMET group). We collected feces from rats and analyzed them by 16S rRNA sequencing. Further, the lung samples were collected for histological analysis and quantitative real-time PCR (qPCR) assay and so on.ResultsThis study showed that some pathological changes occurring in the lungs of aged rats, such as hemorrhage, edema, and inflammation, improved after metformin treatment; the number of hepatocyte death increased in the AgCLP group, and decreased in the AgMET group. Moreover, metformin relieved SALI inflammation and damage. Importantly, the gut microbiota composition among the three groups in aged SALI rats was different. In particular, the proportion of E. coli and K. pneumoniae was higher in AgCLP group rats than AgS group rats and AgMET group rats; while metformin could increase the proportion of Firmicutes, Lactobacillus, Ruminococcus_1 and Lactobacillus_johnsonii in aged SALI rats. Moreover, Prevotella_9, Klebsiella and Escherichia_Shigella were correlated positively with the inflammatory factor IL-1 in the lung tissues; Firmicutes was correlated negatively with the inflammatory factor IL-1 and IL-6 in the lung tissues.ConclusionsOur findings suggested that metformin could improve SALI and gut microbiota in aged rats, which could provide a potential therapeutic treatment for SALI in aged sepsis.
Collapse
Affiliation(s)
- Youdong Wan
- Department of Emergency Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuya Wang
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yifan Niu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Boyang Duo
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Yinshuang Liu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Lu
- Clinical Medicine of Zhengzhou University, Zhengzhou, China
| | - Ruixue Zhu
- Department of Health Management, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Ruixue Zhu,
| |
Collapse
|
44
|
Nurlu Temel E, Savran M, Erzurumlu Y, Hasseyid N, Buyukbayram HI, Okuyucu G, Sevuk MA, Ozmen O, Beyan AC. The β1 Adrenergic Blocker Nebivolol Ameliorates Development of Endotoxic Acute Lung Injury. J Clin Med 2023; 12:jcm12051721. [PMID: 36902508 PMCID: PMC10003295 DOI: 10.3390/jcm12051721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Acute lung injury (ALI) is a disease, with no effective treatment, which might result in death. Formations of excessive inflammation and oxidative stress are responsible for the pathophysiology of ALI. Nebivolol (NBL), a third-generation selective β1 adrenoceptor antagonist, has protective pharmacological properties, such as anti-inflammatory, anti-apoptotic, and antioxidant functions. Consequently, we sought to assess the efficacy of NBL on a lipopolysaccharide (LPS)-induced ALI model via intercellular adhesion molecule-1 (ICAM-1) expression and the tissue inhibitor of metalloproteinases-1 (TIMP-1)/matrix metalloproteinases-2 (MMP-2) signaling. Thirty-two rats were split into four categories: control, LPS (5 mg/kg, intraperitoneally [IP], single dose), LPS (5 mg/kg, IP, one dosage 30 min after last NBL treatment), + NBL (10 mg/kg oral gavage for three days), and NBL (10 mg/kg oral gavage for three days). Six hours after the administration of LPS, the lung tissues of the rats were removed for histopathological, biochemical, gene expression, and immunohistochemical analyses. Oxidative stress markers such as total oxidant status and oxidative stress index levels, leukocyte transendothelial migration markers such as MMP-2, TIMP-1, and ICAM-1 expressions in the case of inflammation, and caspase-3 as an apoptotic marker, significantly increased in the LPS group. NBL therapy reversed all these changes. The results of this study suggest that NBL has utility as a potential therapeutic agent to dampen inflammation in other lung and tissue injury models.
