1
|
Sun S, Cheng J, Zhang Y, Wang Y, Wang L, Wang T, Wang Z, Li X, Zhou Y, Li X, Xiao J, Yan C, Zhang Q, Ouyang Y. Novel repetitive elements in plant-specific tails of Gγ proteins as the functional unit in G-protein signaling in crops. THE PLANT CELL 2025; 37:koaf052. [PMID: 40088466 DOI: 10.1093/plcell/koaf052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/17/2025]
Abstract
Heterotrimeric G-proteins act as molecular switches in signal transduction in response to stimuli in all eukaryotes. However, what specifies G-protein signaling in plants and how the mechanism evolved and diverged remain unsolved. Here, we found that the recently evolved tails of three Gγ subunits, Dense and erect panicle 1 (DEP1), G-protein gamma subunit 2 of type C (GGC2), and Grain size 3 (GS3), determine their distinct functions and specify grain size in rice (Oryza sativa L.). These Gγ subunits originated and expanded by an ancestral σ duplication ∼130 million years ago (mya) and a pancereal ρ duplication ∼70 mya in monocots, increasing genome complexity and inspiring functional innovations. In particular, through the comprehensive creation of artificial chimeric Gγ proteins, we found that this signaling selectivity is driven by repetitive elements and a link region hidden in plant-specific Gγ tails, allowing crops to switch from positive regulation to negative control. Unlike the tails, the conserved Gγ heads did not bias the signaling specificity; however, the change in the interaction between the mutated Gβ and Gγ affected the subsequent downstream signal transduction and grain size. Manipulating G-protein signaling also affects organ size in maize (Zea mays) and is expected to constitute a general mechanism for crop improvement. Collectively, these findings reveal that plant-specific Gγ tails drive signaling selectivity and serve as valuable targets for optimizing crop traits through G-protein manipulation.
Collapse
Affiliation(s)
- Shengyuan Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinliang Cheng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yiwen Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yifei Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tian Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengji Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Zhongshan Biological Breeding Laboratory, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Jin T, Hao X, Huang Z, Zhang X, Li S, Yang Y, Long W. Genome-Wide Identification of the GS3 Gene Family and the Influence of Natural Variations in BnGS3-3 on Salt and Cold Stress Tolerance in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2025; 14:1145. [PMID: 40219212 PMCID: PMC11991296 DOI: 10.3390/plants14071145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Saline-alkali stress and cold damage significantly impact the yield of Brassica napus. G proteins play a crucial role in plant resistance to abiotic stresses, and research on G proteins in Brassica napus (rapeseed) is still in its early stages. In this study, we employed bioinformatics tools to systematically investigate the basic physicochemical properties, phylogenetic relationships, distribution, gene structure, cis-regulatory elements, and expansion patterns of the GS3 gene family in Brassica napus. Additionally, reverse transcription polymerase chain reaction (RT-PCR) was used to analyze the response of the BnGS3-3 gene to salt and low-temperature stresses. Natural variations were found in the promoter region of BnGS3-3. By conducting a promoter-driven luciferase (LUC) assay, the relationship between natural variations in the BnGS3-3 promoter and salt and cold tolerance was analyzed. Furthermore, the impact of these natural variations on flowering time, root length, and yield was explored using phenotypic data from a population. Our research results aim to provide insights into the function and molecular mechanisms of BnGS3-3 in Brassica napus, and to offer valuable genetic resources for molecular breeding to improve salt and low-temperature tolerance in Brassica napus.
Collapse
Affiliation(s)
- Ting Jin
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (Y.Y.)
| | - Xiaoshuai Hao
- College of Agronomy, Nanjing Agricultural University, Nanjing 211800, China;
| | - Zhen Huang
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Xingguo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China;
| | - Shimeng Li
- Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China;
| | - Ying Yang
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (Y.Y.)
| | - Weihua Long
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (Y.Y.)
