1
|
Hou X, Wang X, Zhang Y, Fu Z, Zhang L, Li A. Enhanced microbial activity for moisture removal in biodrying with the assistance of stacked MFCs. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 202:114813. [PMID: 40267750 DOI: 10.1016/j.wasman.2025.114813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/07/2025] [Accepted: 04/12/2025] [Indexed: 04/25/2025]
Abstract
Low microbial activity affected the organics degradation and limited the improvement of matrix temperature, leading to inefficient drying performance in conventional biordying (CB). In this study, two microbial fuel cells (MFCs) connected in series were applied on biodrying to facilitate water removal. Compared with CB process, moisture content (MC) of organic waste for stacked MFCs assisted biodrying (MB) process was rapidly decreased by 36.7 % within 6 days (CB: 13.8 %). Meanwhile, the assist of MFCs reshaped microbial communities and enriched electroactive bacteria Bacillus, 1.5 times and 3.4 times higher than those in CB during thermophilic and cooling phase, respectively. It could facilitate extracellular electron transfer and thus improving the reaction with O2. The analysis of O2 content also proved that electric field provided by stacked MFCs boosted O2 utilization and stimulated microbial metabolism. Therefore, organics biodegradation was greatly increased by 50.0 % and high-temperature duration was prolonged from 1.4 d to 2.3 d, which were essential driving forces for water removal. The dried product of MB was identified to be a satisfactory refuse-derived fuel (RDF) with low heating value of 9.35 MJ/kg, which was about 1.57-fold higher than that of CB. These results suggested that stacked MFCs assisted biodrying is an effective technology to ameliorate conventional biodrying, achieving rapid drying of municipal solid wastes with high MC and helping to improve the resource utilization of wastes. In particular, the integration of MFCs using reality organic wastewater as substrate and biodrying system could provide a feasible reference for the development of circular economy.
Collapse
Affiliation(s)
- Xia Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yulin Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Zegang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Wang N, Gao M, Liu S, Zhu W, Zhang Y, Wang X, Sun H, Guo Y, Wang Q. Electrochemical promotion of organic waste fermentation: Research advances and prospects. ENVIRONMENTAL RESEARCH 2024; 244:117422. [PMID: 37866529 DOI: 10.1016/j.envres.2023.117422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
The current methods of treating organic waste suffer from limited resource usage and low product value. Research and development of value-added products emerges as an unavoidable trend for future growth. Electro-fermentation (EF) is a technique employed to stimulate cell proliferation, expedite microbial metabolism, and enhance the production of value-added products by administering minute voltages or currents in the fermentation system. This method represents a novel research direction lying at the crossroads of electrochemistry and biology. This article documents the current progress of EF for a range of value-added products, including gaseous fuels, organic acids, and other organics. It also presents novel value-added products, such as 1,3-propanediol, 3-hydroxypropionic acid, succinic acid, acrylic acid, and lysine. The latest research trends suggest a focus on EF for cogeneration of value-added products, studying microbial community structure and electroactive bacteria, exploring electron transfer mechanisms in EF systems, developing effective methods for nutrient recovery of nitrogen and phosphorus, optimizing EF conditions, and utilizing biosensors and artificial neural networks in this area. In this paper, an analysis is conducted on the challenges that currently exist regarding the selection of conductive materials, optimization of electrode materials, and development of bioelectrochemical system (BES) coupling processes in EF systems. The aim is to provide a reference for the development of more efficient, advanced, and value-added EF technologies. Overall, this paper aims to provide references and ideas for the development of more efficient and advanced EF technology.
Collapse
Affiliation(s)
- Nuohan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuo Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanchun Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Tianjin College, University of Science and Technology Beijing, Tianjin, 301811, China.
| |
Collapse
|
3
|
Salar-García MJ, Ortiz-Martínez VM, Sánchez-Segado S, Valero Sánchez R, Sáez López A, Lozano Blanco LJ, Godínez-Seoane C. Sustainable Production of Biofuels and Biochemicals via Electro-Fermentation Technology. Molecules 2024; 29:834. [PMID: 38398584 PMCID: PMC10891623 DOI: 10.3390/molecules29040834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The energy crisis and climate change are two of the most concerning issues for human beings nowadays. For that reason, the scientific community is focused on the search for alternative biofuels to conventional fossil fuels as well as the development of sustainable processes to develop a circular economy. Bioelectrochemical processes have been demonstrated to be useful for producing bioenergy and value-added products from several types of waste. Electro-fermentation has gained great attention in the last few years due to its potential contribution to biofuel and biochemical production, e.g., hydrogen, methane, biopolymers, etc. Conventional fermentation processes pose several limitations in terms of their practical and economic feasibility. The introduction of two electrodes in a bioreactor allows the regulation of redox instabilities that occur in conventional fermentation, boosting the overall process towards a high biomass yield and enhanced product formation. In this regard, key parameters such as the type of culture, the nature of the electrodes as well as the operating conditions are crucial in order to maximize the production of biofuels and biochemicals via electro-fermentation technology. This article comprises a critical overview of the benefits and limitations of this emerging bio-electrochemical technology and its contribution to the circular economy.
Collapse
Affiliation(s)
- María José Salar-García
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Alfonso XIII, Aulario C, 30203 Cartagena, Spain;
| | - Víctor Manuel Ortiz-Martínez
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Sergio Sánchez-Segado
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Raúl Valero Sánchez
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Alfonso XIII, Aulario C, 30203 Cartagena, Spain;
| | - Antonia Sáez López
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Luis Javier Lozano Blanco
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| | - Carlos Godínez-Seoane
- Department of Chemical and Environmental Engineering, Technical University of Cartagena (UPCT), Campus Muralla del Mar, 30202 Cartagena, Spain; (S.S.-S.); (A.S.L.); (L.J.L.B.); (C.G.-S.)
| |
Collapse
|
4
|
Pause L, Weimer A, Wirth NT, Nguyen AV, Lenz C, Kohlstedt M, Wittmann C, Nikel PI, Lai B, Krömer JO. Anaerobic glucose uptake in Pseudomonas putida KT2440 in a bioelectrochemical system. Microb Biotechnol 2024; 17:e14375. [PMID: 37990843 PMCID: PMC10832537 DOI: 10.1111/1751-7915.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Providing an anodic potential in a bio-electrochemical system to the obligate aerobe Pseudomonas putida enables anaerobic survival and allows the cells to overcome redox imbalances. In this setup, the bacteria could be exploited to produce chemicals via oxidative pathways at high yield. However, the absence of anaerobic growth and low carbon turnover rates remain as obstacles for the application of such an electro-fermentation technology. Growth and carbon turnover start with carbon uptake into the periplasm and cytosol. P. putida KT2440 has three native transporting systems for glucose, each differing in energy and redox demand. This architecture previously led to the hypothesis that internal redox and energy constraints ultimately limit cytoplasmic carbon utilization in a bio-electrochemical system. However, it remains largely unclear which uptake route is predominantly used by P. putida under electro-fermentative conditions. To elucidate this, we created three gene deletion mutants of P. putida KT2440, forcing the cells to exclusively utilize one of the routes. When grown in a bio-electrochemical system, the pathway mutants were heavily affected in terms of sugar consumption, current output and product formation. Surprisingly, however, we found that about half of the acetate formed in the cytoplasm originated from carbon that was put into the system via the inoculation biomass, while the other half came from the consumption of substrate. The deletion of individual sugar uptake routes did not alter significantly the secreted acetate concentrations among different strains even with different carbon sources. This means that the stoichiometry of the sugar uptake routes is not a limiting factor during electro-fermentation and that the low rates might be caused by other reasons, for example energy limitations or a yet-to-be-identified oxygen-dependent regulatory mechanism.
