1
|
Veytsel G, Desiato J, Chung H, Tan S, Risatti GR, Helal ZH, Jang S, Lee DH, Bahl J. Molecular epidemiology, evolution, and transmission dynamics of raccoon rabies virus in Connecticut. Virus Evol 2024; 11:veae114. [PMID: 39802825 PMCID: PMC11711587 DOI: 10.1093/ve/veae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025] Open
Abstract
In North America, raccoon rabies virus (RRV) is a public health concern due to its potential for rapid spread, maintenance in wildlife, and impact on human and domesticated animal health. RRV is an endemic zoonotic pathogen throughout the eastern USA. In 1991, an outbreak of RRV in Fairfield County, Connecticut, spread through the state and eventually throughout the Northeast and into Canada. Factors that contribute to, or curb, RRV transmission should be explored and quantified to guide targeted rabies control efforts, including the size and location of buffer zones of vaccinated animals. However, population dynamics and potential underlying determinants of rabies virus diversity and circulation in Connecticut have not been fully studied. In this study, we aim to (i) investigate RRV source-sink dynamics between Connecticut and surrounding states and provinces, (ii) explore the impact of the Connecticut River as a natural barrier to transmission, and (iii) characterize the genomic diversity and transmission dynamics in Connecticut. Using RRV whole-genome sequences collected from various host species between 1990 and 2020, we performed comparative genetic and Bayesian phylodynamic analyses at multiple spatial scales. We analyzed 71 whole-genome sequences from Connecticut, including 21 recent RRV specimens collected at the Connecticut Veterinary Medical Diagnostic Laboratory that we sequenced for this study. Our analyses revealed evidence of RRV incursions over the US-Canada border, including bidirectional spread between Quebec and Vermont. Additionally, we highlighted the importance of Connecticut and New York in seeding RRV transmission in eastern North America, including two introduction events from New York to Connecticut that resulted in sustained local transmission. While RRV transmission does occur across the Housatonic and Connecticut Rivers, we demonstrated the distinct presence of spatial structuring in the phylogenetic trees and characterized the directionality of RRV migration. The significantly higher mean transition rates from locations east to west of the Connecticut River, compared to west to east, may be leveraged in directing interventions to fortify these natural barriers. Ultimately, the findings of these international, regional, and state analyses can inform targeted control programs, vaccination efforts, and enhanced surveillance at borders of key viral sources and sinks.
Collapse
Affiliation(s)
- Gabriella Veytsel
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, 140 E. Green Street, Athens, GA 30602, United States
| | - Julia Desiato
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
- Connecticut Emerging Infections Program, Yale School of Public Health, 1 Church Street, New Haven, CT 06510, United States
| | - Hyunjung Chung
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, United States
| | - Swan Tan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, United States
| | - Guillermo R Risatti
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
| | - Zeinab H Helal
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
| | - Sungmin Jang
- Department of Geography, Sustainability, Community, and Urban Studies, University of Connecticut, 215 Glenbrook Road, Storrs, CT 06269, United States
| | - Dong-Hun Lee
- Department of Pathobiology and Veterinary Science, College of Agriculture, Health and Natural Resources, University of Connecticut, 61 North Eagleville Road, Storrs, CT 06269, United States
- College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Justin Bahl
- Institute of Bioinformatics, University of Georgia, 120 Green St., Athens, GA 30602, United States
- Center for the Ecology of Infectious Diseases, University of Georgia, 140 E. Green Street, Athens, GA 30602, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, United States
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, 101 Buck Road, Athens, GA 30602, United States
| |
Collapse
|
2
|
Kamboj S, Kumar M. Global Origin and Spatiotemporal Spread of Hepatitis C Virus Epidemic Genotypes/Subtypes: A Complete Genome-Based Phylodynamic and Phylogeographic Analyses. J Med Virol 2024; 96:e70123. [PMID: 39697008 DOI: 10.1002/jmv.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/24/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Hepatitis C virus (HCV) is a pathogenic virus of global health concern. The phylodynamics of HCV genotypes/subtypes 1a, 1b, 2, and 3 are explored only for specific geographic regions. However, their genome based global origin and detailed spatiotemporal spread, have yet to be extensively studied. To study the global evolution of "epidemic" HCV genotypes/subtypes, we screened all available HCV complete genome sequences (n = 2744) from 27 countries worldwide for over four decades. We used representative sequences (n = 516) for phylodynamic and phylogeographic analyses, examining HCV worldwide origin, transmission, and spatiotemporal spread. We are the first to study the global phylogeography of genotype 2. The evolutionary rates for genotype/subtype 1a, 1b, 2, and 3 are 1.109 × 10-3, 1.096 × 10-3, 5.013 × 10-3 and 1.483 × 10-3 substitutions/site/year respectively. We deduced tMRCAs and origin location of respective HCV genotype/subtype as 1909.21 (United States), 1893.36 (Japan), 981.76 (France), and 1714.89 (India). We estimated their migration pattern with time to and from different continents. The origin location of genotype 2 was estimated to be France instead of previous postulated African origin. This can be related to slave trade, French colonization, and previous studies on specific geographic regions only. HCV genotypes/subtypes showed transmission and expansion due to factors like World War II, iatrogenic infections, "baby boomer" population, inefficient medical screening, intravenous drug use, decline due to antiviral therapy introduction. Our study provides novel and extensive information about the evolutionary history and spatiotemporal spread of the HCV genotypes responsible for most infections worldwide.
Collapse
Affiliation(s)
- Sakshi Kamboj
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Haman KH, Pearson SF, Brown J, Frisbie LA, Penhallegon S, Falghoush AM, Wolking RM, Torrevillas BK, Taylor KR, Snekvik KR, Tanedo SA, Keren IN, Ashley EA, Clark CT, Lambourn DM, Eckstrand CD, Edmonds SE, Rovani-Rhoades ER, Oltean H, Wilkinson K, Fauquier D, Black A, Waltzek TB. A comprehensive epidemiological approach documenting an outbreak of H5N1 highly pathogenic avian influenza virus clade 2.3.4.4b among gulls, terns, and harbor seals in the Northeastern Pacific. Front Vet Sci 2024; 11:1483922. [PMID: 39553196 PMCID: PMC11565051 DOI: 10.3389/fvets.2024.1483922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/09/2024] [Indexed: 11/19/2024] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIV) H5N1 clade 2.3.4.4b continue to have unprecedented global impacts on wild birds and mammals, with especially significant mortality observed in colonial surface-nesting seabirds and in some marine mammal species. In July of 2023 H5N1 HPAIV 2.3.4.4b was detected in Caspian terns nesting on Rat Island, Washington USA. An estimated 1,800-1,900 adult terns populated the breeding colony, based on aerial photographs taken at the start of the outbreak. On a near-weekly basis throughout July and August, we counted and removed carcasses, euthanized moribund birds, and collected swab and tissue samples for diagnostic testing and next-generation sequencing. We directly counted 1,101 dead Caspian tern adults and 520 dead chicks, indicating a minimum 56% loss of the adult colony population and potential impacts to reproductive success. Combining the observed mortality on Rat Island with HPAI-related Caspian tern deaths recorded elsewhere in Washington and Oregon, we estimate that 10-14% of the Pacific Flyway population was lost in the summer of 2023. Comparatively few adult Glaucous-winged gulls (hybrids) nesting on Rat Island died (~3% of the local population), although gull chick mortality was high. Sixteen harbor seals in the immediate or nearby area stranded during the outbreak, and H5N1 HPAIV was detected in brain and/or lung tissue of five seals. These cases are the first known detections of HPAIV in a marine mammal on the Pacific coast of North America. Phylogenetic analyses support the occurrence of at least three independent avian-mammalian virus spillover events (tern or gull to harbor seal). Whole genome sequencing indicated that H5N1 HPAIV may have been introduced to Washington from Caspian terns in Oregon. Ongoing monitoring and surveillance for H5N1 HPAIV in the marine environment is necessary to understand the epidemiology of this virus, assess conservation impacts to susceptible species, and provide support for data-driven management and response actions.
Collapse
Affiliation(s)
- Katherine H Haman
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Scott F Pearson
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Justin Brown
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, United States
| | - Lauren A Frisbie
- Washington State Department of Health, Shoreline, WA, United States
| | | | - Azeza M Falghoush
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
| | - Rebecca M Wolking
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
| | | | - Kyle R Taylor
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Kevin R Snekvik
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Sarah A Tanedo
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Ilai N Keren
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Elizabeth A Ashley
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Casey T Clark
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Dyanna M Lambourn
- Wildlife Program, Science Division, Washington Department of Fish and Wildlife, Olympia, WA, United States
| | - Chrissy D Eckstrand
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Steven E Edmonds
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Emma R Rovani-Rhoades
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| | - Hanna Oltean
- Washington State Department of Health, Shoreline, WA, United States
| | - Kristin Wilkinson
- West Coast Regional Office, National Marine Fisheries Service, Seattle, WA, United States
| | - Deborah Fauquier
- Office of Protected Resources, National Marine Fisheries Service, Silver Spring, MD, United States
| | - Allison Black
- Washington State Department of Health, Shoreline, WA, United States
| | - Thomas B Waltzek
- Washington Animal Disease Diagnostic Laboratory, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, United States
| |
Collapse
|
4
|
Lemoine F, Gascuel O. The Bayesian Phylogenetic Bootstrap and its Application to Short Trees and Branches. Mol Biol Evol 2024; 41:msae238. [PMID: 39514774 PMCID: PMC11600590 DOI: 10.1093/molbev/msae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Felsenstein's bootstrap is the most commonly used method to measure branch support in phylogenetics. Current sequencing technologies can result in massive sampling of taxa (e.g. SARS-CoV-2). In this case, the sequences are very similar, the trees are short, and the branches correspond to a small number of mutations (possibly 0). Nevertheless, these trees contain a strong signal, with unresolved parts but a low rate of false branches. With such data, Felsenstein's bootstrap is not satisfactory. Due to the frequentist nature of bootstrap sampling, the expected support of a branch corresponding to a single mutation is ∼63%, even though it is highly likely to be correct. Here, we propose a Bayesian version of the phylogenetic bootstrap in which sites are assigned uninformative prior probabilities. The branch support can then be interpreted as a posterior probability. We do not view the alignment as a small subsample of a large sample of sites, but rather as containing all available information (e.g. as with complete viral genomes, which are becoming routine). We give formulas for expected supports under the assumption of perfect phylogeny, in both the frequentist and Bayesian frameworks, where a branch corresponding to a single mutation now has an expected support of ∼90%. Simulations show that these theoretical results are robust to realistic data. Analyses on low-homoplasy viral and nonviral datasets show that Bayesian bootstrap support is easier to interpret, with high supports for branches very likely to be correct. As homoplasy increases, the two supports become closer and strongly correlated.
