1
|
Raja AS, Sasikumar R, Chen SM, Kim B. Unveiling the Synergistic Effect of MnCo LDH Adorned MnCo 2S 4 Nanocomposite as Efficient Bifunctional Electrode for Asymmetric Supercapacitor and Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411728. [PMID: 40405737 DOI: 10.1002/smll.202411728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 05/12/2025] [Indexed: 05/24/2025]
Abstract
Metal-based LDHs incorporated with TMDs, exhibiting excellent synergistic effects, have attracted significant interest from researchers for energy production and storage applications due to their outstanding properties. In the present research, manganese cobalt sulfide incorporated into a manganese cobalt layered double hydroxide (MnCo2S4@MnCo LDH) composite has been developed for supercapacitors and overall water splitting. At a current density of 1 mA cm-2, the MnCo2S4@MnCo LDH-NF exhibits the highest specific capacitance (475.8 F g-1) compared to other electrodes. The MnCo2S4@MnCo LDH//AC ASCD demonstrates an energy density of 5.27 Wh kg-1 and a power density of 851.06 W kg-1, along with high cyclic stability, retaining 93.75% of its capacitance and 98.36% Coulombic efficiency. Furthermore, MnCo2S4@MnCo LDH-NF shows lower overpotentials (ƞ10) and Tafel slopes for HER (-163.9 mV and 96.2 mV dec-1) and OER (-150.68 mV and 50.95 mV dec-1) compared to control electrodes. The fabricated water-splitting cell (MnCo2S4@MnCo LDH(+, -)) efficiently generates both oxygen (O2) and hydrogen (H2) bubbles at a low voltage of 1.38 V. These results demonstrate that the MnCo2S4@MnCo LDH composite is an excellent candidate for both energy storage (supercapacitor) and green energy production (water splitting), showing potential for future renewable energy systems.
Collapse
Affiliation(s)
- A Sheron Raja
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Ragu Sasikumar
- School of Mechatronics Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
- Centre of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, India
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Byungki Kim
- School of Mechatronics Engineering, Advanced Technology Research Center, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
- Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
| |
Collapse
|
2
|
Gopal R, V A, Pb A, John D, Rajan VK, Kizhakayil RN. Influence of Solvent in Modulating Optoelectronic and Sensing Properties of Carbon Nanodots. Chem Asian J 2025:e202401897. [PMID: 40348612 DOI: 10.1002/asia.202401897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 05/14/2025]
Abstract
Carbon nanodots (CNDs), boasting biocompatibility, structural versatility, and tuneable photoluminescence, are promising candidates in luminescent materials. This study demonstrates how the optical properties of N, S co-doped carbon nanodots can be effectively tuned through variation in solvents. Drastic change is noted in the physico-chemical features of CNDs achieved using sulphuric acid and water through solvothermal route. A red shift in emission is noted in system achieved using sulfuric acid medium. The synthesized CNDs are explored for light emitting diode (LED) application. CNDs achieved using hydrothermal method (MCDs) lead to pure white light (CIE coordinates: 0.33, 0.38) emitting LEDs, and sulfuric acid modification (SMCD) produces LEDs emitting in yellowish-orange light (CIE coordinates: 0.57, 0.42), due to enhanced oxidation of carbon core. Further, the difference in solvents is also reflected in the response of these CNDS toward external analytes. Picric acid induced luminescence quenching of SMCDs enabled selective detection of the analyte among 11 nitroaromatic compounds, highlighting the impact of surface functionalization in tuning the response toward external environments. The sensing mechanism, involving the inner filter effect and static quenching, as well as the selective response to picric acid, was confirmed through optical characterization and frontier molecular orbital (FMO) analysis.
Collapse
Affiliation(s)
- Ritu Gopal
- Advanced Materials Research Centre, Department of Chemistry, University of Calicut, Kerala, India
| | - Anagha V
- Advanced Materials Research Centre, Department of Chemistry, University of Calicut, Kerala, India
| | - Arya Pb
- Advanced Materials Research Centre, Department of Chemistry, University of Calicut, Kerala, India
| | - Deepthi John
- Department of Chemistry, Deva Matha College, Kuravilangad, Kottayam, Kerala, India
| | - Vijisha K Rajan
- Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | | |
Collapse
|
3
|
Le KV, Nguyen HVT, Pham PQ, Nguyen NH, Doan TLH, Nguyen LHT, Phan BT, Nguyen LTM, Park S, Pham NK, Krisbiantoro PA, Wu KCW, Mai NXD. Biogenic fluorescent carbon dot-decorated mesoporous organosilica nanoparticles for enhanced bioimaging and chemotherapy. NANOSCALE HORIZONS 2025; 10:1000-1006. [PMID: 40131243 DOI: 10.1039/d4nh00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Hybrid materials possess the unique properties of their individual components, enabling their use in multiple synergistic applications. In this study, we synthesized biogenic fluorescent carbon dots (CDs) decorated with biodegradable periodic mesoporous organosilica nanoparticles (BPMO), creating BPMO@CDs. The CDs, approximately 9.8 nm in diameter, were derived from Musa paradisiaca cv. Awak juice using a rapid microwave method, exhibiting a spherical shape and green and red luminescence. The resulting BPMO@CDs are spherical, around 100 nm in size, and maintain high pore volume and surface area. The elemental chemical state in the BPMO@CDs remains consistent with that of pure BPMO. Our findings demonstrate that BPMO@CDs achieve efficient cellular uptake rates of 46.74% in MCF7 cells and 17.07% in L929 cells, with preserved fluorescence within the cells. The optical properties of the CDs are retained in the BPMO@CDs, allowing for detection upon cellular uptake. Additionally, when loaded with anticancer drugs, the BPMO@CDs significantly enhance the cytotoxicity against MCF7 breast cancer cells, highlighting their potential for synergistic bioimaging and chemotherapy applications.
Collapse
Affiliation(s)
- Ky-Vien Le
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hanh-Vy Tran Nguyen
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phu-Quan Pham
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
| | - Ngoc Hong Nguyen
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Linh Ho Thuy Nguyen
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, University of Health Sciences (UHS), Ho Chi Minh City, Vietnam
| | - Bach Thang Phan
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lan Thi My Nguyen
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, South Korea
| | - Ngoc Kim Pham
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, Vietnam
| | | | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institute, Keyan Road, Zhunan, Miaoli City 350, Taiwan
| | - Ngoc Xuan Dat Mai
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Kaur M, Neeshu K, Saini J, Dash T, Maharana AK, Hazra KS. Gate dielectric-induced lattice strain and band gap tuning in van der Waals 2D semiconducting channels. NANOSCALE 2025; 17:8872-8879. [PMID: 40098568 DOI: 10.1039/d4nr04295f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Gate dielectric materials are paramount in field-effect transistors (FETs), as they not only modulate carrier concentration but also induce local perturbations in the lattice structure within the semiconductor channel, thus influencing device performance. While electrical measurements directly assess mobility and concentration under the influence of a gate electric field, they often fail to probe locally induced strain in the crystal structure of the channel around the junction. In this study, we utilized Raman spectroscopy to investigate electric field-induced lattice strain in van der Waals two-dimensional (2D) semiconducting channels through different gate dielectrics (hBN and air) at the junction. The experimental findings demonstrate that at the junction, the van der Waals heterostructure channel exhibits high electric field-induced local strain with the hBN gate dielectric, exhibiting an ∼1.6-fold enhancement for Ag1, B2g, Ag2 E2g1, and A1g as compared to the air dielectric, and further facilitates the tailoring of the gate-channel interfaces to optimize transistor performance through gating effects.
Collapse
Affiliation(s)
- Manpreet Kaur
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India.
| | - Km Neeshu
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India.
| | - Jyoti Saini
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India.
| | - Tapaswini Dash
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India.
| | - Akash Kumar Maharana
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India.
| | - Kiran S Hazra
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
5
|
Jing Y, Liu X, Zhu Y, Wu L, Nong W. Metal-organic framework microneedles for precision transdermal drug delivery: design strategy and therapeutic potential. NANOSCALE 2025; 17:5571-5604. [PMID: 39918280 DOI: 10.1039/d4nr03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials renowned for their high porosity, large specific surface area, biocompatibility, and biodegradability. Hydrogel microneedles (MNs) is an emerging technology that minimally disrupts the skin or mucosal membranes, bypassing gastrointestinal absorption and the rapid metabolism typical of oral drug delivery. Over the past few decades, both MOFs and MNs have found applications across a range of fields. However, MOFs alone cannot penetrate the skin or mucosal barrier to deliver drugs effectively, and MNs have limited direct loading capacity. When combined, MOFs enhance the loading efficiency of therapeutic agents in hydrogel MNs and optimize their release kinetics. Additionally, the incorporation of MOFs improves the mechanical properties of hydrogel MNs, increasing their permeability to the skin. In turn, hydrogel MNs enable MOFs-whether therapeutically active or drug-loaded-to bypass the skin or mucosal barrier and deliver active compounds directly to the target site for localized treatment. This review discusses the structural features and preparation methods of MOFs and MOF-based MNs, explores their synergistic potential, and highlights strategies for integrating MOFs with MNs to enhance transdermal drug delivery in applications such as wound healing, scar management, acne treatment, and tumor suppression. Finally, we examine the challenges and future potential of MOF-based MNs and offer insights into their role in advancing transdermal therapies.
Collapse
Affiliation(s)
- Yutong Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xueting Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Yajing Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
6
|
Srivastava KV, Srivastava P, Srivastava A, Maurya RK, Singh YP, Srivastava A. 1D TiO 2 photoanodes: a game-changer for high-efficiency dye-sensitized solar cells. RSC Adv 2025; 15:4789-4819. [PMID: 39957817 PMCID: PMC11822562 DOI: 10.1039/d4ra06254j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/27/2024] [Indexed: 02/18/2025] Open
Abstract
Hierarchical architectures encompassing one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) nanostructures have garnered significant attention in energy and environmental applications due to their unique structural, electronic, and optical properties. These architectures provide high surface area, enhanced charge transport pathways, and improved light-harvesting capabilities, making them versatile candidates for next-generation photovoltaic (PV) systems. Among these, 1D structures, such as nanorods, nanowires, and nanotubes, offer distinct advantages, including anisotropic charge transport, reduced recombination rates, and enhanced light absorption due to their high aspect ratio and directional charge flow. In this focused review article, the pivotal role of one-dimensional titanium dioxide (1-D TiO2) as photoanodes in dye-sensitized solar cells (DSSCs) has been discussed thoroughly. The distinctive morphology of 1-D TiO2, including nanotubes or nanorods, provides an expanded surface area, facilitating efficient light absorption and dye adsorption. The inherent one-dimensional architecture promotes accelerated electron transport, minimizing recombination losses and enhancing charge collection efficiency. Additionally, 1-D TiO2 structures exhibit superior charge carrier mobility, reducing trapping sites and enhancing electron diffusion pathways, thereby improving overall stability and performance. The scalability and cost-effectiveness of synthesizing 1-D TiO2 nanostructures underscore their potential for large-scale DSSC production. This research emphasizes the significance of 1-D TiO2 as a promising photoanode material, offering a pathway for advancing the efficiency and viability of dye-sensitized solar cell applications.