Collapse
Affiliation(s)
- Laura Pause
- Systems Biotechnology groupHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Anna Weimer
- Institute of Systems BiotechnologySaarland UniversitySaarbrückenGermany
| | - Nicolas T. Wirth
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Anh Vu Nguyen
- Systems Biotechnology groupHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Claudius Lenz
- Systems Biotechnology groupHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Michael Kohlstedt
- Institute of Systems BiotechnologySaarland UniversitySaarbrückenGermany
| | | | - Pablo I. Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| | - Bin Lai
- BMBF Junior Research Group BiophotovoltaicsHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Jens O. Krömer
- Systems Biotechnology groupHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
5
|
Lai B. Burning questions: Exploring the limits of microbial electrochemical technology for industrial biotechnological applications. Microb Biotechnol 2024; 17:e14370. [PMID: 37966799 PMCID: PMC10832527 DOI: 10.1111/1751-7915.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Microbial electrochemical technology (MET) has proven to be a promising solution to overcome the redox and energy metabolic constraints, enabling high yields of biosynthesis beyond stoichiometric limits. While there is room for improvement in extracellular electron transfer rates and productivity of the target compounds, it is crucial to think in advance about which bioprocess could be electrified and what would face major challenges. In this opinion paper, I presented and addressed interfacial electron transfer capacity of MET, whether built on biofilm or planktonic cells, and also discussed the upper limits of the MET system for biosynthesis of chemicals accordingly. Potential future application scenarios of different MET were also briefly addressed. This opinion paper aims to encourage the community to rethink the design and development of microbial electrochemical technologies for potential future applications in industrial biotechnology.
Collapse
Affiliation(s)
- Bin Lai
- BMBF Junior Research Group BiophotovoltaicsHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| |
Collapse
|
6
|
Yang Y, Liu LN, Tian H, Cooper AI, Sprick RS. Making the connections: physical and electric interactions in biohybrid photosynthetic systems. ENERGY & ENVIRONMENTAL SCIENCE 2023; 16:4305-4319. [PMID: 38013927 PMCID: PMC10566253 DOI: 10.1039/d3ee01265d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 11/29/2023]
Abstract
Biohybrid photosynthesis systems, which combine biological and non-biological materials, have attracted recent interest in solar-to-chemical energy conversion. However, the solar efficiencies of such systems remain low, despite advances in both artificial photosynthesis and synthetic biology. Here we discuss the potential of conjugated organic materials as photosensitisers for biological hybrid systems compared to traditional inorganic semiconductors. Organic materials offer the ability to tune both photophysical properties and the specific physicochemical interactions between the photosensitiser and biological cells, thus improving stability and charge transfer. We highlight the state-of-the-art and opportunities for new approaches in designing new biohybrid systems. This perspective also summarises the current understanding of the underlying electron transport process and highlights the research areas that need to be pursued to underpin the development of hybrid photosynthesis systems.
Collapse
Affiliation(s)
- Ying Yang
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Liverpool L7 3NY UK
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool L69 7ZB UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool L69 7ZB UK
- College of Marine Life Sciences, and Frontiers Science Centre for Deep Ocean Multispheres and Earth System, Ocean University of China 266003 Qingdao P. R. China
| | - Haining Tian
- Department of Chemistry-Ångström Laboratories, Uppsala University Box 523 751 20 Uppsala Sweden
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Liverpool L7 3NY UK
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
7
|
Pateraki C, Magdalinou E, Skliros D, Flemetakis E, Rabaey K, Koutinas A. Transcriptional regulation in key metabolic pathways of Actinobacillus succinogenes in the presence of electricity. Bioelectrochemistry 2023; 151:108376. [PMID: 36716515 DOI: 10.1016/j.bioelechem.2023.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
The potential of renewable energy application via direct electrode interaction for the production of bio-based chemicals is a promising technology. The utilization of extracellular energy in pure culture fermentations aims in intracellular redox balance regulation in order to improve fermentation efficiency. This work evaluates the impact of a bioelectrochemical system in succinic acid fermentation and the metabolic response of Actinobacillus succinogenes. The metabolic pathway regulation of A. succinogenes was evaluated via RNA expression of the key enzymes that participate in TCA cycle, pyruvate metabolism and oxidative phosphorylation. The genes that were significantly overexpressed in BES compared to non-BES were phosphoenolpyruvate carboxykinase (0.4-fold change), inorganic pyrophosphatase (2.3-fold change) and hydrogenase (2.2-fold change) and the genes that were significantly underexpressed were fumarase (-0.94-fold change), pyruvate kinase (-6.9-fold change), all subunits of fumarate reductase (-2.1 to -1.17-fold change), cytochromes I and II (-1.25 and -1.02-fold change, respectively) and two C4-carboxylic acid transporters.
Collapse
Affiliation(s)
- Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| | - Elena Magdalinou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Dimitrios Skliros
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Korneel Rabaey
- Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
8
|
Zhang Y, Li J, Yong YC, Fang Z, Yan H, Li J, Meng J. Highly selective butanol production by manipulating electron flow via cathodic electro-fermentation. BIORESOURCE TECHNOLOGY 2023; 374:128770. [PMID: 36822560 DOI: 10.1016/j.biortech.2023.128770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Butanol production by solventogenic Clostridia shows great potential to combat the energy crisis, but is still challenged by low butanol selectivity and high downstream cost. In this study, a novel cathodic electro-fermentation (CEF) system mediated by methyl viologen (MV) was proposed and sequentially optimized to obtain highly selective butanol production. Under the optimal conditions (-0.60 V cathode potential, 0.50 mM MV, 30 g/L glucose), 7.17 ± 0.55 g/L butanol production were achieved with the yield of 0.32 ± 0.02 g/g. With the supplement of 4 g/L butyric acid as co-substrate, butanol production further improved to 13.14 ± 1.14 g/L with butanol yield and selectivity as high as 0.43 ± 0.01 g/g and 90.44 ± 1.66%, respectively. The polarized electrode enabled the unbalanced fermentation towards butanol formation and MV further inhibited hydrogen production, both of which contributed to the high-level butanol production and selectivity. The MV-mediated CEF system is a promising approach for cost-effective bio-butanol production.
Collapse
Affiliation(s)
- Yafei Zhang
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzheng Li
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Han Yan
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jia Meng
- National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Lai B, Krömer J, Aulenta F, Wu H, Nikel PI. Exploiting synergies between microbial electrochemical technologies and synthetic biology. Microb Biotechnol 2023; 16:485-488. [PMID: 36622031 PMCID: PMC9948174 DOI: 10.1111/1751-7915.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023] Open
Affiliation(s)
- Bin Lai
- BMBF Junior Research Group Biophotovoltaics, Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany
| | - Jens Krömer
- Systems Biotechnology Group, Helmholtz Center for Environmental Research - UFZ, Leipzig, Germany
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Rome, Italy
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark - Kgs, Lyngby, Denmark
| |
Collapse
|
10
|
Electrolytic stimulation in aid of poly(β-L-malic acid) production by Aureobasidium melanogenum ipe-1. Int J Biol Macromol 2022; 223:722-731. [PMID: 36370855 DOI: 10.1016/j.ijbiomac.2022.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Poly (β-L-malic acid) (PMLA) is attracting industrial interest for its potential application in medicine and other industries. In this study, electrolytic stimulation assisted PMLA production was developed. Firstly, it was found that the pentavalent nitrogen source (i.e., NO3-) was more suitable for PMLA production. Secondly, a usual single-chamber bioelectric-fermentation system (BES) cannot improve PMLA production, which can only promote cell growth. Then, a new single-chamber BES with an external circulation was developed, where the PMLA metabolism was further intensified. Finally, the integration of NO3- addition and electrolytic stimulation mode (c) showed a positive synergy on the PMLA production. Compared to the case without NO3- addition and electrolytic stimulation, the PMLA production was increased by 22.9 % using the integrated process. Moreover, compared to the case without the electrolytic stimulation mode (c), it was revealed that the different genes involved in 12 metabolic subsystems using the integrated process, where 31 and 177 genes were up-regulated and down-regulated, respectively. The up-regulated genes were mainly participated in melanin metabolic process, catalase activity, and oxidoreductase activity. Hence, the integration of electrolytic stimulation represents a novel approach to improve PMLA production.
