1
|
Fan H, Li K, Hu M, Huang Z, Guo H, Li X, Chen Z, Wang L, Shahid MQ, Liu X, Wu J. Cytological observation and transcriptome analysis reveal that NTFR1 is a new tetraploid rice fertility gene using the tetraploid fertility-directed lines. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 355:112437. [PMID: 40024612 DOI: 10.1016/j.plantsci.2025.112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Neo-tetraploid rice, a type of high-fertility tetraploid rice, is thought to be a useful material for utilizing its heterosis. However, the mechanism of its high fertility remains little known. Here, two tetraploid fertility-directed lines were generated and used to evaluate their variation on fertility charts. Cytological observations indicated that the low tetraploid fertility-directed lines (LFDL) exhibited a lower seed-setting ratio (12.64 %), pollen fertility (53.28 %), embryo sac fertility (85.71 %) while compared with the high tetraploid fertility-directed lines (HFDL). In addition, approximately 31.44 % and 48.13 % of chromosome lagging at Metaphase I and Metaphase II, and 33.33 % and 53.47 % of chromosome straggling at Anaphase I and Anaphase II were detected in the LFDL, respectively. Transcriptome analysis identified 911 differentially expressed genes (DEGs) in the HFDL compared with the LFDL. Among these DEGs, 202 meiosis-related or stage-specific genes exhibited significant down-regulation in HFDL compared with LFDL. Further, we selected NTFR1 as the candidate gene and verified its fertility phenotype in knock-out mutants, and detected a significant decrease in the seed-setting ratio, pollen viability, pollen fertility, and embryo sac fertility. This study provided a new fertility gene for tetraploid rice, and it may offer the fertility regulatory mechanisms in neo-tetraploid rice.
Collapse
Affiliation(s)
- Hao Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Kai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mengzhu Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zijuan Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Haibin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Base Bank of Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Sohail A, Lu C, Xu P. Genetic and molecular mechanisms underlying the male sterility in rice. J Appl Genet 2025; 66:251-265. [PMID: 39627604 DOI: 10.1007/s13353-024-00923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 04/16/2025]
Abstract
Male reproductive development is a complex and highly ordered phenomenon which demands comprehensive understandings of underlying molecular mechanisms to expand its scope for crop improvement. Genetic manipulation of male fertility/sterility is critical for crop hybrid breeding. Although male sterility is not a good trait for the plant itself, its wider application in hybrid rice breeding has made it valuable. The currently widely used male sterile line breeding systems mainly include the following: three-line hybrid rice based on cytoplasmic male sterility and two-line hybrid rice based on environmentally sensitive gene male sterility. The study of male sterility is an excellent thoroughfare to critically understand the regulatory mechanisms essential for the complicated male reproductive developmental process. The unique trait of male sterility also provides valuable resources and convenience for the genetic improvement of rice hybrids. Therefore, deeper and broader understandings about the genetic causes of male sterility are necessary for both basic studies and rice genetic improvement.
Collapse
Affiliation(s)
- Amir Sohail
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China
| | - Chengkai Lu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China.
| | - Peng Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, 666303, MenglaYunnan, China.
| |
Collapse
|
3
|
Tan W, Tian J, Zhao W, Wei J, Xu Y, Zhou S, Wei Z, Shen Z, Wu M, Shang L, Li R, Wang Y, Qin B. Disruption of the endoplasmic reticulum-localized fatty acyl-ACP thioesterase IPF1 caused partial male sterility in rice. PLANT MOLECULAR BIOLOGY 2025; 115:40. [PMID: 40056293 DOI: 10.1007/s11103-025-01574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
The fatty acyl ACP thioesterases, catalyzing the final step of fatty acid synthesis in the plastid, regulate various critical processes in plants, including seed oil accumulation, seed development, plant growth, and drought tolerance. However, their roles in male fertility have seldom been demonstrated. In this study, the function of a newly FAT, Impaired Pollen Fertility 1 (IPF1) in male fertility was investigated. IPF1 expressed prominently in microspores and tapetum. IPF1 specifically located in the endoplasmic reticulum. IPF1 knock-out mutants produced by the CRISPR/Cas9 system displayed significant reduction in seed-setting rate compared to WT. The decreased seed-setting rate in the ipf1 mutants was found to be attributed to the defects of pollen viability, not the female gamete fertility. The aborted pollen in the ipf1 mutants showed impaired pollen wall formation and diminished lipid deposition. Consistently, the expression levels of six genes critical to pollen wall formation and lipid metabolism (GPAT3, OsC6, DPW2, OsPKS1, OsPKS2, and OsSTRL2) were significantly decreased in the ipf1 mutant. Taken together, these results demonstrate that IPF1 regulates rice pollen fertility through the modulation of lipid synthesis.
Collapse
Affiliation(s)
- Wenye Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Jingfei Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Wenfeng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Jianxin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Yibo Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Shixu Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Zihan Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Zejun Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Minghang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Lianguang Shang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Yongfei Wang
- Agricultural Mechanization Service Center, Bama Yao Autonomous County, Guangxi Zhuang Autonomous Region, Bama, 547500, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Agricultural College, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
4
|
Ye Q, Jiang W, Wang X, Hu X, Zhang Z, Wu Z, Wang H, Li S, Guo D, He H, Hu LF. Identification of the new allele ptc1-2 and analysis of the regulatory role of PTC1 gene in rice anther development. BMC PLANT BIOLOGY 2024; 24:1062. [PMID: 39528949 PMCID: PMC11552164 DOI: 10.1186/s12870-024-05720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Anther development involves a series of important biological events that are precisely regulated by many genes. Although several important genes involved in rice anther development have been identified, the regulatory network involved in tapetal development and pollen wall formation is still largely unclear. PERSISTENT TAPETAL CELL 1 (PTC1) encodes a PHD-Finger protein, which plays a critical role in the regulation of tapetal cell death and pollen development in rice. Here, we report the isolation and characterization of a new allele ptc1-2 with 2-base deletion in the third exon, causing the absent of the PHD domain due to the sequence change. Cytological analysis revealed delayed tapetal PCD, defective pollen exine formation and abnormal ubisch bodies development. Transcriptome analysis revealed that genes related to pollen wall formation (secondary metabolism, phenylalanine synthesis, and cutin and wax biosynthesis pathways), cell death (cysteine and methionine metabolism and DNA repair pathways), and carbohydrate synthesis (starch and sucrose metabolism pathways) were significantly altered in ptc1-2 mutant. A total of 13 reported anther development genes exhibited significant expression changes in the ptc1-2 mutant. Yeast two-hybrid and BiFC analyses showed that PTC1 could interact with API5, an inhibitor of apoptosis, and the citrin-binding enzyme EDT1. This work is helpful in deepening the understanding of the regulatory network of male reproductive development in rice.
Collapse
Affiliation(s)
- Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - WenXiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - XiaoQing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - XiaFei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - ZeLing Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huang Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - SiNing Li
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - HaoHua He
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Li Fang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
5
|
Huang X, Li Y, Chang Z, Yan W, Xu C, Zhang B, He Z, Wang C, Zheng M, Li Z, Xia J, Li G, Tang X, Wu J. Regulation by distinct MYB transcription factors defines the roles of OsCYP86A9 in anther development and root suberin deposition. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1972-1990. [PMID: 38506334 DOI: 10.1111/tpj.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Cytochrome P450 proteins (CYPs) play critical roles in plant development and adaptation to fluctuating environments. Previous reports have shown that CYP86A proteins are involved in the biosynthesis of suberin and cutin in Arabidopsis. However, the functions of these proteins in rice remain obscure. In this study, a rice mutant with incomplete male sterility was identified. Cytological analyses revealed that this mutant was defective in anther development. Cloning of the mutant gene indicated that the responsible mutation was on OsCYP86A9. OsMYB80 is a core transcription factor in the regulation of rice anther development. The expression of OsCYP86A9 was abolished in the anther of osmyb80 mutant. In vivo and in vitro experiments showed that OsMYB80 binds to the MYB-binding motifs in OsCYP86A9 promoter region and regulates its expression. Furthermore, the oscyp86a9 mutant exhibited an impaired suberin deposition in the root, and was more susceptible to drought stress. Interestingly, genetic and biochemical analyses revealed that OsCYP86A9 expression was regulated in the root by certain MYB transcription factors other than OsMYB80. Moreover, mutations in the MYB genes that regulate OsCYP86A9 expression in the root did not impair the male fertility of the plant. Taken together, these findings revealed the critical roles of OsCYP86A9 in plant development and proposed that OsCYP86A9 functions in anther development and root suberin formation via two distinct tissue-specific regulatory pathways.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhaohuan He
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Changjian Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Minting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhiai Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Guoliang Li
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
6
|
Shi C, Zou W, Zhu Y, Zhang J, Teng C, Wei H, He H, He W, Liu X, Zhang B, Zhang H, Leng Y, Guo M, Wang X, Chen W, Zhang Z, Qian H, Cui Y, Jiang H, Chen Y, Fei Q, Meyers BC, Liang W, Qian Q, Shang L. mRNA cleavage by 21-nucleotide phasiRNAs determines temperature-sensitive male sterility in rice. PLANT PHYSIOLOGY 2024; 194:2354-2371. [PMID: 38060676 DOI: 10.1093/plphys/kiad654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/15/2023] [Indexed: 04/02/2024]
Abstract
Temperature-sensitive male sterility is one of the core components for hybrid rice (Oryza sativa) breeding based on the 2-line system. We previously found that knockout of ARGONAUTE 1d (AGO1d) causes temperature-sensitive male sterility in rice by influencing phased small interfering RNA (phasiRNA) biogenesis and function. However, the specific phasiRNAs and their targets underlying the temperature-sensitive male sterility in the ago1d mutant remain unknown. Here, we demonstrate that the ago1d mutant displays normal female fertility but complete male sterility at low temperature. Through a multiomics analysis of small RNA (sRNA), degradome, and transcriptome, we found that 21-nt phasiRNAs account for the greatest proportion of the 21-nt sRNA species in rice anthers and are sensitive to low temperature and markedly downregulated in the ago1d mutant. Moreover, we found that 21-nt phasiRNAs are essential for the mRNA cleavage of a set of fertility- and cold tolerance-associated genes, such as Earlier Degraded Tapetum 1 (EDT1), Tapetum Degeneration Retardation (TDR), OsPCF5, and OsTCP21, directly or indirectly determined by AGO1d-mediated gene silencing. The loss of function of 21-nt phasiRNAs can result in upregulation of their targets and causes varying degrees of defects in male fertility and grain setting. Our results highlight the essential functions of 21-nt phasiRNAs in temperature-sensitive male sterility in rice and suggest their promising application in 2-line hybrid rice breeding in the future.
