1
|
Rajaiah P, Gupta B, Mayilsamy M. ZIKA Virus, an Emerging Arbovirus in India: A Glimpse of Global Genetic Lineages. Microorganisms 2025; 13:544. [PMID: 40142437 PMCID: PMC11946211 DOI: 10.3390/microorganisms13030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 03/28/2025] Open
Abstract
ZIKA fever (ZIKAF) is an emerging mosquito-borne flavivirus illness in humans. Regarding the etiological agent, ZIKA virus (ZIKAV), though it is known to be distributed in the tropics, causing sporadic cases, its rapid global expansion with pandemic potential has raised global concern. Due to its abrupt emergence in South American countries, the Caribbean, and the Americas, the WHO declared ZIKA a public health emergency of international concern in 2016. ZIKAV usually causes mild infections; however, its recent unusual presentations of Guillen-Barré syndrome in adults and microcephaly in newborn babies of ZIKAV-infected mothers in Brazil has caused concern among global public health authorities. Certain mutations on virus genomes have been found to be correlated with clinical severity, and its unusual transmission routes through sexual and blood transfusions emphasize the necessity for understanding its virological determinants and impact. Its abrupt re-emergence in India (2018-2019), particularly in Gujarat (2016), Tamil Nadu (2017), Uttar Pradesh (2021), Maharashtra, Kerala (2021), and Karnataka (2023), has indicated the need for urgent measures to strengthen surveillance systems and design effective prevention and control measures in this country. Given the global concern around ZIKAV, here, we reviewed current knowledge about global ZIKAV genetic lineages vis à vis the situation in India and discussed future priorities for ZIKAV research in India for effectively designing control strategies.
Collapse
Affiliation(s)
- Paramasivan Rajaiah
- ICMR-Vector Control Research Centre, 4, Sarojini Street, Chinna Chokkikulam, Madurai 625 002, India; (B.G.); (M.M.)
| | | | | |
Collapse
|
2
|
Noisumdaeng P, Dangsagul W, Sangsiriwut K, Prasertsopon J, Changsom D, Yoksan S, Ajawatanawong P, Buathong R, Puthavathana P. Molecular characterization and geographical distribution of Zika virus worldwide from 1947 to 2022. Int J Infect Dis 2023; 136:5-10. [PMID: 37652092 DOI: 10.1016/j.ijid.2023.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVES We conducted molecular characterization, demonstrated the geographical distribution of Zika virus (ZIKV) circulating worldwide from 1947 to 2022 and explored the potential genetic recombination site in the Thailand ZIKV genomes. METHODS We constructed phylogenetic trees based on ZIKV coding sequences (CDS) and determined the geographical distribution of the representative viruses by genetic relationship and timeline. We determined genetic recombination among ZIKV and between ZIKV and other flaviviruses using similarity plot and bootscan analyzes, together with the phylogeny encompassing the CDS and eight subgenomic regions. RESULTS The phylogenetic trees comprising 717 CDS showed two distinct African and Asian lineages. ZIKV in the African lineage formed two sublineages, and ZIKV in the Asian lineage diversified into the Asian and American sublineages. The 1966 Malaysian isolate was designated the prototype of the Asian sublineage and formed a node of only one member, while the newer viruses formed a distinct node. We detected no genetic recombination in the Thailand ZIKV. CONCLUSION Five Thailand isolates discovered in 2006 were the second oldest ZIKV after the Malaysian prototype. Our result suggested two independent routes of ZIKV spread from Southeast Asia to Micronesia in 2007 and French Polynesia in 2013 before further spreading to South American countries.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University, Pathum Thani, Thailand; Thammasat University Research Unit in Modern Microbiology and Public Health Genomics, Thammasat University, Pathum Thani, Thailand
| | - Worawat Dangsagul
- Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Kantima Sangsiriwut
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Don Changsom
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sutee Yoksan
- Center for Vaccine Development, Mahidol University, Nakhon Pathom, Thailand
| | - Pravech Ajawatanawong
- Office of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rome Buathong
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | |
Collapse
|
3
|
Pharmacological Potential of Flavonoids against Neurotropic Viruses. Pharmaceuticals (Basel) 2022; 15:ph15091149. [PMID: 36145370 PMCID: PMC9502241 DOI: 10.3390/ph15091149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are a group of natural compounds that have been described in the literature as having anti-inflammatory, antioxidant, and neuroprotective compounds. Although they are considered versatile molecules, little has been discussed about their antiviral activities for neurotropic viruses. Hence, the present study aimed to investigate the pharmacological potential of flavonoids in the face of viruses that can affect the central nervous system (CNS). We carried out research from 2011 to 2021 using the Pubmed platform. The following were excluded: articles not in the English language, letters to editors, review articles and papers that did not include any experimental or clinical tests, and papers that showed antiviral activities against viruses that do not infect human beings. The inclusion criteria were in silico predictions and preclinical pharmacological studies, in vitro, in vivo and ex vivo, and clinical studies with flavonoids, flavonoid fractions and extracts that were active against neurotropic viruses. The search resulted in 205 articles that were sorted per virus type and discussed, considering the most cited antiviral activities. Our investigation shows the latest relevant data about flavonoids that have presented a wide range of actions against viruses that affect the CNS, mainly influenza, hepatitis C and others, such as the coronavirus, enterovirus, and arbovirus. Considering that these molecules present well-known anti-inflammatory and neuroprotective activities, using flavonoids that have demonstrated both neuroprotective and antiviral effects could be viewed as an alternative for therapy in the course of CNS infections.