Collapse
|
11
|
Sriram S, Wong JWC, Pradhan N. Recent advances in electro-fermentation technology: A novel approach towards balanced fermentation. BIORESOURCE TECHNOLOGY 2022; 360:127637. [PMID: 35853590 DOI: 10.1016/j.biortech.2022.127637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Biotransformation of organic substrates via acidogenic fermentation (AF) to high-value products such as C1-C6 carboxylic acids and alcohol serves as platform chemicals for various industrial applications. However, the AF technology suffers from low product titers due to thermodynamic constraints. Recent studies suggest that augmenting AF redox potential can regulate the metabolic pathway and provide seamless electron flow by lowering the activation energy barrier, thus positively influencing the substrate utilization rate, product yield, and speciation. Hence, the augmented AF system with an exogenous electricity supply is termed as electro-fermentation (EF), which has enormous potential to strengthen the fermentation technology domain. Therefore, this critical review systematically discusses the current understanding of EF with a special focus on the extracellular electron transfer mechanism of electroactive bacteria and provides perspectives and research gaps to further improve the technology for green chemical synthesis, sustainable waste management, and circular bio-economy.
Collapse
Affiliation(s)
- Saranya Sriram
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR
| | - Jonathan W C Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR.
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR.
| |
Collapse
|
12
|
Gemünde A, Lai B, Pause L, Krömer J, Holtmann D. Redox mediators in microbial electrochemical systems. ChemElectroChem 2022. [DOI: 10.1002/celc.202200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- André Gemünde
- Technische Hochschule Mittelhessen Institute of Bioprocess Engineering and Pharmaceutical Technology Wiesenstraße 14 35390 Gießen GERMANY
| | - Bin Lai
- Helmholtz Centre for Environmental Research UFZ Department of Environmental Microbiology: Helmholtz-Zentrum fur Umweltforschung UFZ Abteilung Umweltmikrobiologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Laura Pause
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Jens Krömer
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Dirk Holtmann
- Technische Hochschule Mittelhessen IBPT Wiesenstrasse 14 35390 Giessen GERMANY
| |
Collapse
|
13
|
Lai B, Glaven S, Song H. Editorial: Electrobiotechnology Towards Sustainable Bioeconomy: Fundamental, Optimization and Applications. Front Bioeng Biotechnol 2022; 10:901072. [PMID: 35557869 PMCID: PMC9086240 DOI: 10.3389/fbioe.2022.901072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bin Lai
- Department of Solar Materials, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Sarah Glaven
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC, United States
| | - Hao Song
- Key Laboratory of Systems Bioengineering, Frontier Science Center for Synthetic Biology, Ministry of Education, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Virdis B, Hoelzle R, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, Puig S, Freguia S, Villano M. Electro-fermentation: Sustainable bioproductions steered by electricity. Biotechnol Adv 2022; 59:107950. [PMID: 35364226 DOI: 10.1016/j.biotechadv.2022.107950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023]
Abstract
The market of biobased products obtainable via fermentation processes is steadily increasing over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC) whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a mean to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying the EF process are still largely unknown. This review paper provides a comprehensive overview of recent literature studies including both AEF and CEF examples with either pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.
Collapse
Affiliation(s)
- Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert Hoelzle
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Marchetti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Santiago T Boto
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Ramiro Blasco-Gómez
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sebastià Puig
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
15
|
Abel AJ, Hilzinger JM, Arkin AP, Clark DS. Systems-informed genome mining for electroautotrophic microbial production. Bioelectrochemistry 2022; 145:108054. [DOI: 10.1016/j.bioelechem.2022.108054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 01/09/2023]
|
16
|
Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040291] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial electrocatalysis reckons on microbes as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well-known in this context; both prefer the oxidation of organic and inorganic matter for producing electricity. Notably, the synthesis of high energy-density chemicals (fuels) or their precursors by microorganisms using bio-cathode to yield electrical energy is called Microbial Electrosynthesis (MES), giving an exceptionally appealing novel way for producing beneficial products from electricity and wastewater. This review accentuates the concept, importance and opportunities of MES, as an emerging discipline at the nexus of microbiology and electrochemistry. Production of organic compounds from MES is considered as an effective technique for the generation of various beneficial reduced end-products (like acetate and butyrate) as well as in reducing the load of CO2 from the atmosphere to mitigate the harmful effect of greenhouse gases in global warming. Although MES is still an emerging technology, this method is not thoroughly known. The authors have focused on MES, as it is the next transformative, viable alternative technology to decrease the repercussions of surplus carbon dioxide in the environment along with conserving energy.
Collapse
|
17
|
Zhang Y, Li J, Meng J, Sun K, Yan H. A neutral red mediated electro-fermentation system of Clostridium beijerinckii for effective co-production of butanol and hydrogen. BIORESOURCE TECHNOLOGY 2021; 332:125097. [PMID: 33845318 DOI: 10.1016/j.biortech.2021.125097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
To enhance the co-production of butanol and hydrogen by the acetone-butanol-ethanol (ABE) fermentation of Clostridium beijerinckii, a novel cathodic electro-fermentation (CEF) system was constructed with neutral red (NR) as electron mediator. With the mediation of NR, production of butanol and hydrogen from glucose in the CEF system achieved 5.49 ± 0.28 g/L and 3.74 ± 0.16 L/L, 569.5% and 325.0% higher than that in the open circuit (OC) system, respectively. The butanol and hydrogen yield of 0.30 ± 0.02 g/g and 206.53 ± 8.20 mL/g was 172.7% and 71.4% higher than that in the OC system, respectively. The effective co-production of butanol and hydrogen in the NR-mediated CEF system was attributed to the cooperation of the introduced polarized electrode and the additional NR. With the control of the polarized electrode, a feasible ORP was available for the effective hydrogen production. And the additional NR had induced more carbon source and electrons to the synthesis of butanol.
Collapse
Affiliation(s)
- Yafei Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Kai Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Han Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
18
|
Cabau-Peinado O, Straathof AJJ, Jourdin L. A General Model for Biofilm-Driven Microbial Electrosynthesis of Carboxylates From CO 2. Front Microbiol 2021; 12:669218. [PMID: 34149654 PMCID: PMC8211901 DOI: 10.3389/fmicb.2021.669218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Up to now, computational modeling of microbial electrosynthesis (MES) has been underexplored, but is necessary to achieve breakthrough understanding of the process-limiting steps. Here, a general framework for modeling microbial kinetics in a MES reactor is presented. A thermodynamic approach is used to link microbial metabolism to the electrochemical reduction of an intracellular mediator, allowing to predict cellular growth and current consumption. The model accounts for CO2 reduction to acetate, and further elongation to n-butyrate and n-caproate. Simulation results were compared with experimental data obtained from different sources and proved the model is able to successfully describe microbial kinetics (growth, chain elongation, and product inhibition) and reactor performance (current density, organics titer). The capacity of the model to simulate different system configurations is also shown. Model results suggest CO2 dissolved concentration might be limiting existing MES systems, and highlight the importance of the delivery method utilized to supply it. Simulation results also indicate that for biofilm-driven reactors, continuous mode significantly enhances microbial growth and might allow denser biofilms to be formed and higher current densities to be achieved.