Collapse
Affiliation(s)
| | - Pooja Srivastava
- Department of Physics, Dr RML Avadh University Ayodhya 224001 India
| | | | - Raj Kumar Maurya
- Department of Physics, Dr RML Avadh University Ayodhya 224001 India
| | | | | |
Collapse
|
7
|
Liu T, Mao Y, Dou H, Zhang W, Yang J, Wu P, Li D, Mu X. Emerging Wearable Acoustic Sensing Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408653. [PMID: 39749384 PMCID: PMC11809411 DOI: 10.1002/advs.202408653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/08/2024] [Indexed: 01/04/2025]
Abstract
Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy. Furthermore, with the recent development of artificial intelligence technology applied to speech recognition, speech recognition devices, and systems capable of assisting disabled individuals in interacting with scenes are constantly being updated. This review meticulously summarizes the sensing mechanisms, materials, structural design, and multidisciplinary applications of wearable acoustic devices applied to human health and human-computer interaction. Further, the advantages and disadvantages of the different approaches used in flexible acoustic devices in various fields are examined. Finally, the current challenges and a roadmap for future research are analyzed based on existing research progress to achieve more comprehensive and personalized healthcare.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Yuchen Mao
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Hanjie Dou
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Wangyang Zhang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Jiaqian Yang
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Pengfan Wu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Dongxiao Li
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| | - Xiaojing Mu
- Key Laboratory of Optoelectronic Technology & Systems of Ministry of EducationInternational R&D Center of Micro‐Nano Systems and New Materials TechnologyChongqing UniversityChongqing400044China
| |
Collapse
|
8
|
Ahmad N, Kumar A, Rachchh N, Jyothi S R, Bhanot D, Kumari B, Kumar A, Abosaoda MK. Developing a highly sensitive electrochemical sensor for malathion detection based on green g-C 3N 4@LiCoO 2 nanocomposites. RSC Adv 2025; 15:3378-3388. [PMID: 39902103 PMCID: PMC11788889 DOI: 10.1039/d4ra08023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Nowadays, developing pesticide-free agriculture is highly demanded by society. The development of electrochemical sensors to monitor and control pesticides is an effective step toward this desired goal. The current research has faced this issue by modifying of glassy carbon electrodes (GCEs) with green g-C3N4@LiCoO2 nanocomposites to probe malathion, an organophosphate pesticide. The g-C3N4@LiCoO2 modified GCE showed higher current than the net GCE, as a result of improved electrocatalytic performance of the modified GCE to oxidize malathion. Increased malathion concentration enhanced the malathion oxidation anodic peak current at +410 mV caused by the g-C3N4@LiCoO2 modified GCE. The developed probe showed an excellent linear response for malathion detection in the 5-120 nM (R 2 = 0.994) range and recorded a limit of detection of 4.38 nM. Besides, the modified GCE reveals considerable stability and reproducibility, which offers a cost-effective, sensitive, and selective electrode for malathion probing.
Collapse
Affiliation(s)
- Nafis Ahmad
- Department of Physics, College of Science, King Khalid University Abha 61413 Saudi Arabia
| | - Anjan Kumar
- Department of Electronics and Communication Engineering, GLA University Mathura-281406 India
| | - Nikunj Rachchh
- Marwadi University Research Center, Department of Mechanical Engineering, Faculty of Engineering & Technology, Marwadi University Rajkot-360003 Gujarat India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University) Bangalore Karnataka India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura 140401 Punjab India
| | - Bharti Kumari
- NIMS School of Petroleum & Chemical Engineering, NIMS University Rajasthan Jaipur India
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin Ekaterinburg 620002 Russia
- Department of Mechanical Engineering, Karpagam Academy of Higher Education Coimbatore 641021 India
| | - Munthar Kadhim Abosaoda
- College of Pharmacy, The Islamic University Najaf Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah Al Diwaniyah Iraq
| |
Collapse
|
9
|
Dhankhar S, Garg N, Chauhan S, Saini M. A Bird View on the Role of Graphene Oxide Nanosystems in Therapeutic Delivery. CURRENT NANOSCIENCE 2025; 21:470-480. [DOI: 10.2174/0115734137299120240312044808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2025]
Abstract
The remarkable physicochemical properties of Graphene oxide (GO), a graphene
derivative, have made it a material with intriguing medical administration potential. Its 2D allotropic
nature is the source of its biological flexibility. The transportation of genes and small
molecules are just two of the many biomedical applications of graphene and its composite. Antibacterial
use in tooth and bone grafts, biofunctionalization of proteins, and treatment of cancer
are among other potential uses. The biocompatibility of the freshly synthesized nanomaterials
opens up a world of potential biological and medicinal uses. Furthermore, GO's versatility
makes it an ideal component for usage in other drug delivery systems, such as hydrogels, nanoparticles,
and micelles. This review aims to compile the existing body of knowledge regarding
the use of GO in drug delivery by delving into its many potential uses, obstacles, and future
developments.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Monika Saini
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133-207, Ambala, Haryana, India
| |
Collapse
|
10
|
Rajib A, Chandra Saha T, Rahman MM, Sarker H, Dhali R, Hossain Sumon MS, Rahman A. Numerical evaluation of bi-facial ZnO/MoTe 2 photovoltaic solar cells with N-doped Cu 2O as the BSF layer for enhancing V OC via device simulation. RSC Adv 2024; 14:39954-39967. [PMID: 39703733 PMCID: PMC11657081 DOI: 10.1039/d4ra05974c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Molybdenum telluride (MoTe2) shows great promise as a solar absorber material for photovoltaic (PV) cells owing to its wide absorption range, adjustable bandgap, and lack of dangling bonds at the surface. In this research, a basic device structure comprising Pt/MoTe2/ZnO/ITO/Al was developed, and its potential was assessed using the SCAPS-1D software. The preliminary device exhibited a photovoltaic efficiency of 23.87%. The integration of a 100 nm thick nitrogen-doped copper oxide (N-doped Cu2O) layer as a hole transport/BSF layer improved the device performance of the MoTe2/ZnO photovoltaic solar cell (PVSC), increasing the open circuit voltage (V OC) from 0.68 V to 1.00 V and, consequently, its efficiency from 23.87% to 34.45%. Recombination and C-V analyses were conducted across various regions of the device with and without the BSF layer. The results of these analyses revealed that this improvement in the device performance mainly stemmed from a decrease in recombination losses at the absorber/BSF interface and an increase in the built-in potential of the device, resulting in improved V OC and photovoltaic efficiency. Additionally, the performance of the device in a bifacial mode was studied. The calculated bifacial factor (BF) values suggested that there were negligible additional losses affecting some parameters when the solar cell was under backside illumination and emphasized the potential for improved energy harvest in bifacial solar cells without significant drawbacks.
Collapse
Affiliation(s)
- Arifuzzaman Rajib
- Department of Electrical and Electronic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Tapos Chandra Saha
- Department of Electrical and Electronic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Md Mustafizur Rahman
- Department of Electrical and Electronic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Hridoy Sarker
- Department of Electrical and Electronic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Ruddro Dhali
- Department of Electrical and Electronic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Md Sabbir Hossain Sumon
- Department of Electrical and Electronic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University Gopalganj 8100 Bangladesh
| | - Atowar Rahman
- Department of Electrical and Electronic Engineering, University of Rajshahi Rajshahi 6205 Bangladesh
| |
Collapse
|
11
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Yekani M, Dizaj SM, Sharifi S, Sedaghat H, Saffari M, Memar MY. Nano-scaffold-based delivery systems of antimicrobial agents in the treatment of osteomyelitis ; a narrative review. Heliyon 2024; 10:e38392. [PMID: 39559197 PMCID: PMC11570522 DOI: 10.1016/j.heliyon.2024.e38392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Osteomyelitis caused by drug-resistant pathogens is one of the most important medical challenges due to high rates of mortality and morbidity, and limited therapeutical options. The application of novel nano-scaffolds loaded with antibiotics has widely been studied and extensively evaluated for in vitro and in vivo inhibition of pathogens, regenerating damaged bone tissue, and increasing bone cell proliferation. The treatment of bone infections using the local osteogenic scaffolds loaded with antimicrobial agents may efficiently overcome the problems of the systemic use of antimicrobial agents and provide a controlled release and sufficient local levels of antibiotics in the infected sites. The present study reviewed various nano-scaffolds delivery systems of antimicrobial drugs evaluated to treat osteomyelitis. Nano-scaffolds offer promising approaches because they simulate natural tissue regeneration in terms of their mechanical, structural, and sometimes chemical properties. The potential of several nano-scaffolds prepared by natural polymers such as silk, collagen, gelatin, fibrinogen, chitosan, cellulose, hyaluronic, alginate, and synthetic compounds such as polylactic acid, polyglycolic acid, poly (lactic acid-co-glycolic acid), poly-ɛ-caprolactone have been studied for usage as drug delivery systems of antimicrobial agents to treat osteomyelitis. In addition to incorporated antimicrobial agents and the content of scaffolds, the physical and chemical characteristics of the prepared delivery systems are a determining factor in their effectiveness in treating osteomyelitis.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Sedaghat
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Dujana WA, Ahmad S, Noman MNH, Kabir MH. The effect of changing constituents on tensile mechanical properties of HfNbTaTiZr high entropy alloy: A molecular dynamics study. Heliyon 2024; 10:e38350. [PMID: 39397917 PMCID: PMC11470405 DOI: 10.1016/j.heliyon.2024.e38350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
The recent trend of high-entropy alloys (HEAs) was studied extensively for their promising mechanical properties, but individual constituents' effects have remained unexplored. In this work, the effects of changing the percentage of elements of HfNbTaTiZr-HEA on the mechanical properties were analyzed during uniaxial tension using molecular dynamics simulation. The tensile strength and modulus of elastic properties of the samples were analyzed. It was found that adding Nb or Ta up to 10 % (i.e. Nb10/Ta10) in the high entropy alloys increased the ultimate tensile strength (UTS) from 2.9 GPa in the base alloy to 3.8/3.9 GPa (Nb10/Ta10) respectively, but further increment of these elements to 30 % resulted in a downgrade of UTS to 2.7 GPa. Similarly, the modulus of elasticity increased from 117.7 (±3) GPa in the base alloy to 137.7/129 (±3) GPa (Nb10/Ta10) respectively, but fell to 112-115 GPa upon further increment. The initial increase in strength could be due to the solid solution strengthening mechanism. However, further increases in these elements might hinder the development of a homogeneous solid solution because of differences in atomic size and crystal structure, which could ultimately reduce the alloy's strength. However, the effect of Ti and Zr follows an opposite trend as compared to Nb and Ta. Furthermore, the optimum composition of HEAs alloys was analyzed using a surface-contour plot and suggests minimizing the inclusion of Ta for maximizing the UTS, E, and %Elongation. Also, the high-temperature behavior of the optimized HEA's alloy was analyzed which showed a deterioration in properties at elevated temperature. The fracture evolution of the samples showed cup and cone-type fractures propagating under strain, the linear thermal expansion coefficient of HfNbTaTiZr-HEA was also calculated and found closer to the literature value.