Collapse
|
4
|
Cataneo AHD, Ávila EP, Mendes LADO, de Oliveira VG, Ferraz CR, de Almeida MV, Frabasile S, Duarte Dos Santos CN, Verri WA, Bordignon J, Wowk PF. Flavonoids as Molecules With Anti- Zika virus Activity. Front Microbiol 2021; 12:710359. [PMID: 34566915 PMCID: PMC8462986 DOI: 10.3389/fmicb.2021.710359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-born virus that is mainly transmitted to humans by mosquitoes of the genus Aedes spp. Since its first isolation in 1947, only a few human cases had been described until large outbreaks occurred on Yap Island (2007), French Polynesia (2013), and Brazil (2015). Most ZIKV-infected individuals are asymptomatic or present with a self-limiting disease and nonspecific symptoms such as fever, myalgia, and headache. However, in French Polynesia and Brazil, ZIKV outbreaks led to the diagnosis of congenital malformations and microcephaly in newborns and Guillain-Barré syndrome (GBS) in adults. These new clinical presentations raised concern from public health authorities and highlighted the need for anti-Zika treatments and vaccines to control the neurological damage caused by the virus. Despite many efforts in the search for an effective treatment, neither vaccines nor antiviral drugs have become available to control ZIKV infection and/or replication. Flavonoids, a class of natural compounds that are well-known for possessing several biological properties, have shown activity against different viruses. Additionally, the use of flavonoids in some countries as food supplements indicates that these molecules are nontoxic to humans. Thus, here, we summarize knowledge on the use of flavonoids as a source of anti-ZIKV molecules and discuss the gaps and challenges in this area before these compounds can be considered for further preclinical and clinical trials.
Collapse
Affiliation(s)
| | - Eloah Pereira Ávila
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Camila Rodrigues Ferraz
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Sandra Frabasile
- Sección Virologia, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | | | - Waldiceu Aparecido Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas/Fiocruz-PR, Curitiba, Brazil
| |
Collapse
|
5
|
de O. da Silva LR, Oliveira P, Sardi S, Soares G, Bandeira AC, Costa RDS, Rafaels N, Campbell M, Brunetti T, Crooks K, Daya M, Teixeira MG, Carneiro VL, Barnes K, Figueiredo CA. Zika Virus Congenital Syndrome and MTOR gene variants: insights from a family of dizygotic twins. Heliyon 2021; 7:e06878. [PMID: 33997407 PMCID: PMC8095117 DOI: 10.1016/j.heliyon.2021.e06878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
Congenital Zika virus syndrome (CZS) is associated with damage to neural progenitor cells by ZIKA virus infection. There are no accurate statistics on the percentage of pregnant mothers who have had babies affected by the syndrome. Few cases of discordant twins have been described in the literature and, therefore, we hypothesize that the genetic background of the progeny and/or mother may play a role in the fate of the syndrome. We performed a complete exome sequencing in a set of dizygotic individuals and their parents. After that, we selected discordant variants on the MTOR gene between the affected and unaffected twin and we observed a mutation (rs2295079), placed in a region restricted to proximal 5'-UTR, as a strong possible causal variant. In addition, in most brain tissues (including fetal brain) evaluated for expression quantitative trait loci (eQTL), this locus is strongly correlated with post-translational modifications of histones (promoter and enhancer marks) and hypersensitivity to DNAse I (open chromatin mark). Taken together, our data suggest that changes in the MTOR gene may be related to CZS. Additional functional studies should be carried out to prove how and why a MTOR mutation can predispose the fetus to the syndrome.