Collapse
Affiliation(s)
- Oriol Cabau-Peinado
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| | - Ludovic Jourdin
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
19
|
Shi Y, Huang K, Pan X, Liu G, Cai Y, Zaidi AA, Zhang K. Substrate degradation, biodiesel production, and microbial community of two electro-fermentation systems on treating oleaginous microalgae Nannochloropsis sp. BIORESOURCE TECHNOLOGY 2021; 329:124932. [PMID: 33713901 DOI: 10.1016/j.biortech.2021.124932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Electro-fermentation system (EFS) emerges its effectiveness on treating microalgae for biodiesel production, but much is unknown about biodegradation behaviors, biodiesel characteristics, and microbial community. Compared with conventional fermentation system (CFS), microbial electrolysis cell-based EFS (MEC-EFS) and microbial fuel cell-based EFS (MFC-EFS) were investigated for the performance while treating microalgae Nannochloropsis sp. Results indicated that MEC-EFS presented much higher first-order decomposition rate coefficients of carbohydrates and proteins (1.212/d and 0.951/d) than those of CFS (0.615/d and 0.794/d) and MFC-EFS (0.518/d and 0.415/d). Compared with MFC-EFS, MEC-EFS showed better electrochemical performance (2.17 A/m3vs. 0.95 A/m3). Moreover, MEC-EFS reached the highest extracted lipid to biomass ratio (43.3%), followed by MFC-EFS (32.3%) and CFS (27.7%). By strengthened microbial biohydrogenation, MEC-EFS and MFC-EFS had higher saturated fatty acids ratio (78.8% and 70.6%) than that of CFS (56.1%). For MEC-EFS, enriched Ruminococcus and Geobacter in anodic biofilm might contribute to favorable biohydrogenation and electrochemical performance.
Collapse
Affiliation(s)
- Yue Shi
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Kaiguo Huang
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xinxiang Pan
- Maritime College, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China; Marine Engineering College, Dalian Maritime University, Dalian 116026, China
| | - Guobing Liu
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yuhang Cai
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
| | - Asad A Zaidi
- Department of Engineering Sciences, Pakistan Navy Engineering College, National University of Sciences and Technology, Karachi 75350, Pakistan
| | - Kun Zhang
- College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China.
| |
Collapse
|
20
|
Zhang Y, Li J, Meng J, Wang X. A cathodic electro-fermentation system for enhancing butyric acid production from rice straw with a mixed culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145011. [PMID: 33636772 DOI: 10.1016/j.scitotenv.2021.145011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Bio-electrochemical system (BES) emerges as a versatile approach to handling environmental problems with the harvest of sustainable energy and value-added chemicals. To enhance the butyric acid production from rice straw, microbial fuel cell (MFC) and cathodic electro-fermentation (CEF) systems were constructed in this study. Inoculated with the same mixed culture, fermentative butyric acid production efficiency of the two BESs were evaluated with/without neutral red (NR) as electron mediator, respectively. It was found that the butyric acid fermentation efficiency in the MFC system was inefficient. While, the CEF system presented an evident positive effect on butyric acid production. The production and specific yield of butyric acid in the CEF system reached 5.54 g/L and 0.41 g/g, higher than that in the open circuit (OC) system by 17.37% and 28.13%, respectively. Mass percentage of butyric acid in the produced total volatile fatty acids (VFAs) was also increased from 44.74% to 52.76%. The addition of NR had no positive effect on the butyric acid production, due to the low contribution of electric current to the end-products. With the cathode potential of -0.80 V (vs Ag/AgCl), relative abundance of the butyric acid fermenting bacteria (Clostridium cluster IV and cluster XIVa) in the microbial mixture was increased from 20.25% in the OC system to 33.61% in the CEF system. This research work not only presents a novel method for enhancing butyric acid production by rice straw fermentation, but also aids an understanding of the fermentation mechanism in CEF systems.
Collapse
Affiliation(s)
- Yafei Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
21
|
Desmond-Le Quéméner E, Moscoviz R, Bernet N, Marcus A. Modeling of interspecies electron transfer in anaerobic microbial communities. Curr Opin Biotechnol 2021; 67:49-57. [PMID: 33465544 DOI: 10.1016/j.copbio.2020.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Interspecies electron transfer (IET) is a key phenomenon in anaerobic ecosystems, which is traditionally modeled as hydrogen transfer. Recently discovered alternative mediated IET (MIET) or direct IET (DIET) offer exciting alternative mechanisms of microbial partnerships that could lead to new strategies for the improvement of biotechnologies. Here, we analyze mathematical modeling of DIET and MIET in anaerobic ecosystems. Bioenergetics approaches already enable the evaluation of different energy sharing scenarios between microorganisms and give interesting clues on redox mediators and on possible ways of driving microbial communities relying on IET. The modeling of DIET kinetics however is currently only in its infancy. Recent concepts introduced for the modeling of electroactive biofilms should be further exploited. Recent modeling examples confirms the potential of DIET to increase the IET rates compared to H2-MIET, but also point out the need for additional characterizations of biological components supporting IET to improve predictions.
Collapse
Affiliation(s)
| | - Roman Moscoviz
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), Le Pecq, France
| | - Nicolas Bernet
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100, Narbonne, France
| | - Andrew Marcus
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
22
|
Hegner R, Neubert K, Kroner C, Holtmann D, Harnisch F. Coupled Electrochemical and Microbial Catalysis for the Production of Polymer Bricks. CHEMSUSCHEM 2020; 13:5295-5300. [PMID: 32658366 PMCID: PMC7590143 DOI: 10.1002/cssc.202001272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Power-to-X technologies have the potential to pave the way towards a future resource-secure bioeconomy as they enable the exploitation of renewable resources and CO2 . Herein, the coupled electrocatalytic and microbial catalysis of the C5 -polymer precursors mesaconate and 2S-methylsuccinate from CO2 and electric energy by in situ coupling electrochemical and microbial catalysis at 1 L-scale was developed. In the first phase, 6.1±2.5 mm formate was produced by electrochemical CO2 reduction. In the second phase, formate served as the substrate for microbial catalysis by an engineered strain of Methylobacterium extorquens AM-1 producing 7±2 μm and 10±5 μm of mesaconate and 2S-methylsuccinate, respectively. The proof of concept showed an overall conversion efficiency of 0.2 % being 0.4 % of the theoretical maximum.