Collapse
Affiliation(s)
- Esra Nurlu Temel
- Department of Infectious Diseases, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
- Correspondence: ; Tel.: +90-532-551-94-39; Fax: +90-246-237-11-65
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Yalcın Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Nursel Hasseyid
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Halil Ibrahim Buyukbayram
- Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Gozde Okuyucu
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Mehmet Abdulkadir Sevuk
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Ayse Coskun Beyan
- Department of Occupational Medicine, Faculty of Medicine, Dokuz Eylul University, 35220 İzmir, Turkey
| |
Collapse
|
45
|
Yili S, Xinyi D, Kerui F, Kun C, Yang Y, Zhang L, Hu K. Activation of GPR81 aggravated intestinal ischemia/reperfusion injury-induced acute lung injury via HMGB1-mediated neutrophil extracellular traps formation. Int J Immunopathol Pharmacol 2023; 37:3946320231193832. [PMID: 37698122 PMCID: PMC10498694 DOI: 10.1177/03946320231193832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
INTRODUCTION Intestinal ischemia/reperfusion (II/R) injury is a life-threatening situation accompanied by severe organ injury, especially acute lung injury (ALI). A great body of evidence indicates that II/R injury is usually associated with hyperlactatemia. G-protein-coupled receptor 81 (GPR81), a receptor of lactate, has been recognized as a regulatory factor in inflammation, but whether it was involved in II/R injury-induced ALI is still unknown. METHODS To establish the II/R injury model, the superior mesenteric artery of the mice was occluded gently by a microvascular clamp for 45 min to elicit intestinal ischemia and then a 90-min reperfusion was performed. Broncho-alveolar lavage fluid (BALF) and lung tissues were obtained to evaluate the lung injury after II/R. The pulmonary histopathological alteration was evaluated by H&E staining. The concentration of proteins, the number of infiltrated cells, and the level of IL-6 were measured in BALF. The formation of neutrophil extracellular traps (NETs) was evaluated by the level of double-stranded DNA (dsDNA) and myeloperoxidase- double-stranded DNA (MPO-dsDNA) complex in BALF, and the content of citrullinated histone H3 (Cit-H3) in lung tissue. The level of HMGB1 in the BALF and plasma was measured by enzyme linked immunosorbent assay (ELISA). RESULTS Administration of the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) aggravated II/R injury-induced lung histological abnormalities, upregulated the concentration of proteins, the number of infiltrated cells, and the level of IL-6 in BALF. In addition, DHBA treatment increased the level of dsDNA and MPO-dsDNA complex in BALF, and promoted the elevation of Cit-H3 in lung tissue and the release of HMGB1 in BALF and plasma. CONCLUSION After induction of ALI by II/R, the administration of DHBA aggravated ALI through NETs formation in the lung.
Collapse
Affiliation(s)
- Sun Yili
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Dai Xinyi
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Fan Kerui
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Chen Kun
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Kai Hu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
46
|
Dong X, Tu H, Qin S, Bai X, Yang F, Li Z. Insights into the Roles of B Cells in Patients with Sepsis. J Immunol Res 2023; 2023:7408967. [PMID: 37128298 PMCID: PMC10148744 DOI: 10.1155/2023/7408967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023] Open
Abstract
Sepsis is a life-threatening yet common disease, still posing high mortality worldwide. Sepsis-related deaths primarily occur during immunosuppression; the disease can hamper the numbers and function of B cells, which mediate innate and adaptive immune responses to maintain immune homeostasis. Dysfunction of B cells, along with aggravated immunosuppression, are closely related to poor prognosis. However, B cells in patients with sepsis have garnered little attention. This article focuses on the significance of B-cell subsets, including regulatory B cells, in sepsis and how the counts and function of circulating B cells are affected in patients with sepsis. Finally, potential B-cell-related immunotherapies for sepsis are explored.