Collapse
Affiliation(s)
| | - Pablo Oliveira
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Silvia Sardi
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Gubio Soares
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Ryan dos Santos Costa
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Nicholas Rafaels
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Monica Campbell
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Tonya Brunetti
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Kristy Crooks
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Michelle Daya
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Maria Glória Teixeira
- Instituto de Ciências Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | | | - Kathleen Barnes
- Department of Medicine, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Camila A. Figueiredo
- Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| |
Collapse
|
6
|
Nunes BTD, Fontes-Garfias CR, Shan C, Muruato AE, Nunes JGC, Burbano RMR, Vasconcelos PFC, Shi PY, Medeiros DBA. Zika structural genes determine the virulence of African and Asian lineages. Emerg Microbes Infect 2020; 9:1023-1033. [PMID: 32419649 PMCID: PMC8284969 DOI: 10.1080/22221751.2020.1753583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Asian lineage of Zika virus (ZIKV) is responsible for the recent epidemics in the Americas and severe disease, whereas the African lineage of ZIKV has not been reported to cause epidemics or severe disease. We constructed a cDNA infectious clone (IC) of an African ZIKV strain, which, together with our previously developed Asian ZIKV strain IC, allowed us to engineer chimeric viruses by swapping the structural and non-structural genes between the two lineages. Recombinant parental and chimeric viruses were analyzed in A129 and newborn CD1 mouse models. In the A129 mice, the African strain developed higher viremia, organ viral loading, and mortality rate. In CD1 mice, the African strain exhibited a higher neurovirulence than the Asian strain. A chimeric virus containing the structural genes from the African strain is more virulent than the Asian strain, whereas a chimeric virus containing the non-structural genes from the African strain exhibited a virulence comparable to the Asian strain. These results suggest that (i) African strain is more virulent than Asian strain and (ii) viral structural genes primarily determine the virulence difference between the two lineages in mouse models. Other factors may contribute to the discrepancy between the mouse and epidemic results.
Collapse
Affiliation(s)
- Bruno T D Nunes
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil.,Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Health Sciences Institute, Belem, Brazil
| | | | - Chao Shan
- Department of Biochemistry & Molecular Biology, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Department of Microbiology & Immunology, Galveston, TX, USA
| | - Jannyce G C Nunes
- Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Health Sciences Institute, Belem, Brazil
| | - Rommel M R Burbano
- Health Sciences Institute, Belem, Brazil.,Biological Sciences Institute - ICS, Federal University of Pará, Belem, Brazil
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil.,Department of Pathology, Pará State University Belém, Brazil
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Institute for Human Infections & Immunity, Galveston, TX, USA.,Institute for Translational Science, Galveston, TX, USA.,Sealy Institute of Vaccine Sciences, Galveston, TX, USA.,Sealy Center for Structural Biology & Molecular Biophysics, Texas Medical Branch, Galveston, TX, USA
| | - Daniele B A Medeiros
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil.,Department of Biochemistry & Molecular Biology, Galveston, TX, USA.,Post Graduation Program in Virology, Evandro Chagas Institute Ministry of Health, Ananindeua, Brazil.,Health Sciences Institute, Belem, Brazil
| |
Collapse
|
7
|
Putri ND, Dhenni R, Handryastuti S, Johar E, Ma’roef CN, Fadhilah A, Perma Iskandar AT, Prayitno A, Karyanti MR, Satari HI, Jumiyanti N, Aprilia YY, Sriyani IY, Dewi YP, Yudhaputri FA, Safari D, Hadinegoro SR, Rosenberg R, Powers AM, Aye Myint KS. Absence of Evidence of Zika Virus Infection in Cord Blood and Urine from Newborns with Congenital Abnormalities, Indonesia. Am J Trop Med Hyg 2020; 102:876-879. [PMID: 32043460 PMCID: PMC7124925 DOI: 10.4269/ajtmh.19-0593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/20/2019] [Indexed: 11/07/2022] Open
Abstract
Zika virus (ZIKV) has recently been confirmed as endemic in Indonesia, but no congenital anomalies (CA) related to ZIKV infection have been reported. We performed molecular and serological testing for ZIKV and other flaviviruses on cord serum and urine samples collected in October 2016 to April 2017 during a prospective, cross-sectional study of neonates in Jakarta, Indonesia. Of a total of 429 neonates, 53 had CA, including 14 with microcephaly. These 53, and 113 neonate controls without evidence of CA, were tested by ZIKV-specific real-time reverse transcription polymerase chain reaction (RT-PCR), pan-flavivirus RT-PCR, anti-ZIKV and anti-DENV IgM ELISA, and plaque reduction neutralization test. There was no evidence of ZIKV infection among neonates in either the CA or non-CA cohorts, except in three cases with low titers of anti-ZIKV neutralizing antibodies. Further routine evaluation throughout Indonesia of pregnant women and their newborns for exposure to ZIKV should be a high priority for determining risk.