Collapse
Affiliation(s)
- Richard Hegner
- Helmholtz Center for Environmental Research GmbH – UFZDepartment of Environmental MicrobiologyPermoserstraße 1504318LeipzigGermany
| | - Katharina Neubert
- Helmholtz Center for Environmental Research GmbH – UFZDepartment of Environmental MicrobiologyPermoserstraße 1504318LeipzigGermany
| | - Cora Kroner
- DECHEMA Research InstituteIndustrial BiotechnologyTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
| | - Dirk Holtmann
- DECHEMA Research InstituteIndustrial BiotechnologyTheodor-Heuss-Allee 2560486Frankfurt am MainGermany
- Technische Hochschule MittelhessenInstitute of Bioprocess Engineering and Pharmaceutical TechnologyWiesenstraße 1435390GießenGermany
| | - Falk Harnisch
- Helmholtz Center for Environmental Research GmbH – UFZDepartment of Environmental MicrobiologyPermoserstraße 1504318LeipzigGermany
| |
Collapse
|
23
|
Geinitz B, Hüser A, Mann M, Büchs J. Gas Fermentation Expands the Scope of a Process Network for Material Conversion. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.202000086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bertram Geinitz
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Aline Hüser
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Marcel Mann
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT – Biochemical Engineering Forckenbeckstraße 51 52074 Aachen Germany
| |
Collapse
|
24
|
Feng J, Jiang M, Li K, Lu Q, Xu S, Wang X, Chen K, Ouyang P. Direct electron uptake from a cathode using the inward Mtr pathway in Escherichia coli. Bioelectrochemistry 2020; 134:107498. [DOI: 10.1016/j.bioelechem.2020.107498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
|
25
|
Systems Analysis of NADH Dehydrogenase Mutants Reveals Flexibility and Limits of Pseudomonas taiwanensis VLB120's Metabolism. Appl Environ Microbiol 2020; 86:AEM.03038-19. [PMID: 32245760 DOI: 10.1128/aem.03038-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Obligate aerobic organisms rely on a functional electron transport chain for energy conservation and NADH oxidation. Because of this essential requirement, the genes of this pathway are likely constitutively and highly expressed to avoid a cofactor imbalance and energy shortage under fluctuating environmental conditions. We here investigated the essentiality of the three NADH dehydrogenases of the respiratory chain of the obligate aerobe Pseudomonas taiwanensis VLB120 and the impact of the knockouts of corresponding genes on its physiology and metabolism. While a mutant lacking all three NADH dehydrogenases seemed to be nonviable, the single or double knockout mutant strains displayed no, or only a weak, phenotype. Only the mutant deficient in both type 2 dehydrogenases showed a clear phenotype with biphasic growth behavior and a strongly reduced growth rate in the second phase. In-depth analyses of the metabolism of the generated mutants, including quantitative physiological experiments, transcript analysis, proteomics, and enzyme activity assays revealed distinct responses to type 2 and type 1 dehydrogenase deletions. An overall high metabolic flexibility enables P. taiwanensis to cope with the introduced genetic perturbations and maintain stable phenotypes, likely by rerouting of metabolic fluxes. This metabolic adaptability has implications for biotechnological applications. While the phenotypic robustness is favorable in large-scale applications with inhomogeneous conditions, the possible versatile redirecting of carbon fluxes upon genetic interventions can thwart metabolic engineering efforts.IMPORTANCE While Pseudomonas has the capability for high metabolic activity and the provision of reduced redox cofactors important for biocatalytic applications, exploitation of this characteristic might be hindered by high, constitutive activity of and, consequently, competition with the NADH dehydrogenases of the respiratory chain. The in-depth analysis of NADH dehydrogenase mutants of Pseudomonas taiwanensis VLB120 presented here provides insight into the phenotypic and metabolic response of this strain to these redox metabolism perturbations. This high degree of metabolic flexibility needs to be taken into account for rational engineering of this promising biotechnological workhorse toward a host with a controlled and efficient supply of redox cofactors for product synthesis.
Collapse
|
26
|
Moghiseh Z, Rezaee A, Dehghani S, Esrafili A. Microbial electrochemical system for the phenol degradation using alternating current: Metabolic pathway study. Bioelectrochemistry 2019; 130:107230. [DOI: 10.1016/j.bioelechem.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
|
27
|
Arbter P, Sinha A, Troesch J, Utesch T, Zeng AP. Redox governed electro-fermentation improves lipid production by the oleaginous yeast Rhodosporidium toruloides. BIORESOURCE TECHNOLOGY 2019; 294:122122. [PMID: 31525584 DOI: 10.1016/j.biortech.2019.122122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Electro-fermentation (EF) is a promising technique to increase the performance of bioprocesses. Here, the effect of EF on the lipid production by the yeast Rhodosporidium toruloides is studied. First, an in silico analysis was performed to unveil possible lipid yield increase and metabolic shifts by EF. Subsequently, cathodic EF (CEF) and anodic EF (AEF) were experimentally tested at different pO2 levels. CEF enabled artificial lowering of the extracellular redox potential to less than -200 mV even under strictly aerobic conditions. CEF and AEF both positively affected lipid yield and productivity. Additional CEF cultivations with the redox mediator Neutral Red yielded an immense increase in the ratio of saturated fatty acids (from 37% to 50%). Overall, this work demonstrates that EF offers broad potential to improve microbial lipid production. In this context, the use of redox mediators might be of special future interest for the production of cocoa-butter equivalents.
Collapse
Affiliation(s)
- Philipp Arbter
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - Aakanksha Sinha
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - Julie Troesch
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - Tyll Utesch
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestraße 15, D-21073 Hamburg, Germany; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, 100029 Beijing, China.
| |
Collapse
|
28
|
Hernandez CA, Beni V, Osma JF. Fully Automated Microsystem for Unmediated Electrochemical Characterization, Visualization and Monitoring of Bacteria on Solid Media; E. coli K-12: A Case Study. BIOSENSORS 2019; 9:E131. [PMID: 31689950 PMCID: PMC6956053 DOI: 10.3390/bios9040131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 01/26/2023]
Abstract
In this paper, we present a non-fluidic microsystem for the simultaneous visualization and electrochemical evaluation of confined, growing bacteria on solid media. Using a completely automated platform, real-time monitoring of bacterial and image-based computer characterization of growth were performed. Electrochemical tests, using Escherichia coli K-12 as the model microorganism, revealed the development of a faradaic process at the bacteria-microelectrode interface inside the microsystem, as implied by cyclic voltammetry and electrochemical impedance spectrometry measurements. The electrochemical information was used to determine the moment in which bacteria colonized the electrode-enabled area of the microsystem. This microsystem shows potential advantages for long-term electrochemical monitoring of the extracellular environment of cell culture and has been designed using readily available technologies that can be easily integrated in routine protocols. Complementarily, these methods can help elucidate fundamental questions of the electron transfer of bacterial cultures and are potentially feasible to be integrated into current characterization techniques.
Collapse
Affiliation(s)
- Cesar A Hernandez
- CMUA. Department of Electrical and Electronic Engineering, Universidad de los Andes, Carrera 1E # 19A-40, Bogota 111711, Colombia.
| | - Valerio Beni
- Biosensors and Bioelectronics Centre, Department of Physics, Chemistry and Biology (IFM), Linköping University, S-58183 Linköping, Sweden.
- Department of Printed Electronics, RISE Acreo, Research Institute of Sweden, 16440 Norrköping, Sweden.
| | - Johann F Osma
- CMUA. Department of Electrical and Electronic Engineering, Universidad de los Andes, Carrera 1E # 19A-40, Bogota 111711, Colombia.
| |
Collapse
|
29
|
Desmond-Le Quéméner E, Bridier A, Tian JH, Madigou C, Bureau C, Qi Y, Bouchez T. Biorefinery for heterogeneous organic waste using microbial electrochemical technology. BIORESOURCE TECHNOLOGY 2019; 292:121943. [PMID: 31421593 DOI: 10.1016/j.biortech.2019.121943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Environmental biorefineries aim to produce biofuels and platform biomolecules from organic waste. To this end, microbial electrochemical technologies theoretically allow controlled microbial electrosynthesis (MES) of organic molecules to be coupled to oxidation of waste. Here, we provide a first proof of concept and a robust operation strategy for MES in a microbial electrolysis cell (MEC) fed with biowaste hydrolysates. This strategy allowed stable operation at 5 A/m2 for more than three months in a labscale reactor. We report a two to four-fold reduction in power consumption compared to microbial electrosynthesis with water oxidation at the anode. The bioelectrochemical characterizations of the cells were used to compute energy and matter balances for biorefinery scenarios in which anaerobic digestion (AD) provides the electricity and CO2 required for the MEC. Calculations shows that up to 22% of electrons (or COD) from waste may be converted to organic products in the AD-MEC process.