Collapse
Affiliation(s)
- Frédéric Lemoine
- National Reference Center for Respiratory Viruses, Institut Pasteur, Université Paris Cité, Paris 75015, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Olivier Gascuel
- Institut de Systématique Evolution, Biodiversité (ISYEB UMR7205—CNRS, Muséum National d’Histoire Naturelle, SU, EPHE, UA), Paris 75005, France
| |
Collapse
|
5
|
Hill V, Cleemput S, Pereira JS, Gifford RJ, Fonseca V, Tegally H, Brito AF, Ribeiro G, de Souza VC, Brcko IC, Ribeiro IS, De Lima ITT, Slavov SN, Sampaio SC, Elias MC, Tran VT, Kien DTH, Huynh T, Yacoub S, Dieng I, Salvato R, Wallau GL, Gregianini TS, Godinho FMS, Vogels CBF, Breban MI, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara LCJ, Faria NR, Carrington CVF, Hanley KA, Holmes EC, Dumon W, Lima ARJ, Oliveira TD, Grubaugh ND. A new lineage nomenclature to aid genomic surveillance of dengue virus. PLoS Biol 2024; 22:e3002834. [PMID: 39283942 PMCID: PMC11426435 DOI: 10.1371/journal.pbio.3002834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/26/2024] [Indexed: 09/25/2024] Open
Abstract
Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here, we propose adding 2 sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present assignment tools to show that the proposed lineages are useful for regional, national, and subnational discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | | | - James Siqueira Pereira
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Robert J Gifford
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, United Kingdom
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Vagner Fonseca
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Gabriela Ribeiro
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Vinicius Carius de Souza
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Isabela Carvalho Brcko
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Igor Santana Ribeiro
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | | | - Svetoslav Nanev Slavov
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Maria Carolina Elias
- Centro para Vigilância Viral e Avaliação Sorológica (CeVIVAS), Instituto Butantan, São Paulo, Brazil
| | - Vi Thuy Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tuyen Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Salvato
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference, Hamburg, Germany
- National Reference Center for Tropical Infectious Diseases. Bernhard, Hamburg, Germany
| | - Tatiana S Gregianini
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Fernanda M S Godinho
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Gaspary Mwanyika
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Applied Sciences, Mbeya University of Science and Technology (MUST), Mbeya, Tanzania
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Roma, Italy
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Luiz C J Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, United Kingdom
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | | | | | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
6
|
Koch RT, Erazo D, Folly AJ, Johnson N, Dellicour S, Grubaugh ND, Vogels CB. Genomic epidemiology of West Nile virus in Europe. One Health 2024; 18:100664. [PMID: 38193029 PMCID: PMC10772404 DOI: 10.1016/j.onehlt.2023.100664] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
West Nile virus is one of the most widespread mosquito-borne zoonotic viruses, with unique transmission dynamics in various parts of the world. Genomic surveillance has provided important insights in the global patterns of West Nile virus emergence and spread. In Europe, multiple West Nile virus lineages have been isolated, with lineage 1a and 2 being the main lineages responsible for human infections. In contrast to North America, where a single introduction of lineage 1a resulted in the virus establishing itself in a new continent, at least 13 introductions of lineages 1a and 2 have occurred into Europe, which is likely a vast underestimation of the true number of introductions. Historically, lineage 1a was the main lineage circulating in Europe, but since the emergence of lineage 2 in the early 2000s, the latter has become the predominant lineage. This shift in West Nile virus lineage prevalence has been broadly linked to the expansion of the virus into northerly temperate regions, where autochthonous cases in animals and humans have been reported in Germany and The Netherlands. Here, we discuss how genomic analysis has increased our understanding of the epidemiology of West Nile virus in Europe, and we present a global Nextstrain build consisting of publicly available West Nile virus genomes (https://nextstrain.org/community/grubaughlab/WNV-Global). Our results elucidate recent insights in West Nile virus lineage dynamics in Europe, and discuss how expanded programs can fill current genomic surveillance gaps.
Collapse
Affiliation(s)
- R. Tobias Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Diana Erazo
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Arran J. Folly
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, UK
| | - Nicholas Johnson
- Vector-Borne Diseases, Virology Department, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, UK
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, United States of America
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Hill V, Cleemput S, Fonseca V, Tegally H, Brito AF, Gifford R, Tran VT, Kien DTH, Huynh T, Yacoub S, Dieng I, Ndiaye M, Balde D, Diagne MM, Faye O, Salvato R, Wallau GL, Gregianini TS, Godinho FMS, Vogels CBF, Breban MI, Leguia M, Jagtap S, Roy R, Hapuarachchi C, Mwanyika G, Giovanetti M, Alcantara LCJ, Faria NR, Carrington CVF, Hanley KA, Holmes EC, Dumon W, de Oliveira T, Grubaugh ND. A new lineage nomenclature to aid genomic surveillance of dengue virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.16.24307504. [PMID: 38798319 PMCID: PMC11118645 DOI: 10.1101/2024.05.16.24307504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dengue virus (DENV) is currently causing epidemics of unprecedented scope in endemic settings and expanding to new geographical areas. It is therefore critical to track this virus using genomic surveillance. However, the complex patterns of viral genomic diversity make it challenging to use the existing genotype classification system. Here we propose adding two sub-genotypic levels of virus classification, named major and minor lineages. These lineages have high thresholds for phylogenetic distance and clade size, rendering them stable between phylogenetic studies. We present an assignment tool to show that the proposed lineages are useful for regional, national and sub-national discussions of relevant DENV diversity. Moreover, the proposed lineages are robust to classification using partial genome sequences. We provide a standardized neutral descriptor of DENV diversity with which we can identify and track lineages of potential epidemiological and/or clinical importance. Information about our lineage system, including methods to assign lineages to sequence data and propose new lineages, can be found at: dengue-lineages.org.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | | | - Vagner Fonseca
- Department of Exact and Earth Sciences, University of the State of Bahia, Salvador, Brazil
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | | | - Robert Gifford
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, UK
| | - Vi Thuy Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Tuyen Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mignane Ndiaye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Diamilatou Balde
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Moussa M Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Salvato
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães (IAM)-Fundação Oswaldo Cruz-FIOCRUZ, Recife, Brazil
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference, Hamburg, Germany
- National Reference Center for Tropical Infectious Diseases. Bernhard, Hamburg, Germany
| | - Tatiana S Gregianini
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Fernanda M S Godinho
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (CDCT/CEVS/SES-RS), Rio Grande do Sul, Brazil
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Gaspary Mwanyika
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Applied Sciences, Mbeya University of Science and Technology (MUST), Mbeya, Tanzania
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Universita Campus Bio-Medico di Roma, Italy
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Luiz C J Alcantara
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
- Climate Amplified Diseases and Epidemics (CLIMADE), Minas Gerais, Brazil
| | - Nuno R Faria
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, Imperial College London, London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Christine V F Carrington
- Department of Preclinical Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, USA
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Vogels CBF, Hill V, Breban MI, Chaguza C, Paul LM, Sodeinde A, Taylor-Salmon E, Ott IM, Petrone ME, Dijk D, Jonges M, Welkers MRA, Locksmith T, Dong Y, Tarigopula N, Tekin O, Schmedes S, Bunch S, Cano N, Jaber R, Panzera C, Stryker I, Vergara J, Zimler R, Kopp E, Heberlein L, Herzog KS, Fauver JR, Morrison AM, Michael SF, Grubaugh ND. DengueSeq: a pan-serotype whole genome amplicon sequencing protocol for dengue virus. BMC Genomics 2024; 25:433. [PMID: 38693476 PMCID: PMC11062901 DOI: 10.1186/s12864-024-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/μL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.
Collapse
Affiliation(s)
- Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA.
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA.
| | - Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Lauren M Paul
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Emma Taylor-Salmon
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Isabel M Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Mary E Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Dennis Dijk
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
| | - Timothy Locksmith
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Yibo Dong
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Namratha Tarigopula
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Omer Tekin
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Sarah Schmedes
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, USA
| | - Sylvia Bunch
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Natalia Cano
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Rayah Jaber
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Charles Panzera
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Ian Stryker
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Julieta Vergara
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Rebecca Zimler
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - Edgar Kopp
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Lea Heberlein
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, USA
| | - Kaylee S Herzog
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Joseph R Fauver
- Department of Epidemiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Andrea M Morrison
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, USA
| | - Scott F Michael
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA.
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA.
| |
Collapse
|
9
|
Li X, Tamim S, Trovão NS. The emergence and circulation of human immunodeficiency virus (HIV)-1 subtype C. J Med Microbiol 2024; 73:001827. [PMID: 38757423 PMCID: PMC11893361 DOI: 10.1099/jmm.0.001827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction. Human immunodeficiency virus (HIV)-1 subtype C is the most prevalent globally and is thought to have originated in non-human primates in the Democratic Republic of Congo.Hypothesis/Gap Statement. Although the global dominance of HIV-1 subtype C is well established, a thorough understanding of its evolutionary history and transmission dynamics across various risk populations remains elusive. The current knowledge is insufficient to fully capture the global diversification and dissemination of this subtype.Aim. We for the first time sought to investigate the global evolutionary history and spatiotemporal dynamics of HIV-1 subtype C using a selection of maximum-likelihood-based phylodynamic approaches on a total of 1210 near full-length genomic sequences sampled from 32 countries, collected in 4 continents, with sampling dates between 1986-2019 among various risk groups were analysed.Methodology. We subsampled the HIV-1 subtype C genomic datasets based on continent and risk group traits, and performed nucleotide substitution model selection analysis, maximum likelihood (ML) phylogenetic reconstruction, phylogenetic tree topology similarity analysis, temporal signal analysis and traced the timings of viral spread both geographically and by risk group.Results. Based on the phylodynamic analyses of four datasets (full1210, locrisk626, loc562 and risk393), we inferred the time to the most recent common ancestor (TMRCA) in the 1930s and an evolutionary rate of 0.0023 substitutions per site per year. The total number of introduction events of HIV-1 subtype C between continents and between risk groups is estimated to be 71 and 115, respectively. The largest number of introductions occurred from Africa to Europe (n=32), from not-recorded to heterosexual (n=40) and from heterosexual to not-recorded (n=51) risk groups.Conclusion. Our results emphasize that HIV subtype C has mainly spread from Africa to Europe, likely through heterosexual transmission.