Collapse
Affiliation(s)
- Nina Dwi Putri
- Department of Paediatrics, Dr. Cipto Mangunkusumo National Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Rama Dhenni
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Setyo Handryastuti
- Department of Paediatrics, Dr. Cipto Mangunkusumo National Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Edison Johar
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Chairin Nisa Ma’roef
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Araniy Fadhilah
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Adhi Teguh Perma Iskandar
- Department of Paediatrics, Dr. Cipto Mangunkusumo National Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ari Prayitno
- Department of Paediatrics, Dr. Cipto Mangunkusumo National Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mulya Rahma Karyanti
- Department of Paediatrics, Dr. Cipto Mangunkusumo National Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Hindra Irawan Satari
- Department of Paediatrics, Dr. Cipto Mangunkusumo National Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Niphidiah Jumiyanti
- Department of Paediatrics, Dr. Cipto Mangunkusumo National Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Yuni Yudha Aprilia
- Department of Paediatrics, Dr. Cipto Mangunkusumo National Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ida Yus Sriyani
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Yora Permata Dewi
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Dodi Safari
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Sri Rezeki Hadinegoro
- Department of Paediatrics, Dr. Cipto Mangunkusumo National Central Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ronald Rosenberg
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Ann M. Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado
| | - Khin Saw Aye Myint
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| |
Collapse
|
8
|
Fainsod A, Bendelac-Kapon L, Shabtai Y. Fetal Alcohol Spectrum Disorder: Embryogenesis Under Reduced Retinoic Acid Signaling Conditions. Subcell Biochem 2020; 95:197-225. [PMID: 32297301 DOI: 10.1007/978-3-030-42282-0_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a complex set of developmental malformations, neurobehavioral anomalies and mental disabilities induced by exposing human embryos to alcohol during fetal development. Several experimental models and a series of developmental and biochemical approaches have established a strong link between FASD and reduced retinoic acid (RA) signaling. RA signaling is involved in the regulation of numerous developmental decisions from patterning of the anterior-posterior axis, starting at gastrulation, to the differentiation of specific cell types within developing organs, to adult tissue homeostasis. Being such an important regulatory signal during embryonic development, mutations or environmental perturbations that affect the level, timing or location of the RA signal can induce multiple and severe developmental malformations. The evidence connecting human syndromes to reduced RA signaling is presented here and the resulting phenotypes are compared to FASD. Available data suggest that competition between ethanol clearance and RA biosynthesis is a major etiological component in FASD.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel.
| | - Liat Bendelac-Kapon
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| | - Yehuda Shabtai
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Kerem, POB 12271, 9112102, Jerusalem, Israel
| |
Collapse
|
9
|
Durães-Carvalho R, Ludwig-Begall LF, Salemi M, Lins RD, Marques ETA. Influence of directional positive Darwinian selection-driven evolution on arboviruses Dengue and Zika virulence and pathogenesis. Mol Phylogenet Evol 2019; 140:106607. [PMID: 31473337 DOI: 10.1016/j.ympev.2019.106607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
Dengue (DENV) and Zika (ZIKV) viruses are antigenically and evolutionarily related; immunological cross-reactions between them have been associated to both cross-protection and infection-enhanced mechanisms. Here, DENV-1-4 and ZIKV were investigated through Bayesian coalescent-based approaches and selection-driven Darwinian evolution methods using robust datasets. Our findings show that both DENV and ZIKV, driven essentially by directional positive selection, have undergone evolution and diversification and that their entire polyproteins are subject to an intense directional evolution. Interestingly, positively selected codons mapped here are directly associated to DENV-1-2 virulence as well as the ZIKV burgeoning 2015-16 outbreak in the Americas, therefore, having impact on the pathogenesis of these viruses. Biochemical prediction analysis focusing on markers involved in virulence and viral transmission dynamics identified alterations in N-Glycosylation-, Phosphorylation- and Palmitoylation-sites in ZIKV sampled from different countries, hosts and isolation sources. Taking into account both DENV-ZIKV co-circulation either into and/or out of flavivirus-endemic regions, as well as recombination and quasispecies scenarios, these results indicate the action of a selection-driven evolution affecting the biology, virulence and pathogenesis of these pathogens in a non-randomized environment.