| |
Collapse
|
3
|
Wang J, Luo Q, Deng J, Liang X, Li Y, Wang A, Lin T, Liu H, Zhang X, Liu Z, Hu Z, Ding S, Pan C, Yu J, Gao Q, Foyer CH, Shi K. The G-protein β subunit SlGB1 regulates tyramine-derived phenolamide metabolism for shoot apex growth and development in tomato. THE PLANT CELL 2025; 37:koaf070. [PMID: 40152502 PMCID: PMC11983129 DOI: 10.1093/plcell/koaf070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025]
Abstract
The shoot apex is a critical determinant of plant growth, development, morphology, and yield. The G-protein β subunit (Gβ) is an essential regulator of apical meristem dynamics, yet its precise mechanism of action remains unclear, with notable interspecific variation. This study reveals that in the dicot tomato (Solanum lycopersicum), Gβ subunit mutants (Slgb1) display abnormal shoot morphogenesis and, in severe cases, shoot apex death. Such a phenotype has also been observed in monocot species, like maize (Zea mays) and rice (Oryza sativa), but not in the model dicot Arabidopsis (Arabidopsis thaliana). Using integrated multiomics and liquid chromatography-mass spectrometry, we identified a significant upregulation in tyramine-derived phenolamides in Slgb1 mutants, particularly N-p-trans-coumaroyltyramine (N-P-CT) and N-trans-feruloyltyramine (N-FT). Biochemical and genetic assays pinpointed tyramine hydroxycinnamoyl transferases (THTs) as the enzymes catalyzing N-P-CT and N-FT biosynthesis, with THT8 overexpression inducing shoot apex death. Comparative genomic analysis revealed the presence of a THT-mediated tyramine-derived phenolamide metabolic pathway in species exhibiting gb1 mutant-associated apex death, which is notably absent in Arabidopsis. Protein interaction assays showed that SlGB1 interacts with bHLH79 at the cell membrane and cytoplasm, thereby attenuating the bHLH79-MYB10 interaction within the nucleus, leading to altered THT expression and phenolamide biosynthesis. This study unravels the molecular mechanisms by which SlGB1 governs tomato shoot apex growth and development, highlighting interspecific differences critical for developing breeding strategies aimed at optimizing shoot apex architecture.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qian Luo
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jingjing Deng
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yimei Li
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Anran Wang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Hua Liu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xuanbo Zhang
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhaoyu Liu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shuting Ding
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Changtian Pan
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Qifei Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Hangzhou 310058, China
| |
Collapse
|
4
|
Fuchs H, Staszak AM, Vargas PA, Sahrawy M, Serrato AJ, Dyderski MK, Klupczyńska EA, Głodowicz P, Rolle K, Ratajczak E. Redox dynamics in seeds of Acer spp: unraveling adaptation strategies of different seed categories. FRONTIERS IN PLANT SCIENCE 2024; 15:1430695. [PMID: 39114470 PMCID: PMC11303208 DOI: 10.3389/fpls.2024.1430695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Background Seeds of woody plant species, such as those in the Acer genus like Norway maple (Acer platanoides L.) and sycamore (Acer pseudoplatanus L.), exhibit unique physiological traits and responses to environmental stress. Thioredoxins (Trxs) play a central role in the redox regulation of cells, interacting with other redox-active proteins such as peroxiredoxins (Prxs), and contributing to plant growth, development, and responses to biotic and abiotic stresses. However, there is limited understanding of potential variations in this system between seeds categorized as recalcitrant and orthodox, which could provide insights into adaptive strategies. Methods Using proteomic analysis and DDA methods we investigated the Trx-h1 target proteins in seed axes. We complemented the results of the proteomic analysis with gene expression analysis of the Trx-h1, 1-Cys-Prx, and TrxR NTRA genes in the embryonic axes of maturing, mature, and stored seeds from two Acer species. Results and discussion The expression of Trx-h1 and TrxR NTRA throughout seed maturation in both species was low. The expression of 1-Cys-Prx remained relatively stable throughout seed maturation. In stored seeds, the expression levels were minimal, with slightly higher levels in sycamore seeds, which may confirm that recalcitrant seeds remain metabolically active during storage. A library of 289 proteins interacting with Trx-h1 was constructed, comprising 68 from Norway maple and 221 from sycamore, with distinct profiles in each seed category. Recalcitrant seed axes displayed a wide array of metabolic, stress response, and signaling proteins, suggesting sustained metabolic activity during storage and the need to address oxidative stress. Conversely, the orthodox seed axes presented a protein profile, reflecting efficient metabolic shutdown, which contributes to their extended viability. The results of the study provide new insights into seed viability and storage longevity mechanisms. They enhance the understanding of seed biology and lay the foundation for further evolutionary research on seeds of different categories.