Collapse
Affiliation(s)
- Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenli Zou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chong Teng
- Donald Danforth Plant Science Center, Saint Louis, MI 63132, USA
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Huiying He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yue Leng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongshuang Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ying Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qili Fei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Blake C Meyers
- Donald Danforth Plant Science Center, Saint Louis, MI 63132, USA
- Division of Plant Sciences and Technology, University of Missouri-Columbia, Columbia, MI 65211, USA
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou District, Sanya City, Hainan Province 572024, China
| |
Collapse
|
7
|
Ashraf H, Ghouri F, Baloch FS, Nadeem MA, Fu X, Shahid MQ. Hybrid Rice Production: A Worldwide Review of Floral Traits and Breeding Technology, with Special Emphasis on China. PLANTS (BASEL, SWITZERLAND) 2024; 13:578. [PMID: 38475425 DOI: 10.3390/plants13050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
Rice is an important diet source for the majority of the world's population, and meeting the growing need for rice requires significant improvements at the production level. Hybrid rice production has been a significant breakthrough in this regard, and the floral traits play a major role in the development of hybrid rice. In grass species, rice has structural units called florets and spikelets and contains different floret organs such as lemma, palea, style length, anther, and stigma exsertion. These floral organs are crucial in enhancing rice production and uplifting rice cultivation at a broader level. Recent advances in breeding techniques also provide knowledge about different floral organs and how they can be improved by using biotechnological techniques for better production of rice. The rice flower holds immense significance and is the primary focal point for researchers working on rice molecular biology. Furthermore, the unique genetics of rice play a significant role in maintaining its floral structure. However, to improve rice varieties further, we need to identify the genomic regions through mapping of QTLs (quantitative trait loci) or by using GWAS (genome-wide association studies) and their validation should be performed by developing user-friendly molecular markers, such as Kompetitive allele-specific PCR (KASP). This review outlines the role of different floral traits and the benefits of using modern biotechnological approaches to improve hybrid rice production. It focuses on how floral traits are interrelated and their possible contribution to hybrid rice production to satisfy future rice demand. We discuss the significance of different floral traits, techniques, and breeding approaches in hybrid rice production. We provide a historical perspective of hybrid rice production and its current status and outline the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Mersin 33100, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Liao B, Xiang YH, Li Y, Yang KY, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, Zhao HY, Yu HX, Lu ZQ, Zhao Y, Zhao Q, Guo D, Guo SQ, Lei JJ, Mu XR, Cao YJ, Han B, Lin HX. Dysfunction of duplicated pair rice histone acetyltransferases causes segregation distortion and an interspecific reproductive barrier. Nat Commun 2024; 15:996. [PMID: 38307858 PMCID: PMC10837208 DOI: 10.1038/s41467-024-45377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/21/2024] [Indexed: 02/04/2024] Open
Abstract
Postzygotic reproductive isolation, which results in the irreversible divergence of species, is commonly accompanied by hybrid sterility, necrosis/weakness, or lethality in the F1 or other offspring generations. Here we show that the loss of function of HWS1 and HWS2, a couple of duplicated paralogs, together confer complete interspecific incompatibility between Asian and African rice. Both of these non-Mendelian determinants encode the putative Esa1-associated factor 6 (EAF6) protein, which functions as a characteristic subunit of the histone H4 acetyltransferase complex regulating transcriptional activation via genome-wide histone modification. The proliferating tapetum and inappropriate polar nuclei arrangement cause defective pollen and seeds in F2 hybrid offspring due to the recombinant HWS1/2-mediated misregulation of vitamin (biotin and thiamine) metabolism and lipid synthesis. Evolutionary analysis of HWS1/2 suggests that this gene pair has undergone incomplete lineage sorting (ILS) and multiple gene duplication events during speciation. Our findings have not only uncovered a pair of speciation genes that control hybrid breakdown but also illustrate a passive mechanism that could be scaled up and used in the guidance and optimization of hybrid breeding applications for distant hybridization.
Collapse
Affiliation(s)
- Ben Liao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - You-Huang Xiang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Li
- China National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Kai-Yang Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Xiang Shan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wang-Wei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Nai-Qian Dong
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yi-Bing Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Huai-Yu Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Xiao Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi-Qi Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Zhao
- China National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qiang Zhao
- China National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Dongling Guo
- China National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Shuang-Qin Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie-Jie Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Jie Cao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Han
- China National Center for Gene Research, National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China.
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Zou T, Zhang K, Zhang J, Liu S, Liang J, Liu J, Zhu J, Liang Y, Wang S, Deng Q, Liu H, Jin J, Li P, Li S. DWARF AND LOW-TILLERING 2 functions in brassinosteroid signaling and controls plant architecture and grain size in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1766-1783. [PMID: 37699038 DOI: 10.1111/tpj.16464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/22/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Brassinosteroids (BRs) are a class of steroid phytohormones that control various aspects of plant growth and development. Several transcriptional factors (TFs) have been suggested to play roles in BR signaling. However, their possible relationship remains largely unknown. Here, we identified a rice mutant dwarf and low-tillering 2 (dlt2) with altered plant architecture, increased grain width, and reduced BR sensitivity. DLT2 encodes a GIBBERELLIN INSENSITIVE (GAI)-REPRESSOR OF GAI (RGA)-SCARECROW (GRAS) TF that is mainly localized in the nucleus and has weak transcriptional activity. Our further genetic and biochemical analyses indicate that DLT2 interacts with two BR-signaling-related TFs, DLT and BRASSINAZOLE-RESISTANT 1, and probably modulates their transcriptional activity. These findings imply that DLT2 is implicated in a potentially transcriptional complex that mediates BR signaling and rice development and suggests that DLT2 could be a potential target for improving rice architecture and grain morphology. This work also sheds light on the role of rice GRAS members in regulating numerous developmental processes.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Zhang
- Technical Center of Chengdu Customs, Chengdu, 610041, Sichuan, China
| | - Sijing Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiaxu Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiquan Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiming Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huainian Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinghua Jin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
10
|
Liu F, Yang H, Tang R, Wang W, Shen H, Xu M, Hao T, Hu Y, Zhang Y, Bao Y. OsTKPR1 proteins with a single amino acid substitution fail the synthesis of a specific sporopollenin precursor and cause abnormal exine and pollen development in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111792. [PMID: 37454819 DOI: 10.1016/j.plantsci.2023.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Fatty acid derivatives are key components of rice pollen exine. The synthesis of aliphatic sporopollenin precursors are initiated in the plastids of the tapetal cells, followed by multiple-step reactions conducted in the endoplasmic reticulum (ER). However, the relative contribution of different precursors to the precise structure of sporopollenin remains largely elusive, let alone the underlying mechanism. Here, we report that two complete male sterile mutants ostkpr1-3 (Tetraketide α-pyrone reductase 1-3, with OsTKPR1P124S substitution) and ostkpr1-4 (with truncated OsTKPR1stop) are defective in pollen exine, Ubisch body and anther cuticle development where ostkpr1-4 display severer phenotypes. Remarkably, OsTKPR1 could produce reduced hydroxylated tetraketide α-pyrone and reduced tetraketide α-pyrone, whereas OsTKPR1P124S fails to produce the latter. Pairwise interaction assays show that mutated OsTKPR1P124S is able to integrate into a recently characterized metabolon, thus its altered catalytic activity is not due to dis-integrity of the metabolon. In short, we find that reduced tetraketide α-pyrone is a key sporopollenin precursor required for normal exine formation, and the conserved 124th proline of OsTKPR1 is essential for the reduction activity. Therefore, this study provided new insights into the sporopollenin precursor constitution critical for exine formation.
Collapse
Affiliation(s)
- Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huiting Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Rong Tang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wang Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haodong Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mengxue Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tiancheng Hao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuanyuan Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yunhui Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
11
|
Chen H, Zhang S, Li R, Peng G, Chen W, Rautengarten C, Liu M, Zhu L, Xiao Y, Song F, Ni J, Huang J, Wu A, Liu Z, Zhuang C, Heazlewood JL, Xie Y, Chu Z, Zhou H. BOTRYOID POLLEN 1 regulates ROS-triggered PCD and pollen wall development by controlling UDP-sugar homeostasis in rice. THE PLANT CELL 2023; 35:3522-3543. [PMID: 37352123 PMCID: PMC10473207 DOI: 10.1093/plcell/koad181] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Uridine diphosphate (UDP)-sugars are important metabolites involved in the biosynthesis of polysaccharides and may be important signaling molecules. UDP-glucose 4-epimerase (UGE) catalyzes the interconversion between UDP-Glc and UDP-Gal, whose biological function in rice (Oryza sativa) fertility is poorly understood. Here, we identify and characterize the botryoid pollen 1 (bp1) mutant and show that BP1 encodes a UGE that regulates UDP-sugar homeostasis, thereby controlling the development of rice anthers. The loss of BP1 function led to massive accumulation of UDP-Glc and imbalance of other UDP-sugars. We determined that the higher levels of UDP-Glc and its derivatives in bp1 may induce the expression of NADPH oxidase genes, resulting in a premature accumulation of reactive oxygen species (ROS), thereby advancing programmed cell death (PCD) of anther walls but delaying the end of tapetal degradation. The accumulation of UDP-Glc as metabolites resulted in an abnormal degradation of callose, producing an adhesive microspore. Furthermore, the UDP-sugar metabolism pathway is not only involved in the formation of intine but also in the formation of the initial framework for extine. Our results reveal how UDP-sugars regulate anther development and provide new clues for cellular ROS accumulation and PCD triggered by UDP-Glc as a signaling molecule.