Collapse
Affiliation(s)
- Ricardo Durães-Carvalho
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE 50740-465, Brazil.
| | - Louisa F Ludwig-Begall
- Veterinary Virology and Animal Viral Diseases, Department of Infectious and Parasitic Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Belgium
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, United States
| | - Roberto D Lins
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE 50740-465, Brazil
| | - Ernesto T A Marques
- Department of Virology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE 50740-465, Brazil; Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
10
|
Valente AP, Moraes AH. Zika virus proteins at an atomic scale: how does structural biology help us to understand and develop vaccines and drugs against Zika virus infection? J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190013. [PMID: 31523227 PMCID: PMC6727858 DOI: 10.1590/1678-9199-jvatitd-2019-0013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In Brazil and in other tropical areas Zika virus infection was directly associated with clinical complications as microcephaly in newborn children whose mothers were infected during pregnancy and the Guillain-Barré syndrome in adults. Recently, research has been focused on developing new vaccines and drug candidates against Zika virus infection since none of those are available. In order to contribute to vaccine and drug development efforts, it becomes important the understanding of the molecular basis of the Zika virus recognition, infection and blockade. To this purpose, it is essential the structural determination of the Zika virus proteins. The genome sequencing of the Zika virus identified ten proteins, being three structural (protein E, protein C and protein prM) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5). Together, these proteins are the main targets for drugs and antibody recognition. Here we examine new discoveries on high-resolution structural biology of Zika virus, observing the interactions and functions of its proteins identified via state-of-art structural methodologies as X-ray crystallography, nuclear magnetic resonance spectroscopy and cryogenic electronic microscopy. The aim of the present study is to contribute to the understanding of the structural basis of Zika virus infection at an atomic level and to point out similarities and differences to others flaviviruses.
Collapse
Affiliation(s)
- Ana Paula Valente
- National Center of Magnetic Resonance, Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Adolfo Henrique Moraes
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
12
|
Ross C, Taylor M, Fullwood N, Allsop D. Liposome delivery systems for the treatment of Alzheimer's disease. Int J Nanomedicine 2018; 13:8507-8522. [PMID: 30587974 PMCID: PMC6296687 DOI: 10.2147/ijn.s183117] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) will affect around 115 million people worldwide by the year 2050. It is associated with the accumulation of misfolded and aggregated proteins (β-amyloid and tau) in the senile plaques and neurofibrillary tangles found in the brain. Currently available drugs for AD only temporarily alleviate symptoms and do not slow the inevitable progression of this disease. New drugs are required that act on key pathologies in order to arrest or reverse cognitive decline. However, there has been a spectacular failure rate in clinical trials of conventional small molecule drugs or biological agents. Targeted nanoliposomes represent a viable and promising drug delivery system for AD that have not yet reached clinical trials. They are biocompatible, highly flexible, and have the potential to carry many different types of therapeutic molecules across the blood-brain barrier (BBB) and into brain cells. They can be tailored to extend blood circulation time and can be directed against individual or multiple pathological targets. Modifications so far have included the use of brain-penetrating peptides, together with Aβ-targeting ligands, such as phosphatidic acid, curcumin, and a retro-inverted peptide that inhibits Aβ aggregation. Combining several modifications together into multifunctional liposomes is currently a research area of great interest. This review focuses on recent liposomal approaches to AD therapy, including mechanisms involved in facilitating their passage across the BBB, and the evaluation of new therapeutic agents for blocking Aβ and/or tau aggregation.