Collapse
Affiliation(s)
- Elie Desmond-Le Quéméner
- Irstea, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France; LBE, Univ Montpellier, INRA, Narbonne, France
| | - Arnaud Bridier
- Irstea, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Jiang-Hao Tian
- Irstea, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Céline Madigou
- Irstea, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Chrystelle Bureau
- Irstea, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Yujiao Qi
- Irstea, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France
| | - Théodore Bouchez
- Irstea, UR PROSE, 1 rue Pierre-Gilles de Gennes, 92761 Antony cedex, France.
| |
Collapse
|
30
|
Liu S, Deng Z, Li H, Feng K. Contribution of electrodes and electric current to process stability and methane production during the electro-fermentation of food waste. BIORESOURCE TECHNOLOGY 2019; 288:121536. [PMID: 31146076 DOI: 10.1016/j.biortech.2019.121536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Electro-fermentation is used as an alternative to conventional anaerobic digestion to enhance system stability and methane production from food waste. In particular, the contributions of electrode materials and an electric current are analyzed separately. The results showed that the introduction of electrodes (conductive carbon brushes without applied voltage) rapidly decreased the average concentration of volatile fatty acids (VFAs) from 6617 mg/L to 174 mg/L quickly, accelerated stabilization of digestion system, and improved methane production by 13.5%. When low voltage was supplied, the VFAs concentration declined to 129 mg/L, and methane production increased by 26.3%. Electric current stimulated the growth of hydrogenotrophic methanogens, but acetotrophic Methanosaeta still made up 27.6-61.9% of archaeal community. Geobacter occurred at the cathode with a low abundance. The energy contained in incremental methane was 4.55 times the consumption of electric energy, indicating the enhanced methanogenesis was mainly attributed to the improved digestion environment.
Collapse
Affiliation(s)
- Sai Liu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Zhou Deng
- Shenzhen Lisai Environmental Technology Co, Ltd, Shenzhen 518055, China
| | - Huan Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Kai Feng
- Guangdong Engineering Research Center of Urban Water Cycle and Environment Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
31
|
Microbial Electrosynthesis I: Pure and Defined Mixed Culture Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 167:181-202. [PMID: 29071400 DOI: 10.1007/10_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past 6 years, microbial bioelectrochemistry has strongly increased in attraction and audience when expanding from mainly environmental technology applications to biotechnology. In particular, the promise to combine electrosynthesis with microbial catalysis opens attractive approaches for new sustainable redox-cofactor recycling, redox-balancing, or even biosynthesis processes. Much of this promise is still not fulfilled, but it has opened and fueled entirely new research areas in this discipline. Activities in designing, tailoring, and applying specific microbial catalysts as pure or defined co-cultures for defined target bioproductions are greatly accelerating. This chapter gives an overview of the current progress as well as the emerging trends in molecular and ecological engineering of defined microbial biocatalysts to prepare them for evolving microbial electrosynthesis processes. In addition, the multitude of microbial electrosynthetic processes with complex undefined mixed cultures is covered by ter Heijne et al. (Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_15 , 2017). Graphical Abstract.
Collapse
|
32
|
Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate by increasing the intracellular FAD pool. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Tang J, Li X, Zhao W, Wang Y, Cui P, Zeng RJ, Yu L, Zhou S. Electric field induces electron flow to simultaneously enhance the maturity of aerobic composting and mitigate greenhouse gas emissions. BIORESOURCE TECHNOLOGY 2019; 279:234-242. [PMID: 30735933 DOI: 10.1016/j.biortech.2019.01.140] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
The long maturation period and greenhouse gas (GHG) emission are two major problems that arise during aerobic composting, mainly due to the low efficiency of O2 transmission and utilization. In this study, a novel electric-field-assisted aerobic composting (EAC) process was tested by simply applying a direct-current voltage of 2 V to a conventional aerobic composting (CAC) process. Compared with the CAC process, the maturation time and the total GHG for the EAC process were reduced by 33% and 70%, respectively. Furthermore, the analyses of O2 consumption and microbial communities demonstrated that the electric field had enhanced O2 utilization by 30 ± 9% and increased the relative abundance of electroactive bacteria by about 3.4-fold compared to CAC. This work has represented a proof of principle for EAC and suggests that the electric field is an effective and environmentally friendly strategy for enhancing compost maturity and mitigating GHG emissions during aerobic composting.
Collapse
Affiliation(s)
- Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenqi Zhao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yajun Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linpeng Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
34
|
Bajracharya S, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D. Bioelectrochemical conversion of CO 2 to chemicals: CO 2 as a next generation feedstock for electricity-driven bioproduction in batch and continuous modes. Faraday Discuss 2019; 202:433-449. [PMID: 28657636 DOI: 10.1039/c7fd00050b] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The recent concept of microbial electrosynthesis (MES) has evolved as an electricity-driven production technology for chemicals from low-value carbon dioxide (CO2) using micro-organisms as biocatalysts. MES from CO2 comprises bioelectrochemical reduction of CO2 to multi-carbon organic compounds using the reducing equivalents produced at the electrically-polarized cathode. The use of CO2 as a feedstock for chemicals is gaining much attention, since CO2 is abundantly available and its use is independent of the food supply chain. MES based on CO2 reduction produces acetate as a primary product. In order to elucidate the performance of the bioelectrochemical CO2 reduction process using different operation modes (batch vs. continuous), an investigation was carried out using a MES system with a flow-through biocathode supplied with 20 : 80 (v/v) or 80 : 20 (v/v) CO2 : N2 gas. The highest acetate production rate of 149 mg L-1 d-1 was observed with a 3.1 V applied cell-voltage under batch mode. While running in continuous mode, high acetate production was achieved with a maximum rate of 100 mg L-1 d-1. In the continuous mode, the acetate production was not sustained over long-term operation, likely due to insufficient microbial biocatalyst retention within the biocathode compartment (i.e. suspended micro-organisms were washed out of the system). Restarting batch mode operations resulted in a renewed production of acetate. This showed an apparent domination of suspended biocatalysts over the attached (biofilm forming) biocatalysts. Long term CO2 reduction at the biocathode resulted in the accumulation of acetate, and more reduced compounds like ethanol and butyrate were also formed. Improvements in the production rate and different biomass retention strategies (e.g. selecting for biofilm forming micro-organisms) should be investigated to enable continuous biochemical production from CO2 using MES. Certainly, other process optimizations will be required to establish MES as an innovative sustainable technology for manufacturing biochemicals from CO2 as a next generation feedstock.