Collapse
Affiliation(s)
- Huiqiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Shuqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ruiqi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoqing Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Weipan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Minglong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yueping Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fengshun Song
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jinlong Ni
- Key Laboratory of Rice Genetics Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Jilei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhizhan Chu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Nishiguchi M, Futamura N, Endo M, Mikami M, Toki S, Katahata SI, Ohmiya Y, Konagaya KI, Nanasato Y, Taniguchi T, Maruyama TE. CRISPR/Cas9-mediated disruption of CjACOS5 confers no-pollen formation on sugi trees (Cryptomeria japonica D. Don). Sci Rep 2023; 13:11779. [PMID: 37479866 PMCID: PMC10361980 DOI: 10.1038/s41598-023-38339-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
Sugi (Cryptomeria japonica D. Don) is an economically important coniferous tree in Japan. However, abundant sugi pollen grains are dispersed and transported by the wind each spring and cause a severe pollen allergy syndrome (Japanese cedar pollinosis). The use of pollen-free sugi that cannot produce pollen has been thought as a countermeasure to Japanese cedar pollinosis. The sugi CjACOS5 gene is an ortholog of Arabidopsis ACOS5 and rice OsACOS12, which encode an acyl-CoA synthetase that is involved in the synthesis of sporopollenin in pollen walls. To generate pollen-free sugi, we mutated CjACOS5 using the CRISPR/Cas9 system. As a result of sugi transformation mediated by Agrobacterium tumefaciens harboring the CjACOS5-targeted CRISPR/Cas9 vector, 1 bp-deleted homo biallelic mutant lines were obtained. Chimeric mutant lines harboring both mutant and wild-type CjACOS5 genes were also generated. The homo biallelic mutant lines had no-pollen in male strobili, whereas chimeric mutant lines had male strobili with or without pollen grains. Our results suggest that CjACOS5 is essential for the production of pollen in sugi and that its disruption is useful for the generation of pollen-free sugi. In addition to conventional transgenic technology, genome editing technology, including CRISPR/Cas9, can confer new traits on sugi.
Collapse
Affiliation(s)
- Mitsuru Nishiguchi
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Norihiro Futamura
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Masaki Endo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
| | - Masafumi Mikami
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| | - Shin-Ichiro Katahata
- Faculty of Applied Biological Sciences, Gifu University, Yanagido 1-1, Gifu, 501-1193, Japan
| | - Yasunori Ohmiya
- Extension and International Cooperation Department, Forest Tree Breeding Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Ken-Ichi Konagaya
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Yoshihiko Nanasato
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Toru Taniguchi
- Forest Bio-Research Center, Forestry and Forest Products Research Institute (FFPRI), 3809-1 Ishi, Juo, Hitachi, Ibaraki, 319-1301, Japan
| | - Tsuyoshi Emilio Maruyama
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|
13
|
Zou T, Li G, Liu M, Liu R, Yang S, Wang K, Lu L, Ye Q, Liu J, Liang J, Deng Q, Wang S, Zhu J, Liang Y, Liu H, Yu X, Sun C, Li P, Li S. A ubiquitin-specific protease functions in regulating cell death and immune responses in rice. PLANT, CELL & ENVIRONMENT 2023; 46:1312-1326. [PMID: 36624579 DOI: 10.1111/pce.14540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Ubiquitin-specific proteases (UBPs) process deubiquitination in eukaryotic organisms and are widely involved in plant development and responses to environmental stress. However, their role in cell death and plant immunity remains largely unknown. Here, we identified a rice lesion mimic mutant (LMM) and cloned its causative gene, LMM22. Both dysfunction and overexpression of LMM22 gave rise to the hypersensitive response-like cell death, reactive oxygen species bursts, and activated defence responses. LMM22 encodes an active UBP that is localised to the endoplasmic reticulum (ER) and displays a constitutive expression pattern in rice. LMM22 interacts with SPOTTED LEAF 35 (SPL35), a coupling of ubiquitin conjugation to ER degradation domain-containing protein that is known to participate in ubiquitination and the regulation of cell death and disease response in rice. Additional analyses suggest that LMM22 can positively regulate and stabilise the abundance of SPL35 protein likely through its deubiquitination activity. These data therefore improve our understanding of the function of UBP in rice innate immune responses by demonstrating that LMM22 functions as a critical regulator of SPL35 in cell death and disease resistance.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Miaomiao Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shangyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liuhui Lu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiuyu Ye
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaxu Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Changhui Sun
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Kamara N, Lu Z, Jiao Y, Zhu L, Wu J, Chen Z, Wang L, Liu X, Shahid MQ. An uncharacterized protein NY1 targets EAT1 to regulate anther tapetum development in polyploid rice. BMC PLANT BIOLOGY 2022; 22:582. [PMID: 36514007 PMCID: PMC9746164 DOI: 10.1186/s12870-022-03976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Autotetraploid rice is a useful germplasm for the breeding of polyploid rice; however, low fertility is a major hindrance for its utilization. Neo-tetraploid rice with high fertility was developed from the crossing of different autotetraploid rice lines. Our previous research showed that the mutant (ny1) of LOC_Os07g32406 (NY1), which was generated by CRISPR/Cas9 knock-out in neo-tetraploid rice, showed low pollen fertility, low seed set, and defective chromosome behavior during meiosis. However, the molecular genetic mechanism underlying the fertility remains largely unknown. RESULTS Here, cytological observations of the NY1 mutant (ny1) indicated that ny1 exhibited abnormal tapetum and middle layer development. RNA-seq analysis displayed a total of 5606 differentially expressed genes (DEGs) in ny1 compared to wild type (H1) during meiosis, of which 2977 were up-regulated and 2629 were down-regulated. Among the down-regulated genes, 16 important genes associated with tapetal development were detected, including EAT1, CYP703A3, CYP704B2, DPW, PTC1, OsABCG26, OsAGO2, SAW1, OsPKS1, OsPKS2, and OsTKPR1. The mutant of EAT1 was generated by CRISPR/Cas9 that showed abnormal tapetum and pollen wall formation, which was similar to ny1. Moreover, 478 meiosis-related genes displayed down-regulation at same stage, including 9 important meiosis-related genes, such as OsREC8, OsSHOC1, SMC1, SMC6a and DCM1, and their expression levels were validated by qRT-PCR. CONCLUSIONS Taken together, these results will aid in identifying the key genes associated with pollen fertility, which offered insights into the molecular mechanism underlying pollen development in tetraploid rice.
Collapse
Affiliation(s)
- Nabieu Kamara
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Sierra Leone Agricultural Research Institute (SLARI), Freetown, PMB 1313 Sierra Leone
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yamin Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Lianjun Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhixiong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Lan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
15
|
Kirschner GK. Another piece in the puzzle of pollen development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1507-1508. [PMID: 36111799 DOI: 10.1111/tpj.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
16
|
Zou T, Xiong P, Zhou F, Zhou D, Chen H, Li G, Peng K, Zheng K, Han Y, Zhang K, Zhang X, Yang S, Deng Q, Wang S, Zhu J, Liang Y, Sun C, Yu X, Liu H, Wang L, Li P, Li S. Grass-specific ABERRANT MICROSPORE DEVELOPMENT 1 is required for maintaining pollen fertility in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1509-1526. [PMID: 35883135 DOI: 10.1111/tpj.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Pollen development includes a series of biological events that require precise gene regulation. Although several transcription factors (TFs) have been shown to play roles in maintaining pollen fertility, the major regulatory networks underlying tapetum development and pollen wall formation are largely unknown. Herein, we report that ABERRANT MICROSPORE DEVELOPMENT1 (AMD1), a protein annotated previously as unknown protein, is required for tapetum development and pollen exine patterning in rice (Oryza sativa L.). AMD1 encodes a grass-specific protein exhibiting transactivation activity in the nucleus and is spatiotemporally expressed in the tapetum and microspores during pollen development. Further biochemical assays indicate that AMD1 directly activates the transcription of DEFECTIVE POLLEN WALL (DPW) and POLYKETIDE SYNTHASE2 (OsPKS2), which are both implicated in sporopollenin biosynthesis during exine formation. Additionally, AMD1 directly interacts with TAPETUM DEGENERATION RETARDATION (TDR), a key TF involved in the regulation of tapetum degradation and exine formation. Taken together, we demonstrate that AMD1 is an important regulatory component involved in the TDR-mediated regulatory pathway to regulate sporopollenin biosynthesis, tapetum degradation, and exine formation for pollen development. Our work provides insights into the regulatory network of rice sexual reproduction and a useful target for genetic engineering of new male-sterile lines for hybrid rice breeding.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Xiong
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fuxing Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Chen
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gongwen Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kun Peng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaiyou Zheng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhao Han
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaixuan Zhang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Zhang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shangyu Yang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changhui Sun
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
17
|
Yuan G, Zou T, He Z, Xiao Q, Li G, Liu S, Xiong P, Chen H, Peng K, Zhang X, Luo T, Zhou D, Yang S, Zhou F, Zhang K, Zheng K, Han Y, Zhu J, Liang Y, Deng Q, Wang S, Sun C, Yu X, Liu H, Wang L, Li P, Li S. SWOLLEN TAPETUM AND STERILITY 1 is required for tapetum degeneration and pollen wall formation in rice. PLANT PHYSIOLOGY 2022; 190:352-370. [PMID: 35748750 PMCID: PMC9434214 DOI: 10.1093/plphys/kiac307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 06/01/2023]
Abstract
The pollen wall is important for protecting the male gametophyte and for fertilization. The lipid components of the pollen wall are mainly synthesized and transported from the sporophytic tapetum. Although several factors related to lipid biosynthesis have been characterized, the molecular mechanisms underlying lipid biosynthesis during pollen development in rice (Oryza sativa L.) remain elusive. Here, we showed that mutation in the SWOLLEN TAPETUM AND STERILITY 1 (STS1) gene causes delayed tapetum degradation and aborted pollen wall formation in rice. STS1 encodes an endoplasmic reticulum (ER)-localized protein that contains domain of unknown function (DUF) 726 and exhibits lipase activity. Lipidomic and transcriptomic analyses showed that STS1 is involved in anther lipid homeostasis. Moreover, STS1 interacts with Polyketide Synthase 2 (OsPKS2) and Acyl-CoA Synthetase 12 (OsACOS12), two enzymes crucial in lipidic sporopollenin biosynthesis in pollen wall formation, suggesting a potentially lipidic metabolon for sporopollenin biosynthesis in rice. Collectively, our results indicate that STS1 is an important factor for lipid biosynthesis in reproduction, providing a target for the artificial control of male fertility in hybrid rice breeding and insight into the function of DUF726-containing protein in plants.