Collapse
Affiliation(s)
- Xingguang Li
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, 315000, PR China
| | - Sana Tamim
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
10
|
Paredes MI, Ahmed N, Figgins M, Colizza V, Lemey P, McCrone JT, Müller N, Tran-Kiem C, Bedford T. Underdetected dispersal and extensive local transmission drove the 2022 mpox epidemic. Cell 2024; 187:1374-1386.e13. [PMID: 38428425 PMCID: PMC10962340 DOI: 10.1016/j.cell.2024.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
The World Health Organization declared mpox a public health emergency of international concern in July 2022. To investigate global mpox transmission and population-level changes associated with controlling spread, we built phylogeographic and phylodynamic models to analyze MPXV genomes from five global regions together with air traffic and epidemiological data. Our models reveal community transmission prior to detection, changes in case reporting throughout the epidemic, and a large degree of transmission heterogeneity. We find that viral introductions played a limited role in prolonging spread after initial dissemination, suggesting that travel bans would have had only a minor impact. We find that mpox transmission in North America began declining before more than 10% of high-risk individuals in the USA had vaccine-induced immunity. Our findings highlight the importance of broader routine specimen screening surveillance for emerging infectious diseases and of joint integration of genomic and epidemiological information for early outbreak control.
Collapse
Affiliation(s)
- Miguel I Paredes
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Nashwa Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Marlin Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Paris, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - John T McCrone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nicola Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cécile Tran-Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
11
|
Klitting R, Piorkowski G, Rousset D, Cabié A, Frumence E, Lagrave A, Lavergne A, Enfissi A, Dos Santos G, Fagour L, Césaire R, Jaffar-Bandjee MC, Traversier N, Gérardin P, Amaral R, Fournier L, Leon L, Dorléans F, Vincent M, Fontaine A, Failloux AB, Ayhan N, Pezzi L, Grard G, Durand GA, de Lamballerie X. Molecular epidemiology identifies the expansion of the DENV2 epidemic lineage from the French Caribbean Islands to French Guiana and mainland France, 2023 to 2024. Euro Surveill 2024; 29:2400123. [PMID: 38551097 PMCID: PMC10979529 DOI: 10.2807/1560-7917.es.2024.29.13.2400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024] Open
Abstract
In 2023, dengue virus serotype 2 (DENV2) affected most French overseas territories. In the French Caribbean Islands, viral circulation continues with > 30,000 suspected infections by March 2024. Genome sequence analysis reveals that the epidemic lineage in the French Caribbean islands has also become established in French Guiana but not Réunion. It has moreover seeded autochthonous circulation events in mainland France. To guide prevention of further inter-territorial spread and DENV introduction in non-endemic settings, continued molecular surveillance and mosquito control are essential.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Géraldine Piorkowski
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Dominique Rousset
- Associated National Reference Center for Arboviruses, Virology unit, Institut Pasteur in French Guiana, Cayenne, French Guiana
| | - André Cabié
- Service de Maladies infectieuses et tropicales, CHU de Martinique, Fort-de-France, France
- PCCEI, Université de Montpellier, INSERM, EFS, Montpellier, France
- CIC Antilles Guyane, INSERM CIC1424, Fort-de-France, France
| | - Etienne Frumence
- Associated National Reference Center for Arboviruses, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Alisé Lagrave
- Associated National Reference Center for Arboviruses, Virology unit, Institut Pasteur in French Guiana, Cayenne, French Guiana
| | - Anne Lavergne
- Associated National Reference Center for Arboviruses, Virology unit, Institut Pasteur in French Guiana, Cayenne, French Guiana
| | - Antoine Enfissi
- Associated National Reference Center for Arboviruses, Virology unit, Institut Pasteur in French Guiana, Cayenne, French Guiana
| | - George Dos Santos
- PCCEI, Université de Montpellier, INSERM, EFS, Montpellier, France
- Laboratoire de virologie, CHU de Martinique, Fort-de-France, France
| | - Laurence Fagour
- PCCEI, Université de Montpellier, INSERM, EFS, Montpellier, France
- Laboratoire de virologie, CHU de Martinique, Fort-de-France, France
| | - Raymond Césaire
- Pôle de biologie territoriale, CHU de Guadeloupe, Pointe-à-Pitre, France
- PCCEI, Université de Montpellier, INSERM, EFS, Montpellier, France
| | - Marie-Christine Jaffar-Bandjee
- Associated National Reference Center for Arboviruses, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | - Nicolas Traversier
- Associated National Reference Center for Arboviruses, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
- Laboratoire de microbiologie, CHU de la Réunion-Site Nord, Saint-Denis, Réunion, France
| | | | - Rayane Amaral
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | | | - Lucie Leon
- Santé publique France, Cellule Antilles, Saint-Maurice, France
| | | | - Muriel Vincent
- Santé publique France - La Réunion, Saint-Denis, La Réunion, France
| | - Albin Fontaine
- Institut de Recherche Biomédicale des Armées (IRBA), Unité de virologie, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Anna-Bella Failloux
- Department of Virology, Arboviruses and Insect Vectors, Institut Pasteur, Paris, France
| | - Nazli Ayhan
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Laura Pezzi
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Gilda Grard
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Guillaume André Durand
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Xavier de Lamballerie
- National Reference Center for Arboviruses, Inserm-IRBA, Marseille, France
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| |
Collapse
|
12
|
Zufan SE, Mercoulia K, Kwong JC, Judd LM, Howden BP, Seemann T, Stinear TP. High-performance enrichment-based genome sequencing to support the investigation of hepatitis A virus outbreaks. Microbiol Spectr 2024; 12:e0283423. [PMID: 38018979 PMCID: PMC10783085 DOI: 10.1128/spectrum.02834-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE This proof-of-concept study introduces a hybrid capture oligo panel for whole-genome sequencing of all six human pathogenic hepatitis A virus (HAV) subgenotypes, exhibiting a higher sensitivity than some conventional genotyping assays. The ability of hybrid capture to enrich multiple targets allows for a single, streamlined workflow, thus facilitating the potential harmonization of molecular surveillance of HAV with other enteric viruses. Even challenging sample matrices can be accommodated, making them suitable for broad implementation in clinical and public health laboratories. This innovative approach has significant implications for enhancing multijurisdictional outbreak investigations as well as our understanding of the global diversity and transmission dynamics of HAV.
Collapse
Affiliation(s)
- Sara E. Zufan
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Karolina Mercoulia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason C. Kwong
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise M. Judd
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Chen Z, Lemey P, Yu H. Approaches and challenges to inferring the geographical source of infectious disease outbreaks using genomic data. THE LANCET. MICROBE 2024; 5:e81-e92. [PMID: 38042165 DOI: 10.1016/s2666-5247(23)00296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 12/04/2023]
Abstract
Genomic data hold increasing potential in the elucidation of transmission dynamics and geographical sources of infectious disease outbreaks. Phylogeographic methods that use epidemiological and genomic data obtained from surveillance enable us to infer the history of spatial transmission that is naturally embedded in the topology of phylogenetic trees as a record of the dispersal of infectious agents between geographical locations. In this Review, we provide an overview of phylogeographic approaches widely used for reconstructing the geographical sources of outbreaks of interest. These approaches can be classified into ancestral trait or state reconstruction and structured population models, with structured population models including popular structured coalescent and birth-death models. We also describe the major challenges associated with sequencing technologies, surveillance strategies, data sharing, and analysis frameworks that became apparent during the generation of large-scale genomic data in recent years, extending beyond inference approaches. Finally, we highlight the role of genomic data in geographical source inference and clarify how this enhances understanding and molecular investigations of outbreak sources.
Collapse
Affiliation(s)
- Zhiyuan Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Evolutionary Virology, KU Leuven, Leuven, Belgium
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
| |
Collapse
|
14
|
Paredes MI, Ahmed N, Figgins M, Colizza V, Lemey P, McCrone JT, Müller N, Tran-Kiem C, Bedford T. Early underdetected dissemination across countries followed by extensive local transmission propelled the 2022 mpox epidemic. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.27.23293266. [PMID: 37577709 PMCID: PMC10418578 DOI: 10.1101/2023.07.27.23293266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The World Health Organization declared mpox a public health emergency of international concern in July 2022. To investigate global mpox transmission and population-level changes associated with controlling spread, we built phylogeographic and phylodynamic models to analyze MPXV genomes from five global regions together with air traffic and epidemiological data. Our models reveal community transmission prior to detection, changes in case-reporting throughout the epidemic, and a large degree of transmission heterogeneity. We find that viral introductions played a limited role in prolonging spread after initial dissemination, suggesting that travel bans would have had only a minor impact. We find that mpox transmission in North America began declining before more than 10% of high-risk individuals in the USA had vaccine-induced immunity. Our findings highlight the importance of broader routine specimen screening surveillance for emerging infectious diseases and of joint integration of genomic and epidemiological information for early outbreak control.