Collapse
Affiliation(s)
- Wasif Abu Dujana
- Department of Materials and Metallurgical Engineering, Chittagong University of Engineering & Technology, Chattogram, 4349, Bangladesh
| | - Sazzad Ahmad
- Department of Materials and Metallurgical Engineering, Chittagong University of Engineering & Technology, Chattogram, 4349, Bangladesh
| | - Md. Nazmul Haque Noman
- Department of Materials Science and Engineering, Khulna University of Engineering & Technology, Khulna, 9201, Bangladesh
| | - Mohammad Humaun Kabir
- Department of Materials and Metallurgical Engineering, Chittagong University of Engineering & Technology, Chattogram, 4349, Bangladesh
| |
Collapse
|
14
|
Yeoh GH, De Cachinho Cordeiro IM, Wang W, Wang C, Yuen ACY, Chen TBY, Vargas JB, Mao G, Garbe U, Chua HT. Carbon-based Flame Retardants for Polymers: A Bottom-up Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403835. [PMID: 38814633 DOI: 10.1002/adma.202403835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Indexed: 05/31/2024]
Abstract
This state-of-the-art review is geared toward elucidating the molecular understanding of the carbon-based flame-retardant mechanisms for polymers via holistic characterization combining detailed analytical assessments and computational material science. The use of carbon-based flame retardants, which include graphite, graphene, carbon nanotubes (CNTs), carbon dots (CDs), and fullerenes, in their pure and functionalized forms are initially reviewed to evaluate their flame retardancy performance and to determine their elevation of the flammability resistance on various types of polymers. The early transition metal carbides such as MXenes, regarded as next-generation carbon-based flame retardants, are discussed with respect to their superior flame retardancy and multifunctional applications. At the core of this review is the utilization of cutting-edge molecular dynamics (MD) simulations which sets a precedence of an alternative bottom-up approach to fill the knowledge gap through insights into the thermal resisting process of the carbon-based flame retardants, such as the formation of carbonaceous char and intermediate chemical reactions offered by the unique carbon bonding arrangements and microscopic in-situ architectures. Combining MD simulations with detailed experimental assessments and characterization, a more targeted development as well as a systematic material synthesis framework can be realized for the future development of advanced flame-retardant polymers.
Collapse
Affiliation(s)
- Guan Heng Yeoh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, Sydney, NSW, 2232, Australia
| | | | - Wei Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cheng Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anthony Chun Yin Yuen
- Department of Building Environment and Energy Engineering, Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Timothy Bo Yuan Chen
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, SAR, China
| | - Juan Baena Vargas
- Commonwealth Science Industry Research Organisation (CSIRO), North Ryde, Sydney, NSW, 2113, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ulf Garbe
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, Sydney, NSW, 2232, Australia
| | - Hui Tong Chua
- School of Chemical Engineering, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
15
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
16
|
Deng X, Yang Z, Chan KW, Ismail N, Abu Bakar MZ. 5-Fluorouracil in Combination with Calcium Carbonate Nanoparticles Loaded with Antioxidant Thymoquinone against Colon Cancer: Synergistically Therapeutic Potential and Underlying Molecular Mechanism. Antioxidants (Basel) 2024; 13:1030. [PMID: 39334689 PMCID: PMC11429434 DOI: 10.3390/antiox13091030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Colon cancer is the third most common cancer worldwide, with high mortality. Adverse side effects and chemoresistance of the first-line chemotherapy 5-fluorouracil (5-FU) have promoted the widespread use of combination therapies. Thymoquinone (TQ) is a natural compound with potent antioxidant activity. Loading antioxidants into nano delivery systems has been a major advance in enhancing their bioavailability to improve clinical application. Hence, this study aimed to prepare the optimal TQ-loaded calcium carbonate nanoparticles (TQ-CaCO3 NPs) and investigate their therapeutic potential and underlying molecular mechanisms of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Firstly, we developed purely aragonite CaCO3 NPs with a facile mechanical ball-milling method. The pH-sensitive and biocompatible TQ-CaCO3 NPs with sustained release properties were prepared using the optimal synthesized method (a high-speed homogenizer). The in vitro study revealed that the combination of TQ-CaCO3 NPs (15 μM) and 5-FU (7.5 μM) inhibited CT26 cell proliferation and migration, induced cell apoptosis and cell cycle arrest in the G0/G1 phase, and suppressed the CT26 spheroid growth, exhibiting a synergistic effect. Finally, network pharmacology and molecular docking results indicated the potential targets and crucial signaling pathways of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Therefore, TQ-CaCO3 NPs combined with 5-FU could enhance the anti-colon cancer effects of 5-FU with broader therapeutic targets, warranting further application for colon cancer treatment.
Collapse
Affiliation(s)
- Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
17
|
Mirsky NA, Ehlen QT, Greenfield JA, Antonietti M, Slavin BV, Nayak VV, Pelaez D, Tse DT, Witek L, Daunert S, Coelho PG. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering (Basel) 2024; 11:777. [PMID: 39199735 PMCID: PMC11351251 DOI: 10.3390/bioengineering11080777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Since three-dimensional (3D) bioprinting has emerged, it has continuously to evolved as a revolutionary technology in surgery, offering new paradigms for reconstructive and regenerative medical applications. This review highlights the integration of 3D printing, specifically bioprinting, across several surgical disciplines over the last five years. The methods employed encompass a review of recent literature focusing on innovations and applications of 3D-bioprinted tissues and/or organs. The findings reveal significant advances in the creation of complex, customized, multi-tissue constructs that mimic natural tissue characteristics, which are crucial for surgical interventions and patient-specific treatments. Despite the technological advances, the paper introduces and discusses several challenges that remain, such as the vascularization of bioprinted tissues, integration with the host tissue, and the long-term viability of bioprinted organs. The review concludes that while 3D bioprinting holds substantial promise for transforming surgical practices and enhancing patient outcomes, ongoing research, development, and a clear regulatory framework are essential to fully realize potential future clinical applications.
Collapse
Affiliation(s)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Daniel Pelaez
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David T. Tse
- Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, NY 10010, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
- Hansjörg Wyss Department of Plastic Surgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
18
|
Nguyen ST, Nguyen CV, Phuc HV, Hieu NN, Nguyen CQ. Achieving ultra-low contact barriers in MX 2/SiH (M = Nb, Ta; X = S, Se) metal-semiconductor heterostructures: first-principles prediction. NANOSCALE ADVANCES 2024:d4na00482e. [PMID: 39139713 PMCID: PMC11317907 DOI: 10.1039/d4na00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Minimizing the contact barriers at the interface, forming between two different two-dimensional metals and semiconductors, is essential for designing high-performance optoelectronic devices. In this work, we design different types of metal-semiconductor heterostructures by combining 2D metallic MX2 (M = Nb, Hf; X = S, Se) and 2D semiconductor SiH and investigate systematically their electronic properties and contact characteristics using first principles calculations. We find that all the MX2/SiH (M = Nb, Ta; X = S, Se) heterostructures are energetically stable, suggesting that they could potentially be synthesized in the future. Furthermore, the generation of the MX2/SiH metal-semiconductor heterostructures leads to the formation of the Schottky contact with ultra-low Schottky barriers of a few tens of meV. This finding suggests that all the 2D MX2 (M = Nb, Ta; X = S, Se) metals act as effective electrical contact 2D materials to contact with the SiH semiconductor, enabling electronic devices with high charge injection efficiency. Furthermore, the tunneling resistivity of all the MX2/SiH (M = Nb, Ta; X = S, Se) MSHs is low, confirming that they exhibit high electron injection efficiency. Our findings underscore fundamental insights for the design of high-performance multifunctional Schottky devices based on the metal-semiconductor MX2/SiH heterostructures with ultra-low contact barriers and high electron injection efficiency.
Collapse
Affiliation(s)
- Son T Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry Hanoi 100000 Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University Hanoi 100000 Vietnam
| | - Huynh V Phuc
- Division of Physics, School of Education, Dong Thap University Cao Lanh 870000 Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
19
|
Phengdaam A, Phetsang S, Jonai S, Shinbo K, Kato K, Baba A. Gold nanostructures/quantum dots for the enhanced efficiency of organic solar cells. NANOSCALE ADVANCES 2024; 6:3494-3512. [PMID: 38989520 PMCID: PMC11232555 DOI: 10.1039/d4na00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/18/2024] [Indexed: 07/12/2024]
Abstract
Incorporating gold nanoparticles (AuNPs) into organic solar cell (OSC) structures provides an effective means to manipulate light-matter interactions. AuNPs have been used as plasmonic-enhancement and light-trapping materials in OSCs and exhibit diverse single and mixed morphologies. Substantial near-field enhancement from metal periodic structures has consistently demonstrated high enhancement in solar cell efficiency. Additionally, coupling with atomic gold clusters in the form of gold quantum dots holds promise for light harvesting through fluorescence phenomena. The configured devices optimize light utilization in OSCs by considering factors such as the morphology, position, and hybridization of localized surface plasmon resonance, propagating surface plasmon resonance, and fluorescence phenomena. This optimization enhances light absorption, scattering, and efficient trapping facilitated by gold nanostructures/quantum dots. The configured setup exhibits multiple effects, concurrently improving plasmonic and fluorescence responses under solar irradiation, thereby enhancing energy conversion performance. Integrating plasmonic nanostructures with OSCs can address fundamental issues, providing opportunities to enhance the light-absorption intensity and charge transfer efficiency at intra and intermolecular levels. This comprehensive review demonstrates that the greatest improvement in solar cell efficiency exceeded 30% compared with the reference cells.
Collapse
Affiliation(s)
- Apichat Phengdaam
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sopit Phetsang
- Division of General Education, National Institute of Technology (KOSEN), Nagaoka College 888 Nishikatakai-machi, Nagaoka-shi Niigata 940-8532 Japan
| | - Sachiko Jonai
- Graduate School of Science and Technology, Niigata University 8050, Ikarashi 2-nocho, Nishi-ku Niigata 950-2181 Japan
| | - Kazunari Shinbo
- Graduate School of Science and Technology, Niigata University 8050, Ikarashi 2-nocho, Nishi-ku Niigata 950-2181 Japan
| | - Keizo Kato
- Graduate School of Science and Technology, Niigata University 8050, Ikarashi 2-nocho, Nishi-ku Niigata 950-2181 Japan
| | - Akira Baba
- Graduate School of Science and Technology, Niigata University 8050, Ikarashi 2-nocho, Nishi-ku Niigata 950-2181 Japan
| |
Collapse
|
20
|
Tang Z, Wu YR, Li SY, Zhang HF. An optimized metastructure switchable between ultra-wideband angle-insensitive absorption and transmissive polarization conversion: a theoretical study. NANOSCALE 2024; 16:11977-11990. [PMID: 38597125 DOI: 10.1039/d4nr00727a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
An optimized metastructure (MS) switchable between ultra-wideband (UWB) angle-insensitive absorption, and transmissive linear-to-circular (LTC) polarization conversion (PC), is proposed, which is a theoretical study. The structural parameters of this MS are optimized by the thermal exchange optimization algorithm. By modulating the chemical potential (μc) of the graphene-based hyperbolic metamaterial embedded in the MS, the MS can achieve UWB absorption in the absorption state and LTC PC in the transmission state. At normal incidence, in the absorption state, the MS exhibits absorptivity exceeding 0.9 within 7-15.45 THz, with a relative bandwidth (RBW) of 75.28%. By elevating μc, an UWB LTC PC is realized, with a RBW of 118.8%, achieving transmittance above 0.9 and the axial ratio below 3 dB. When prioritizing the angular stability, in the absorption state, the MS secures the angular stability of 75° for TE waves and 65° for TM ones. In the transmission state, the angular stability of PC reaches 60°, with RBW = 100.7%. Moreover, by manipulating μc, the tunability of UWB absorption is realized. The optimized MS provides a reference for designing multifunctional intelligent terahertz modulators, with promising application potential in domains like electromagnetic shielding, communication systems, and THz modulation.