Collapse
Affiliation(s)
- Hanna Fuchs
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Aleksandra M. Staszak
- Laboratory of Plant Physiology, Department of Plant Biology and Ecology Faculty of Biology, University of Białystok, Białystok, Poland
| | - Paola A. Vargas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Mariam Sahrawy
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Antonio J. Serrato
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | - Paweł Głodowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Katarzyna Rolle
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
5
|
Torres-Rodriguez MD, Lee SG, Roy Choudhury S, Paul R, Selvam B, Shukla D, Jez JM, Pandey S. Structure-function analysis of plant G-protein regulatory mechanisms identifies key Gα-RGS protein interactions. J Biol Chem 2024; 300:107252. [PMID: 38569936 PMCID: PMC11061236 DOI: 10.1016/j.jbc.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Heterotrimeric GTP-binding protein alpha subunit (Gα) and its cognate regulator of G-protein signaling (RGS) protein transduce signals in eukaryotes spanning protists, amoeba, animals, fungi, and plants. The core catalytic mechanisms of the GTPase activity of Gα and the interaction interface with RGS for the acceleration of GTP hydrolysis seem to be conserved across these groups; however, the RGS gene is under low selective pressure in plants, resulting in its frequent loss. Our current understanding of the structural basis of Gα:RGS regulation in plants has been shaped by Arabidopsis Gα, (AtGPA1), which has a cognate RGS protein. To gain a comprehensive understanding of this regulation beyond Arabidopsis, we obtained the x-ray crystal structures of Oryza sativa Gα, which has no RGS, and Selaginella moellendorffi (a lycophyte) Gα that has low sequence similarity with AtGPA1 but has an RGS. We show that the three-dimensional structure, protein-protein interaction with RGS, and the dynamic features of these Gα are similar to AtGPA1 and metazoan Gα. Molecular dynamic simulation of the Gα-RGS interaction identifies the contacts established by specific residues of the switch regions of GTP-bound Gα, crucial for this interaction, but finds no significant difference due to specific amino acid substitutions. Together, our data provide valuable insights into the regulatory mechanisms of plant G-proteins but do not support the hypothesis of adaptive co-evolution of Gα:RGS proteins in plants.
Collapse
Affiliation(s)
| | - Soon Goo Lee
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, USA
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, St Louis, Missouri, USA; Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Rabindranath Paul
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Balaji Selvam
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Sona Pandey
- Donald Danforth Plant Science Center, St Louis, Missouri, USA.
| |
Collapse
|
6
|
Karimian P, Trusov Y, Botella JR. Conserved Role of Heterotrimeric G Proteins in Plant Defense and Cell Death Progression. Genes (Basel) 2024; 15:115. [PMID: 38255003 PMCID: PMC10815853 DOI: 10.3390/genes15010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Programmed cell death (PCD) is a critical process in plant immunity, enabling the targeted elimination of infected cells to prevent the spread of pathogens. The tight regulation of PCD within plant cells is well-documented; however, specific mechanisms remain elusive or controversial. Heterotrimeric G proteins are multifunctional signaling elements consisting of three distinct subunits, Gα, Gβ, and Gγ. In Arabidopsis, the Gβγ dimer serves as a positive regulator of plant defense. Conversely, in species such as rice, maize, cotton, and tomato, mutants deficient in Gβ exhibit constitutively active defense responses, suggesting a contrasting negative role for Gβ in defense mechanisms within these plants. Using a transient overexpression approach in addition to knockout mutants, we observed that Gβγ enhanced cell death progression and elevated the accumulation of reactive oxygen species in a similar manner across Arabidopsis, tomato, and Nicotiana benthamiana, suggesting a conserved G protein role in PCD regulation among diverse plant species. The enhancement of PCD progression was cooperatively regulated by Gβγ and one Gα, XLG2. We hypothesize that G proteins participate in two distinct mechanisms regulating the initiation and progression of PCD in plants. We speculate that G proteins may act as guardees, the absence of which triggers PCD. However, in Arabidopsis, this G protein guarding mechanism appears to have been lost in the course of evolution.
Collapse
Affiliation(s)
| | | | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (P.K.); (Y.T.)