Collapse
Affiliation(s)
- Xijie Dong
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Tu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Yang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
47
|
Pan H, Huo L, Shen W, Dai Z, Bao Y, Ji C, Zhang J. Study on the protective effect of berberine treatment on sepsis based on gut microbiota and metabolomic analysis. Front Nutr 2022; 9:1049106. [PMID: 36601077 PMCID: PMC9806126 DOI: 10.3389/fnut.2022.1049106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Sepsis, an infection with multiorgan dysfunction, is a serious burden on human health. Berberine (BBR), a bioactive component, has a protective effect on sepsis and the effect may be related to gut microbiota. However, studies on the role of BBR with gut microbiota in sepsis are lacking. Therefore, this study investigated the ameliorative effects and the underlying mechanisms of BBR on cecal ligature and puncture (CLP) rats. Methods This study has observed the effect of BBR on pathological injury, Inflammation, intestinal barrier function, gut microbiota, and metabolite change in CLP rats by Hematoxylin-eosin staining, enzyme-linked immunosorbent assays, flow cytometry, 16S rDNA, and metabolomics analyses. Results The inhibition effects of BBR treatment on the histological damage of the lung, kidney, and ileum, the interleukin (IL)-1b, IL-6, IL-17A, and monocyte chemokine-1 levels in serum in CLP rats were proved. Also, the BBR inhibited the diamine-oxidase and fluorescein isothiocyanate-dextran 40 levels, suggesting it can improve intestinal barrier function disorders. The cluster of differentiation (CD) 4+, CD8+, and CD25+ Forkhead box protein P3 (Foxp3) + T lymphocytes in splenocytes were up-regulated by BBR, while the IL-17A+CD4+ cell level was decreased. The abundance of gut microbiota in CLP rats was significantly different from that of the sham and BBR treatment rats. The significantly changed metabolites in the serum mainly included carbohydrates, phenols, benzoic acids, alcohols, vitamins et al. Additionally, this study predicted that the biological mechanism of BBR to ameliorate sepsis involves glycolysis-, nucleotide-, and amino acid-related metabolic pathways. Discussion This study proved the strong correlation between the improvement effect of BBR on sepsis and gut microbiota and analyzed by metabolomics that gut microbiota may improve CLP rats through metabolites, providing a scientific basis for BBR to improve sepsis and a new direction for the study of the biological mechanism.
Collapse
Affiliation(s)
- Huibin Pan
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Lixia Huo
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Weiyun Shen
- Huzhou Key Laboratory of Translational Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Zhuquan Dai
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Ying Bao
- Department of Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Chaohui Ji
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,*Correspondence: Jie Zhang
| | - Jie Zhang
- Emergency Intensive Care Unit, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China,Chaohui Ji
| |
Collapse
|
48
|
Tang X, Liu J, Yao S, Zheng J, Gong X, Xiao B. Ferulic acid alleviates alveolar epithelial barrier dysfunction in sepsis-induced acute lung injury by activating the Nrf2/HO-1 pathway and inhibiting ferroptosis. PHARMACEUTICAL BIOLOGY 2022; 60:2286-2294. [PMID: 36433644 PMCID: PMC9707381 DOI: 10.1080/13880209.2022.2147549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
CONTEXT Ferulic acid (FA) has antioxidative and anti-inflammatory effects, and is a promising drug to treat sepsis. OBJECTIVE To study the therapeutic effect of FA in sepsis-induced acute lung injury (ALI) and its underlying mechanisms. MATERIALS AND METHODS The caecal ligation and puncture (CLP) manoeuvre was applied to establish a murine model of sepsis-induced ALI, and female BALB/c mice (6 mice per group) were subjected to 100 mg/kg FA or 0.8 mg/kg ferrostatin-1 (Fer-1, ferroptosis inhibitor) treatment to clarify the role of FA in preserving alveolar epithelial barrier function and inhibiting ferroptosis. Lipopolysaccharide (LPS; 500 ng/mL)-induced cell models were prepared and subjected to FA (0.1 μM), sh-Nrf2, and Fe (Fe-citrate, ferroptosis inducer; 5 M) treatment to study the in vitro effect of FA on LPS-induced alveolar epithelial cell injury and the role of the Nrf2/HO-1 pathway. RESULTS We found that FA decreased the lung injury score (48% reduction), lung wet/dry weight ratio (33% reduction), and myeloperoxidase activity (58% reduction) in sepsis-induced ALI. Moreover, FA inhibited ferroptosis of alveolar epithelial cells and improved alveolar epithelial barrier dysfunction. The protective role of FA against alveolar epithelial barrier dysfunction could be reversed by the ferroptosis inducer Fe-citrate, suggesting that FA alleviates alveolar epithelial barrier dysfunction by inhibiting ferroptosis. Mechanistically, we found that FA inhibited ferroptosis of alveolar epithelial cells by activating the Nrf2/HO-1 pathway. CONCLUSION Collectively, our data highlighted the alleviatory role of ferulic acid in sepsis-induced ALI by activating the Nrf2/HO-1 pathway and inhibiting ferroptosis, offering a new basis for sepsis treatment.