Collapse
Affiliation(s)
| | | | - Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sijing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pingping Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Tingting Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shangyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Fuxin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kaiyou Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhao Han
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiming Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiquan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- Author for correspondence: (S.L.), (P.L.)
| | | |
Collapse
|
18
|
Zhou D, Zou T, Zhang K, Xiong P, Zhou F, Chen H, Li G, Zheng K, Han Y, Peng K, Zhang X, Yang S, Deng Q, Wang S, Zhu J, Liang Y, Sun C, Yu X, Liu H, Wang L, Li P, Li S. DEAP1 encodes a fasciclin-like arabinogalactan protein required for male fertility in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1430-1447. [PMID: 35485235 DOI: 10.1111/jipb.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Arabinogalactan proteins (AGPs) are widely distributed in plant cells. Fasciclin-like AGPs (FLAs) belong to a subclass of AGPs that play important roles in plant growth and development. However, little is known about the biological functions of rice FLA. Herein, we report the identification of a male-sterile mutant of DEFECTIVE EXINE AND APERTURE PATTERNING1 (DEAP1) in rice. The deap1 mutant anthers produced aberrant pollen grains with defective exine formation and a flattened aperture annulus and exhibited slightly delayed tapetum degradation. DEAP1 encodes a plasma membrane-associated member of group III plant FLAs and is specifically and temporally expressed in reproductive cells and the tapetum layer during male development. Gene expression studies revealed reduced transcript accumulation of genes related to exine formation, aperture patterning, and tapetum development in deap1 mutants. Moreover, DEAP1 may interact with two rice D6 PROTEIN KINASE-LIKE3s (OsD6PKL3s), homologs of a known Arabidopsis aperture protein, to affect rice pollen aperture development. Our findings suggested that DEAP1 is involved in male reproductive development and may affect exine formation and aperture patterning, thereby providing new insights into the molecular functions of plant FLAs in male fertility.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fuxing Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaiyou Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhao Han
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shangyu Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
19
|
Han S, Zhou X, Shi L, Zhang H, Geng Y, Fang Y, Xia H, Liu H, Li P, Zhao S, Miao L, Hou L, Zhang Z, Xu J, Ma C, Wang Z, Li H, Zheng Z, Huang B, Dong W, Zhang J, Tang F, Li S, Gao M, Zhang X, Zhao C, Wang X. AhNPR3 regulates the expression of WRKY and PR genes, and mediates the immune response of the peanut (Arachis hypogaea L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:735-747. [PMID: 35124871 DOI: 10.1111/tpj.15700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Systemic acquired resistance is an essential immune response that triggers a broad-spectrum disease resistance throughout the plant. In the present study, we identified a peanut lesion mimic mutant m14 derived from an ethyl methane sulfonate-mutagenized mutant pool of peanut cultivar "Yuanza9102." Brown lesions were observed in the leaves of an m14 mutant from seedling stage to maturity. Using MutMap together with bulked segregation RNA analysis approaches, a G-to-A point mutation was identified in the exon region of candidate gene Arahy.R60CUW, which is the homolog of AtNPR3 (Nonexpresser of PR genes) in Arabidopsis. This point mutation caused a transition from Gly to Arg within the C-terminal transactivation domain of AhNPR3A. The mutation of AhNPR3A showed no effect in the induction of PR genes when treated with salicylic acid. Instead, the mutation resulted in upregulation of WRKY genes and several PR genes, including pathogenesis-related thaumatin- and chitinase-encoding genes, which is consistent with the resistant phenotype of m14 to leaf spot disease. Further study on the AhNPR3A gene will provide valuable insights into understanding the molecular mechanism of systemic acquired resistance in peanut. Moreover, our results indicated that a combination of MutMap and bulked segregation RNA analysis is an effective method for identifying genes from peanut mutants.
Collapse
Affiliation(s)
- Suoyi Han
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Ximeng Zhou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lei Shi
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Huayang Zhang
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Yun Geng
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
| | - Yuanjin Fang
- Kaifeng Academy of Agriculture and Forestry, Kaifeng, 475000, China
| | - Han Xia
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Hua Liu
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Pengcheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Lijuan Miao
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Lei Hou
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zhongxin Zhang
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jing Xu
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zhenyu Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Hongyan Li
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Zheng Zheng
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Bingyan Huang
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Wenzhao Dong
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Jun Zhang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Fengshou Tang
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Shaojian Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Meng Gao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Xinyou Zhang
- Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou, 450002, China
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xingjun Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences; Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, 250100, China
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
20
|
Zhao ML, Zhou ZF, Chen MS, Xu CJ, Xu ZF. An ortholog of the MADS-box gene SEPALLATA3 regulates stamen development in the woody plant Jatropha curcas. PLANTA 2022; 255:111. [PMID: 35478059 DOI: 10.1007/s00425-022-03886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of JcSEP3 causes defective stamen development in Jatropha curcas, in which brassinosteroid and gibberellin signaling pathways may be involved. SEPALLATAs (SEPs), the class E genes of the ABCE model, are required for floral organ determination. In this study, we investigated the role of the JcSEP3 gene in floral organ development in the woody plant Jatropha curcas. Transgenic Jatropha plants overexpressing JcSEP3 displayed abnormal phenotypes such as deficient anthers and pollen, as well as free stamen filaments, whereas JcSEP3-RNA interference (RNAi) transgenic plants had no obvious phenotypic changes, suggesting that JcSEP3 is redundant with other JcSEP genes in Jatropha. Moreover, we compared the transcriptomes of wild-type plants, JcSEP3-overexpressing, and JcSEP3-RNAi transgenic plants. In the JcSEP3-overexpressing transgenic plants, we discovered 25 upregulated genes involved in anther and pollen development, as well as 12 induced genes in brassinosteroid (BR) and gibberellin (GA) signaling pathways. These results suggest that JcSEP3 directly or indirectly regulates stamen development, concomitant with the regulation of BR and GA signaling pathways. Our findings help to understand the roles of SEP genes in stamen development in perennial woody plants.
Collapse
Affiliation(s)
- Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zhi-Fang Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| | - Chuan-Jia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
21
|
Li T, Yang Y, Liu H, Dossou SSK, Zhou F, Zhou T, Zhao Y. Overexpression of sesame polyketide synthase A leads to abnormal pollen development in Arabidopsis. BMC PLANT BIOLOGY 2022; 22:165. [PMID: 35366814 PMCID: PMC8976376 DOI: 10.1186/s12870-022-03551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sesame is a great reservoir of bioactive constituents and unique antioxidant components. It is widely used for its nutritional and medicinal value. The expanding demand for sesame seeds is putting pressure on sesame breeders to develop high-yielding varieties. A hybrid breeding strategy based on male sterility is one of the most effective ways to increase the crop yield. To date, little is known about the genes and mechanism underlying sesame male fertility. Therefore, studies are being conducted to identify and functionally characterize key candidate genes involved in sesame pollen development. Polyketide synthases (PKSs) are critical enzymes involved in the biosynthesis of sporopollenin, the primary component of pollen exine. Their in planta functions are being investigated for applications in crop breeding. RESULTS In this study, we cloned the sesame POLYKETIDE SYNTHASE A (SiPKSA) and examined its function in male sterility. SiPKSA was specifically expressed in sesame flower buds, and its expression was significantly higher in sterile sesame anthers than in fertile anthers during the tetrad and microspore development stages. Furthermore, overexpression of SiPKSA in Arabidopsis caused male sterility in transgenic plants. Ultrastructural observation showed that the pollen grains of SiPKSA-overexpressing plants contained few cytoplasmic inclusions and exhibited an abnormal pollen wall structure, with a thicker exine layer compared to the wild type. In agreement with this, the expression of a set of sporopollenin biosynthesis-related genes and the contents of their fatty acids and phenolics were significantly altered in anthers of SiPKSA-overexpressing plants compared with wild type during anther development. CONCLUSION These findings highlighted that overexpression of SiPKSA in Arabidopsis might cause male sterility through defective pollen wall formation. Moreover, they suggested that SiPKSA modulates vibrant pollen development via sporopollenin biosynthesis, and a defect in its regulation may induce male sterility. Therefore, genetic manipulation of SiPKSA might promote hybrid breeding in sesame and other crop species.
Collapse
Affiliation(s)
- Tianyu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuanxiao Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hongyan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fang Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Ting Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| | - Yingzhong Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
22
|
Liu J, Zhou Y, Wang L, Zhang Q, Shen Y, Jiang W, Chen X, He H, Hu L. Cytological Analysis and Fine Mapping of paa1 (Post-meiosis Abnormal Anther 1) Mutant with Abnormal Tapetum and Microspore Development. Biochem Genet 2022; 60:2268-2285. [PMID: 35325440 DOI: 10.1007/s10528-022-10217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2022] [Indexed: 11/30/2022]
Abstract
To further understand the molecular mechanism for rice male reproduction, a rice male sterile mutant paa1 was screened from the rice mutant library generated by treatment with 60Coγ-rays. Genetic analysis revealed that paa1 is controlled by a single- recessive nuclear gene, and the anthers of the paa1 mutant were smaller than those of WT plants with a white color. Histological analysis demonstrated that the anthers of the paa1 mutant began to turn abnormal at the microspore stage after meiosis, with abnormal degradation of tapetum, deformed Ubisch bodies, and defective pollen exine. TUNEL assay results also confirmed the delay of tapetum PCD in paa1. Map-based cloning was performed for the PAA1 location. As a result, PAA1 was located in a 88-kb region at the end of chromosome 10, which comprises a total of seven candidate genes, and no genes related to anther development have been reported in this region. The results indicate that PAA1 is an essential gene in regulating tapetum development and pollen/microspore formation after rice meiosis.
Collapse
Affiliation(s)
- Jialin Liu
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yong Zhou
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lianhong Wang
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qiuyun Zhang
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yaqi Shen
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenxiang Jiang
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology Ecology and Genetic Breeding Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
23
|
Ma K, Yang Z, Yang B, Liu YG, Zhu Q, Chen L. Bioinformatic and functional analyses reveal the expansion base of the rice polyketide synthase III superfamily and the synergistic roles of OsPKS1 and OsPKS2 in male reproduction. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
Khan RM, Yu P, Sun L, Abbas A, Shah L, Xiang X, Wang D, Sohail A, Zhang Y, Liu Q, Cheng S, Cao L. DCET1 Controls Male Sterility Through Callose Regulation, Exine Formation, and Tapetal Programmed Cell Death in Rice. Front Genet 2021; 12:790789. [PMID: 34899867 PMCID: PMC8652220 DOI: 10.3389/fgene.2021.790789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
In angiosperms, anther development comprises of various complex and interrelated biological processes, critically needed for pollen viability. The transitory callose layer serves to separate the meiocytes. It helps in primexine formation, while the timely degradation of tapetal cells is essential for the timely callose wall dissolution and pollen wall formation by providing nutrients for pollen growth. In rice, many genes have been reported and functionally characterized that are involved in callose regulation and pollen wall patterning, including timely programmed cell death (PCD) of the tapetum, but the mechanism of pollen development largely remains ambiguous. We identified and functionally characterized a rice mutant dcet1, having a complete male-sterile phenotype caused by defects in anther callose wall, exine patterning, and tapetal PCD. DCET1 belongs to the RNA recognition motif (RRM)-containing family also called as the ribonucleoprotein (RNP) domain or RNA-binding domain (RBD) protein, having single-nucleotide polymorphism (SNP) substitution from G (threonine-192) to A (isoleucine-192) located at the fifth exon of LOC_Os08g02330, was responsible for the male sterile phenotype in mutant dcet1. Our cytological analysis suggested that DCET1 regulates callose biosynthesis and degradation, pollen exine formation by affecting exine wall patterning, including abnormal nexine, collapsed bacula, and irregular tectum, and timely PCD by delaying the tapetal cell degeneration. As a result, the microspore of dcet1 was swollen and abnormally bursted and even collapsed within the anther locule characterizing complete male sterility. GUS and qRT-PCR analysis indicated that DCET1 is specifically expressed in the anther till the developmental stage 9, consistent with the observed phenotype. The characterization of DCET1 in callose regulation, pollen wall patterning, and tapetal cell PCD strengthens our knowledge for knowing the regulatory pathways involved in rice male reproductive development and has future prospects in hybrid rice breeding.