Collapse
Affiliation(s)
- Zhao Tang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - You-Ran Wu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Si-Ying Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Hai-Feng Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
21
|
Mo W, Hu Q, Guan J, Jiang Y, Tian W, Li H, Leroux F, Feng Y. Enhanced dispersion of prussian blue via intercalation into layered double hydroxides for efficient solar seawater evaporation. Dalton Trans 2024; 53:10285-10292. [PMID: 38831740 DOI: 10.1039/d4dt01300j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Prussian blue (PB) is favored for its photothermal absorption capability in solar vapor generation applications. However, the photothermal conversion efficiency of current PB-based devices is limited by the material's poor dispersion. Herein, we report a method of incorporating PB in the interlayers of layered double hydroxides (LDHs) to prevent its aggregation. The dispersion is further enhanced and stabilized by the addition of sodium dodecyl sulfate (SDS). The thermal and water stability of PB is improved due to the rigid structure of LDHs and interactions between layers and anions. Elemental analysis confirms that with the increase of molar ratio of Mg/Al and the introduction of SDS, concentrations of PB are decreased accordingly. As a result, the rate of solar vapor generation is increased by 35.9% for powders containing 50 mg of equivalent PB. Of note, converting this material into a three-dimensional structure of high rebound foam further enhances solar water evaporation rate, from 0.79 kg m-2 h-1 to 0.98 kg m-2 h-1, with only 20 mg of equivalent PB, increasing the corresponding photothermal conversion efficiency from 53.8% to 66.3%.
Collapse
Affiliation(s)
- Weixin Mo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
| | - Qianqian Hu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
| | - Jun Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
| | - Yu Jiang
- Beijing Municipal Construction Group Co. Ltd, A40 Xingshikou Road, Haidian District, Beijing, 100195, China
| | - Weiliang Tian
- College of Chemistry and Chemical Engineering, Tarim University, Alar, 843300, PR China
| | - Huiyu Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
| | - Fabrice Leroux
- Chemical Institute of Clermont-Ferrand (ICCF), University Clermont Auvergne, UMR-CNRS No 6296, F_63171 Aubière, France
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, China.
- College of Chemistry and Chemical Engineering, Tarim University, Alar, 843300, PR China
| |
Collapse
|
22
|
Rahmani K, Zahedi P, Shahrousvand M. Potential use of a bone tissue engineering scaffold based on electrospun poly (ɛ-caprolactone) - Poly (vinyl alcohol) hybrid nanofibers containing modified cockle shell nanopowder. Heliyon 2024; 10:e31360. [PMID: 38813180 PMCID: PMC11133941 DOI: 10.1016/j.heliyon.2024.e31360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Today, the construction of scaffolds promoting the differentiation of stem cells is an intelligent innovation that accelerates the differentiation toward the target tissue. The use of calcium and phosphate compounds is capable of elevating the precision and efficiency of the osteogenic differentiation of stem cells. In this research, osteoconductive electrospun poly (ɛ-caprolactone) (PCL) - poly (vinyl alcohol) (PVA) hybrid nanofibrous scaffolds containing modified cockle shell (CS) nanopowder were prepared and investigated. In this regard, the modified CS nanopowder was prepared by grinding and modifying with phosphoric acid, and it was then added to PVA nanofibers at different weight percentages. Based on the SEM images, the optimum content of the modified CS nanopowder was set at 7 wt %, since reaching the threshold of agglomeration restricted this incorporation. In the second step, the PVA-CS7 nanofibrous sample was hybridized with different PCL ratios. Concerning the hydrophilicity and mechanical strength, the sample named PCL50-PVA50-CS7 was ultimately selected as the optimized and suitable candidate scaffold for bone tissue application. The accelerated hydrolytic degradation of the sample was also studied by FTIR and SEM analyses, and the results confirmed that the mineral deposits of CS are available approximately 7 days for mesenchymal stem cells. Moreover, Alizarin red staining illustrated that the presence of CS in the PCL50-PVA50-CS7 hybrid nanofibrous scaffold may potentially lead to an increase in calcium deposits with high precipitates, authenticating the differentiation of stem cells towards osteogenic cells.
Collapse
Affiliation(s)
- Kimiya Rahmani
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, P.O. Box 119-43841, Chooka Branch, Rezvanshahr, 4386156387, Guilan Province, Iran
| |
Collapse
|
23
|
Karmakar A, Silswal A, Koner AL. Review of NIR-responsive ''Smart'' carriers for photothermal chemotherapy. J Mater Chem B 2024; 12:4785-4808. [PMID: 38690723 DOI: 10.1039/d3tb03004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review focuses on the versatile applications of near-infrared (NIR)-responsive smart carriers in biomedical applications, particularly drug delivery and photothermal chemotherapy. These carriers demonstrate multi-responsive theranostics capabilities, including pH-dependent drug release, targeted delivery of chemotherapeutics, heat-mediated drug release, and photothermal tumor damage. Biological samples are transparent to NIR light with a suitable wavelength, and therefore, NIR light is advantageous for deep-tissue penetration. It also generates sufficient heat in tissue samples, which is beneficial for on-demand NIR-responsive drug delivery in vivo systems. The development of biocompatible materials with sufficient NIR light absorption properties and drug-carrying functionality has shown tremendous growth in the last five years. Thus, this review offers insights into the current research development of NIR-responsive materials with therapeutic potential and prospects aimed at overcoming challenges to improve the therapeutic efficacy and safety in the dynamic field of NIR-responsive drug delivery.
Collapse
Affiliation(s)
- Abhijit Karmakar
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
24
|
Ali AH, Hachem M, Ahmmed MK. Docosahexaenoic acid-loaded nanoparticles: A state-of-the-art of preparation methods, characterization, functionality, and therapeutic applications. Heliyon 2024; 10:e30946. [PMID: 38774069 PMCID: PMC11107210 DOI: 10.1016/j.heliyon.2024.e30946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 n-3), an omega-3 polyunsaturated fatty acid, offers several beneficial effects. DHA helps in reducing depression, autoimmune diseases, rheumatoid arthritis, attention deficit hyperactivity syndrome, and cardiovascular diseases. It can stimulate the development of brain and nerve, alleviate lipids metabolism-related disorders, and enhance vision development. However, DHA susceptibility to chemical oxidation, poor water solubility, and unpleasant order could restrict its applications for nutritional and therapeutic purposes. To avoid these drawbacks and enhance its bioavailability, DHA can be encapsulated using an effective delivery system. Several encapsulation methods are recognized, and DHA-loaded nanoparticles have demonstrated numerous benefits. In clinical studies, positive influences on the development of several diseases have been reported, but some assumptions are conflicting and need more exploration, since DHA has a systemic and not a targeted release at the required level. This might cause the applications of nanoparticles that could allow DHA release at the required level and improve its efficiency, thus resulting in a better controlling of several diseases. In the current review, we focused on researches investigating the formulation and development of DHA-loaded nanoparticles using different delivery systems, including low-density lipoprotein, zinc oxide, silver, zein, and resveratrol-stearate. Silver-DHA nanoparticles presented a typical particle size of 24 nm with an incorporation level of 97.67 %, while the entrapment efficiency of zinc oxide-DHA nanoparticles represented 87.3 %. By using zein/Poly (lactic-co-glycolic acid) stabilized nanoparticles, DHA's encapsulation level reached 84.6 %. We have also highlighted the characteristics, functionality and medical implementation of these nanoparticles in the treatment of inflammations, brain disorders, diabetes as well as hepatocellular carcinoma.
Collapse
Affiliation(s)
- Abdelmoneim H. Ali
- Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Group, Khalifa University of Sciences and Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
25
|
Mojapelo N, Seroka N, Khotseng L. Green and sustainable use of macadamia nuts as support material in Pt-based direct methanol fuel cells. Heliyon 2024; 10:e29907. [PMID: 38707303 PMCID: PMC11068541 DOI: 10.1016/j.heliyon.2024.e29907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
The successful commercialization of direct methanol fuel cells (DMFCs) is hindered by inadequate methanol oxidation activity and anode catalyst longevity. Efficient and cost-effective electrode materials are imperative in the widespread use of DMFCs. While Platinum (Pt) remains the primary component of anodic methanol oxidation reaction (MOR) electrocatalysts, its utilization alone in DMFC systems is limited due to carbon monoxide (CO) poisoning, instability, methanol crossover, and high cost. These limitations impede the economic feasibility of Pt as an electrocatalyst. Herein, we present the use of powdered activated carbon (PAC) and granular activated carbon (GAC), both sourced from macadamia nut shells (MNS), a type of biomass. These bio-based carbon materials are integrated into hybrid supports with reduced graphene oxide (rGO), aiming to enhance the performance and reduce the production cost of the Pt electrocatalyst. Electrochemical and physicochemical characterizations of the synthesized catalysts, including Pt-rGO/PAC-1:1, Pt-rGO/PAC-1:2, Pt-rGO/GAC-1:1, and Pt-rGO/GAC-1:2, were conducted. X-ray diffraction analysis revealed crystallite sizes ranging from 1.18 nm to 1.68 nm. High-resolution transmission electron microscopy (HRTEM) images with average particle sizes ranging from 1.91 nm to 2.72 nm demonstrated spherical dispersion of Pt nanoparticles with some agglomeration across all catalysts. The electrochemical active surface area (ECSA) was determined, with Pt-rGO/GAC-1:1 exhibiting the highest ECSA of 73.53 m2 g-1. Despite its high ECSA, Pt-rGO/GAC-1:1 displayed the lowest methanol oxidation reaction (MOR) current density, indicating active sites with poor catalytic efficiency. Pt-rGO/PAC-1:1 and Pt-rGO/PAC-1:2 exhibited the highest MOR current densities of 0.77 mA*cm-2 and 0.74 mA*cm-2, respectively. Moreover, Pt-rGO/PAC-1:2 and Pt-rGO/PAC-1:1 demonstrated superior electrocatalytic mass (specific) activities of 7.55 mA/mg (0.025 mA*cm-2) and 7.25 mA/mg (0.021 mA*cm-2), respectively. Chronoamperometry tests revealed Pt-rGO/PAC-1:2 and Pt-rGO/PAC-1:1 as the most stable catalysts. Additionally, they exhibited the lowest charge transfer resistances and highest MOR current densities after durability tests, highlighting their potential for DMFC applications. The synthesized Pt supported on PACs hybrids demonstrated remarkable catalytic performance, stability, and CO tolerance, highlighting their potential for enhancing DMFC efficiency.