Collapse
Affiliation(s)
- Miguel I. Paredes
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nashwa Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Marlin Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique IPLESP, Paris, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - John T. McCrone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Nicola Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Cécile Tran-Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
15
|
Polotan FGM, Salazar CRP, Morito HLE, Abulencia MFB, Pantoni RAR, Mercado ES, Hué S, Ditangco RA. Reconstructing the phylodynamic history and geographic spread of the CRF01_AE-predominant HIV-1 epidemic in the Philippines from PR/RT sequences sampled from 2008 to 2018. Virus Evol 2023; 9:vead073. [PMID: 38131006 PMCID: PMC10735293 DOI: 10.1093/ve/vead073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The Philippines has had a rapidly growing human immunodeficiency virus (HIV) epidemic with a shift in the prevalent subtype from B to CRF01_AE. However, the phylodynamic history of CRF01_AE in the Philippines has yet to be reconstructed. We conducted a descriptive retrospective study reconstructing the history of HIV-1 CRF01_AE transmissions in the Philippines through molecular epidemiology. Partial polymerase sequences (n = 1144) collected between 2008 and 2018 from three island groups were collated from the Research Institute for Tropical Medicine drug resistance genotyping database. Estimation of the time to the most recent common ancestor (tMRCA), effective reproductive number (Re), effective viral population size (Ne), relative migration rates, and geographic spread of CRF01_AE was performed with BEAST. Re and Ne were compared between CRF01_AE and B. Most CRF01_AE sequences formed a single clade with a tMRCA of June 1996 [95 per cent highest posterior density (HPD): December 1991, October 1999]. An increasing CRF01_AE Ne was observed from the tMRCA to 2013. The CRF01_AE Re reached peaks of 2.46 [95 per cent HPD: 1.76, 3.27] in 2007 and 2.52 [95 per cent HPD: 1.83, 3.34] in 2015. A decrease of CRF01_AE Re occurred in the intervening years of 2007 to 2011, reaching as low as 1.43 [95 per cent HPD: 1.06, 1.90] in 2011, followed by a rebound. The CRF01_AE epidemic most likely started in Luzon and then spread to the other island groups of the country. Both CRF01_AE and Subtype B exhibited similar patterns of Re fluctuation over time. These results characterize the subtype-specific phylodynamic history of the largest CRF01_AE cluster in the Philippines, which contextualizes and may inform past, present, and future public health measures toward controlling the HIV epidemic in the Philippines.
Collapse
Affiliation(s)
- Francisco Gerardo M Polotan
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, 9002, Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City, Metro Manila 1781, The Philippines
| | - Carl Raymund P Salazar
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, Wageningen 6700 EH, The Netherlands
| | - Hannah Leah E Morito
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, 9002, Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City, Metro Manila 1781, The Philippines
| | - Miguel Francisco B Abulencia
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, 9002, Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City, Metro Manila 1781, The Philippines
| | - Roslind Anne R Pantoni
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, 9002, Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City, Metro Manila 1781, The Philippines
| | - Edelwisa S Mercado
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, 9002, Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City, Metro Manila 1781, The Philippines
| | - Stéphane Hué
- Centre for the Mathematical Modelling of Infectious Diseases (CMMID), London School of Hygiene & Tropical Medicine, Keppel Street, London, Camden WC1E 7HT , UK
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel Street, London, Camden WC1E 7HT , UK
| | - Rossana A Ditangco
- AIDS Research Group, Research Institute for Tropical Medicine, 9002, Research Drive, Filinvest Corporate City, Alabang, Muntinlupa City, Metro Manila 1781, The Philippines
| |
Collapse
|
16
|
Vogels CB, Hill V, Breban MI, Chaguza C, Paul LM, Sodeinde A, Taylor-Salmon E, Ott IM, Petrone ME, Dijk D, Jonges M, Welkers MR, Locksmith T, Dong Y, Tarigopula N, Tekin O, Schmedes S, Bunch S, Cano N, Jaber R, Panzera C, Stryker I, Vergara J, Zimler R, Kopp E, Heberlein L, Morrison AM, Michael SF, Grubaugh ND. DengueSeq: A pan-serotype whole genome amplicon sequencing protocol for dengue virus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.13.23296997. [PMID: 37873191 PMCID: PMC10592998 DOI: 10.1101/2023.10.13.23296997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. Results We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 101-102 RNA copies/μL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. Conclusions DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.
Collapse
Affiliation(s)
- Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
| | - Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mallery I. Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
| | - Lauren M. Paul
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Afeez Sodeinde
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Emma Taylor-Salmon
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Isabel M. Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Mary E. Petrone
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, NSW, Australia
| | - Dennis Dijk
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Marcel Jonges
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Matthijs R.A. Welkers
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands
| | - Timothy Locksmith
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Yibo Dong
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, United States of America
| | - Namratha Tarigopula
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, United States of America
| | - Omer Tekin
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, United States of America
| | - Sarah Schmedes
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Jacksonville, FL, United States of America
| | - Sylvia Bunch
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Natalia Cano
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Rayah Jaber
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Charles Panzera
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Ian Stryker
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Julieta Vergara
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Rebecca Zimler
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, United States of America
| | - Edgar Kopp
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Lea Heberlein
- Bureau of Public Health Laboratories, Division of Disease Control and Health Protection, Florida Department of Health, Tampa, FL, United States of America
| | - Andrea M. Morrison
- Bureau of Epidemiology, Division of Disease Control and Health Protection, Florida Department of Health, Tallahassee, FL, United States of America
| | - Scott F. Michael
- Department of Biological Sciences, College of Arts and Sciences, Florida Gulf Coast University, Fort Myers, Florida, United States of America
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, United States of America
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
17
|
Holtz A, Baele G, Bourhy H, Zhukova A. Integrating full and partial genome sequences to decipher the global spread of canine rabies virus. Nat Commun 2023; 14:4247. [PMID: 37460566 DOI: 10.1038/s41467-023-39847-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Despite the rapid growth in viral genome sequencing, statistical methods face challenges in handling historical viral endemic diseases with large amounts of underutilized partial sequence data. We propose a phylogenetic pipeline that harnesses both full and partial viral genome sequences to investigate historical pathogen spread between countries. Its application to rabies virus (RABV) yields precise dating and confident estimates of its geographic dispersal. By using full genomes and partial sequences, we reduce both geographic and genetic biases that often hinder studies that focus on specific genes. Our pipeline reveals an emergence of the present canine-mediated RABV between years 1301 and 1403 and reveals regional introductions over a 700-year period. This geographic reconstruction enables us to locate episodes of human-mediated introductions of RABV and examine the role that European colonization played in its spread. Our approach enables phylogeographic analysis of large and genetically diverse data sets for many viral pathogens.
Collapse
Affiliation(s)
- Andrew Holtz
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France.
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Hervé Bourhy
- Institut Pasteur, Université Paris Cité, Lyssavirus Epidemiology and Neuropathology Unit, F-75015, Paris, France
- World Health Organization Collaborating Center for Reference and Research on Rabies, Institut Pasteur, Paris, France
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015, Paris, France.
| |
Collapse
|
18
|
Prodhan MA, Widmer M, Kinene T, Kehoe M. Whole mitochondrial genomes reveal the relatedness of the browsing ant incursions in Australia. Sci Rep 2023; 13:10273. [PMID: 37355692 PMCID: PMC10290700 DOI: 10.1038/s41598-023-37425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Global trade and human movements outspread animal species, for example ants, from their native habitats to new areas. This causes biosecurity concerns because an exotic ant might have adverse impacts on agriculture, the environment, or health; thus, incurring economic losses. The browsing ant, Lepisiota frauenfeldi, was first detected in 2013 at the Perth Airport. Since then, more discrete browsing ant infestations have been found in Perth and at the Ports of Darwin and Brisbane. This exotic ant has been deemed a significant pest in Australia and eradication efforts are underway. However, tackling this invasion requires an understanding of how these infestations are related. Are they same or separate or a combination of both? Here, we carried out a phylogenetic analysis using high-throughput sequencing data to determine their relatedness. Our results showed that each interstate incursion was separate. Furthermore, the Western Australian incursions might have two introductions. These findings are critical in devising effective biosecurity measures. However, we discovered that this information could only be revealed by analysing the whole mitochondrial genome; not by a single mitochondrial gene as typically done for species identification. Here, we sequenced 51 whole mitogenomes including three of its congener L. incisa for the first time, for tracing future infestations.
Collapse
Affiliation(s)
- M Asaduzzaman Prodhan
- DPIRD Diagnostics and Laboratory Services, Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA, 6151, Australia.
| | - Marc Widmer
- DPIRD Diagnostics and Laboratory Services, Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Tonny Kinene
- DPIRD Diagnostics and Laboratory Services, Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA, 6151, Australia
| | - Monica Kehoe
- DPIRD Diagnostics and Laboratory Services, Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA, 6151, Australia.
| |
Collapse
|
19
|
Diray-Arce J, Fourati S, Doni Jayavelu N, Patel R, Maguire C, Chang AC, Dandekar R, Qi J, Lee BH, van Zalm P, Schroeder A, Chen E, Konstorum A, Brito A, Gygi JP, Kho A, Chen J, Pawar S, Gonzalez-Reiche AS, Hoch A, Milliren CE, Overton JA, Westendorf K, Cairns CB, Rouphael N, Bosinger SE, Kim-Schulze S, Krammer F, Rosen L, Grubaugh ND, van Bakel H, Wilson M, Rajan J, Steen H, Eckalbar W, Cotsapas C, Langelier CR, Levy O, Altman MC, Maecker H, Montgomery RR, Haddad EK, Sekaly RP, Esserman D, Ozonoff A, Becker PM, Augustine AD, Guan L, Peters B, Kleinstein SH. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients. Cell Rep Med 2023; 4:101079. [PMID: 37327781 PMCID: PMC10203880 DOI: 10.1016/j.xcrm.2023.101079] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1-3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.