Collapse
Affiliation(s)
- Riaz Muhammad Khan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liaqat Shah
- Department of Botany, Mir Chakar Khan Rind University, Sibi, Pakistan
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dongfei Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Amir Sohail
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qunen Liu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
25
|
Tao Y, Zou T, Zhang X, Liu R, Chen H, Yuan G, Zhou D, Xiong P, He Z, Li G, Zhou M, Liu S, Deng Q, Wang S, Zhu J, Liang Y, Yu X, Zheng A, Wang A, Liu H, Wang L, Li P, Li S. Secretory lipid transfer protein OsLTPL94 acts as a target of EAT1 and is required for rice pollen wall development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:358-377. [PMID: 34314535 DOI: 10.1111/tpj.15443] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The plant pollen wall protects the male gametophyte from various biotic and abiotic stresses. The formation of a unique pollen wall structure and elaborate exine pattern is a well-organized process, which needs coordination between reproductive cells and the neighboring somatic cells. However, molecular mechanisms underlying this process remain largely unknown. Here, we report a rice male-sterile mutant (l94) that exhibits defective pollen exine patterning and abnormal tapetal cell development. MutMap and knockout analyses demonstrated that the causal gene encodes a type-G non-specific lipid transfer protein (OsLTPL94). Histological and cellular analyses established that OsLTPL94 is strongly expressed in the developing microspores and tapetal cells, and its protein is secreted to the plasma membrane. The l94 mutation impeded the secretory ability of OsLTPL94 protein. Further in vivo and in vitro investigations supported the hypothesis that ETERNAL TAPETUM 1 (EAT1), a basic helix-loop-helix transcription factor (bHLH TF), activated OsLTPL94 expression through direct binding to the E-box motif of the OsLTPL94 promoter, which was supported by the positive correlation between the expression of EAT1 and OsLTPL94 in two independent eat1 mutants. Our findings suggest that the secretory OsLTPL94 plays a key role in the coordinated development of tapetum and microspores with the regulation of EAT1.
Collapse
Affiliation(s)
- Yang Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Menglin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sijing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
26
|
Grienenberger E, Quilichini TD. The Toughest Material in the Plant Kingdom: An Update on Sporopollenin. FRONTIERS IN PLANT SCIENCE 2021; 12:703864. [PMID: 34539697 PMCID: PMC8446667 DOI: 10.3389/fpls.2021.703864] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 05/16/2023]
Abstract
The extreme chemical and physical recalcitrance of sporopollenin deems this biopolymer among the most resilient organic materials on Earth. As the primary material fortifying spore and pollen cell walls, sporopollenin is touted as a critical innovation in the progression of plant life to a terrestrial setting. Although crucial for its protective role in plant reproduction, the inert nature of sporopollenin has challenged efforts to determine its composition for decades. Revised structural, chemical, and genetic experimentation efforts have produced dramatic advances in elucidating the molecular structure of this biopolymer and the mechanisms of its synthesis. Bypassing many of the challenges with material fragmentation and solubilization, insights from functional characterizations of sporopollenin biogenesis in planta, and in vitro, through a gene-targeted approach suggest a backbone of polyhydroxylated polyketide-based subunits and remarkable conservation of biochemical pathways for sporopollenin biosynthesis across the plant kingdom. Recent optimization of solid-state NMR and targeted degradation methods for sporopollenin analysis confirms polyhydroxylated α-pyrone subunits, as well as hydroxylated aliphatic units, and unique cross-linkage heterogeneity. We examine the cross-disciplinary efforts to solve the sporopollenin composition puzzle and illustrate a working model of sporopollenin's molecular structure and biosynthesis. Emerging controversies and remaining knowledge gaps are discussed, including the degree of aromaticity, cross-linkage profiles, and extent of chemical conservation of sporopollenin among land plants. The recent developments in sporopollenin research present diverse opportunities for harnessing the extraordinary properties of this abundant and stable biomaterial for sustainable microcapsule applications and synthetic material designs.
Collapse
Affiliation(s)
- Etienne Grienenberger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Teagen D. Quilichini
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
27
|
Wang J, Mao L, Zeng Z, Yu X, Lian J, Feng J, Yang W, An J, Wu H, Zhang M, Liu L. Genetic mapping high protein content QTL from soybean 'Nanxiadou 25' and candidate gene analysis. BMC PLANT BIOLOGY 2021; 21:388. [PMID: 34416870 PMCID: PMC8377855 DOI: 10.1186/s12870-021-03176-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/13/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Soybean is a globally important legume crop that provides a primary source of high-quality vegetable protein and oil. Seed protein content (SPC) is a valuable quality trait controlled by multiple genes in soybean. RESULTS In this study, we performed quantitative trait loci (QTL) mapping, QTL-seq, and RNA sequencing (RNA-seq) to reveal the genes controlling protein content in the soybean by using the high protein content variety Nanxiadou 25. A total of 50 QTL for SPC distributed on 14 chromosomes except chromosomes 4, 12, 14, 17, 18, and 19 were identified by QTL mapping using 178 recombinant inbred lines (RILs). Among these QTL, the major QTL qSPC_20-1 and qSPC_20-2 on chromosome 20 were repeatedly detected across six tested environments, corresponding to the location of the major QTL detected using whole-genome sequencing-based QTL-seq. 329 candidate DEGs were obtained within the QTL region of qSPC_20-1 and qSPC_20-2 via gene expression profile analysis. Nine of which were associated with SPC, potentially representing candidate genes. Clone sequencing results showed that different single nucleotide polymorphisms (SNPs) and indels between high and low protein genotypes in Glyma.20G088000 and Glyma.16G066600 may be the cause of changes in this trait. CONCLUSIONS These results provide the basis for research on candidate genes and marker-assisted selection (MAS) in soybean breeding for seed protein content.
Collapse
Affiliation(s)
- Jia Wang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China.
- Southwest University, Chongqing, 400715, China.
| | - Lin Mao
- Southwest University, Chongqing, 400715, China
| | - Zhaoqiong Zeng
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Xiaobo Yu
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jianqiu Lian
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jun Feng
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Wenying Yang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Jiangang An
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Haiying Wu
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China
| | - Mingrong Zhang
- Nanchong Academy of Agricultural Sciences, Nanchong, 637000, Sichuan, China.
| | - Liezhao Liu
- Southwest University, Chongqing, 400715, China.
| |
Collapse
|
28
|
Ko SS, Li MJ, Ho YC, Yu CP, Yang TT, Lin YJ, Hsing HC, Chen TK, Jhong CM, Li WH, Sun-Ben Ku M. Rice transcription factor GAMYB modulates bHLH142 and is homeostatically regulated by TDR during anther tapetal and pollen development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4888-4903. [PMID: 33940615 DOI: 10.1093/jxb/erab190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
GIBBERELLIN MYB GENE (GAMYB), UNDEVELOPED TAPETUM1 (UDT1), TDR INTERACTING PROTEIN2 (TIP2/bHLH142), TAPETUM DEGENERATION RETARDATION (TDR), and ETERNAL TAPETUM 1/DELAYED TAPETUM DEGENERATION (EAT1/DTD) are important transcription factors that play a crucial role during pollen development in rice. This study demonstrates that bHLH142 acts downstream of UDT1 and GAMYB and works as a 'hub' in these two pollen pathways. We show that GAMYB modulates bHLH142 expression through specific binding to the MYB motif of the bHLH142 promoter during the early stage of pollen development, while TDR acts as a transcriptional repressor of the GAMYB modulation of bHLH142 by binding to the E-box close to the MYB motif on the promoter. Altered expression of these transcription factors highlights that a tight, precise, and coordinated regulation among them is essential for normal pollen development. Most notably, we show that the regulatory pathways of GAMYB and UDT1 rely on bHLH142 in a direct and indirect manner, respectively, and function in different tissues with distinct biological roles during pollen development. This study advances our understanding of the molecular mechanisms of rice pollen development.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Min-Jeng Li
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Yi-Cheng Ho
- Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan
| | - Chun-Ping Yu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Hung-Chien Hsing
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Tien-Kuan Chen
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan, Taiwan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Maurice Sun-Ben Ku
- Institute of Bioagricultural Science, National Chiayi University, Chiayi, Taiwan
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
29
|
He Z, Zou T, Xiao Q, Yuan G, Liu M, Tao Y, Zhou D, Zhang X, Deng Q, Wang S, Zheng A, Zhu J, Liang Y, Yu X, Wang A, Liu H, Wang L, Li P, Li S. An L-type lectin receptor-like kinase promotes starch accumulation during rice pollen maturation. Development 2021; 148:dev.196378. [PMID: 33658224 DOI: 10.1242/dev.196378] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/22/2021] [Indexed: 01/27/2023]
Abstract
Starch accumulation is key for the maturity of rice pollen grains; however, the regulatory mechanism underlying this process remains unknown. Here, we have isolated a male-sterile rice mutant, abnormal pollen 1 (ap1), which produces nonviable pollen grains with defective starch accumulation. Functional analysis revealed that AP1 encodes an active L-type lectin receptor-like kinase (L-LecRLK). AP1 is localized to the plasma membrane and its transcript is highly accumulated in pollen during the starch synthesis phase. RNA-seq and phosphoproteomic analysis revealed that the expression/phosphorylation levels of numerous genes/proteins involved in starch and sucrose metabolism pathway were significantly altered in the mutant pollen, including a known rice UDP-glucose pyrophosphorylase (OsUGP2). We further found that AP1 physically interacts with OsUGP2 to elevate its enzymatic activity, likely through targeted phosphorylation. These findings revealed a novel role of L-LecRLK in controlling pollen maturity via modulating sucrose and starch metabolism.