Collapse
Affiliation(s)
- N.A. Mojapelo
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| | - N.S. Seroka
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
- Energy Centre, Smart Places Cluster, Council for Science and Industrial Research (CSIR), Pretoria, 0001, South Africa
| | - L. Khotseng
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
| |
Collapse
|
26
|
Gautam S, Rialach S, Paul S, Goyal N. MOF/graphene oxide based composites in smart supercapacitors: a comprehensive review on the electrochemical evaluation and material development for advanced energy storage devices. RSC Adv 2024; 14:14311-14339. [PMID: 38690108 PMCID: PMC11060142 DOI: 10.1039/d4ra01027b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024] Open
Abstract
The surge in interest surrounding energy storage solutions, driven by the demand for electric vehicles and the global energy crisis, has spotlighted the effectiveness of carbon-based supercapacitors in meeting high-power requirements. Concurrently, metal-organic frameworks (MOFs) have gained attention as a template for their integration with graphene oxide (GO) in composite materials which have emerged as a promising avenue for developing high-power supercapacitors, elevating smart supercapacitor efficiency, cyclic stability, and durability, providing crucial insights for overcoming contemporary energy storage obstacles. The identified combination leverages the strengths of both materials, showcasing significant potential for advancing energy storage technologies in a sustainable and efficient manner. In this research, an in-depth review has been presented, in which properties, rationale and integration of MOF/GO composites have been critically examined. Various fabrication techniques have been thoroughly analyzed, emphasizing the specific attributes of MOFs, such as high surface area and modifiable porosity, in tandem with the conductive and stabilizing features of graphene oxide. Electrochemical characterizations and physicochemical mechanisms underlying MOF/GO composites have been examined, emphasizing their synergistic interaction, leading to superior electrical conductivity, mechanical robustness, and energy storage capacity. The article concludes by identifying future research directions, emphasizing sustainable production, material optimization, and integration strategies to address the persistent challenges in the field of energy storage. In essence, this research article aims to offer a concise and insightful resource for researchers engaged in overcoming the pressing energy storage issues of our time through the exploration of MOF/GO composites in smart supercapacitors.
Collapse
Affiliation(s)
- Sanjeev Gautam
- Advanced Functional Materials Lab, Dr S.S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University Chandigarh-160014 India +91 97797 13212
| | - Shruti Rialach
- Department of Physics and Astronomical Science, Central University of Himachal Pradesh Dharamshala 176215 India
- Energy Research Centre, Panjab University Chandigarh-160014 India
| | - Surinder Paul
- Department of Physics and Astronomical Science, Central University of Himachal Pradesh Dharamshala 176215 India
| | - Navdeep Goyal
- Department of Physics, Panjab University Chandigarh-160014 India
| |
Collapse
|
27
|
Aghdasinia S, Allahverdizadeh H, Afkari E, Ahmadpour B, Bemani M. Optimizing an electromagnetic wave absorber for bi-anisotropic metasurfaces based on toroidal modes. Sci Rep 2024; 14:8783. [PMID: 38627473 PMCID: PMC11021463 DOI: 10.1038/s41598-024-59503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
The design and optimization of an electromagnetic wave absorber for far-field wireless power transmission (WPT) is the subject of this research study. The goal of the research is to effectively absorb energy from ambient RF electromagnetic waves without the usage of a ground plane by employing metasurfaces with chiral components.By integrating trioidal moments into the design theory, the objective is to create a metasurface that functions in two frequency bands and produces high-quality resonance. The study also explores the dual non-homogeneity property of structures, polarization tensor coefficients, and the electromagnetic response of non-homogeneous metasurfaces. Based on the relative orientation of induced fields and moments, it delves deeper into the two basic possibilities for dual non-homogeneous elements. The development of chiral metasurfaces and the notion of electromagnetic chirality and its implications for polarization properties are introduced.
Collapse
Affiliation(s)
- Sina Aghdasinia
- Department of electric and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Hossein Allahverdizadeh
- Department of electric and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Ehsan Afkari
- Department of electric and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Behrouz Ahmadpour
- Department of electric and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Mohammad Bemani
- Department of electric and Computer Engineering, University of Tabriz, Tabriz, 5166616471, Iran.
| |
Collapse
|
28
|
Moradi-Bieranvand M, Farhadi S, Zabardasti A, Mahmoudi F. Construction of magnetic MoS 2/NiFe 2O 4/MIL-101(Fe) hybrid nanostructures for separation of dyes and antibiotics from aqueous media. RSC Adv 2024; 14:11037-11056. [PMID: 38586447 PMCID: PMC10995676 DOI: 10.1039/d4ra00505h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
In this study, MoS2/NiFe2O4/MIL-101(Fe) nanocomposite was synthesized by hydrothermal method and used as an adsorbent for the elimination of organic dyes and some antibiotic drugs in aqueous solutions. The synthesized nanocomposite underwent characterization through different techniques, including scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Brunauer-Emmett-Teller (BET) surface area analysis, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), zeta potential analysis, vibrating sample magnetometry (VSM), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). These results demonstrated the successful insertion of MoS2within the cavities of MIL-101(Fe). The as-prepared magnetic nanocomposite was used as a new magnetic adsorbent for removing methylene blue (MB) and rhodamine B (RhB) organic dyes and tetracycline (TC) and ciprofloxacin (CIP) antibiotic drugs. For achieving the optimized conditions, the effects of initial pH, initial dye and drug concentration, temperature, and adsorbent dose on MB, TC, and CIP elimination were investigated. The results revealed that at a temperature of 25 °C, the highest adsorption capacities of MoS2/NiFe2O4/MIL-101(Fe) for MB, TC, and CIP were determined to be 999.1, 2991.3, and 1994.2 mg g-1, respectively. The pseudo-second-order model and Freundlich model are considered suitable for explaining the adsorption behavior of the MoS2/NiFe2O4/MIL-101(Fe) nanocomposite. The magnetic nanocomposite was very stable and had good recycling capability without any change in its structure.
Collapse
Affiliation(s)
- Mehri Moradi-Bieranvand
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Saeed Farhadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Abedin Zabardasti
- Department of Inorganic Chemistry, Faculty of Chemistry, Lorestan University Khorramabad 68151-44316 Iran
| | - Farzaneh Mahmoudi
- Department of Chemistry, University of Miami Coral Gables Florida 33146 USA
| |
Collapse
|
29
|
Yang K, Cline JP, Kim B, Kiely CJ, McIntosh S. The influence of crystal structures on the performance of CoMoO 4 battery-type supercapacitor electrodes. RSC Adv 2024; 14:8251-8259. [PMID: 38469183 PMCID: PMC10925852 DOI: 10.1039/d3ra05878f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
CoMoO4 is a promising battery-type supercapacitor electrode material that can offer relatively high storage capacity and cycle stability. In this work, we investigate the role of the crystalline phase of CoMoO4 in determining these performance parameters. The hydrate phase of CoMoO4 was synthesized on a nickel foam substrate via hydrothermal reaction with subsequent annealing under an inert atmosphere leading to the formation of the β-phase CoMoO4. Similar nanoplate morphologies were observed in all of the samples. The hydrate-phase CoMoO4 demonstrates larger specific capacity than the annealed β-phase CoMoO4. Besides, the samples synthesized at lower temperatures have better rate capability than the sample annealed at higher temperatures. However, the hydrate phase had worse long-term stability compared to the β-phase samples.
Collapse
Affiliation(s)
- Kunli Yang
- Department of Chemical and Biomolecular Engineering, Lehigh University Bethlehem PA 18015 USA
| | - Joseph P Cline
- Department of Materials Science and Engineering, Lehigh University Bethlehem PA 18105 USA
| | - Bohyeon Kim
- Department of Chemical and Biomolecular Engineering, Lehigh University Bethlehem PA 18015 USA
| | - Christopher J Kiely
- Department of Chemical and Biomolecular Engineering, Lehigh University Bethlehem PA 18015 USA
- Department of Materials Science and Engineering, Lehigh University Bethlehem PA 18105 USA
| | - Steven McIntosh
- Department of Chemical and Biomolecular Engineering, Lehigh University Bethlehem PA 18015 USA
| |
Collapse
|
30
|
Iakunkov A, Lienert U, Sun J, Talyzin AV. Swelling of Ti 3 C 2 T x MXene in Water and Methanol at Extreme Pressure Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307067. [PMID: 38095537 PMCID: PMC10916643 DOI: 10.1002/advs.202307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Indexed: 03/07/2024]
Abstract
Pressure-induced swelling has been reported earlier for several hydrophilic layered materials. MXene Ti3C2Tx is also a hydrophilic layered material composed by 2D sheets but so far pressure-induced swelling is reported for this material only under conditions of shear stress at MPa pressures. Here, high-pressure experiments are performed with MXenes prepared by two methods known to provide "clay-like" materials. MXene synthesized by etching MAX phase with HCl+LiF demonstrates the effect of pressure-induced swelling at 0.2 GPa with the insertion of additional water layer. The transition is incomplete with two swollen phases (ambient with d(001) = 16.7Å and pressure-induced with d(001) = 19.2Å at 0.2 GPa) co-existing up to the pressure point of water solidification. Therefore, the swelling transition corresponds to change from two-layer water intercalation (2L-phase) to a never previously observed three-layer water intercalation (3L-phase) of MXene. Experiments with MXene prepared by LiCl+HF etching have not revealed pressure-induced swelling in liquid water. Both MXenes also show no anomalous compressibility in liquid methanol. The presence of pressure-induced swelling only in one of the MXenes indicates that the HCl+LiF synthesis method is likely to result in higher abundance of hydrophilic functional groups terminating 2D titanium carbide.
Collapse
Affiliation(s)
| | | | - Jinhua Sun
- Department of Industrial and Materials ScienceChalmers University of TechnologyGöteborgSE‐412 96Sweden
| | | |
Collapse
|
31
|
Mumtaz S, Ali S, Tahir HM, Mumtaz S, Mughal TA, Kazmi SAR, Hassan A, Summer M, Zulfiqar A, kazmi S. Biological applications of biogenic silk fibroin–chitosan blend zinc oxide nanoparticles. Polym Bull (Berl) 2024; 81:2933-2956. [DOI: 10.1007/s00289-023-04865-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 08/04/2024]
|
32
|
Marasamy L, Rasu Chettiar AD, Manisekaran R, Linda E, Rahman MF, Hossain MK, Pérez García CE, Santos-Cruz J, Subramaniam V, de Moure Flores F. Impact of selenization with NaCl treatment on the physical properties and solar cell performance of crack-free Cu(In,Ga)Se 2 microcrystal absorbers. RSC Adv 2024; 14:4436-4447. [PMID: 38312721 PMCID: PMC10835762 DOI: 10.1039/d3ra05829h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
In this study, we developed an ink using hexanethiol and Cu(In,Ga)Se2 microcrystals (CIGSe MCs) to make thin films via doctor blade coating. Besides, crack-free thin films were obtained by optimizing CIGSe MC powder concentration and annealing temperature. Subsequently, single-step selenization was performed with and without sodium chloride (NaCl) surface treatment by carefully tuning the temperature. A crack-free surface with densely packed grains was obtained at 500 °C after NaCl treatment. Moreover, the structural parameters of the thin film (annealed at 350 °C) were significantly modified via selenization with NaCl at 500 °C. For instance, the FWHM of the prominent (112) plane reduced from 1.44° to 0.47°, the dislocation density minimized from 13.10 to 1.40 × 1015 lines per m2, and the microstrain decreased from 4.14 to 1.35 × 10-3. Remarkably, these thin films exhibited a high mobility of 26.7 cm2 V-1 s-1 and a low resistivity of 0.03 Ω cm. As a proof of concept, solar cells were engineered with a device structure of SLG/Mo/CIGSe/CdS/i-ZnO/Al-ZnO/Ag, wherein a power conversion efficiency (PCE) of 5.74% was achieved with exceptional reproducibility. Consequently, the outcomes of this investigation revealed the impact of selenization temperature and NaCl treatment on the physical properties and PCE of hexanethiol-based crack-free CIGSe MC ink-coated absorbers, providing new insights into the groundwork of cost-effective solar cells.