Collapse
Affiliation(s)
- Callum Ross
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK,
| | - Mark Taylor
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK,
| | - Nigel Fullwood
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK,
| | - David Allsop
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK,
| |
Collapse
|
13
|
Genome Sequences of Zika Virus Strains Recovered from Amniotic Fluid, Placenta, and Fetal Brain of a Microcephaly Patient in Thailand, 2017. Microbiol Resour Announc 2018; 7:MRA01020-18. [PMID: 30533643 PMCID: PMC6256666 DOI: 10.1128/mra.01020-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/28/2018] [Indexed: 11/20/2022] Open
Abstract
We present here the complete genome sequences of Zika virus strains isolated from aborted fetal tissue (brain and placenta) and amniotic fluid of a microcephaly patient in Thailand in 2017. The virus genomes that were sequenced have an average length of 10,807 nucleotides. We present here the complete genome sequences of Zika virus strains isolated from aborted fetal tissue (brain and placenta) and amniotic fluid of a microcephaly patient in Thailand in 2017. The virus genomes that were sequenced have an average length of 10,807 nucleotides.
Collapse
|
14
|
Wongsurawat T, Athipanyasilp N, Jenjaroenpun P, Jun SR, Kaewnapan B, Wassenaar TM, Leelahakorn N, Angkasekwinai N, Kantakamalakul W, Ussery DW, Sutthent R, Nookaew I, Horthongkham N. Case of Microcephaly after Congenital Infection with Asian Lineage Zika Virus, Thailand. Emerg Infect Dis 2018; 24. [PMID: 29985788 PMCID: PMC6106416 DOI: 10.3201/eid2409.180416] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We sequenced the virus genomes from 3 pregnant women in Thailand with Zika virus diagnoses. All had infections with the Asian lineage. The woman infected at gestational week 9, and not those infected at weeks 20 and 24, had a fetus with microcephaly. Asian lineage Zika viruses can cause microcephaly.
Collapse
|
15
|
Li B, Liao HM, Liu H, Tsai S, Zhang J, Hung GC, Chin PJ, Gao Y, Lo SC. Comparative genomics, infectivity and cytopathogenicity of Zika viruses produced by acutely and persistently infected human hematopoietic cell lines. PLoS One 2018; 13:e0203331. [PMID: 30192813 PMCID: PMC6128475 DOI: 10.1371/journal.pone.0203331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Zika virus (ZIKV), an arthropod-borne virus, has emerged as a major human pathogen. Prolonged or persistent ZIKV infection of human cells and tissues may serve as a reservoir for the virus and present serious challenges to the safety of public health. Human hematopoietic cell lines with different developmental properties revealed differences in susceptibility and outcomes to ZIKV infection. In three separate studies involving the prototypic MR 766 ZIKV strain and the human monocytic leukemia U937 cell line, ZIKV initially developed only a low-grade infection at a slow rate. After continuous culture for several months, persistently ZIKV-infected cell lines were observed with most, if not all, cells testing positive for ZIKV antigen. The infected cultures produced ZIKV RNA (v-RNA) and infectious ZIKVs persistently (“persistent ZIKVs”) with distinct infectivity and pathogenicity when tested using various kinds of host cells. When the genomes of ZIKVs from the three persistently infected cell lines were compared with the genome of the prototypic MR 766 ZIKV strain, distinct sets of mutations specific to each cell line were found. Significantly, all three “persistent ZIKVs” were capable of infecting fresh U937 cells with high efficiency at rapid rates, resulting in the development of a new set of persistently ZIKV-infected U937 cell lines. The genomes of ZIKVs from the new set of persistently ZIKV-infected U937 cell lines were further analyzed for their different mutations. The 2nd generation of persistent ZIKVs continued to possess most of the distinct sets of mutations specific to the respective 1st generation of persistent ZIKVs. We anticipate that the study will contribute to the understanding of the fundamental biology of adaptive mutations and selection during viral persistence. The persistently ZIKV-infected human cell lines that we developed will also be useful to investigate critical molecular pathways of ZIKV persistence and to study drugs or countermeasures against ZIKV infections and transmission.