Collapse
Affiliation(s)
- Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiao Xiao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Miaomiao Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiumei Yu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
30
|
Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L. Exploiting Genic Male Sterility in Rice: From Molecular Dissection to Breeding Applications. FRONTIERS IN PLANT SCIENCE 2021; 12:629314. [PMID: 33763090 PMCID: PMC7982899 DOI: 10.3389/fpls.2021.629314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Rice (Oryza sativa L.) occupies a very salient and indispensable status among cereal crops, as its vast production is used to feed nearly half of the world's population. Male sterile plants are the fundamental breeding materials needed for specific propagation in order to meet the elevated current food demands. The development of the rice varieties with desired traits has become the ultimate need of the time. Genic male sterility is a predominant system that is vastly deployed and exploited for crop improvement. Hence, the identification of new genetic elements and the cognizance of the underlying regulatory networks affecting male sterility in rice are crucial to harness heterosis and ensure global food security. Over the years, a variety of genomics studies have uncovered numerous mechanisms regulating male sterility in rice, which provided a deeper and wider understanding on the complex molecular basis of anther and pollen development. The recent advances in genomics and the emergence of multiple biotechnological methods have revolutionized the field of rice breeding. In this review, we have briefly documented the recent evolution, exploration, and exploitation of genic male sterility to the improvement of rice crop production. Furthermore, this review describes future perspectives with focus on state-of-the-art developments in the engineering of male sterility to overcome issues associated with male sterility-mediated rice breeding to address the current challenges. Finally, we provide our perspectives on diversified studies regarding the identification and characterization of genic male sterility genes, the development of new biotechnology-based male sterility systems, and their integrated applications for hybrid rice breeding.
Collapse
Affiliation(s)
- Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Daibo Chen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- Northern Center of China National Rice Research Institute, Shuangyashan, China
| |
Collapse
|
31
|
Han Y, Zhou SD, Fan JJ, Zhou L, Shi QS, Zhang YF, Liu XL, Chen X, Zhu J, Yang ZN. OsMS188 Is a Key Regulator of Tapetum Development and Sporopollenin Synthesis in Rice. RICE (NEW YORK, N.Y.) 2021; 14:4. [PMID: 33409767 PMCID: PMC7788135 DOI: 10.1186/s12284-020-00451-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 12/26/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND During anther development, the tapetum provides essential nutrients and materials for pollen development. In rice, multiple transcription factors and enzymes essential for tapetum development and pollen wall formation have been cloned from male-sterile lines. RESULTS In this study, we obtained several lines in which the MYB transcription factor OsMS188 was knocked out through the CRISPR-Cas9 approach. The osms188 lines exhibited a male-sterile phenotype with aberrant development and degeneration of tapetal cells, absence of the sexine layer and defective anther cuticles. CYP703A3, CYP704B2, OsPKS1, OsPKS2, DPW and ABCG15 are sporopollenin synthesis and transport-related genes in rice. Plants with mutations in these genes are male sterile, with a defective sexine layer and anther cuticle. Further biochemical assays demonstrated that OsMS188 binds directly to the promoters of these genes to regulate their expression. UDT1, OsTDF1, TDR, bHLH142 and EAT1 are upstream regulators of rice tapetum development. Electrophoretic mobility shift assays (EMSAs) and activation assays revealed that TDR directly regulates OsMS188 expression. Additionally, protein interaction assays indicated that TDR interacts with OsMS188 to regulate downstream gene expression. CONCLUSION Overall, OsMS188 is a key regulator of tapetum development and pollen wall formation. The gene regulatory network established in this work may facilitate future investigations of fertility regulation in rice and in other crop species.
Collapse
Affiliation(s)
- Yu Han
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Si-Da Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jiong-Jiong Fan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Lei Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Qiang-Sheng Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yan-Fei Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Xing-Lu Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Xing Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China.
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China.
| |
Collapse
|
32
|
Sun S, Wang D, Li J, Lei Y, Li G, Cai W, Zhao X, Liang W, Zhang D. Transcriptome Analysis Reveals Photoperiod-Associated Genes Expressed in Rice Anthers. FRONTIERS IN PLANT SCIENCE 2021; 12:621561. [PMID: 33719293 PMCID: PMC7953911 DOI: 10.3389/fpls.2021.621561] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/13/2021] [Indexed: 05/12/2023]
Abstract
Environmental conditions, such as photoperiod and temperature, can affect male fertility in plants. While this feature is heavily exploited in rice to generate male-sterile lines for hybrid breeding, the underlying molecular mechanisms remain largely unknown. In this study, we use a transcriptomics approach to identify key genes and regulatory networks affecting pollen maturation in rice anthers in response to different day lengths. A total of 11,726 differentially expressed genes (DEGs) were revealed, of which 177 were differentially expressed at six time points over a 24-h period. GO enrichment analysis revealed that genes at all time points were enriched in transport, carbohydrate, and lipid metabolic processes, and signaling pathways, particularly phytohormone signaling. In addition, co-expression network analysis revealed four modules strongly correlated with photoperiod. Within these four modules, 496 hub genes were identified with a high degree of connectivity to other photoperiod-sensitive DEGs, including two previously reported photoperiod- and temperature-sensitive genes affecting male fertility, Carbon Starved Anther and UDP-glucose pyrophosphorylase, respectively. This work provides a new understanding on photoperiod-sensitive pollen development in rice, and our gene expression data will provide a new, comprehensive resource to identify new environmentally sensitive genes regulating male fertility for use in crop improvement.
Collapse
Affiliation(s)
- Shiyu Sun
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Duoxiang Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingbin Li
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqi Lei
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Li
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - WenGuo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangxiang Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
- *Correspondence: Dabing Zhang,
| |
Collapse
|
33
|
Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, Singh S, Sharma D, Das BK. Next Generation Sequencing Based Forward Genetic Approaches for Identification and Mapping of Causal Mutations in Crop Plants: A Comprehensive Review. PLANTS 2020; 9:plants9101355. [PMID: 33066352 PMCID: PMC7602136 DOI: 10.3390/plants9101355] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
The recent advancements in forward genetics have expanded the applications of mutation techniques in advanced genetics and genomics, ahead of direct use in breeding programs. The advent of next-generation sequencing (NGS) has enabled easy identification and mapping of causal mutations within a short period and at relatively low cost. Identifying the genetic mutations and genes that underlie phenotypic changes is essential for understanding a wide variety of biological functions. To accelerate the mutation mapping for crop improvement, several high-throughput and novel NGS based forward genetic approaches have been developed and applied in various crops. These techniques are highly efficient in crop plants, as it is relatively easy to grow and screen thousands of individuals. These approaches have improved the resolution in quantitative trait loci (QTL) position/point mutations and assisted in determining the functional causative variations in genes. To be successful in the interpretation of NGS data, bioinformatics computational methods are critical elements in delivering accurate assembly, alignment, and variant detection. Numerous bioinformatics tools/pipelines have been developed for such analysis. This article intends to review the recent advances in NGS based forward genetic approaches to identify and map the causal mutations in the crop genomes. The article also highlights the available bioinformatics tools/pipelines for reducing the complexity of NGS data and delivering the concluding outcomes.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Gautam Vishwakarma
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sudhir Kumar Gupta
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India;
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India; (P.K.S.); (R.S.)
- Correspondence: (D.S.); (B.K.D.)
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (S.M.); (G.V.); (S.K.G.); (S.S.)
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
- Correspondence: (D.S.); (B.K.D.)
| |
Collapse
|
34
|
Peng X, Wang M, Li Y, Yan W, Chang Z, Chen Z, Xu C, Yang C, Deng XW, Wu J, Tang X. Lectin receptor kinase OsLecRK-S.7 is required for pollen development and male fertility. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1227-1245. [PMID: 31833176 DOI: 10.1111/jipb.12897] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 05/29/2023]
Abstract
Pollen grains are covered by exine that protects the pollen from stress and facilitates pollination. Here we isolated a male sterile mutant s13283 in rice exhibiting aborted pollen with abnormal exine and defective aperture. The mutant gene encodes a novel plasma membrane-localized legume-lectin receptor kinase that we named OsLecRK-S.7. OsLecRK-S.7 was expressed at different levels in all tested tissues and throughout anther development. In vitro kinase assay showed OsLecRK-S.7 capable of autophosporylation. Mutation in s13283 (E560K) and mutation of the conserved ATP binding site (K418E) both knocked out the kinase activity. Mass spectrometry showed Thr376 , Ser378 , Thr386 , Thr403 , and Thr657 to be the autophosphorylation sites. Mutation of individual autophosphorylation site affected the in vitro kinase activity to different degrees, but did not abolish the gene function in fertility complementation. oslecrk-s.7 mutant plant overexpressing OsLecRK-S.7 recovered male fertility but showed severe growth retardation with reduced number of tillers, and these phenotypes were abolished by E560K or K418E mutation. The results indicated that OsLecRK-S.7 was a key regulator of pollen development.