| |
Collapse
|
7
|
Wang Y, Lv Y, Yu H, Hu P, Wen Y, Wang J, Tan Y, Wu H, Zhu L, Wu K, Chai B, Liu J, Zeng D, Zhang G, Zhu L, Gao Z, Dong G, Ren D, Shen L, Zhang Q, Li Q, Guo L, Xiong G, Qian Q, Hu J. GR5 acts in the G protein pathway to regulate grain size in rice. PLANT COMMUNICATIONS 2024; 5:100673. [PMID: 37596786 PMCID: PMC10811372 DOI: 10.1016/j.xplc.2023.100673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Grain size is an important determinant of grain yield in rice. Although dozens of grain size genes have been reported, the molecular mechanisms that control grain size remain to be fully clarified. Here, we report the cloning and characterization of GR5 (GRAIN ROUND 5), which is allelic to SMOS1/SHB/RLA1/NGR5 and encodes an AP2 transcription factor. GR5 acts as a transcriptional activator and determines grain size by influencing cell proliferation and expansion. We demonstrated that GR5 physically interacts with five Gγ subunit proteins (RGG1, RGG2, DEP1, GS3, and GGC2) and acts downstream of the G protein complex. Four downstream target genes of GR5 in grain development (DEP2, DEP3, DRW1, and CyCD5;2) were revealed and their core T/CGCAC motif identified by yeast one-hybrid, EMSA, and ChIP-PCR experiments. Our results revealed that GR5 interacts with Gγ subunits and cooperatively determines grain size by regulating the expression of downstream target genes. These findings provide new insight into the genetic regulatory network of the G protein signaling pathway in the control of grain size and provide a potential target for high-yield rice breeding.
Collapse
Affiliation(s)
- Yueying Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yang Lv
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Haiping Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Peng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yi Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Junge Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yiqing Tan
- Nanjing Agricultural University, Nan Jing 210000, Jiangsu, China
| | - Hao Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lixin Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Kaixiong Wu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Bingze Chai
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Jialong Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guosheng Xiong
- Nanjing Agricultural University, Nan Jing 210000, Jiangsu, China.
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Jiang Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, Hainan, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
8
|
Sharma S, Ganotra J, Samantaray J, Sahoo RK, Bhardwaj D, Tuteja N. An emerging role of heterotrimeric G-proteins in nodulation and nitrogen sensing. PLANTA 2023; 258:101. [PMID: 37847414 DOI: 10.1007/s00425-023-04251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
MAIN CONCLUSION A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gβ and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.
Collapse
Affiliation(s)
- Suvriti Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Jyotipriya Samantaray
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir, 181143, India.
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
9
|
Sharma B, Ganotra J, Biswal B, Sharma K, Gandhi S, Bhardwaj D, Tuteja N. An atypical heterotrimeric Gα and its interactome suggest an extra-large role in overcoming abiotic and biotic stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1543-1561. [PMID: 38076761 PMCID: PMC10709287 DOI: 10.1007/s12298-023-01378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/04/2024]
Abstract
Canonical heterotrimeric G-proteins (G-proteins) are comprised of Gα, Gβ, and Gγ subunits. G-proteins regulate multiple crucial plant growth and development processes, incorporating environmental responses. Besides Gα, Gβ and Gγ, the discovery of atypical Gα subunits termed as extra-large G-proteins or extra-large GTP-binding proteins (XLGs) makes G-protein signaling unique in plants. The C-terminus of XLG shares similarities with the canonical Gα subunits; the N-terminus harbors a nuclear localization signal (NLS) and is rich in cysteine. The earlier explorations suggest XLG's role in flowering, the development of embryos and seedlings, root morphogenesis, stamen development, cytokinin-induced development, stomatal opening and regulation of rice grain filling. The XLGs are also known to initiate signaling cascades that prime plants against a variety of abiotic and biotic stresses. They are also engaged in controlling several agronomic parameters such as rice panicle length, grain filling, grain size, and biomass, highlighting their potential contribution to crop improvement. The present review explores the remarkable properties of non-canonical Gα subunits (XLGs) and reflects on the various developmental, abiotic and biotic stress signaling pathways controlled by them. Moreover, the bottleneck dilemma of how a tiny handful of XLGs control a multiplicity of stress-responsive activities is partially resolved in this review by addressing the interaction of XLGs with different interacting proteins. XLG proteins presented in this review can be exploited to gain access to highly productive and stress-tolerant plants.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Kanishka Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Sumit Gandhi
- Infectious Diseases Division, CSIR – Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001 India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
10
|
Cantos CF, dePamphilis CW, Assmann SM. Extra-large G proteins have extra-large effects on agronomic traits and stress tolerance in maize and rice. TRENDS IN PLANT SCIENCE 2023; 28:1033-1044. [PMID: 37156701 PMCID: PMC10524845 DOI: 10.1016/j.tplants.2023.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Heterotrimeric G proteins - comprising Gα, Gβ, and Gγ subunits - are ubiquitous elements in eukaryotic cell signaling. Plant genomes contain both canonical Gα subunit genes and a family of plant-specific extra-large G protein genes (XLGs) that encode proteins consisting of a domain with Gα-like features downstream of a long N-terminal domain. In this review we summarize phenotypes modulated by the canonical Gα and XLG proteins of arabidopsis and highlight recent studies in maize and rice that reveal dramatic phenotypic consequences of XLG clustered regularly interspaced short palindromic repeats (CRISPR) mutagenesis in these important crop species. XLGs have both redundant and specific roles in the control of agronomically relevant plant architecture and resistance to both abiotic and biotic stresses. We also point out areas of current controversy, suggest future research directions, and propose a revised, phylogenetically-based nomenclature for XLG protein genes.