Collapse
Affiliation(s)
- Suman Bajracharya
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol 2400, Belgium.
| | | | | | | | | |
Collapse
|
35
|
Jiang Y, May HD, Lu L, Liang P, Huang X, Ren ZJ. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. WATER RESEARCH 2019; 149:42-55. [PMID: 30419466 DOI: 10.1016/j.watres.2018.10.092] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Carbon-rich waste materials (solid, liquid, or gaseous) are largely considered to be a burden on society due to the large capital and energy costs for their treatment and disposal. However, solid and liquid organic wastes have inherent energy and value, and similar as waste CO2 gas they can be reused to produce value-added chemicals and materials. There has been a paradigm shift towards developing a closed loop, biorefinery approach for the valorization of these wastes into value-added products, and such an approach enables a more carbon-efficient and circular economy. This review quantitatively analyzes the state-of-the-art of the emerging microbial electrochemical technology (MET) platform and provides critical perspectives on research advancement and technology development. The review offers side-by-side comparison between microbial electrosynthesis (MES) and electro-fermentation (EF) processes in terms of principles, key performance metrics, data analysis, and microorganisms. The study also summarizes all the processes and products that have been developed using MES and EF to date for organic waste and CO2 valorization. It finally identifies the technological and economic potentials and challenges on future system development.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Harold D May
- Hollings Marine Laboratory, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
36
|
Rago L, Zecchin S, Villa F, Goglio A, Corsini A, Cavalca L, Schievano A. Bioelectrochemical Nitrogen fixation (e-BNF): Electro-stimulation of enriched biofilm communities drives autotrophic nitrogen and carbon fixation. Bioelectrochemistry 2019; 125:105-115. [DOI: 10.1016/j.bioelechem.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 10/28/2022]
|
37
|
Wu Z, Wang J, Liu J, Wang Y, Bi C, Zhang X. Engineering an electroactive Escherichia coli for the microbial electrosynthesis of succinate from glucose and CO 2. Microb Cell Fact 2019; 18:15. [PMID: 30691454 PMCID: PMC6348651 DOI: 10.1186/s12934-019-1067-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/20/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Electrochemical energy is a key factor of biosynthesis, and is necessary for the reduction or assimilation of substrates such as CO2. Previous microbial electrosynthesis (MES) research mainly utilized naturally electroactive microbes to generate non-specific products. RESULTS In this research, an electroactive succinate-producing cell factory was engineered in E. coli T110(pMtrABC, pFccA-CymA) by expressing mtrABC, fccA and cymA from Shewanella oneidensis MR-1, which can utilize electricity to reduce fumarate. The electroactive T110 strain was further improved by incorporating a carbon concentration mechanism (CCM). This strain was fermented in an MES system with neutral red as the electron carrier and supplemented with HCO3+, which produced a succinate yield of 1.10 mol/mol glucose-a 1.6-fold improvement over the parent strain T110. CONCLUSIONS The strain T110(pMtrABC, pFccA-CymA, pBTCA) is to our best knowledge the first electroactive microbial cell factory engineered to directly utilize electricity for the production of a specific product. Due to the versatility of the E. coli platform, this pioneering research opens the possibility of engineering various other cell factories to utilize electricity for bioproduction.
Collapse
Affiliation(s)
- Zaiqiang Wu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junsong Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Yan Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Changhao Bi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, Tianjin, 300308, China.
| |
Collapse
|
38
|
Nimbalkar P, Khedkar MA, Parulekar RS, Chandgude VK, Sonawane KD, Chavan PV, Bankar SB. Role of Trace Elements as Cofactor: An Efficient Strategy toward Enhanced Biobutanol Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2018; 6:9304-9313. [PMID: 30271690 PMCID: PMC6156106 DOI: 10.1021/acssuschemeng.8b01611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/02/2018] [Indexed: 05/07/2023]
Abstract
Metabolic engineering has the potential to steadily enhance product titers by inducing changes in metabolism. Especially, availability of cofactors plays a crucial role in improving efficacy of product conversion. Hence, the effect of certain trace elements was studied individually or in combinations, to enhance butanol flux during its biological production. Interestingly, nickel chloride (100 mg L-1) and sodium selenite (1 mg L-1) showed a nearly 2-fold increase in solvent titer, achieving 16.13 ± 0.24 and 12.88 ± 0.36 g L-1 total solvents with yields of 0.30 and 0.33 g g-1, respectively. Subsequently, the addition time (screened entities) was optimized (8 h) to further increase solvent production up to 18.17 ± 0.19 and 15.5 ± 0.13 g L-1 by using nickel and selenite, respectively. A significant upsurge in butanol dehydrogenase (BDH) levels was observed, which reflected in improved solvent productions. Additionally, a three-dimensional structure of BDH was also constructed using homology modeling and subsequently docked with substrate, cofactor, and metal ion to investigate proper orientation and molecular interactions.
Collapse
Affiliation(s)
- Pranhita
R. Nimbalkar
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O.
Box 16100, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Bharati Vidyapeeth
Deemed University College of Engineering, Pune 411043, India
| | - Manisha A. Khedkar
- Department
of Chemical Engineering, Bharati Vidyapeeth
Deemed University College of Engineering, Pune 411043, India
| | | | - Vijaya K. Chandgude
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O.
Box 16100, FI-00076 Aalto, Finland
| | - Kailas D. Sonawane
- Department
of Microbiology, Shivaji University, Kolhapur 416004, India
- Department
of Biochemistry, Structural Bioinformatics Unit, Shivaji University, Kolhapur 416004, India
| | - Prakash V. Chavan
- Department
of Chemical Engineering, Bharati Vidyapeeth
Deemed University College of Engineering, Pune 411043, India
| | - Sandip B. Bankar
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O.
Box 16100, FI-00076 Aalto, Finland
- E-mail: ; . Tel.: +358 505777898
| |
Collapse
|
39
|
In Silico Knockout Screening of Plasmodium falciparum Reactions and Prediction of Novel Essential Reactions by Analysing the Metabolic Network. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8985718. [PMID: 29789805 PMCID: PMC5896307 DOI: 10.1155/2018/8985718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/04/2018] [Accepted: 02/19/2018] [Indexed: 01/18/2023]
Abstract
Malaria is an infectious disease that affects close to half a million individuals every year and Plasmodium falciparum is a major cause of malaria. The treatment of this disease could be done effectively if the essential enzymes of this parasite are specifically targeted. Nevertheless, the development of the parasite in resisting existing drugs now makes discovering new drugs a core responsibility. In this study, a novel computational model that makes the prediction of new and validated antimalarial drug target cheaper, easier, and faster has been developed. We have identified new essential reactions as potential targets for drugs in the metabolic network of the parasite. Among the top seven (7) predicted essential reactions, four (4) have been previously identified in earlier studies with biological evidence and one (1) has been with computational evidence. The results from our study were compared with an extensive list of seventy-seven (77) essential reactions with biological evidence from a previous study. We present a list of thirty-one (31) potential candidates for drug targets in Plasmodium falciparum which includes twenty-four (24) new potential candidates for drug targets.