Collapse
Affiliation(s)
- Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
35
|
Wan X, Wu S, Li Z, An X, Tian Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. MOLECULAR PLANT 2020; 13:955-983. [PMID: 32434071 DOI: 10.1016/j.molp.2020.05.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
Fatty acids and their derivatives are essential building blocks for anther cuticle and pollen wall formation. Disruption of lipid metabolism during anther and pollen development often leads to genic male sterility (GMS). To date, many lipid metabolism-related GMS genes that are involved in the formation of anther cuticle, pollen wall, and subcellular organelle membranes in anther wall layers have been identified and characterized. In this review, we summarize recent progress on characterizing lipid metabolism-related genes and their roles in male fertility and other aspects of reproductive development in plants. On the basis of cloned GMS genes controlling biosynthesis and transport of anther cutin, wax, sporopollenin, and tryphine in Arabidopsis, rice, and maize as well as other plant species, updated lipid metabolic networks underlying anther cuticle development and pollen wall formation were proposed. Through bioinformatics analysis of anther RNA-sequencing datasets from three maize inbred lines (Oh43, W23, and B73), a total of 125 novel lipid metabolism-related genes putatively involved in male fertility in maize were deduced. More, we discuss the pathways regulating lipid metabolism-related GMS genes at the transcriptional and post-transcriptional levels. Finally, we highlight recent findings on lipid metabolism-related genes and their roles in other aspects of plant reproductive development. A comprehensive understanding of lipid metabolism, genes involved, and their roles in plant reproductive development will facilitate the application of lipid metabolism-related genes in gene editing, haploid and callus induction, molecular breeding and hybrid seed production in crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
36
|
Luo T, Zou T, Yuan G, He Z, Li W, Tao Y, Liu M, Zhou D, Zhao H, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Liu H, Wang L, Li P, Li S. Less and shrunken pollen 1 (LSP1) encodes a member of the ABC transporter family required for pollen wall development in rice (Oryza sativa L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Pan X, Yan W, Chang Z, Xu Y, Luo M, Xu C, Chen Z, Wu J, Tang X. OsMYB80 Regulates Anther Development and Pollen Fertility by Targeting Multiple Biological Pathways. PLANT & CELL PHYSIOLOGY 2020; 61:988-1004. [PMID: 32142141 PMCID: PMC7217667 DOI: 10.1093/pcp/pcaa025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/01/2020] [Indexed: 05/13/2023]
Abstract
Pollen development is critical to the reproductive success of flowering plants, but how it is regulated is not well understood. Here, we isolated two allelic male-sterile mutants of OsMYB80 and investigated how OsMYB80 regulates male fertility in rice. OsMYB80 was barely expressed in tissues other than anthers, where it initiated the expression during meiosis, reached the peak at the tetrad-releasing stage and then quickly declined afterward. The osmyb80 mutants exhibited premature tapetum cell death, lack of Ubisch bodies, no exine and microspore degeneration. To understand how OsMYB80 regulates anther development, RNA-seq analysis was conducted to identify genes differentially regulated by OsMYB80 in rice anthers. In addition, DNA affinity purification sequencing (DAP-seq) analysis was performed to identify DNA fragments interacting with OsMYB80 in vitro. Overlap of the genes identified by RNA-seq and DAP-seq revealed 188 genes that were differentially regulated by OsMYB80 and also carried an OsMYB80-interacting DNA element in the promoter. Ten of these promoter elements were randomly selected for gel shift assay and yeast one-hybrid assay, and all showed OsMYB80 binding. The 10 promoters also showed OsMYB80-dependent induction when co-expressed in rice protoplast. Functional annotation of the 188 genes suggested that OsMYB80 regulates male fertility by directly targeting multiple biological processes. The identification of these genes significantly enriched the gene networks governing anther development and provided much new information for the understanding of pollen development and male fertility.
Collapse
Affiliation(s)
- Xiaoying Pan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Yingchao Xu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
- Corresponding authors: Xiaoyan Tang, E-mail, ; Fax, +86 020 85211372; Jianxin Wu, E-mail, ; Fax, +86 020 85211372; Zhufeng Chen; E-mail, ; Fax, + 86 2085211372
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Corresponding authors: Xiaoyan Tang, E-mail, ; Fax, +86 020 85211372; Jianxin Wu, E-mail, ; Fax, +86 020 85211372; Zhufeng Chen; E-mail, ; Fax, + 86 2085211372
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
- Corresponding authors: Xiaoyan Tang, E-mail, ; Fax, +86 020 85211372; Jianxin Wu, E-mail, ; Fax, +86 020 85211372; Zhufeng Chen; E-mail, ; Fax, + 86 2085211372
| |
Collapse
|
38
|
A Silent Exonic Mutation in a Rice Integrin-α FG-GAP Repeat-Containing Gene Causes Male-Sterility by Affecting mRNA Splicing. Int J Mol Sci 2020; 21:ijms21062018. [PMID: 32188023 PMCID: PMC7139555 DOI: 10.3390/ijms21062018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Pollen development plays crucial roles in the life cycle of higher plants. Here we characterized a rice mutant with complete male-sterile phenotype, pollen-less 1 (pl1). pl1 exhibited smaller anthers with arrested pollen development, absent Ubisch bodies, necrosis-like tapetal hypertrophy, and smooth anther cuticular surface. Molecular mapping revealed a synonymous mutation in the fourth exon of PL1 co-segregated with the mutant phenotype. This mutation disrupts the exon-intron splice junction in PL1, generating aberrant mRNA species and truncated proteins. PL1 is highly expressed in the tapetal cells of developing anther, and its protein is co-localized with plasma membrane (PM) and endoplasmic reticulum (ER) signal. PL1 encodes an integrin-α FG-GAP repeat-containing protein, which has seven β-sheets and putative Ca2+-binding motifs and is broadly conserved in terrestrial plants. Our findings therefore provide insights into both the role of integrin-α FG-GAP repeat-containing protein in rice male fertility and the influence of exonic mutation on intronic splice donor site selection.
Collapse
|
39
|
Uzair M, Xu D, Schreiber L, Shi J, Liang W, Jung KH, Chen M, Luo Z, Zhang Y, Yu J, Zhang D. PERSISTENT TAPETAL CELL2 Is Required for Normal Tapetal Programmed Cell Death and Pollen Wall Patterning. PLANT PHYSIOLOGY 2020; 182:962-976. [PMID: 31772077 PMCID: PMC6997677 DOI: 10.1104/pp.19.00688] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/18/2019] [Indexed: 05/06/2023]
Abstract
The timely programmed cell death (PCD) of the tapetum, the innermost somatic anther cell layer in flowering plants, is critical for pollen development, including the deposition and patterning of the pollen wall. Although several genes involved in tapetal PCD and pollen wall development have been characterized, the underlying regulatory mechanism remains elusive. Here we report that PERSISTENT TAPETAL CELL2 (PTC2), which encodes an AT-hook nuclear localized protein in rice (Oryza sativa), is required for normal tapetal PCD and pollen wall development. The mutant ptc2 showed persistent tapetal cells and abnormal pollen wall patterning including absent nexine, collapsed bacula, and disordered tectum. The defective tapetal PCD phenotype of ptc2 was similar to that of a PCD delayed mutant, ptc1, in rice, while the abnormal pollen wall patterning resembled that of a pollen wall defective mutant, Transposable Element Silencing Via AT-Hook, in Arabidopsis (Arabidopsis thaliana). Levels of anther cutin monomers in ptc2 anthers were significantly reduced, as was expression of a series of lipid biosynthetic genes. PTC2 transcript and protein were shown to be present in the anther after meiosis, consistent with the observed phenotype. Based on these data, we propose a model explaining how PTC2 affects anther and pollen development. The characterization of PTC2 in tapetal PCD and pollen wall patterning expands our understanding of the regulatory network of male reproductive development in rice and will aid future breeding approaches.
Collapse
Affiliation(s)
- Muhammad Uzair
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dawei Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|
40
|
Tao Y, Chen D, Zou T, Zeng J, Gao F, He Z, Zhou D, He Z, Yuan G, Liu M, Zhao H, Deng Q, Wang S, Zheng A, Zhu J, Liang Y, Wang L, Li P, Li S. Defective Leptotene Chromosome 1 (DLC1) encodes a type-B response regulator and is required for rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:556-570. [PMID: 31004552 DOI: 10.1111/tpj.14344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Meiosis is critical for sexual reproduction and the generation of new allelic variations in most eukaryotes. In this study, we report the isolation of a meiotic gene, DLC1, using a map-based cloning strategy. The dlc1 mutant is sterile in both male and female gametophytes due to an earlier defect in the leptotene chromosome and subsequent abnormalities at later stages. DLC1 is strongly expressed in the pollen mother cells (PMCs) and tapetum and encodes a nucleus-located rice type-B response regulator (RR) with transcriptional activity. Further investigations showed that DLC1 interacts with all five putative rice histidine phosphotransfer proteins (HPs) in yeast and planta cells, suggesting a possible participation of the two-component signalling systems (TCS) in rice meiosis. Our results demonstrated that DLC1 is required for rice meiosis and fertility, providing useful information for the role of TCS in rice meiosis.
Collapse
Affiliation(s)
- Yang Tao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jing Zeng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengyan Gao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongshan He
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Miaomiao Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongfeng Zhao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
41
|
Pallotta MA, Warner P, Kouidri A, Tucker EJ, Baes M, Suchecki R, Watson-Haigh N, Okada T, Garcia M, Sandhu A, Singh M, Wolters P, Albertsen MC, Cigan AM, Baumann U, Whitford R. Wheat ms5 male-sterility is induced by recessive homoeologous A and D genome non-specific lipid transfer proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:673-685. [PMID: 31009129 DOI: 10.1111/tpj.14350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 05/22/2023]
Abstract
Nuclear male-sterile mutants with non-conditional, recessive and strictly monogenic inheritance are useful for both hybrid and conventional breeding systems, and have long been a research focus for many crops. In allohexaploid wheat, however, genic redundancy results in rarity of such mutants, with the ethyl methanesulfonate-induced mutant ms5 among the few reported to date. Here, we identify TaMs5 as a glycosylphosphatidylinositol-anchored lipid transfer protein required for normal pollen exine development, and by transgenic complementation demonstrate that TaMs5-A restores fertility to ms5. We show ms5 locates to a centromere-proximal interval and has a sterility inheritance pattern modulated by TaMs5-D but not TaMs5-B. We describe two allelic forms of TaMs5-D, one of which is non-functional and confers mono-factorial inheritance of sterility. The second form is functional but shows incomplete dominance. Consistent with reduced functionality, transcript abundance in developing anthers was found to be lower for TaMs5-D than TaMs5-A. At the 3B homoeolocus, we found only non-functional alleles among 178 diverse hexaploid and tetraploid wheats that include landraces and Triticum dicoccoides. Apparent ubiquity of non-functional TaMs5-B alleles suggests loss-of-function arose early in wheat evolution and, therefore, at most knockout of two homoeoloci is required for sterility. This work provides genetic information, resources and tools required for successful implementation of ms5 sterility in breeding systems for bread and durum wheats.