Collapse
Affiliation(s)
- Christian F Cantos
- Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA
| | - Claude W dePamphilis
- Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA.
| |
Collapse
|
11
|
Wu TY, Krishnamoorthi S, Boonyaves K, Al-Darabsah I, Leong R, Jones AM, Ishizaki K, Liao KL, Urano D. G protein controls stress readiness by modulating transcriptional and metabolic homeostasis in Arabidopsis thaliana and Marchantia polymorpha. MOLECULAR PLANT 2022; 15:1889-1907. [PMID: 36321200 DOI: 10.1016/j.molp.2022.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The core G protein signaling module, which consists of Gα and extra-large Gα (XLG) subunits coupled with the Gβγ dimer, is a master regulator of various stress responses. In this study, we compared the basal and salt stress-induced transcriptomic, metabolomic and phenotypic profiles in Gα, Gβ, and XLG-null mutants of two plant species, Arabidopsis thaliana and Marchantia polymorpha, and showed that G protein mediates the shift of transcriptional and metabolic homeostasis to stress readiness status. We demonstrated that such stress readiness serves as an intrinsic protection mechanism against further stressors through enhancing the phenylpropanoid pathway and abscisic acid responses. Furthermore, WRKY transcription factors were identified as key intermediates of G protein-mediated homeostatic shifts. Statistical and mathematical model comparisons between A. thaliana and M. polymorpha revealed evolutionary conservation of transcriptional and metabolic networks over land plant evolution, whereas divergence has occurred in the function of plant-specific atypical XLG subunit. Taken together, our results indicate that the shifts in transcriptional and metabolic homeostasis at least partially act as the mechanisms of G protein-coupled stress responses that are conserved between two distantly related plants.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore, Singapore.
| | | | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Isam Al-Darabsah
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
| | - Richalynn Leong
- Temasek Life Sciences Laboratory, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Alan M Jones
- Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada.
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
12
|
Developing Genetic Engineering Techniques for Control of Seed Size and Yield. Int J Mol Sci 2022; 23:ijms232113256. [PMID: 36362043 PMCID: PMC9655546 DOI: 10.3390/ijms232113256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Many signaling pathways regulate seed size through the development of endosperm and maternal tissues, which ultimately results in a range of variations in seed size or weight. Seed size can be determined through the development of zygotic tissues (endosperm and embryo) and maternal ovules. In addition, in some species such as rice, seed size is largely determined by husk growth. Transcription regulator factors are responsible for enhancing cell growth in the maternal ovule, resulting in seed growth. Phytohormones induce significant effects on entire features of growth and development of plants and also regulate seed size. Moreover, the vegetative parts are the major source of nutrients, including the majority of carbon and nitrogen-containing molecules for the reproductive part to control seed size. There is a need to increase the size of seeds without affecting the number of seeds in plants through conventional breeding programs to improve grain yield. In the past decades, many important genetic factors affecting seed size and yield have been identified and studied. These important factors constitute dynamic regulatory networks governing the seed size in response to environmental stimuli. In this review, we summarized recent advances regarding the molecular factors regulating seed size in Arabidopsis and other crops, followed by discussions on strategies to comprehend crops' genetic and molecular aspects in balancing seed size and yield.