Collapse
Affiliation(s)
- Joann Diray-Arce
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Slim Fourati
- Emory School of Medicine, Atlanta, GA 30322, USA
| | | | - Ravi Patel
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Cole Maguire
- The University of Texas at Austin, Austin, TX 78712, USA
| | - Ana C Chang
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ravi Dandekar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jingjing Qi
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian H Lee
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick van Zalm
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Schroeder
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Ernie Chen
- Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | - Alvin Kho
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jing Chen
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Annmarie Hoch
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Carly E Milliren
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | - Charles B Cairns
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | | | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lindsey Rosen
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | | | - Harm van Bakel
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Wilson
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Jayant Rajan
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Hanno Steen
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Walter Eckalbar
- University of California San Francisco, San Francisco, CA 94115, USA
| | - Chris Cotsapas
- Yale School of Medicine, New Haven, CT 06510, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | | | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Matthew C Altman
- Benaroya Research Institute, University of Washington, Seattle, WA 98101, USA
| | - Holden Maecker
- Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Elias K Haddad
- Drexel University, Tower Health Hospital, Philadelphia, PA 19104, USA
| | | | | | - Al Ozonoff
- Clinical and Data Coordinating Center, Boston Children's Hospital, Boston, MA 02115, USA; Precision Vaccines Program, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Alison D Augustine
- National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD 20814, USA
| | - Leying Guan
- Yale School of Public Health, New Haven, CT 06510, USA
| | - Bjoern Peters
- La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | |
Collapse
|
20
|
Tulloch RL, Kim K, Sikazwe C, Michie A, Burrell R, Holmes EC, Dwyer DE, Britton PN, Kok J, Eden JS. RAPID prep: A Simple, Fast Protocol for RNA Metagenomic Sequencing of Clinical Samples. Viruses 2023; 15:v15041006. [PMID: 37112986 PMCID: PMC10146689 DOI: 10.3390/v15041006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Emerging infectious disease threats require rapid response tools to inform diagnostics, treatment, and outbreak control. RNA-based metagenomics offers this; however, most approaches are time-consuming and laborious. Here, we present a simple and fast protocol, the RAPIDprep assay, with the aim of providing a cause-agnostic laboratory diagnosis of infection within 24 h of sample collection by sequencing ribosomal RNA-depleted total RNA. The method is based on the synthesis and amplification of double-stranded cDNA followed by short-read sequencing, with minimal handling and clean-up steps to improve processing time. The approach was optimized and applied to a range of clinical respiratory samples to demonstrate diagnostic and quantitative performance. Our results showed robust depletion of both human and microbial rRNA, and library amplification across different sample types, qualities, and extraction kits using a single workflow without input nucleic-acid quantification or quality assessment. Furthermore, we demonstrated the genomic yield of both known and undiagnosed pathogens with complete genomes recovered in most cases to inform molecular epidemiological investigations and vaccine design. The RAPIDprep assay is a simple and effective tool, and representative of an important shift toward the integration of modern genomic techniques with infectious disease investigations.
Collapse
Affiliation(s)
- Rachel L Tulloch
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karan Kim
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chisha Sikazwe
- PathWest Laboratory Medicine WA, Department of Microbiology, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Alice Michie
- PathWest Laboratory Medicine WA, Department of Microbiology, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Rebecca Burrell
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Departments of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic E Dwyer
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- NSW Health Pathology Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Philip N Britton
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Departments of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Jen Kok
- NSW Health Pathology Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - John-Sebastian Eden
- Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
21
|
Emergence and Potential Extinction of Genetic Lineages of Human Metapneumovirus between 2005 and 2021. mBio 2023; 14:e0228022. [PMID: 36507832 PMCID: PMC9973309 DOI: 10.1128/mbio.02280-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human metapneumovirus (HMPV) is one of the leading causes of respiratory illness (RI), primarily in infants. Worldwide, two genetic lineages (A and B) of HMPV are circulating that are antigenically distinct and can each be further divided into genetic sublineages. Surveillance combined with large-scale whole-genome sequencing studies of HMPV are scarce but would help to identify viral evolutionary dynamics. Here, we analyzed 130 whole HMPV genome sequences obtained from samples collected from individuals hospitalized with RI and partial fusion (n = 144) and attachment (n = 123) protein gene sequences obtained from samples collected from patients with RI visiting general practitioners between 2005 and 2021 in the Netherlands. Phylogenetic analyses demonstrated that HMPV continued to group in the four sublineages described in 2004 (A1, A2, B1, and B2). However, one sublineage (A1) was no longer detected in the Netherlands after 2006, while the others continued to evolve. No differences were observed in dominant (sub)lineages between samples obtained from patients with RI being hospitalized and those consulting general practitioners. In both populations, viruses of lineage A2 carrying a 180-nucleotide or 111-nucleotide duplication in the attachment protein gene became the most frequently detected genotypes. In the past, different names for the newly energing lineages have been proposed, demonstrating the need for a consistent naming convention. Here, criteria are proposed for the designation of new genetic lineages to aid in moving toward a systematic HMPV classification. IMPORTANCE Human metapneumovirus (HMPV) is one of the major causative agents of human respiratory tract infections. Monitoring of virus evolution could aid toward the development of new antiviral treatments or vaccine designs. Here, we studied HMPV evolution between 2005 and 2021, with viruses obtained from samples collected from hospitalized individuals and patients with respiratory infections consulting general practitioners. Phylogenetic analyses demonstrated that HMPV continued to group in the four previously described sublineages (A1, A2, B1, and B2). However, one sublineage (A1) was no longer detected after 2006, while the others continued to evolve. No differences were observed in dominant (sub)lineages between patients being hospitalized and those consulting general practitioners. In both populations, viruses of lineage A2 carrying a 180-nucleotide or 111-nucleotide duplication in the attachment protein gene became the most frequently detected genotypes. These data were used to propose criteria for the designation of new genetic lineages to aid toward a systematic HMPV classification.
Collapse
|
22
|
Experimental Infection of Domestic Pigs ( Sus scrofa) with Rift Valley Fever Virus. Viruses 2023; 15:v15020545. [PMID: 36851759 PMCID: PMC9964260 DOI: 10.3390/v15020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Rift valley fever (RVF), caused by the RVF virus (RVFV), is a vector-borne zoonotic disease that primarily affects domestic ruminants. Abortion storms and neonatal deaths characterise the disease in animals. Humans develop flu-like symptoms, which can progress to severe disease. The susceptibility of domestic pigs (Sus scrofa domesticus) to RVFV remains unresolved due to conflicting experimental infection results. To address this, we infected two groups of pregnant sows, neonates and weaners, each with a different RVFV isolate, and a third group of weaners with a mixture of the two viruses. Serum, blood and oral, nasal and rectal swabs were collected periodically, and two neonates and a weaner from group 1 and 2 euthanised from 2 days post infection (DPI), with necropsy and histopathology specimens collected. Sera and organ pools, blood and oronasorectal swabs were tested for RVFV antibodies and RNA. Results confirmed that pigs can be experimentally infected with RVFV, although subclinically, and that pregnant sows can abort following infection. Presence of viral RNA in oronasorectal swab pools on 28 DPI suggest that pigs may shed RVFV for at least one month. It is concluded that precautions should be applied when handling pig body fluids and carcasses during RVF outbreaks.
Collapse
|
23
|
Variations in the NSP4 gene of the type 2 porcine reproductive and respiratory syndrome virus isolated in China from 1996 to 2021. Virus Genes 2023; 59:109-120. [PMID: 36383275 PMCID: PMC9667009 DOI: 10.1007/s11262-022-01957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/05/2022] [Indexed: 11/17/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has continuously mutated since its first isolation in China in 1996, leading to difficulties in infection prevention and control. Infections caused by PRRSV-2 strains are the main epidemic strains in China, as determined by phylogenetic analysis. In this study, we focused on the prevalence and genetic variations of the non-structural protein 4 (NSP4) from PRRSV-2 over the past 20 years in China. The fundamental biological properties of the NSP4 were predicted, and an analysis and comparison of NSP4 homology at the nucleotide and amino acid levels was conducted using 123 PRRSV-2 strains. The predicted molecular weight of the NSP4 protein was determined to be 21.1 kDa, and it was predicted to be a stable hydrophobic protein that lacks a signal peptide. NSP4 from different strains exhibited a high degree of amino acid (85.8-100%) and nucleotide sequence homology (81.0-100%). Multiple amino acid substitutions were identified in NSP4 among 15 representative PRRSV-2 strains. Phylogenetic analysis showed that the lineage 8 and 1 strains, the most prevalent strains in China, were indifferent clades with a long genetic distance. This analysis will help fully elucidate the parameters of the PRRSV NSP4 epidemic in China to lay a foundation for adequate understanding of the function of NSP4. Genetic information results from the accumulation of conserved and non-conserved sequences. The high conservation of the NSP4 gene determines the most basic life traits and functions of PRRSV. Analyzing the spatial structure of NSP4 protein and studying the genetic evolution of NSP4 not only provide the theoretical basis for how NSP4 participates in the regulation of the innate response of the host but also provide a target for genetic manipulation and a reasonable target molecule and structure for new drug molecules.
Collapse
|
24
|
Cirkovic V, Dellicour S, Stamenkovic G, Siljic M, Gligic A, Stanojevic M. Phylogeographic analysis of Tula hantavirus highlights a single introduction to central Europe. Virus Evol 2022; 8:veac112. [PMID: 37954511 PMCID: PMC10634634 DOI: 10.1093/ve/veac112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 11/14/2023] Open
Abstract
Orthohantaviruses are zoonotic pathogens of humans, unique among the bunyaviruses in not being transmitted by an arthropod vector. Tula orthohantavirus (TULV) is an old-world hantavirus, of yet unclear human pathogenicity, with few reported cases of clinically relevant human infection. So far, phylogeographic studies exploring the global pathways of hantaviral migration are scarce and generally do not focus on a specific hantavirus species. The aim of the present study was to reconstruct the dispersal history of TULV lineages across Eurasia based on S segment sequences sampled from different geographic areas. Maximum-likelihood and Bayesian inference methods were used to perform the phylogenetic analysis and phylogeographic reconstructions. Sampling time and trapping localities were obtained for a total of 735 TULV S segment sequences available in public databases at the time of the study. The estimated substitution rate of the analyzed partial S segment alignment was 2.26 × 10-3 substitutions/site/year (95 per cent highest posterior density interval: 1.79 × 10-3 to 2.75 × 10-3). Continuous phylogeography of TULV S segment sequences placed the potential root and origin of TULV spread in the Black Sea region. In our study, we detect a single-lineage introduction of TULV to Europe, followed by local viral circulation further on.