Collapse
Affiliation(s)
- Latha Marasamy
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro (UAQ) Santiago de Querétaro Querétaro C.P. 76010 Mexico
| | - Aruna-Devi Rasu Chettiar
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro (UAQ) Santiago de Querétaro Querétaro C.P. 76010 Mexico
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures and Biomaterials Area, Escuela Nacional de Estudios Superiores Unidad León, Universidad Nacional Autónoma de México (UNAM), Predio el Saucillo y el Potrero Comunidad de los Tepetates León C.P. 37684 Mexico
| | - Evangeline Linda
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro (UAQ) Santiago de Querétaro Querétaro C.P. 76010 Mexico
| | - Md Ferdous Rahman
- Department of Electrical and Electronic Engineering, Advanced Energy Materials and Solar Cell Research Laboratory, Begum Rokeya University Rangpur 5400 Bangladesh
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission Dhaka 1349 Bangladesh
| | - Claudia Elena Pérez García
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro (UAQ) Santiago de Querétaro Querétaro C.P. 76010 Mexico
| | - José Santos-Cruz
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro (UAQ) Santiago de Querétaro Querétaro C.P. 76010 Mexico
| | - Velumani Subramaniam
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University Texas 77843 USA
| | - Francisco de Moure Flores
- Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro (UAQ) Santiago de Querétaro Querétaro C.P. 76010 Mexico
| |
Collapse
|
33
|
Wu J, Cheng X, Wu J, Chen J, Pei X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J Biomed Mater Res B Appl Biomater 2024; 112:e35326. [PMID: 37861271 DOI: 10.1002/jbm.b.35326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Bone regeneration is a vital clinical challenge in massive or complicated bone defects. Recently, bone tissue engineering has come to the fore to meet the demand for bone repair with various innovative materials. However, the reported materials usually cannot satisfy the requirements, such as ideal mechanical and osteogenic properties, as well as biocompatibility at the same time. Mg-based biomaterials have considerable potential in bone tissue engineering owing to their excellent mechanical strength and biosafety. Moreover, the biocompatibility and osteogenic activity of Mg-based biomaterials have been the research focuses in recent years. The main limitation faced in the applications of Mg-based biomaterials is rapid degradation, which can produce excessive Mg2+ and hydrogen, affecting the healing of the bone defect. In order to overcome the limitations, researchers have explored several ways to improve the properties of Mg-based biomaterials, including alloying, surface modification with coatings, and synthesizing other composite materials to control the degradation rate upon implantation. This article reviewed the osteogenic mechanism and requirement for appropriate degradation rate and focused on current progress in the biomedical use of Mg-based biomaterials to inspire more clinical applications of Mg in bone regeneration in the future.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jicenyuan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Khosrojerdi S, Gholami L, Khazaei M, Hashemzadeh A, Darroudi M, Kazemi Oskuee R. Synthesis and evaluation of gene delivery vectors based on PEI-modified metal-organic framework (MOF) nanoparticles. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:203-213. [PMID: 38234668 PMCID: PMC10790290 DOI: 10.22038/ijbms.2023.71892.15644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/19/2023] [Indexed: 01/19/2024]
Abstract
Objectives Zirconium-based metal-organic frameworks (MOFs) nanostructures, due to their capability of easy surface modification, are considered interesting structures for delivery. In the present study, the surfaces of UIO-66 and NH2-UIO-66 MOFs were modified by polyethyleneimine (PEI) 10000 Da, and their efficiency for plasmid delivery was evaluated. Materials and Methods Two different approaches, were employed to prepare surface-modified nanoparticles. The physicochemical characteristics of the resulting nanoparticles, as well as their transfection efficiency and cytotoxicity, were investigated on the A549 cell line. Results The sizes of DNA/nanocarriers for PEI-modified UIO-66 (PEI-UIO-66) were between 212-291 nm and 267-321 nm for PEI 6-bromohexanoic acid linked UIO-66 (PEI-HEX-UIO-66). The zeta potential of all was positive with the ranges of +16 to +20 mV and +23 to +26 mV for PEI-UIO-66 and PEI-HEX-UIO-66, respectively. Cellular assay results showed that the PEI linking method had a higher rate of gene transfection efficiency with minimal cytotoxicity than the wet impregnation method. The difference between transfection of modified nanoparticles compared to the PEI 10 kDa was not significant but the PEI-HEX-UIO-66 showed less cytotoxicity. Conclusion The present study suggested that the post-synthetic modification of MOFs with PEI 10000 Da through EDC/NHS+6-bromohexanoic acid reaction can be considered as an effective approach for modifying MOFs' structure in order to obtain nanoparticles with better biological function in the gene delivery process.
Collapse
Affiliation(s)
- Somayeh Khosrojerdi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Fitriani N, Theresia L, O'Marga TTN, Kurniawan SB, Supriyanto A, Abdullah SRS, Rietveld LC. Performance of a modified and intermittently operated slow sand filter with two different mediums in removing turbidity, ammonia, and phosphate with varying acclimatization periods. Heliyon 2023; 9:e22577. [PMID: 38046171 PMCID: PMC10686868 DOI: 10.1016/j.heliyon.2023.e22577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
The present study investigated the utilization of blood clam shells as a potential substitute for conventional media, as well as the influence of the acclimation time on the efficacy of an intermittent slow sand filter (ISSF) in the treatment of real domestic wastewater. ISSF was operated with 16 h on and 8 h off, focusing on the parameters of turbidity, ammonia, and phosphate. Two media combinations (only blood clam shells [CC] and sand + blood clam shells [SC]) were operated under two different acclimatization periods (14 and 28 d). Results showed that SC medium exhibited significantly higher removal of turbidity (p < 0.05) as compared to CC medium (45.99 ± 26.84 % vs. 3.79 ± 9.35 %), while CC exhibited slightly higher (p > 0.05) removal of ammonia (23.12 ± 20.2 % vs. 16.77 ± 16.8 %) and phosphate (18.03 ± 11.96 % vs 13.48 ± 12 %). Comparing the acclimatization periods, the 28 d of acclimatization period showed higher overall performances than the 14 d. Further optimizations need to be conducted to obtain an effluent value below the national permissible limit, since the ammonia and phosphate parameters are still slightly higher. SEM analysis confirmed the formation of biofilm on both mediums after 28 d of acclimatization; with further analysis of schmutzdecke formation need to be carried out to enrich the results.
Collapse
Affiliation(s)
- Nurina Fitriani
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Ledy Theresia
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Timothy Tjahja Nugraha O'Marga
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Agus Supriyanto
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Luuk C. Rietveld
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, CN Delft 2628, Netherlands
| |
Collapse
|
36
|
Olatunbosun A, Nigar H, Rovshan K, Nurlan A, Boyukhanim J, Narmina A, Ibrahim A. Comparative impact of nanoparticles on salt resistance of wheat plants. MethodsX 2023; 11:102371. [PMID: 37744887 PMCID: PMC10511806 DOI: 10.1016/j.mex.2023.102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
When it comes to climate change, salt stress is a significant danger to agriculture and can lead to decreased crop yields due to various factors such as osmotic and ionic stress, as well as oxidative stress, disruption of hormone balance, and nutrient imbalance (Fig. 2). Despite this, there is a growing pressure to expand agriculture into salt-affected regions to meet the demands of a growing population.•Research has shown that supplementing plants with nanoparticles can help them adapt and alleviate the negative effects of salt stress.•Different types of nanoparticles and nanofertilizers have shown potential in managing salt stress. This review focuses on recent progress in using Fe3O4, ZnO, Al2O3 and CuO nanoparticles to improve salt tolerance in wheat plants and highlights future research directions in this area.•The study utilized nanoparticles to investigate their impact on plant morphology and photosynthesis intensity, including chlorophyll and carotenoid content, as well as light spectrum absorption in common wheat (Triticum aestivum L.).
Collapse
Affiliation(s)
| | | | | | - Amrahov Nurlan
- Baku State University, Baku, Azerbaijan
- Ministry of Agriculture, Azerbaijan Research Institute of Crop Husbandry, Baku, Azerbaijan
| | | | | | - Azizov Ibrahim
- Institute of Molecular Biology and Biotechnologies, Baku, Azerbaijan
| |
Collapse
|
37
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Wang Y, Chen L, Wang Y, Wang X, Qian D, Yan J, Sun Z, Cui P, Yu L, Wu J, He Z. Marine biomaterials in biomedical nano/micro-systems. J Nanobiotechnology 2023; 21:408. [PMID: 37926815 PMCID: PMC10626837 DOI: 10.1186/s12951-023-02112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023] Open
Abstract
Marine resources in unique marine environments provide abundant, cost-effective natural biomaterials with distinct structures, compositions, and biological activities compared to terrestrial species. These marine-derived raw materials, including polysaccharides, natural protein components, fatty acids, and marine minerals, etc., have shown great potential in preparing, stabilizing, or modifying multifunctional nano-/micro-systems and are widely applied in drug delivery, theragnostic, tissue engineering, etc. This review provides a comprehensive summary of the most current marine biomaterial-based nano-/micro-systems developed over the past three years, primarily focusing on therapeutic delivery studies and highlighting their potential to cure a variety of diseases. Specifically, we first provided a detailed introduction to the physicochemical characteristics and biological activities of natural marine biocomponents in their raw state. Furthermore, the assembly processes, potential functionalities of each building block, and a thorough evaluation of the pharmacokinetics and pharmacodynamics of advanced marine biomaterial-based systems and their effects on molecular pathophysiological processes were fully elucidated. Finally, a list of unresolved issues and pivotal challenges of marine-derived biomaterials applications, such as standardized distinction of raw materials, long-term biosafety in vivo, the feasibility of scale-up, etc., was presented. This review is expected to serve as a roadmap for fundamental research and facilitate the rational design of marine biomaterials for diverse emerging applications.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Long Chen
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Yuanzheng Wang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China.
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Zeyu Sun
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 55000, Guizhou, China
| | - Pengfei Cui
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266100, China.
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China
| | - Jun Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China.
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Sanya, 572024, China.
| |
Collapse
|
39
|
Matei E, Șăulean AA, Râpă M, Constandache A, Predescu AM, Coman G, Berbecaru AC, Predescu C. ZnO nanostructured matrix as nexus catalysts for the removal of emerging pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114779-114821. [PMID: 37919505 PMCID: PMC10682326 DOI: 10.1007/s11356-023-30713-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Water pollution stands as a pressing global environmental concern, elevating the significance of innovative, dependable, and sustainable solutions. This study represents an extensive review of the use of photocatalytic zinc oxide nanoparticles (ZnO NPs) for the removal of emerging pollutants from water and wastewater. The study examines ZnO NPs' different preparation methods, including physical, chemical, and green synthesis, and emphasizes on advantages, disadvantages, preparation factors, and investigation methods for the structural and morphological properties. ZnO NPs demonstrate remarkable properties as photocatalysts; however, their small dimensions pose an issue, leading to potential post-use environmental losses. A strategy to overcome this challenge is scaling up ZnO NP matrices for enhanced stability and efficiency. The paper introduces novel ZnO NP composites, by incorporating supports like carbon and clay that serve as photocatalysts in the removal of emerging pollutants from water and wastewater. In essence, this research underscores the urgency of finding innovative, efficient, and eco-friendly solutions for the removal of emerging pollutants from wastewater and highlights the high removal efficiencies obtained when using ZnO NPs obtained from green synthesis as a photocatalyst. Future research should be developed on the cost-benefit analysis regarding the preparation methods, treatment processes, and value-added product regeneration efficiency.