Collapse
|
13
|
Wang J, Wang A, Luo Q, Hu Z, Ma Q, Li Y, Lin T, Liang X, Yu J, Foyer CH, Shi K. Glucose sensing by regulator of G protein signaling 1 (RGS1) plays a crucial role in coordinating defense in response to environmental variation in tomato. THE NEW PHYTOLOGIST 2022; 236:561-575. [PMID: 35789001 DOI: 10.1111/nph.18356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Low light intensities affect the outbreak of plant diseases. However, the underlying molecular mechanisms remain poorly understood. High-performance liquid chromatography analysis of tomato (Solanum lycopersicum) revealed that apoplastic glucose (Glc) levels decreased in response to low light. Conversely, low-light-induced susceptibility to Pseudomonas syringae pv tomato (Pst) DC3000 was significantly alleviated by exogenous Glc treatment. Using cell-based biolayer interferometry assays, we found that Glc specifically binds to the tomato regulator of G protein signaling 1 (RGS1). Laser scanning confocal microscopy imaging revealed that Glc triggers RGS1 endocytosis, which influences the uncoupling of the RGS1-Gα (GPA1) and GPA1-Gβ (SlGB1) proteins, in a dose- and duration-dependent manner. Analysis of G protein single and double mutants revealed that RGS1 negatively regulates disease resistance under low light and is required for Glc-enhanced defense. Downstream of RGS1-Glc binding, GPA1 negatively mediates the light-intensity-regulated defense, whereas SlGB1 positively regulates this process. These results reveal a novel light-intensity-responsive defense system that is mediated by a Glc-RGS1-G protein signaling pathway. This information will be critical for future investigations of how plant cells sense extracellular sugars and adjust defense under different environments, as well as for genetic engineering approaches to improve stress resilience.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Anran Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Qian Luo
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Qiaomei Ma
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yimei Li
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Insitute, Zhejiang University, Sanya, 572025, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Insitute, Zhejiang University, Sanya, 572025, China
| |
Collapse
|
14
|
Ninh TT, Gao W, Trusov Y, Zhao J, Long L, Song C, Botella JR. Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. PLANT DIRECT 2021; 5:e359. [PMID: 34765865 PMCID: PMC8573408 DOI: 10.1002/pld3.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Heterotrimeric G protein Gβ-deficient mutants in rice and maize display constitutive immune responses, whereas Arabidopsis Gβ mutants show impaired defense, suggesting the existence of functional differences between monocots and dicots. Using CRISPR/Cas9, we produced one hemizygous tomato line with a mutated SlGB1 Gβ gene. Homozygous slgb1 knockout mutants exhibit all the hallmarks of autoimmune mutants, including development of necrotic lesions, constitutive expression of defense-related genes, and high endogenous levels of salicylic acid (SA) and reactive oxygen species, resulting in early seedling lethality. Virus-induced silencing of Gβ in cotton reproduced the symptoms observed in tomato mutants, confirming that the autoimmune phenotype is not limited to monocot species but is also shared by dicots. Even though multiple genes involved in SA and ethylene signaling are highly induced by Gβ silencing in tomato and cotton, co-silencing of SA or ethylene signaling components in cotton failed to suppress the lethal phenotype, whereas co-silencing of the oxidative burst oxidase RbohD can repress lethality. Despite the autoimmune response observed in slgb1 mutants, we show that SlGB1 is a positive regulator of the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in tomato. We speculate that the phenotypic differences observed between Arabidopsis and tomato/cotton/rice/maize Gβ knockouts do not necessarily reflect divergences in G protein-mediated defense mechanisms.
Collapse
Affiliation(s)
- Thi Thao Ninh
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
- Department of Plant Biotechnology, Faculty of BiotechnologyVietnam National University of AgricultureHanoiVietnam
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Yuri Trusov
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| | - Jing‐Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Chun‐Peng Song
- State Key Laboratory of Cotton Biology, School of Life ScienceHenan UniversityKaifengChina
| | - Jose Ramon Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food SciencesUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
15
|
Ofoe R. Signal transduction by plant heterotrimeric G-protein. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:3-10. [PMID: 32803877 DOI: 10.1111/plb.13172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Heterotrimeric G-proteins are complexes that regulate important signalling pathways essential for growth and development in both plants and animals. Although plant cells are composed of the core components (Gα, Gβ and Gγ subunits) found in animal G-proteins, the complexities of the architecture, function and signalling mechanisms of those in animals are dissimilar to those identified in some plants. Current studies on plant G-proteins have improved knowledge of the essential physiological and agronomic properties, which when harnessed, could potentially impact global food security. Extensive studies on the molecular mechanisms underlying these properties in diverse plant species will be imperative in improving our current understanding of G-protein signalling pathways involved in plant growth and development. The advancement of G-protein signalling networks in distinct plant species could significantly aid in better crop development. This review summarizes current progress, novel discoveries and future prospects for this area in potential crop improvement.