Collapse
Affiliation(s)
- Valentina Cirkovic
- Faculty of Medicine, University of
Belgrade, Dr Subotica 8, Belgrade 11000, Serbia
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université
Libre de Bruxelles, CP160/13, 50, av. FD Roosevelt, Bruxelles 1050,
Belgium
- Department of Microbiology, Immunology and
Transplantation, Rega Institute, KU Leuven, Herestraat 49, Leuven 3000,
Belgium
| | - Gorana Stamenkovic
- University of Belgrade, Institute for Biological Research ‘Siniša
Stanković’, Bulevar despota Stefana 142, Belgrade 11108, Serbia
| | - Marina Siljic
- Faculty of Medicine, University of
Belgrade, Dr Subotica 8, Belgrade 11000, Serbia
| | - Ana Gligic
- Institute of Virology, Vaccines and Sera Torlak, Vojvode
Stepe 458, Belgrade 11000, Serbia
| | - Maja Stanojevic
- Faculty of Medicine, University of
Belgrade, Dr Subotica 8, Belgrade 11000, Serbia
| |
Collapse
|
25
|
He WT, Bollen N, Xu Y, Zhao J, Dellicour S, Yan Z, Gong W, Zhang C, Zhang L, Lu M, Lai A, Suchard MA, Ji X, Tu C, Lemey P, Baele G, Su S. Phylogeography reveals association between swine trade and the spread of porcine epidemic diarrhea virus in China and across the world. Mol Biol Evol 2021; 39:6482749. [PMID: 34951645 PMCID: PMC8826572 DOI: 10.1093/molbev/msab364] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ongoing SARS (severe acute respiratory syndrome)-CoV (coronavirus)-2 pandemic has exposed major gaps in our knowledge on the origin, ecology, evolution, and spread of animal coronaviruses. Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae that may have originated from bats and leads to significant hazards and widespread epidemics in the swine population. The role of local and global trade of live swine and swine-related products in disseminating PEDV remains unclear, especially in developing countries with complex swine production systems. Here, we undertake an in-depth phylogeographic analysis of PEDV sequence data (including 247 newly sequenced samples) and employ an extension of this inference framework that enables formally testing the contribution of a range of predictor variables to the geographic spread of PEDV. Within China, the provinces of Guangdong and Henan were identified as primary hubs for the spread of PEDV, for which we estimate live swine trade to play a very important role. On a global scale, the United States and China maintain the highest number of PEDV lineages. We estimate that, after an initial introduction out of China, the United States acted as an important source of PEDV introductions into Japan, Korea, China, and Mexico. Live swine trade also explains the dispersal of PEDV on a global scale. Given the increasingly global trade of live swine, our findings have important implications for designing prevention and containment measures to combat a wide range of livestock coronaviruses.
Collapse
Affiliation(s)
- Wan-Ting He
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Nena Bollen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Yi Xu
- China animal disease control center, Ministry of Agriculture, China Beijing
| | - Jin Zhao
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Simon Dellicour
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven.,Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Belgium CP160/12 50, av. FD Roosevelt, 1050 Bruxelles
| | - Ziqing Yan
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Wenjie Gong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, China Changchun, Jilin
| | - Cheng Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Letian Zhang
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Meng Lu
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, United States Frankfort, Kentucky
| | - Marc A Suchard
- Department of Biostatistics, Fielding School of Public Health, and Departments of Biomathematics and Human Genetics, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University New Orleans, LA
| | - Changchun Tu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, China Changchun, Jilin
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Belgium Leuven
| | - Shuo Su
- Jiangsu Engineering Laboratory of Animal Immunology, Institute of Immunology, College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, China Nanjing
| |
Collapse
|
26
|
Brito AF, Semenova E, Dudas G, Hassler GW, Kalinich CC, Kraemer MU, Ho J, Tegally H, Githinji G, Agoti CN, Matkin LE, Whittaker C, Danish Covid-19 Genome Consortium, COVID-19 Impact Project, Network for Genomic Surveillance in South Africa (NGS-SA), GISAID core curation team, Howden BP, Sintchenko V, Zuckerman NS, Mor O, Blankenship HM, de Oliveira T, Lin RTP, Siqueira MM, Resende PC, Vasconcelos ATR, Spilki FR, Aguiar RS, Alexiev I, Ivanov IN, Philipova I, Carrington CVF, Sahadeo NSD, Gurry C, Maurer-Stroh S, Naidoo D, von Eije KJ, Perkins MD, van Kerkhove M, Hill SC, Sabino EC, Pybus OG, Dye C, Bhatt S, Flaxman S, Suchard MA, Grubaugh ND, Baele G, Faria NR. Global disparities in SARS-CoV-2 genomic surveillance. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.08.21.21262393. [PMID: 34462754 PMCID: PMC8404891 DOI: 10.1101/2021.08.21.21262393] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genomic sequencing provides critical information to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments and vaccines, and guide public health responses. To investigate the spatiotemporal heterogeneity in the global SARS-CoV-2 genomic surveillance, we estimated the impact of sequencing intensity and turnaround times (TAT) on variant detection in 167 countries. Most countries submit genomes >21 days after sample collection, and 77% of low and middle income countries sequenced <0.5% of their cases. We found that sequencing at least 0.5% of the cases, with a TAT <21 days, could be a benchmark for SARS-CoV-2 genomic surveillance efforts. Socioeconomic inequalities substantially impact our ability to quickly detect SARS-CoV-2 variants, and undermine the global pandemic preparedness.
Collapse
Affiliation(s)
- Anderson F. Brito
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Instituto Todos pela Saúde, São Paulo, São Paulo, Brazil
| | - Elizaveta Semenova
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Mathematics, Imperial College London, London, UK
| | - Gytis Dudas
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Gabriel W. Hassler
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Chaney C. Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Joses Ho
- GISAID Global Data Science Initiative, Munich, Germany
- Bioinformatics Institute & ID Labs, Agency for Science Technology and Research, Singapore, Singapore
| | - Houriiyah Tegally
- KwaZulu–Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
| | - George Githinji
- KEMRI-Wellcome Trust Research Programme, Kenya
- Department of Biochemistry and Biotechnology, Pwani University, Kenya
| | | | - Lucy E. Matkin
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Charles Whittaker
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, United Kingdom
| | | | | | | | | | - Benjamin P Howden
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Vitali Sintchenko
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, New South Wales 2145, Australia
| | - Neta S. Zuckerman
- Central Virology Laboratory, Israel Ministry of Health, Sheba Medical Center, Israel
| | - Orna Mor
- Central Virology Laboratory, Israel Ministry of Health, Sheba Medical Center, Israel
| | - Heather M Blankenship
- Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, Michigan, USA
| | - Tulio de Oliveira
- KwaZulu–Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | | | | | | | | | - Fernando R. Spilki
- Feevale University, Institute of Health Sciences, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Renato Santana Aguiar
- Laboratório de Biologia Integrativa, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto D’Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
| | - Ivailo Alexiev
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivan N. Ivanov
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivva Philipova
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Christine V. F. Carrington
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Nikita S. D. Sahadeo
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Céline Gurry
- GISAID Global Data Science Initiative, Munich, Germany
| | - Sebastian Maurer-Stroh
- GISAID Global Data Science Initiative, Munich, Germany
- Bioinformatics Institute & ID Labs, Agency for Science Technology and Research, Singapore, Singapore
- National Centre for Infectious Diseases, Singapore
| | - Dhamari Naidoo
- Health Emergencies Programme, World Health Organization Regional Office for South-East Asia, New Delhi, India
| | - Karin J von Eije
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Emerging Diseases and Zoonoses Unit, Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| | - Mark D. Perkins
- Emerging Diseases and Zoonoses Unit, Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| | - Maria van Kerkhove
- Emerging Diseases and Zoonoses Unit, Health Emergencies Programme, World Health Organization, Geneva, Switzerland
| | | | - Ester C. Sabino
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Royal Veterinary College, Hawkshead, United Kingdom
| | - Christopher Dye
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
- The Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, London, United Kingdom
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Seth Flaxman
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Marc A. Suchard
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, California, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Nuno R. Faria
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, United Kingdom
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Wertheim JO, Steel M, Sanderson MJ. Accuracy in near-perfect virus phylogenies. Syst Biol 2021; 71:426-438. [PMID: 34398231 PMCID: PMC8385947 DOI: 10.1093/sysbio/syab069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022] Open
Abstract
Phylogenetic trees from real-world data often include short edges with very few substitutions per site, which can lead to partially resolved trees and poor accuracy. Theory indicates that the number of sites needed to accurately reconstruct a fully resolved tree grows at a rate proportional to the inverse square of the length of the shortest edge. However, when inferred trees are partially resolved due to short edges, “accuracy” should be defined as the rate of discovering false splits (clades on a rooted tree) relative to the actual number found. Thus, accuracy can be high even if short edges are common. Specifically, in a “near-perfect” parameter space in which trees are large, the tree length ξ (the sum of all edge lengths) is small, and rate variation is minimal, the expected false positive rate is less than ξ∕3; the exact value depends on tree shape and sequence length. This expected false positive rate is far below the false negative rate for small ξ and often well below 5% even when some assumptions are relaxed. We show this result analytically for maximum parsimony and explore its extension to maximum likelihood using theory and simulations. For hypothesis testing, we show that measures of split “support” that rely on bootstrap resampling consistently imply weaker support than that implied by the false positive rates in near-perfect trees. The near-perfect parameter space closely fits several empirical studies of human virus diversification during outbreaks and epidemics, including Ebolavirus, Zika virus, and SARS-CoV-2, reflecting low substitution rates relative to high transmission/sampling rates in these viruses.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Mike Steel
- Biomathematics Research Center, School of Mathematics and Statistics, University of Canterbury, Christchurch, 8041, New Zealand
| | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
28
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
29
|
Frias-De-Diego A, Jara M, Pecoraro BM, Crisci E. Whole Genome or Single Genes? A Phylodynamic and Bibliometric Analysis of PRRSV. Front Vet Sci 2021; 8:658512. [PMID: 34250057 PMCID: PMC8263912 DOI: 10.3389/fvets.2021.658512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Diversity, ecology, and evolution of viruses are commonly determined through phylogenetics, an accurate tool for the identification and study of lineages with different pathological characteristics within the same species. In the case of PRRSV, evolutionary research has divided into two main branches based on the use of a specific gene (i.e., ORF5) or whole genome sequences as the input used to produce the phylogeny. In this study, we performed a review on PRRSV phylogenetic literature and characterized the spatiotemporal trends in research of single gene vs. whole genome evolutionary approaches. Finally, using publicly available data, we produced a Bayesian phylodynamic analysis following each research branch and compared the results to determine the pros and cons of each particular approach. This study provides an exploration of the two main phylogenetic research lines applied for PRRSV evolution, as well as an example of the differences found when both methods are applied to the same database. We expect that our results will serve as a guidance for future PRRSV phylogenetic research.