Collapse
|
40
|
Vassilev I, Gießelmann G, Schwechheimer SK, Wittmann C, Virdis B, Krömer JO. Anodic electro‐fermentation: Anaerobic production of L‐Lysine by recombinant
Corynebacterium glutamicum. Biotechnol Bioeng 2018; 115:1499-1508. [DOI: 10.1002/bit.26562] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/04/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Igor Vassilev
- Centre for Microbial Electrochemical Systems (CEMES)The University of QueenslandBrisbaneQLDAustralia
- Advanced Water Management CentreThe University of QueenslandBrisbaneQLDAustralia
| | - Gideon Gießelmann
- Institute for Systems BiotechnologySaarland UniversitySaarbrückenGermany
| | | | - Christoph Wittmann
- Institute for Systems BiotechnologySaarland UniversitySaarbrückenGermany
| | - Bernardino Virdis
- Advanced Water Management CentreThe University of QueenslandBrisbaneQLDAustralia
| | - Jens O. Krömer
- Centre for Microbial Electrochemical Systems (CEMES)The University of QueenslandBrisbaneQLDAustralia
- Advanced Water Management CentreThe University of QueenslandBrisbaneQLDAustralia
- Departmentfor Solar MaterialsHelmholtz Centre for Environmental Research UFZLeipzigGermany
| |
Collapse
|
41
|
Harnisch F, Urban C. Elektrobioraffinerien: Synergien zwischen elektrochemischen und mikrobiologischen Stoffumwandlungen nutzbar machen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Falk Harnisch
- Department Umweltmikrobiologie; UFZ-Helmholtz-Zentrum für Umweltforschung; Permoserstraße 15 04318 Leipzig Deutschland
| | - Carolin Urban
- Department Umweltmikrobiologie; UFZ-Helmholtz-Zentrum für Umweltforschung; Permoserstraße 15 04318 Leipzig Deutschland
| |
Collapse
|
42
|
Harnisch F, Urban C. Electrobiorefineries: Unlocking the Synergy of Electrochemical and Microbial Conversions. Angew Chem Int Ed Engl 2018; 57:10016-10023. [PMID: 29235724 DOI: 10.1002/anie.201711727] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 12/19/2022]
Abstract
An integrated biobased economy urges an alliance of the two realms of "chemical production" and "electric power". The concept of electrobiorefineries provides a blueprint for such an alliance. Joining the forces of microbial and electrochemical conversions in electrobiorefineries allows interfacing the production, storage, and exploitation of electricity as well as biobased chemicals. Electrobiorefineries are a technological evolution of biorefineries by the addition of (bio)electrochemical transformations. This interfacing of microbial and electrochemical conversions will result in synergies affecting the entire process line, like enlarging the product portfolio, increasing the productivity, or exploiting new feedstock. A special emphasis is given to the utilization of oxidative and reductive electroorganic reactions of microbially produced intermediates that may serve as privileged building blocks.
Collapse
Affiliation(s)
- Falk Harnisch
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Carolin Urban
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
43
|
Mohanakrishna G, Vanbroekhoven K, Pant D. Impact of dissolved carbon dioxide concentration on the process parameters during its conversion to acetate through microbial electrosynthesis. REACT CHEM ENG 2018. [DOI: 10.1039/c7re00220c] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reduction of carbon dioxide (CO2) released from industry can help to reduce the emissions of greenhouse gases (GHGs) to the atmosphere while at the same time producing value-added chemicals and contributing to carbon fixation.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- Separation & Conversion Technology
- Flemish Institute for Technological Research (VITO)
- 2400 Mol
- Belgium
- Department of Chemical Engineering
| | - Karolien Vanbroekhoven
- Separation & Conversion Technology
- Flemish Institute for Technological Research (VITO)
- 2400 Mol
- Belgium
| | - Deepak Pant
- Separation & Conversion Technology
- Flemish Institute for Technological Research (VITO)
- 2400 Mol
- Belgium
| |
Collapse
|
44
|
Reactors for Microbial Electrobiotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 167:231-271. [PMID: 29651504 DOI: 10.1007/10_2017_40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
From the first electromicrobial experiment to a sophisticated microbial electrochemical process - it all takes place in a reactor. Whereas the reactor design and materials used strongly influence the obtained results, there are no common platforms for MES reactors. This is a critical convention gap, as cross-comparison and benchmarking among MES as well as MES vs. conventional biotechnological processes is needed. Only knowledge driven engineering of MES reactors will pave the way to application and commercialization. In this chapter we first assess the requirements on reactors to be used for bioelectrochemical systems as well as potential losses caused by the reactor design. Subsequently, we compile the main types and designs of reactors used for MES so far, starting from simple H-cells to stirred tank reactors. We conclude with a discussion on the weaknesses and strengths of the existing types of reactors for bioelectrochemical systems that are scored on design criteria and draw conclusions for the future engineering of MES reactors.
Collapse
|
45
|
Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering. Metab Eng 2017; 45:109-120. [PMID: 29229581 DOI: 10.1016/j.ymben.2017.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering.
Collapse
|
46
|
Predicting and experimental evaluating bio-electrochemical synthesis — A case study with Clostridium kluyveri. Bioelectrochemistry 2017; 118:114-122. [DOI: 10.1016/j.bioelechem.2017.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/20/2022]
|
47
|
Xafenias N, Kmezik C, Mapelli V. Enhancement of anaerobic lysine production in Corynebacterium glutamicum electrofermentations. Bioelectrochemistry 2017; 117:40-47. [DOI: 10.1016/j.bioelechem.2017.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 11/28/2022]
|
48
|
Revealing extracellular electron transfer mediated parasitism: energetic considerations. Sci Rep 2017; 7:7766. [PMID: 28798305 PMCID: PMC5552874 DOI: 10.1038/s41598-017-07593-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Extracellular electron transfer (EET) is a mechanism that allows energetic coupling between two microorganisms or between a microorganism and an electrode surface. EET is either supported by direct physical contacts or mediated by electron shuttles. So far, studies dealing with interspecies EET (so-called IET) have mainly focused on possible syntrophic interactions between microorganisms favoured by this mechanism. In this article, the case of fermentative bacteria receiving extracellular electrons while fermenting a substrate is considered. A thermodynamical analysis based on metabolic energy balances was applied to re-investigate experimental data from the literature. Results suggest that the observations of a decrease of cell biomass yields of fermentative electron-accepting species, as mostly reported, can be unravelled by EET energetics and correspond to parasitism in case of IET. As an illustration, the growth yield decrease of Propionibacterium freudenreichii (−14%) observed in electro-fermentation experiments was fully explained by EET energetics when electrons were used by this species at a potential of −0.12 ± 0.01 V vs SHE. Analysis of other cases showed that, in addition to EET energetics in Clostridium pasteurianum, biological regulations can also be involved in such biomass yield decrease (−33% to −38%). Interestingly, the diminution of bacterial biomass production is always concomitant with an increased production of reduced compounds making IET-mediated parasitism and electro-fermentation attractive ways to optimize carbon fluxes in fermentation processes.
Collapse
|
49
|
Moscoviz R, Trably E, Bernet N. Electro-fermentation triggering population selection in mixed-culture glycerol fermentation. Microb Biotechnol 2017; 11:74-83. [PMID: 28695687 PMCID: PMC5743810 DOI: 10.1111/1751-7915.12747] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/04/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023] Open
Abstract
Electro‐fermentation is a new technique that could be used to influence the global metabolism in mixed‐culture fermentation. In this study, a mixed‐culture cathodic electro‐fermentation of glycerol was investigated. Both microbial community structure and metabolic patterns were altered when compared to standard fermentation. This microbial population shift was more significant when the working electrodes were pre‐colonized by Geobacter sulfurreducens, before electro‐fermentation. The electro‐fermenting microbial community was more efficient for producing 1,3‐propanediol with an improved yield of 10% when compared with fermentation controls. Such improvement did not require high energy and total electron input represented < 1% of the total electron equivalents provided only by glycerol. A linear model was developed to estimate the individual metabolic pattern of each operational taxonomic unit. Application of this model compared to the experimental results suggests that the changes in global metabolism were supported by bacterial population selection rather than individual metabolism shift. This study shows for the first time that both fermentation pattern and bacterial community composition can be influenced by electro‐fermentation conditions.
Collapse
Affiliation(s)
- Roman Moscoviz
- LBE, INRA, 102 Avenue des étangs, 11100, Narbonne, France
| | - Eric Trably
- LBE, INRA, 102 Avenue des étangs, 11100, Narbonne, France
| | - Nicolas Bernet
- LBE, INRA, 102 Avenue des étangs, 11100, Narbonne, France
| |
Collapse
|
50
|
Gildemyn S, Rozendal RA, Rabaey K. A Gibbs Free Energy-Based Assessment of Microbial Electrocatalysis. Trends Biotechnol 2017; 35:393-406. [DOI: 10.1016/j.tibtech.2017.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 10/19/2022]
|