Collapse
Affiliation(s)
- Ecaterina Matei
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Andreea Șăulean
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania.
| | - Maria Râpă
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Alexandra Constandache
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andra Mihaela Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - George Coman
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Andrei Constantin Berbecaru
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, National University of Science and Technology POLITEHNICA Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| |
Collapse
|
40
|
Rafsan A, Rahman A, Akter S, Yeachin N, Faruqe T, Deb GK, Ha T, Hossain KS, Hossain MT, Kafi MA, Choi JW. Facile synthesis of CuONPs using Citrus limon juice for enhancing antibacterial activity against methicillin-resistant Staphylococcus aureus, beta-lactamase and tetracycline-resistant Escherichia coli. RSC Adv 2023; 13:29363-29375. [PMID: 37818266 PMCID: PMC10561029 DOI: 10.1039/d3ra04985j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
Antimicrobial resistance (AMR) resulting from indiscriminate use of antibiotics in various fields of agriculture such as livestock farming, aquaculture, and croup fields become an emerging catatroph for the health (human, animal) and environment. Among those, poultry farming has been considered as one of the major contributors of multidrug-resistant (MDR) bacteria. Focusing this, the present research is designed for green synthesis of copper oxide nanoparticles (CuONPs) with the aim of their application in antibiotic-free poultry farming for curving use of antibiotics in that sector. For that, antibacterial CuONPs were nanoformulated to decrease the required doses of bulk CuSO4. We used a CuSO4·5H2O solution as a Cu2+ source and Citrus limon juice as a reducing agent as well as capping agent. Particle yield was initially confirmed by the λmax specific to CuONPs (295 nm) using UV-Vis spectroscopy. The presence of the Cu-O group during particle formation and crystallinity with the purity of yielded NPs was confirmed with Fourier-transform infrared spectroscopy and X-ray diffractometry. The round to spherical CuONPs of 92-155 nm average size was confirmed with atomic force, scanning electron, and transmission electron microscopy. The concentration of yielded NPs was calculated with the dynamic light scattering. The physical characterization tools indicated a maximum CuONPs yield with a 0.001 M ion source with 15% reducing agents after 12 h reduction. Antibacterial effectivity was tested against methicillin-resistant Staphylococcus aureus and tetracycline- and beta-lactamase-resistant Escherichia coli, confirmed by PCR amplicon band at 163 bp, 643 bp, and 577 bp for the mecA, blaTEM-1 and tetA genes, respectively. An antibiogram assay of CuONPs showed a maximum zone of inhibition of 26 ± 0.5 mm for the synthesized particles. The minimum inhibitory and bactericidal concentrations were 1.6 μg ml-1 and 3.1 μg ml-1, respectively, for broad-spectrum application. Finally, the biocompatibility of CuONPs was determined by demonstrating a nonsignificant decrease of BHK-21 cell viability at <2 MIC doses for complying their future in vivo applicability.
Collapse
Affiliation(s)
- Abdullah Rafsan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University Mymensingh-2202 Bangladesh
| | - Aminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University Mymensingh-2202 Bangladesh
| | - Samia Akter
- Department of Microbiology and Hygiene, Bangladesh Agricultural University Mymensingh-2202 Bangladesh
| | - Nymul Yeachin
- Department of Physics, University of Dhaka Dhaka-1000 Bangladesh
| | - Tania Faruqe
- Experimental Physics Division, Atomic Energy Centre Dhaka Bangladesh
| | - Gautam Kumar Deb
- Department of Biotechnology, Bangladesh Livestock Research Institute Savar 1341 Dhaka Bangladesh
| | - Taehyeong Ha
- Department of Chemical and Bimolecular Engineering, Sogang University Seoul 04107 Republic of Korea
| | | | - Muhammad Tofazzal Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University Mymensingh-2202 Bangladesh
| | - Md Abdul Kafi
- Department of Microbiology and Hygiene, Bangladesh Agricultural University Mymensingh-2202 Bangladesh
| | - Jeong-Woo Choi
- Department of Chemical and Bimolecular Engineering, Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
41
|
Xia J, Gu Y, Mai J, Hu T, Wang Q, Xie C, Wu Y, Wang X. Tuneable Schottky contact of MoSi2N4/ TaS2 van der Waals heterostructure. Heliyon 2023; 9:e20619. [PMID: 37867820 PMCID: PMC10589790 DOI: 10.1016/j.heliyon.2023.e20619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
The two-dimensional M o S i 2 N 4 monolayer is an emerging semiconductor material that offers considerable promise due to its ultra-thin profile, tuneable mechanical properties, excellent optoelectronic properties and exceptional environmental stability. The van der Waals (vdW) heterostructure formed by stacking such two-dimensional monolayers has demonstrated superior performance across various domains. In this study, a vdW heterostructure combining the two-dimensional M o S i 2 N 4 and T a S 2 monolayers is examined using first-principles density functional theory. In its ground state, this van der Waals heterostructure establishes an ohmic contact with an exceptionally low potential barrier height. By modulating the vdW heterostructure with an applied electric field of -0.1 V/Å and under vertical stress, we discovered that M o S i 2 N 4 and T a S 2 can transition from an ohmic contact to a p-type Schottky with an ultra-low Schottky barrier height (SBH). Our observations may give valuable insights for designing reconfigurable, tuneable Schottky nano-devices with enhanced electronic and optical properties based on M o S i 2 N 4 / T a S 2 .
Collapse
Affiliation(s)
- Jinglin Xia
- Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China
| | - Yixiao Gu
- Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China
| | - Jun Mai
- Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China
| | - Tianyang Hu
- Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qikun Wang
- Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China
| | - Chao Xie
- Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China
| | - Yunkai Wu
- Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China
| | - Xu Wang
- Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guizhou, People's Republic of China
| |
Collapse
|
42
|
Ngoc Hoa LT, An VN, Tra My VH, Thu Giang PT, Top LK, Chi Nhan HT, Thang PB, Thanh Van TT, Van Hieu L. Silver decorated on cobalt ferrite nanoparticles as a reusable multifunctional catalyst for water treatment applications in non-radiation conditions. RSC Adv 2023; 13:24554-24564. [PMID: 37593663 PMCID: PMC10427894 DOI: 10.1039/d3ra02950f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
In this investigation, cobalt ferrite nanoparticles (CFO NPs) were synthesized using a hydrothermal method. Then, silver nanoparticles (Ag NPs) were decorated on CFO NPs to form Ag/CFO NPs using jasmine extract as a reducing agent of Ag+ ions. The properties of Ag/CFO NPs were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and catalytic tests in non-radiation conditions. The catalytic results indicated that the Ag/CFO NPs could activate peroxymonosulfate to generate sulfate radicals for the decomposition of different dyes such as methylene blue, methyl orange, and rhodamine B. For the Ag/CFO sample, Ag NPs validated the roles in dye adsorption, reduction of 4-nitrophenol, and improvement of antibacterial behavior. The growth inhibition activity of Ag/CFO NPs was observed against Pseudomonas aeruginosa (18.18 ± 2.48 mm) and Staphylococcus aureus (10.14 ± 0.72 mm). Furthermore, Ag/CFO NPs displayed good reusability after three consecutive runs. Therefore, Ag/CFO material is shown to be a potential multifunctional catalyst in wastewater treatment.
Collapse
Affiliation(s)
- Le Thi Ngoc Hoa
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
- Laboratory of Multifunctional Materials, University of Science, VNU-HCM 700000 Vietnam
| | - Vu Nang An
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Vo Huynh Tra My
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Pham Thi Thu Giang
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Le Khac Top
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Ha Thuc Chi Nhan
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Phan Bach Thang
- Vietnam National University Ho Chi Minh City 700000 Vietnam
- Center for Innovative Materials and Architectures, VNU-HCM Ho Chi Minh City 700000 Vietnam
| | - Tran Thi Thanh Van
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
| | - Le Van Hieu
- Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
- Vietnam National University Ho Chi Minh City 700000 Vietnam
- Laboratory of Multifunctional Materials, University of Science, VNU-HCM 700000 Vietnam
| |
Collapse
|
43
|
Shahrashoob M, Hosseinkhani S, Jafary H, Hosseini M, Molaabasi F. Dual-emissive phenylalanine dehydrogenase-templated gold nanoclusters as a new highly sensitive label-free ratiometric fluorescent probe: heavy metal ions and thiols measurement with live-cell imaging. RSC Adv 2023; 13:21655-21666. [PMID: 37476045 PMCID: PMC10354591 DOI: 10.1039/d3ra03179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Phenylalanine dehydrogenase (PheDH) has been proposed as an ideal protein scaffold for the one-step and green synthesis of highly efficient multifunctional gold nanoclusters. The PheDH-stabilized fluorescent gold nanoclusters (PheDH-AuNCs) with dual emission/single excitation exhibited excellent and long-term stability, high water solubility, large Stokes shift and intense photoluminescence. Selectivity studies demonstrated that the red fluorescence emission intensity of PheDH-AuNCs was obviously decreased in less than 10 min by the addition of mercury, copper, cysteine or glutathione under the single excitation at 360 nm, without significant change in the blue emission of the PheDH-AuNCs. Therefore, the as-prepared PheDH-AuNCs as a new excellent fluorescent probe were successfully employed to develop a simple, rapid, low cost, label- and surface modification-free nanoplatform for the ultrasensitive and selective detection of Hg2+, Cu2+, Cys and GSH through a ratiometric fluorescence system with wide linear ranges and detection limits of 1.6, 2.4, 160 and 350 nM, respectively which were lower than previous reports. In addition, the results showed that PheDH-AuNCs can be used for the detection of toxic heavy metal ions and small biomarker thiols in biological and aqueous samples with acceptable recoveries. Interestingly, PheDH-AuNCs also displayed a promising potential for live-cell imaging due to their low toxicity and great chemical- and photo-stability.
Collapse
Affiliation(s)
- Mahsa Shahrashoob
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University Tehran Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran Tehran Iran
| | - Fatemeh Molaabasi
- Department of Interdisciplinary Technologies, Breast Cancer Research Center, Biomaterials and Tissue Engineering Research Group, Motamed Cancer Institute, ACECR Tehran Iran
| |
Collapse
|
44
|
Ghosh A, Hegde RV, Limaye AS, R. T, Patil SA, Dateer RB. Biogenic synthesis of δ‐MnO 2 nanoparticles: A sustainable approach for C‐alkylation and quinoline synthesis via acceptorless dehydrogenation and borrowing hydrogen reactions. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/06/2023] [Indexed: 01/06/2025]
Abstract
The sustainable and environmentally benign biogenic synthesis of manganese‐oxide nanoparticles (MnO2 NPs) in a single crystalline δ‐phase and its subsequent synthetic utility have been described. The synthesized δ‐MnO2 NPs were characterized using scanning electron microscopy (SEM), energy dispersive X‐ray (EDX), and X‐ray diffraction (XRD) analysis techniques. The detailed analysis envisages the reduction of Mn(VII) to Mn(IV) was facilitated by various phytochemicals present in the aq. mango leaves extract, avoiding the use of external ligand source. The synthesized δ‐MnO2 NPs were perceived in a single delta (δ) monoclinic crystalline phase, wherein a spherical agglomerated morphology was displayed with a particle size of <5 nm. Further, the utility of newly developed δ‐MnO2 NPs was showcased for alpha‐keto‐alkylation and quinoline synthesis via hydrogen autotransfer and the acceptorless dehydrogenative coupling strategy. Moreover, a series of control experiments, mechanistic elucidation, catalyst recyclability, and a dye removal study were demonstrated.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Education Chungbuk National University Cheongju 28644 Republic of Korea
| | - Rajeev V. Hegde
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Akshay S. Limaye
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Thrilokraj R.