Collapse
Affiliation(s)
- Alba Frias-De-Diego
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Manuel Jara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Brittany M Pecoraro
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Elisa Crisci
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
30
|
Groen K, van Nieuwkoop S, Bestebroer TM, Fraaij PL, Fouchier RAM, van den Hoogen BG. Whole genome sequencing of human metapneumoviruses from clinical specimens using MinION nanopore technology. Virus Res 2021; 302:198490. [PMID: 34146613 DOI: 10.1016/j.virusres.2021.198490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
Human metapneumovirus (HMPV), a member of the Pneumoviridae family, is a causative agent of respiratory illness in young children, the elderly, and immunocompromised individuals. Globally, viruses belonging to two main genetic lineages circulate, A and B, which are further divided into four genetic sublineages (A1, A2, B1, B2). Classical genotyping of HMPV is based on the sequence of the fusion (F) and attachment (G) glycoprotein genes, which are under direct antibody-mediated immune pressure. Whole genome sequencing provides more information than sequencing of subgenomic fragments and is therefore a powerful tool for studying virus evolution and disease epidemiology and for identifying transmission events and nosocomial outbreaks. Here, we report a robust method to obtain whole genome sequences for HMPV using MinION Nanopore technology. This assay is able to generate HMPV whole genome sequences from clinical specimens with good coverage of the highly variable G gene and is equally sensitive for strains of all four genetic HMPV sublineages. This method can be used for studying HMPV genetics, epidemiology, and evolutionary dynamics.
Collapse
Affiliation(s)
- Kevin Groen
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Stefan van Nieuwkoop
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Pieter L Fraaij
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Wijtemaweg 80, 3015 CN Rotterdam, The Netherlands
| | | |
Collapse
|
31
|
Min N, Ong YHB, Han AX, Ho SX, Yen EWP, Ban KHK, Maurer-Stroh S, Chong CY, Chu JJH. An epidemiological surveillance of hand foot and mouth disease in paediatric patients and in community: A Singapore retrospective cohort study, 2013-2018. PLoS Negl Trop Dis 2021; 15:e0008885. [PMID: 33566802 PMCID: PMC7901731 DOI: 10.1371/journal.pntd.0008885] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 02/23/2021] [Accepted: 10/13/2020] [Indexed: 11/30/2022] Open
Abstract
Background While hand, foot and mouth disease (HFMD) is primarily self-resolving—soaring incidence rate of symptomatic HFMD effectuates economic burden in the Asia-Pacific region. Singapore has seen a conspicuous rise in the number of HFMD cases from 2010s. Here, we aims to identify the serology and genotypes responsible for such outbreaks in hospitals and childcare facilities. Methods We studied symptomatic paediatric HFMD cases from 2013 to 2018 in Singapore. Surveillance for subclinical enterovirus infections was also performed in childcares at the same time period. Results Genotyping 101 symptomatic HFMD samples revealed CV-A6 as the major etiological agent for recent outbreaks. We detected infections with CV-A6 (41.0%), EV-A71 (7%), CV-A16 (3.0%), coxsackievirus A2, CV-A2 (1.0%) and coxsackievirus A10, CV-A10 (1.0%). Phylogenetic analysis of local CV-A6 strains revealed a high level of heterogeneity compared against others worldwide, dissimilar to other HFMD causative enteroviruses for which the dominant strains and genotypes are highly region specific. We detected sub-clinical enterovirus infections in childcare centres; 17.1% (n = 245) tested positive for enterovirus in saliva, without HFMD indicative symptoms at the point of sample collection. Conclusions CV-A6 remained as the dominant HFMD causative strain in Singapore. Silent subclinical enteroviral infections were detected and warrant further investigations. In most cases, Hand Foot and Mouth Disease or HFMD typically manifest in mild fever along with sore throat and rashes on the body. From 2010 onwards, Singapore has seen a steady increase in the case number of HFMD reaching tens of thousands in recent years. HFMD is caused by intestinal viruses and in this study, we established with molecular surveillance methods that one of the causative serotypes, CV-A6 is the major etiological agent for HFMD in Singapore for the current decade. We discovered that circulating enterovirus, CV-A6 in Singapore share similarities in genetic make-up to those currently circulating strains found worldwide and found to be especially close to the ones in neighbouring countries. HFMD spreads from person to person, especially in high-risk areas such as childcare centers where children congregate. Therefore, we conducted saliva collections routinely from childcare centers across Singapore and found that subclinical enterovirus infections have also been prevailing in clusters, occurring silently and unnoticed.
Collapse
Affiliation(s)
- Nyo Min
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yasmin Hui Binn Ong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alvin X. Han
- Protein Sequence Analysis Group, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Si Xian Ho
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmerie Wong Phaik Yen
- Infectious Disease Service, Department of Pediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Kenneth Hon Kim Ban
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Protein Sequence Analysis Group, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore, Singapore, Singapore
| | - Chia Yin Chong
- Infectious Disease Service, Department of Pediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- * E-mail:
| |
Collapse
|
32
|
Park K, Lee J, Lee K, Jung J, Kim SH, Lee J, Chalita M, Yoon SH, Chun J, Hur KH, Sung H, Kim MN, Lee HK. Epidemiologic Linkage of COVID-19 Outbreaks at Two University-affiliated Hospitals in the Seoul Metropolitan Area in March 2020. J Korean Med Sci 2021; 36:e38. [PMID: 33496089 PMCID: PMC7834897 DOI: 10.3346/jkms.2021.36.e38] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/12/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) outbreaks emerged at two university-affiliated hospitals in Seoul (hospital A) and Uijeongbu City (hospital S) in the metropolitan Seoul area in March 2020. The aim of this study was to investigate epidemiological links between the outbreaks using whole genome sequencing (WGS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Fifteen patients were enrolled in the study, including four non-outbreak (A1-A4) and three outbreak cases (A5-A7) in hospital A and eight cases (S1-S8) in hospital S. Patients' hospital stays, COVID-19 symptoms, and transfer history were reviewed. RNA samples were submitted for WGS and genome-wide single nucleotide variants and phylogenetic relationships were analyzed. RESULTS The index patient (A5) in hospital A was transferred from hospital S on 26 March. Patients A6 and A7 were the family caregiver and sister, respectively, of the patient who shared a room with A5 for 4 days. Prior to transfer, A5 was at the next bed to S8 in the emergency room on 25 March. Patient S6, a professional caregiver, took care of the patient in the room next to S8's room for 5 days until 22 March and then S5 for another 3 days. WGS revealed that SARS-CoV-2 in A2, A3, and A4 belong to clades V/B.2, S/A, and G/B.1, respectively, whereas that of A5-A7 and S1-S5 are of the V/B.2.1 clade and closely clustered. In particular, SARS-CoV-2 in patients A5 and S5 showed perfect identity. CONCLUSION WGS is a useful tool to understand epidemiology of SARS-CoV-2. It is the first study to elucidate the role of patient transfer and caregivers as links of nosocomial outbreaks of COVID-19 in multiple hospitals.
Collapse
Affiliation(s)
- Kuenyoul Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jaewoong Lee
- Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | | | - Jiwon Jung
- Department of infectious disease, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Sung Han Kim
- Department of infectious disease, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jina Lee
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | | | | | - Jongsik Chun
- ChunLab Inc., Seoul, Korea
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Kyu Hwa Hur
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.
| | - Mi Na Kim
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.
| | - Hae Kyung Lee
- Department of Laboratory Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| |
Collapse
|
33
|
Boskova V, Stadler T. PIQMEE: Bayesian Phylodynamic Method for Analysis of Large Data Sets with Duplicate Sequences. Mol Biol Evol 2020; 37:3061-3075. [PMID: 32492139 PMCID: PMC7530608 DOI: 10.1093/molbev/msaa136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Next-generation sequencing of pathogen quasispecies within a host yields data sets of tens to hundreds of unique sequences. However, the full data set often contains thousands of sequences, because many of those unique sequences have multiple identical copies. Data sets of this size represent a computational challenge for currently available Bayesian phylogenetic and phylodynamic methods. Through simulations, we explore how large data sets with duplicate sequences affect the speed and accuracy of phylogenetic and phylodynamic analysis within BEAST 2. We show that using unique sequences only leads to biases, and using a random subset of sequences yields imprecise parameter estimates. To overcome these shortcomings, we introduce PIQMEE, a BEAST 2 add-on that produces reliable parameter estimates from full data sets with increased computational efficiency as compared with the currently available methods within BEAST 2. The principle behind PIQMEE is to resolve the tree structure of the unique sequences only, while simultaneously estimating the branching times of the duplicate sequences. Distinguishing between unique and duplicate sequences allows our method to perform well even for very large data sets. Although the classic method converges poorly for data sets of 6,000 sequences when allowed to run for 7 days, our method converges in slightly more than 1 day. In fact, PIQMEE can handle data sets of around 21,000 sequences with 20 unique sequences in 14 days. Finally, we apply the method to a real, within-host HIV sequencing data set with several thousand sequences per patient.
Collapse
Affiliation(s)
- Veronika Boskova
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Switzerland
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Switzerland
| |
Collapse
|
34
|
Bayesian inference of reassortment networks reveals fitness benefits of reassortment in human influenza viruses. Proc Natl Acad Sci U S A 2020; 117:17104-17111. [PMID: 32631984 PMCID: PMC7382287 DOI: 10.1073/pnas.1918304117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Genetic recombination processes, such as reassortment, make it complex or impossible to use standard phylogenetic and phylodynamic methods. This is due to the fact that the shared evolutionary history of individuals has to be represented by a phylogenetic network instead of a tree. We therefore require novel approaches that allow us to coherently model these processes and that allow us to perform inference in the presence of such processes. Here, we introduce an approach to infer reassortment networks of segmented viruses using a Markov chain Monte Carlo approach. Our approach allows us to study different aspects of the reassortment process and allows us to show fitness benefits of reassortment events in seasonal human influenza viruses. Reassortment is an important source of genetic diversity in segmented viruses and is the main source of novel pathogenic influenza viruses. Despite this, studying the reassortment process has been constrained by the lack of a coherent, model-based inference framework. Here, we introduce a coalescent-based model that allows us to explicitly model the joint coalescent and reassortment process. In order to perform inference under this model, we present an efficient Markov chain Monte Carlo algorithm to sample rooted networks and the embedding of phylogenetic trees within networks. This algorithm provides the means to jointly infer coalescent and reassortment rates with the reassortment network and the embedding of segments in that network from full-genome sequence data. Studying reassortment patterns of different human influenza datasets, we find large differences in reassortment rates across different human influenza viruses. Additionally, we find that reassortment events predominantly occur on selectively fitter parts of reassortment networks showing that on a population level, reassortment positively contributes to the fitness of human influenza viruses.