Collapse
Affiliation(s)
- R Ofoe
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- West African Centre for Crop Improvement, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
16
|
Bhatnagar N, Pandey S. Heterotrimeric G-Protein Interactions Are Conserved Despite Regulatory Element Loss in Some Plants. PLANT PHYSIOLOGY 2020; 184:1941-1954. [PMID: 33082269 PMCID: PMC7723102 DOI: 10.1104/pp.20.01309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 05/31/2023]
Abstract
Heterotrimeric G-proteins are key modulators of multiple signaling and development pathways in plants and regulate many agronomic traits, including architecture and grain yield. Regulator of G-protein signaling (RGS) proteins are an integral part of the G-protein networks; however, these are lost in many monocots. To assess if the loss of RGS in specific plants has resulted in altered G-protein networks and the extent to which RGS function is conserved across contrasting monocots, we explored G-protein-dependent developmental pathways in Brachypodium distachyon and Setaria viridis, representing species without or with a native RGS, respectively. Artificial microRNA-based suppression of Gα in both species resulted in similar phenotypes. Moreover, overexpression of Setaria italica RGS in B. distachyon resulted in phenotypes similar to the suppression of BdGα This effect of RGS overexpression depended on its ability to deactivate Gα, as overexpression of a biochemically inactive variant protein resulted in plants indistinguishable from the wild type. Comparative transcriptome analysis of B. distachyon plants with suppressed levels of Gα or overexpression of RGS showed significant overlap of differentially regulated genes, corroborating the phenotypic data. These results suggest that despite the loss of RGS in many monocots, the G-protein functional networks are maintained, and Gα proteins have retained their ability to be deactivated by RGS.
Collapse
Affiliation(s)
| | - Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
17
|
Tao Y, Miao J, Wang J, Li W, Xu Y, Wang F, Jiang Y, Chen Z, Fan F, Xu M, Zhou Y, Liang G, Yang J. RGG1, Involved in the Cytokinin Regulatory Pathway, Controls Grain Size in Rice. RICE (NEW YORK, N.Y.) 2020; 13:76. [PMID: 33169285 PMCID: PMC7652983 DOI: 10.1186/s12284-020-00436-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Heterotrimeric GTP binding proteins (G proteins) and cytokinin play important roles in regulating plant growth and development. However, little is known about the mechanism by which they coordinate the regulation of grain size in rice. We functionally characterized one gene, RGG1, encoding a type-A Gγ subunit. Strong GUS staining was detected in young panicles and spikelets, suggesting a role for this gene in modulating panicle-related trait development. Overexpression of RGG1 in Nipponbare (NIP) and Wuyunjing 30 (WYJ30) significantly decreased plant height, panicle length and grain length by regulating cell division. However, rgg1 mutants generated by the CRISPR/Cas9 system exhibited no obvious phenotypic differences, which may be due to the extremely low expression level of this gene in vivo. The transcriptomes of young panicles of NIP, the NIP-rgg1-2 mutant and the NIP-OE2 overexpression line were sequenced, and the results showed that many differentially expressed genes (DEGs) were associated with the cytokinin biosynthetic pathway. We confirmed this result by measuring the endogenous cytokinin levels and found that cytokinin content was lower in the overexpression lines. Additionally, increased expression of RGG1 decreased sensitivity to low concentrations of 6-benzylaminopurine (6-BA). Our results reveal a novel G protein-cytokinin module controlling grain size in rice and will be beneficial for understanding the mechanisms by which G proteins regulate grain size and plant development.
Collapse
Affiliation(s)
- Yajun Tao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Miao
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenqi Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yang Xu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Fangquan Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yanjie Jiang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zhihui Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Fangjun Fan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Mengbin Xu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Yong Zhou
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Guohua Liang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014, Jiangsu, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
18
|
Wu TY, Krishnamoorthi S, Goh H, Leong R, Sanson AC, Urano D. Crosstalk between heterotrimeric G protein-coupled signaling pathways and WRKY transcription factors modulating plant responses to suboptimal micronutrient conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3227-3239. [PMID: 32107545 PMCID: PMC7260721 DOI: 10.1093/jxb/eraa108] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/25/2020] [Indexed: 05/10/2023]
Abstract