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Siddappa A. Patil
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| | - Ramesh B. Dateer
- Centre for Nano and Material Sciences JAIN (Deemed to be University) Jain Global Campus, Kanakapura road Bangalore 562112 India
| |
Collapse
|
45
|
Muangmora R, Kemacheevakul P, Chuangchote S. Fiberglass cloth coated by coffee ground waste-derived carbon quantum dots/titanium dioxide composite for removal of caffeine and other pharmaceuticals from water. Heliyon 2023; 9:e17693. [PMID: 37455966 PMCID: PMC10338977 DOI: 10.1016/j.heliyon.2023.e17693] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Coffee ground waste from the coffee beverage preparation is mainly discarded and consequently ends up in landfill, which cause the contamination of caffeine in various environmental compartments. This study focuses on the upcycling of coffee-ground waste to carbon quantum dots (CQDs) for use as a modifying material to improve the visible light activity of titanium dioxide (TiO2). The CQD solution was synthesized by hydrothermal method, which has an average size of 2.80 ± 0.63 nm. The CQDs/TiO2 photocatalysts were prepared by combining CQD solutions at various amounts with sol-gel TiO2 and then coated on the fiberglass cloths (FGCs). The photocatalytic application mainly focuses on the removal of caffeine from the water. The photocatalytic experiment was preliminary run in a simple batch reactor under visible light. The 5CQDs/TiO2 coated FGC (5 mL of CQD solution/g of Ti-based on sol-gel) showed the best performance, and it was selected for the removal of caffeine and other pharmaceuticals (i.e., carbamazepine and ibuprofen) in the recirculating reactor. The removals of caffeine, carbamazepine, and ibuprofen after irradiation for 9 h were 82%, 88%, and 84%, respectively. The residual concentrations were significantly lower than the reported toxicity levels based on specific species. The changes in total organic carbon were observed, indicating the mineralization of pharmaceuticals in water. The 5CQDs/TiO2 coated FGC showed good flexible performance. No obvious loss of activity was observed for five runs. The actual wastewater from the coffee pot cleaning process was also tested. The removal was 80% for caffeine and 86% for color in the unit of the American Dye Manufacturers Institute (ADMI).
Collapse
Affiliation(s)
- Rattana Muangmora
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
| | - Patiya Kemacheevakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- Research Center of Advanced Materials for Energy and Environmental Technology (MEET), King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Surawut Chuangchote
- Research Center of Advanced Materials for Energy and Environmental Technology (MEET), King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
- Department of Tool and Materials Engineering, Faculty of Engineering, King Mongkut′s University of Technology Thonburi, 126 Prachauthit Rd., Bangmod, Thungkru, Bangkok 10140, Thailand
| |
Collapse
|
46
|
Mohsin AS, Mondal S, Mobashera M, Malik A, Islam M, Rubaiat M. Efficiency improvement of thin film solar cell using silver pyramids array and antireflective layer. Heliyon 2023; 9:e16749. [PMID: 37303542 PMCID: PMC10250809 DOI: 10.1016/j.heliyon.2023.e16749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023] Open
Abstract
In recent years, plasmonics has been widely employed to improve light trapping in solar cells. Silver nanospheres have been used in several research works to improve the capability of solar absorption. In this paper, we use silver pyramid-shaped nanoparticles, a noble plasmonic nanoparticle, inside thin-film silicon and InP solar cells to increase light absorption compared to previously published topologies. The proposed structure consists of a TiO2 pyramid structure placed at the top of the surface working as an anti-reflective layer, silicon/indium phosphate as an absorption layer, silver pyramid-shaped nanoparticles incorporated inside the absorption layer, and an aluminum reflecting layer at the bottom. In this research, we used finite difference time domain (FDTD) simulation to model the thin-film solar cell (TFSC). Optimizing the shape and placement of the silver pyramids, we have achieved an efficiency of 17.08% and 18.58% using silicon and InP as the absorbing layers respectively, which is significantly better than previously reported studies. The open-circuit voltages are 0.58 V and 0.92 V respectively, which is the highest among other configurations. To conclude, the findings of this study laid the foundation to create an efficient thin-film solar cell utilizing the light-trapping mechanism of noble plasmonic nanoparticles.
Collapse
|
47
|
Getachew G, Wibrianto A, Rasal AS, Batu Dirersa W, Chang JY. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
48
|
Witika BA, Choonara YE, Demana PH. A SWOT analysis of nano co-crystals in drug delivery: present outlook and future perspectives. RSC Adv 2023; 13:7339-7351. [PMID: 36895773 PMCID: PMC9989744 DOI: 10.1039/d3ra00161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
The formulation of poorly soluble drugs is an intractable challenge in the field of drug design, development and delivery. This is particularly problematic for molecules that exhibit poor solubility in both organic and aqueous media. Usually, this is difficult to resolve using conventional formulation strategies and has resulted in many potential drug candidates not progressing beyond early stage development. Furthermore, some drug candidates are abandoned due to toxicity or have an undesirable biopharmaceutical profile. In many instances drug candidates do not exhibit desirable processing characteristics to be manufactured at scale. Nanocrystals and co-crystals, are progressive approaches in crystal engineering that can solve some of these limitations. While these techniques are relatively facile, they also require optimisation. Combining crystallography with nanoscience can yield nano co-crystals that feature the benefits of both fields, resulting in additive or synergistic effects to drug discovery and development. Nano co-crystals as drug delivery systems can potentially improve drug bioavailability and reduce the side-effects and pill burden of many drug candidates that require chronic dosing as part of treatment regimens. In addition, nano co-crystals are carrier-free colloidal drug delivery systems with particle sizes ranging between 100 and 1000 nm comprising a drug molecule, a co-former and a viable drug delivery strategy for poorly soluble drugs. They are simple to prepare and have broad applicability. In this article, the strengths, weaknesses, opportunities and threats to the use of nano co-crystals are reviewed and a concise incursion into the salient aspects of nano co-crystals is undertaken.
Collapse
Affiliation(s)
- Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University Pretoria 0208 South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences University of the Witwatersrand 7 York Road, Parktown Johannesburg 2193 South Africa
| | - Patrick H Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University Pretoria 0208 South Africa
| |
Collapse
|
49
|
Rasmussen TP, Rodríguez Echarri A, García de Abajo FJ, Cox JD. Nonlocal and cascaded effects in nonlinear graphene nanoplasmonics. NANOSCALE 2023; 15:3150-3158. [PMID: 36648761 DOI: 10.1039/d2nr06286k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ability of plasmons to focus light on nanometer length scales opens a wide range of enticing applications in optics and photonics, among which the enhancement of nonlinear light-matter interactions for all-optical modulation and spectral diversification emerges as a prominent theme. However, the subwavelength plasmonic near-field enhancement in good plasmonic materials such as noble metals is hindered by large ohmic losses, while conventional phase-matching of fields in bulk nonlinear crystals is not suitable for realizing nonlinear optical phenomena on the nanoscale. In contrast, anharmonic electron motion of free charge carriers in highly-doped graphene, which supports long-lived, highly-confined, and actively-tunable plasmons, renders the carbon monolayer an excellent platform for both plasmonics and nonlinear optics. Here we theoretically explore the enhancement in nonlinear response that can be achieved by interfacing multiple graphene nanostructures in close proximity to trigger nonlocal effects associated with large gradients in the electromagnetic near field. Focusing on second- and third-harmonic generation, we introduce a semianalytical formalism to describe interacting graphene nanoribbons with independent width, location, and electrical doping, so as to realize configurations in which plasmonic resonances may simultaneously enhance both the fundamental optical excitation frequency and harmonic intermediary and/or output frequencies. Our findings reveal the importance of both passive and active tuning in the design of atomically-thin nanostructures for nonlinear optical applications, and in particular emphasize the role played by nonlocal effects in generating an even-ordered nonlinear response that may contribute to other nonlinear optical processes through a cascaded interaction. We anticipate that our findings can aid in the design of actively-tunable nonlinear plasmonic resonators and metasurfaces.
Collapse
Affiliation(s)
- Theis P Rasmussen
- POLIMA-Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | - A Rodríguez Echarri
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Joel D Cox
- POLIMA-Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
- Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
50
|
Singh B, Bahadur R, Maske P, Gandhi M, Singh D, Srivastava R. Preclinical safety assessment of red emissive gold nanocluster conjugated crumpled MXene nanosheets: a dynamic duo for image-guided photothermal therapy. NANOSCALE 2023; 15:2932-2947. [PMID: 36692237 DOI: 10.1039/d2nr05773e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Red emissive gold nanoclusters have potential as biological fluorescent probes, but lack sufficient light-to-heat conversion efficiency for photothermal therapy (PTT). MXene nanomaterials, on the other hand, have shown promise in PTT due to their strong near-infrared absorption abilities, but their instability caused by restacking of the sheets can decrease their available surface area. One approach to address this issue is to design sheets with wrinkles or folds. However, the crumpled or 3D MXene materials reported in the literature are actually aggregates of multiple nanosheets rather than a single sheet that is folded. In this study, a modified method for crumpling a single MXene sheet and further conjugating it with red emissive gold nanoclusters and folic acid was developed. A detailed in vitro toxicity study was performed in various cell lines and cellular uptake in cancer cells was studied using AFM to understand its interaction at the nano-bio interface. The material also demonstrated excellent utility as a bioimaging and PTT agent in vitro, with its high fluorescence allowing bioimaging at a lower concentration of 12 μg mL-1 and a photothermal conversion efficiency of 43.51%. In vitro analyses of the cell death mechanisms induced by PTT were conducted through studies of apoptosis, cell proliferation, and ROS production. In vivo acute toxicity tests were conducted on male and female Wistar rats through oral and intravenous administration (20 mg kg-1 dose), and toxicity was evaluated using various measures including body weight, hematology, serum biochemistry, and H&E staining. The findings from these studies suggest that the MXene gold nanoconjugate could be useful in a range of biomedical applications, with no observed toxicity following either oral or intravenous administration.
Collapse
Affiliation(s)
- Barkha Singh
- Centre for Research in Nano Technology & Science (CRNTS), Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay, Powai, Mumbai, 400076, India.
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| | - Rohan Bahadur
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| | - Priyanka Maske
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| | - Mayuri Gandhi
- Centre for Research in Nano Technology & Science (CRNTS), Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay, Powai, Mumbai, 400076, India.
| | - Dipty Singh
- Department of Neuroendocrinology, National Institute for Research in Reproductive and Child Health (NIRRCH), Parel, Mumbai, 400012, India.
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|