Collapse
Affiliation(s)
- Xianming Tang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Jiqiang Liu
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Shuo Yao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Jianfei Zheng
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Xun Gong
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Bing Xiao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| |
Collapse
|
49
|
Gao J, Zhao F, Yi S, Li S, Zhu A, Tang Y, Li A. Protective role of crocin against sepsis-induced injury in the liver, kidney and lungs via inhibition of p38 MAPK/NF-κB and Bax/Bcl-2 signalling pathways. PHARMACEUTICAL BIOLOGY 2022; 60:543-552. [PMID: 35225146 PMCID: PMC8890572 DOI: 10.1080/13880209.2022.2042328] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Crocin has been reported to have multiple bioactivities. However, the effect of crocin administration on caecal ligation and puncture (CLP)-induced sepsis remains unknown. OBJECTIVE We investigated the effects of crocin on CLP-induced sepsis in mice and the underlying mechanism of action. MATERIALS AND METHODS Five experimental groups (n = 10) of BALB/c mice were used: control, CLP (normal saline) and CLP + crocin (50, 100 and 250 mg/kg, 30 min prior to CLP). Mice were sacrificed 24 h after CLP. Liver, kidney and lung histopathology, indicator levels, apoptotic status, pro-inflammatory cytokines and relative protein levels were evaluated. RESULTS Compared to the CLP group, crocin treatment significantly increased the survival rate (70%, 80%, 90% vs. 30%). Crocin groups exhibited protection against liver, kidney and lung damage with mild-to-moderate morphological changes and lower indicator levels: liver (2.80 ± 0.45, 2.60 ± 0.55, 1.60 ± 0.55 vs. 5.60 ± 0.55), kidney (3.00 ± 0.71, 2.60 ± 0.55, 1.40 ± 0.55 vs. 6.20 ± 0.84) and lungs (8.00 ± 1.59, 6.80 ± 1.64, 2.80 ± 0.84 vs. 14.80 ± 1.79). The proinflammatory cytokines (IL-1β, TNF-α, IL-6 and IL-10 levels in the crocin groups) were distinctly lower and the apoptotic index showed a significant decrease. Crocin administration significantly suppressed p38 MAPK phosphorylation and inhibited NF-κB/IκBα and Bcl-2/Bax activation. DISCUSSION AND CONCLUSIONS Pre-treatment with crocin confers protective effects against CLP-induced liver, kidney and lung injury, implying it to be a potential therapeutic agent.
Collapse
Affiliation(s)
- Jun Gao
- Department of Laboratory Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Feng Zhao
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shaona Yi
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shuhang Li
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Aiqing Zhu
- Department of Dermatology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yingxiu Tang
- Department of Laboratory Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Aiqun Li
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
50
|
Ma C, Liu H, Yang S, Li H, Liao X, Kang Y. The emerging roles and therapeutic potential of B cells in sepsis. Front Pharmacol 2022; 13:1034667. [PMID: 36425582 PMCID: PMC9679374 DOI: 10.3389/fphar.2022.1034667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/26/2022] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a life-threatening syndrome caused by anomalous host response to infection. The pathogenesis of sepsis is complex, and immune dysfunction is the central link in its occurrence and development. The sepsis immune response is not a local and transient process but a complex and continuous process involving all major cell types of innate and adaptive immunity. B cells are traditionally studied for their ability to produce antibodies in the context of mediating humoral immunity. However, over the past few years, B cells have been increasingly recognized as key modulators of adaptive and innate immunity, and they can participate in immune responses by presenting antigens, producing cytokines, and modulating other immune cells. Recently, increasing evidence links B-cell dysfunction to mechanisms of immune derangement in sepsis, which has drawn attention to the powerful properties of this unique immune cell type in sepsis. Here, we reviewed the dynamic alterations of B cells and their novel roles in animal models and patients with sepsis, and provided new perspectives for therapeutic strategies targeting B cells in sepsis.
Collapse
Affiliation(s)
- Chengyong Ma
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hanrui Liu
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuo Yang
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hong Li
- Center of Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|