Nutrient stresses induce foliar chlorosis and growth defects. Here we propose heterotrimeric G proteins as signaling mediators of various nutrient stresses, through meta-analyses of >20 transcriptomic data sets associated with nutrient stresses or G protein mutations. Systematic comparison of transcriptomic data yielded 104 genes regulated by G protein subunits under common nutrient stresses: 69 genes under Gβ subunit (AGB1) control and 35 genes under Gα subunit (GPA1) control. Quantitative real-time PCR experiments validate that several transcription factors and metal transporters changed in expression level under suboptimal iron, zinc, and/or copper concentrations, while being misregulated in the Arabidopsis Gβ-null (agb1) mutant. The agb1 mutant had altered metal ion profiles and exhibited severe growth arrest under zinc stress, and aberrant root waving under iron and zinc stresses, while the Gα-null mutation attenuated leaf chlorosis under iron deficiency in both Arabidopsis and rice. Our transcriptional network analysis inferred computationally that WRKY-family transcription factors mediate the AGB1-dependent nutrient responses. As corroborating evidence of our inference, ectopic expression of WRKY25 or WRKY33 rescued the zinc stress phenotypes and the expression of zinc transporters in the agb1-2 background. These results, together with Gene Ontology analyses, suggest two contrasting roles for G protein-coupled signaling pathways in micronutrient stress responses: one enhancing general stress tolerance and the other modulating ion homeostasis through WRKY transcriptional regulatory networks. In addition, tolerance to iron stress in the rice Gα mutant provides an inroad to improve nutrient stress tolerance of agricultural crops by manipulating G protein signaling.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore
- Correspondence: or
| | | | | | | | - Amy Catherine Sanson
- Temasek Life Sciences Laboratory, Singapore
- Mathematical Sciences Institute, Australian National University, Canberra, Australia
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Correspondence: or
| |
Collapse
|
19
|
Cui Y, Jiang N, Xu Z, Xu Q. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. BMC PLANT BIOLOGY 2020; 20:90. [PMID: 32111163 PMCID: PMC7048073 DOI: 10.1186/s12870-020-2289-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The heterotrimeric G protein complex, consisting of Gα, Gβ, and Gγ subunits, are conserved signal transduction mechanism in eukaryotes. Recent molecular researches had demonstrated that G protein signaling participates in the regulation of yield related traits. However, the effects of G protein genes on yield components and stress tolerance are not well characterized. RESULTS In this study, we generated heterotrimeric G protein mutants in rice using CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology. The effects of heterotrimeric G proteins on the regulation of yield components and stress tolerance were investigated. The mutants of gs3 and dep1 generated preferable agronomic traits compared to the wild-type, whereas the mutants of rga1 showed an extreme dwarf phenotype, which led to a dramatic decrease in grain production. The mutants showed improved stress tolerance, especially under salinity treatment. We found four putative extra-large G proteins (PXLG)1-4 that also participate in the regulation of yield components and stress tolerance. A yeast two hybrid showed that the RGB1 might interact with PXLG2 but not with PXLG1, PXLG3 or PXLG4. CONCLUSION These findings will not only improve our understanding of the repertoire of heterotrimeric G proteins in rice but also contribute to the application of heterotrimeric G proteins in rice breeding.
Collapse
Affiliation(s)
- Yue Cui
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866 China
| | - Nan Jiang
- Shenyang Research and Development Service Center of Modern Agriculture, Shenyang, 110866 China
| | - Zhengjin Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866 China
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
20
|
Shoot meristem maintenance and immune response signaling converge at the G protein β subunit. Proc Natl Acad Sci U S A 2020; 117:1842-1844. [PMID: 31937659 DOI: 10.1073/pnas.1921255117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
The maize heterotrimeric G protein β subunit controls shoot meristem development and immune responses. Proc Natl Acad Sci U S A 2019; 117:1799-1805. [PMID: 31852823 DOI: 10.1073/pnas.1917577116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins are important transducers of receptor signaling, functioning in plants with CLAVATA receptors in controlling shoot meristem size and with pathogen-associated molecular pattern receptors in basal immunity. However, whether specific members of the heterotrimeric complex potentiate cross-talk between development and defense, and the extent to which these functions are conserved across species, have not yet been addressed. Here we used CRISPR/Cas9 to knock out the maize G protein β subunit gene (Gβ) and found that the mutants are lethal, differing from those in Arabidopsis, in which homologous mutants have normal growth and fertility. We show that lethality is caused not by a specific developmental arrest, but by autoimmunity. We used a genetic diversity screen to suppress the lethal Gβ phenotype and also identified a maize Gβ allele with weak autoimmune responses but strong development phenotypes. Using these tools, we show that Gβ controls meristem size in maize, acting epistatically with G protein α subunit gene (Gα), suggesting that Gβ and Gα function in a common signaling complex. Furthermore, we used an association study to show that natural variation in Gβ influences maize kernel row number, an important agronomic trait. Our results demonstrate the dual role of Gβ in immunity and development in a cereal crop and suggest that it functions in cross-talk between these competing signaling networks. Therefore, modification of Gβ has the potential to optimize the trade-off between growth and defense signaling to improve agronomic production.
Collapse
|