Collapse
Affiliation(s)
- Bingjie Li
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hsiao-Mei Liao
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hebing Liu
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Shien Tsai
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jing Zhang
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Guo-Chiuan Hung
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Pei-Ju Chin
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Yamei Gao
- Lab of Pediatric and Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Shyh-Ching Lo
- Tissue Microbiology Laboratory, Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Sinigaglia A, Riccetti S, Trevisan M, Barzon L. In silico approaches to Zika virus drug discovery. Expert Opin Drug Discov 2018; 13:825-835. [PMID: 30160181 DOI: 10.1080/17460441.2018.1515909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION After the WHO declared Zika virus (ZIKV) as a public health emergency of international concern, intense research for the development of vaccines and drugs has been undertaken, leading to the development of several candidates. Areas covered: This review discusses the developments achieved so far by computational methods in the discovery of candidate compounds targeting ZIKV proteins, i.e. the envelope and capsid structural proteins, the NS3 helicase/protease, and the NS5 methyltransferase/RNA-dependent RNA polymerase. Expert opinion: Research for effective drugs against ZIKV is still in a very early discovery phase. Notwithstanding the intense efforts for the development of new drugs and the identification of several promising candidates by using different approaches, including computational methods, so far only a few candidates have been experimentally tested. An important caveat of anti-flavivirus drug development is represented by the difficult of reproducing the in vivo microenvironment of the replication complex, which may lead to discrepancies between in vitro results and experimental evaluation in vivo. Moreover, anti-ZIKV drugs have the additional requirement of an excellent safety profile in pregnancy and ability to diffuse to different tissues, including the central nervous system, the testis, and the placenta.
Collapse
Affiliation(s)
| | - Silvia Riccetti
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Marta Trevisan
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Luisa Barzon
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
17
|
Sheridan MA, Balaraman V, Schust DJ, Ezashi T, Roberts RM, Franz AWE. African and Asian strains of Zika virus differ in their ability to infect and lyse primitive human placental trophoblast. PLoS One 2018; 13:e0200086. [PMID: 29985932 PMCID: PMC6037361 DOI: 10.1371/journal.pone.0200086] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/19/2018] [Indexed: 01/08/2023] Open
Abstract
Zika virus (ZIKV) drew worldwide attention when a recent epidemic was linked to fetal microcephaly. Here we used human embryonic stem cell derived trophoblasts as a model for primitive placental trophoblast to test the hypothesis that there are differences in how the two genetically distinct ZIKV lineages, African (AF) and Asian (AS), target the human placenta. Upon infection with three AF (ib-H30656, SEN/1984/41525-DAK, and MR-766) and three AS (FSS13025, MexI-44, and PANcdc259249) ZIKV strains, we observed that severe placental cell lysis was only induced after infection with AF strains, while viral replication rates remained similar between both lineages. Differences in cytopathic effects (CPE) were not observed in Vero cells, indicating that the AF strains were not inherently superior at cell lysis. Taken together, we propose that infection with AF strains of ZIKV early in pregnancy would likely result in pregnancy loss, rather than allow further fetal development with accompanying brain damage. Our results also suggest that the long term laboratory-adapted MR-766 strain does not behave aberrantly in cell culture relative to other AF lineage strains.
Collapse
Affiliation(s)
- Megan A. Sheridan
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Velmurugan Balaraman
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Danny J. Schust
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, United States of America
| | - Toshihiko Ezashi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - R. Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Alexander W. E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
18
|
Wren JD, Dozmorov MG, Toby I, Nanduri B, Homayouni R, Manda P, Thakkar S. Proceedings of the 2017 MidSouth Computational Biology and Bioinformatics Society (MCBIOS) Conference. BMC Bioinformatics 2017; 18:498. [PMID: 29297277 PMCID: PMC5751547 DOI: 10.1186/s12859-017-1887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jonathan D. Wren
- Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, Oklahoma City, OK 73104-5005 USA
- Biochemistry and Molecular Biology Dept, Virginia Commonwealth University, 830 East Main Street, Richmond, Virginia, 23298 USA
- Stephenson Cancer Center, Virginia Commonwealth University, 830 East Main Street, Richmond, Virginia, 23298 USA
- Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Virginia Commonwealth University, 830 East Main Street, Richmond, Virginia, 23298 USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, 830 East Main Street, Richmond, Virginia, 23298 USA
| | - Inimary Toby
- Department of Clinical Sciences, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9066 USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762 USA
| | - Ramin Homayouni
- Department of Biological Sciences, Bioinformatics Program, University of Memphis, Memphis, TN 38152 USA
| | - Prashanti Manda
- Department of Computer Science, University of North Carolina at Greensboro, Greensboro, NC USA
| | - Shraddha Thakkar
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079 USA
| |
Collapse
|