Collapse
Affiliation(s)
- Margaret A Pallotta
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Patricia Warner
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Allan Kouidri
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Elise J Tucker
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Mathieu Baes
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Radoslaw Suchecki
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Nathan Watson-Haigh
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Takashi Okada
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Melissa Garcia
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Ajay Sandhu
- DuPont Pioneer Hi-Bred International Inc., 7250 NW 62nd Avenue, Johnston, IA, 50131-0552, USA
| | - Manjit Singh
- DuPont Pioneer Hi-Bred International Inc., 7250 NW 62nd Avenue, Johnston, IA, 50131-0552, USA
| | - Petra Wolters
- DuPont Pioneer Hi-Bred International Inc., 7250 NW 62nd Avenue, Johnston, IA, 50131-0552, USA
| | - Marc C Albertsen
- DuPont Pioneer Hi-Bred International Inc., 7250 NW 62nd Avenue, Johnston, IA, 50131-0552, USA
| | - A Mark Cigan
- DuPont Pioneer Hi-Bred International Inc., 7250 NW 62nd Avenue, Johnston, IA, 50131-0552, USA
| | - Ute Baumann
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| | - Ryan Whitford
- School of Agriculture, Food & Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
| |
Collapse
|
42
|
Li YL, Zhang YF, Li DD, Shi QS, Lou Y, Yang ZN, Zhu J. Acyl-CoA synthetases from Physcomitrella, rice and Arabidopsis: different substrate preferences but common regulation by MS188 in sporopollenin synthesis. PLANTA 2019; 250:535-548. [PMID: 31111205 DOI: 10.1007/s00425-019-03189-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 05/28/2023]
Abstract
ACOS5, OsACOS12 and PpACOS6 are all capable of fatty acyl-CoA synthetase activity but exhibit different substrate preferences. The transcriptional regulation of ACOS for sporopollenin synthesis appears to have been conserved in Physcomitrella, rice and Arabidopsis during evolution. Sporopollenin is the major constituent of spore and pollen exines. In Arabidopsis, acyl-CoA synthetase 5 (ACOS5) is an essential enzyme for sporopollenin synthesis, and its orthologues are PpACOS6 from the moss Physcomitrella and OsACOS12 from monocot rice. However, knowledge regarding the evolutionary conservation and divergence of the ACOS gene in sporopollenin synthesis remains limited. In this study, we analysed the function and regulation of PpACOS6 and OsACOS12. A complementation test showed that OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis, while PpACOS6 did not rescue the acos5 phenotype. ACOS5, PpACOS6 and OsACOS12 all complemented the acyl-CoA synthetase-deficient yeast strain (YB525) phenotype, although they exhibited different substrate preferences. To understand the conservation of sporopollenin synthesis regulation, we constructed two constructs with ACOS5 driven by the OsACOS12 or PpACOS6 promoter. Both constructs could restore the fertility of acos5 plants. The MYB transcription factor MS188 from Arabidopsis directly regulates ACOS5. We found that MS188 could also bind the promoters of OsACOS12 and PpACOS6 and activate the genes driven by the promoters, suggesting that the transcriptional regulation of these genes was similar to that of ACOS5. These results show that the ACOS gene promoter region from Physcomitrella, rice and Arabidopsis has been functionally conserved during evolution, while the chain lengths of fatty acid-derived monomers of sporopollenin vary in different plant species.
Collapse
Affiliation(s)
- Yue-Ling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation, Taizhou University, Taizhou, 318000, China
- Institute of Ecology, Taizhou University, Taizhou, 318000, China
| | - Yan-Fei Zhang
- Shanghai Key Laboratory of Plant Molecule Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Dan-Dan Li
- Shanghai Key Laboratory of Plant Molecule Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiang-Sheng Shi
- Shanghai Key Laboratory of Plant Molecule Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yue Lou
- Shanghai Key Laboratory of Plant Molecule Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecule Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecule Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
43
|
Xu D, Qu S, Tucker MR, Zhang D, Liang W, Shi J. Ostkpr1 functions in anther cuticle development and pollen wall formation in rice. BMC PLANT BIOLOGY 2019; 19:104. [PMID: 30885140 PMCID: PMC6421701 DOI: 10.1186/s12870-019-1711-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND During pollen wall formation in flowering plants, a conserved metabolon consisting of acyl-CoA synthetase (ACOS), polyketide synthase (PKS) and tetraketide α-pyrone reductase (TKPR), is required for sporopollenin synthesis. Despite this, the precise function of each of these components in different species remains unclear. RESULTS In this study, we characterized the function of OsTKPR1, a rice orthologue of Arabidopsis TKPR1. Loss of function of OsTKPR1 delayed tapetum degradation, reduced the levels of anther cuticular lipids, and impaired Ubisch body and pollen exine formation, resulting in complete male sterility. In addition, the phenylpropanoid pathway in mutant anthers was remarkably altered. Localization studies suggest that OsTKPR1 accumulates in the endoplasmic reticulum, while specific accumulation of OsTKPR1 mRNA in the anther tapetum and microspores is consistent with its function in anther and pollen wall development. CONCLUSIONS Our results show that OsTKPR1 is indispensable for anther cuticle development and pollen wall formation in rice, providing new insights into the biochemical mechanisms of the conserved sporopollenin metabolon in flowering plants.
Collapse
Affiliation(s)
- Dawei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Flow Station of Post-doctoral Scientific Research, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shuying Qu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Matthew R. Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064 Australia
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064 Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
44
|
Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J. Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives. MOLECULAR PLANT 2019; 12:321-342. [PMID: 30690174 DOI: 10.1016/j.molp.2019.01.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 05/06/2023]
Abstract
As one of the most important crops, maize not only has been a source of the food, feed, and industrial feedstock for biofuel and bioproducts, but also became a model plant system for addressing fundamental questions in genetics. Male sterility is a very useful trait for hybrid vigor utilization and hybrid seed production. The identification and characterization of genic male-sterility (GMS) genes in maize and other plants have deepened our understanding of the molecular mechanisms controlling anther and pollen development, and enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for crop hybrid breeding. In this review, we summarize main advances on the identification and characterization of GMS genes in maize, and construct a putative regulatory network controlling maize anther and pollen development by comparative genomic analysis of GMS genes in maize, Arabidopsis, and rice. Furthermore, we discuss and appraise the features of more than a dozen BMS systems for propagating male-sterile lines and producing hybrid seeds in maize and other plants. Finally, we provide our perspectives on the studies of GMS genes and the development of novel BMS systems in maize and other plants. The continuous exploration of GMS genes and BMS systems will enhance our understanding of molecular regulatory networks controlling male fertility and greatly facilitate hybrid vigor utilization in breeding and field production of maize and other crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
45
|
Map-Based Cloning and Functional Analysis of YE1 in Rice, Which Is Involved in Light-Dependent Chlorophyll Biogenesis and Photoperiodic Flowering Pathway. Int J Mol Sci 2019; 20:ijms20030758. [PMID: 30754644 PMCID: PMC6387406 DOI: 10.3390/ijms20030758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 01/21/2023] Open
Abstract
Light is one of the most important environmental factors that affect many aspects of plant growth, including chlorophyll (Chl) synthesis and flowering time. Here, we identified a rice mutant, yellow leaf and early flowering (ye1), and characterized the gene YE1 by using a map-based cloning method. YE1 encodes a heme oxygenase, which is localized to the chloroplasts. YE1 is expressed in various green tissues, especially in leaves, with a diurnal-rhythmic expression pattern, and its transcripts is also induced by light during leaf-greening. The mutant displays decreased Chl contents with less and disorderly thylakoid lamellar layers in chloroplasts, which reduced the photosynthesis rate. The early flowering phenotype of ye1 was not photoperiod-sensitive. Furthermore, the expression levels of Chl biosynthetic genes were downregulated in ye1 seedlings during de-etiolation responses to light. We also found that rhythmic expression patterns of genes involved in photoperiodic flowering were altered in the mutant. Based on these results, we infer that YE1 plays an important role in light-dependent Chl biogenesis as well as photoperiodic flowering pathway in rice.
Collapse
|
46
|
Shi QS, Wang KQ, Li YL, Zhou L, Xiong SX, Han Y, Zhang YF, Yang NY, Yang ZN, Zhu J. OsPKS1 is required for sexine layer formation, which shows functional conservation between rice and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:145-154. [PMID: 30466580 DOI: 10.1016/j.plantsci.2018.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 05/22/2023]
Abstract
The sporopollenin precursors, as a general constituent of sexine, are synthesized in the tapetum and deposited on the pollen surface after transportation and processing. The polyketide synthase condenses the acyl-CoA into a hydroxyalkyl α-pyrone, which is predicted to be a component of the sporopollenin precursors. In this study, we found that the rice POLYKETIDE SYNTHASE 1 (OsPKS1) was the orthologue of Arabidopsis POLYKETIDE SYNTHASE A/LESS ADHESIVE POLLEN 6 (PKSA/LAP6) through sequence alignment. The OsPKS1 knockout mutants obtained by Crispr-Cas9-mediated editing exhibited a complete male sterile phenotype. Cytological observations revealed that abnormal bacula deposition and ubisch body structures for sexine formation led to pollen rupture in ospks1. The expression analysis showed that the OsPKS1 was highly expressed in tapetal cells and anther locules from stage 9 to stage 11 during anther development in rice. Subcellular localization demonstrated that the OsPKS1 protein was preferentially localized to the ER. The genomic sequence of OsPKS1 driven by the PKSA/LAP6 promoter restored the sexine pattern of Arabidopsis pksa/lap6. These results indicated that OsPKS1 is required for sexine layer formation in rice and functionally conserved in the sporopollenin synthesis pathway.
Collapse
Affiliation(s)
- Qiang-Sheng Shi
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Kai-Qi Wang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yue-Ling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation, Taizhou University, Taizhou, China
| | - Lei Zhou
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Shuang-Xi Xiong
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yu Han
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yan-Fei Zhang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Nai-Ying Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China.
| |
Collapse
|
47
|
Zou T, Liu M, Xiao Q, Wang T, Chen D, Luo T, Yuan G, Li Q, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Wang L, Li P, Li S. OsPKS2 is required for rice male fertility by participating in pollen wall formation. PLANT CELL REPORTS 2018; 37:759-773. [PMID: 29411094 DOI: 10.1007/s00299-018-2265-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/30/2018] [Indexed: 05/07/2023]
Abstract
OsPKS2, the rice orthologous gene of Arabidopsis PKSB/LAP5, encodes a polyketide synthase that is involved in pollen wall formation in rice. In flowering plants, the pollen wall protects male gametes from various environmental stresses and pathogen attacks, as well as promotes pollen germination. The biosynthesis of sporopollenin in tapetal cell is critical for pollen wall formation. Recently, progress has been made in understanding sporopollenin metabolism during pollen wall development in Arabidopsis. However, little is known about the molecular mechanism that underlies the sporopollenin synthesis in pollen wall formation in rice (Oryza sativa). In this study, we identified that a point mutation in OsPKS2, a plant-specific type III polyketide synthase gene, caused male sterility in rice by affecting the normal progress of pollen wall formation. Two other allelic mutants of OsPKS2 were generated using the CRISPR/Cas9 system and are also completely male sterile. This result thus further confirmed that OsPKS2 controls rice male fertility. We also showed that OsPKS2 is an orthologous gene of Arabidopsis PKSB/LAP5 and has a tapetum-specific expression pattern. In addition, its product localizes in the endoplasmic reticulum. Results suggested that OsPKS2 is critical for pollen wall formation, and plays a conserved but differentiated role in sporopollenin biosynthesis from Arabidopsis.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Mingxing Liu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiao Xiao
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Tao Luo
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiao Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| |
Collapse
|