Collapse
|
35
|
Eden JS, Rockett R, Carter I, Rahman H, de Ligt J, Hadfield J, Storey M, Ren X, Tulloch R, Basile K, Wells J, Byun R, Gilroy N, O'Sullivan MV, Sintchenko V, Chen SC, Maddocks S, Sorrell TC, Holmes EC, Dwyer DE, Kok J. An emergent clade of SARS-CoV-2 linked to returned travellers from Iran. Virus Evol 2020; 6:veaa027. [PMID: 32296544 PMCID: PMC7147362 DOI: 10.1093/ve/veaa027] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The SARS-CoV-2 epidemic has rapidly spread outside China with major outbreaks occurring in Italy, South Korea, and Iran. Phylogenetic analyses of whole-genome sequencing data identified a distinct SARS-CoV-2 clade linked to travellers returning from Iran to Australia and New Zealand. This study highlights potential viral diversity driving the epidemic in Iran, and underscores the power of rapid genome sequencing and public data sharing to improve the detection and management of emerging infectious diseases.
Collapse
Affiliation(s)
- John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences & School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Centre for Virus Research & Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, PO Box 412, Westmead, NSW 2145, Australia
| | - Rebecca Rockett
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences & School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Ian Carter
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Hossinur Rahman
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Joep de Ligt
- Institute of Environmental Science and Research, Porirua 5240, New Zealand
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Matthew Storey
- Institute of Environmental Science and Research, Porirua 5240, New Zealand
| | - Xiaoyun Ren
- Institute of Environmental Science and Research, Porirua 5240, New Zealand
| | - Rachel Tulloch
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences & School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Centre for Virus Research & Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, PO Box 412, Westmead, NSW 2145, Australia
| | - Kerri Basile
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Jessica Wells
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Roy Byun
- NSW Ministry of Health, North Sydney, NSW 2059, Australia
| | - Nicky Gilroy
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Matthew V O'Sullivan
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Vitali Sintchenko
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences & School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Sharon C Chen
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences & School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Susan Maddocks
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences & School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Centre for Virus Research & Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, PO Box 412, Westmead, NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences & School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic E Dwyer
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences & School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Jen Kok
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | | |
Collapse
|
36
|
Wise EL, Márquez S, Mellors J, Paz V, Atkinson B, Gutierrez B, Zapata S, Coloma J, Pybus OG, Jackson SK, Trueba G, Fejer G, Logue CH, Pullan ST. Oropouche virus cases identified in Ecuador using an optimised qRT-PCR informed by metagenomic sequencing. PLoS Negl Trop Dis 2020; 14:e0007897. [PMID: 31961856 PMCID: PMC6994106 DOI: 10.1371/journal.pntd.0007897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/31/2020] [Accepted: 10/31/2019] [Indexed: 12/11/2022] Open
Abstract
Oropouche virus (OROV) is responsible for outbreaks of Oropouche fever in parts of South America. We recently identified and isolated OROV from a febrile Ecuadorian patient, however, a previously published qRT-PCR assay did not detect OROV in the patient sample. A primer mismatch to the Ecuadorian OROV lineage was identified from metagenomic sequencing data. We report the optimisation of an qRT-PCR assay for the Ecuadorian OROV lineage, which subsequently identified a further five cases in a cohort of 196 febrile patients. We isolated OROV via cell culture and developed an algorithmically-designed primer set for whole-genome amplification of the virus. Metagenomic sequencing of the patient samples provided OROV genome coverage ranging from 68–99%. The additional cases formed a single phylogenetic cluster together with the initial case. OROV should be considered as a differential diagnosis for Ecuadorian patients with febrile illness to avoid mis-diagnosis with other circulating pathogens. Oropouche virus (OROV) causes outbreaks of febrile illness in areas of South and Central America and we recently identified it in Ecuador for the first time, using metagenomic sequencing. The genome sequence data revealed that the Ecuadorian strain of the virus was not detected using a published qRT-PCR, as it differed genetically at the binding site of the reverse primer. To address this, we developed a modified qRT-PCR that showed increased sensitivity for the Ecuadorian strain. This test detected OROV infection in 6 out of 196 febrile patients from Esmeraldas, Ecuador in 2016. OROV was isolated from positive patient samples, viral genome sequences were compared to publicly available OROV sequences. This revealed that the Ecuadorian cases are genetically distinct, suggesting that local transmission of the virus should not be ruled out. This work highlights the need for a better understanding of OROV dynamics in Ecuador and surrounding areas, the importance of considering OROV as a cause of fever in Ecuadorian patients and the possibility of selectively using metagenomic sequencing in parallel to traditional molecular techniques in patient testing.
Collapse
Affiliation(s)
- Emma L. Wise
- National Infection Service, Public Health England, Salisbury, United Kingdom
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Sully Márquez
- Microbiology Institute, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Jack Mellors
- National Infection Service, Public Health England, Salisbury, United Kingdom
| | - Verónica Paz
- Hospital Delfina Torres de Concha, Esmeraldas, Ecuador
| | - Barry Atkinson
- Arthropod Genetics Group, The Pirbright Institute, Woking, United Kingdom
| | - Bernardo Gutierrez
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- School of Biological and Environmental Sciences, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sonia Zapata
- Microbiology Institute, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Josefina Coloma
- School of Public Health, University of California Berkeley School of Public Health, Berkeley, California, United States of America
| | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Simon K. Jackson
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Gabriel Trueba
- Microbiology Institute, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Gyorgy Fejer
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Christopher H. Logue
- National Infection Service, Public Health England, Salisbury, United Kingdom
- School of Biomedical Sciences, University of Plymouth, Plymouth, United Kingdom
- Microbiology Institute, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- * E-mail:
| | - Steven T. Pullan
- National Infection Service, Public Health England, Salisbury, United Kingdom
| |
Collapse
|
37
|
Kamau E, Oketch JW, de Laurent ZR, Phan MVT, Agoti CN, Nokes DJ, Cotten M. Whole genome sequencing and phylogenetic analysis of human metapneumovirus strains from Kenya and Zambia. BMC Genomics 2020; 21:5. [PMID: 31898474 PMCID: PMC6941262 DOI: 10.1186/s12864-019-6400-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/15/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Human metapneumovirus (HMPV) is an important cause of acute respiratory illness in young children. Whole genome sequencing enables better identification of transmission events and outbreaks, which is not always possible with sub-genomic sequences. RESULTS We report a 2-reaction amplicon-based next generation sequencing method to determine the complete genome sequences of five HMPV strains, representing three subgroups (A2, B1 and B2), directly from clinical samples. In addition to reporting five novel HMPV genomes from Africa we examined genetic diversity and sequence patterns of publicly available HMPV genomes. We found that the overall nucleotide sequence identity was 71.3 and 80% for HMPV group A and B, respectively, the diversity between HMPV groups was greater at amino acid level for SH and G surface protein genes, and multiple subgroups co-circulated in various countries. Comparison of sequences between HMPV groups revealed variability in G protein length (219 to 241 amino acids) due to changes in the stop codon position. Genome-wide phylogenetic analysis showed congruence with the individual gene sequence sets except for F and M2 genes. CONCLUSION This is the first genomic characterization of HMPV genomes from African patients.
Collapse
Affiliation(s)
- Everlyn Kamau
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - John W Oketch
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - My V T Phan
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - D James Nokes
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- School of Life Sciences and Zeeman Institute, University of Warwick, Coventry, UK
| | - Matthew Cotten
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
38
|
Gupta P, Robin VV, Dharmarajan G. Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2020; 99:65. [PMID: 33622992 PMCID: PMC7371965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 08/23/2024]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease mediated extinctions and wildlife epidemics. We then focus on elucidating how host-parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
Affiliation(s)
- Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29801, USA.
| | | | | |
Collapse
|
39
|
Lewandowski K, Xu Y, Pullan ST, Lumley SF, Foster D, Sanderson N, Vaughan A, Morgan M, Bright N, Kavanagh J, Vipond R, Carroll M, Marriott AC, Gooch KE, Andersson M, Jeffery K, Peto TEA, Crook DW, Walker AS, Matthews PC. Metagenomic Nanopore Sequencing of Influenza Virus Direct from Clinical Respiratory Samples. J Clin Microbiol 2019; 58:e00963-19. [PMID: 31666364 PMCID: PMC6935926 DOI: 10.1128/jcm.00963-19] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/21/2019] [Indexed: 01/11/2023] Open
Abstract
Influenza is a major global public health threat as a result of its highly pathogenic variants, large zoonotic reservoir, and pandemic potential. Metagenomic viral sequencing offers the potential for a diagnostic test for influenza virus which also provides insights on transmission, evolution, and drug resistance and simultaneously detects other viruses. We therefore set out to apply the Oxford Nanopore Technologies sequencing method to metagenomic sequencing of respiratory samples. We generated influenza virus reads down to a limit of detection of 102 to 103 genome copies/ml in pooled samples, observing a strong relationship between the viral titer and the proportion of influenza virus reads (P = 4.7 × 10-5). Applying our methods to clinical throat swabs, we generated influenza virus reads for 27/27 samples with mid-to-high viral titers (cycle threshold [CT ] values, <30) and 6/13 samples with low viral titers (CT values, 30 to 40). No false-positive reads were generated from 10 influenza virus-negative samples. Thus, Nanopore sequencing operated with 83% sensitivity (95% confidence interval [CI], 67 to 93%) and 100% specificity (95% CI, 69 to 100%) compared to the current diagnostic standard. Coverage of full-length virus was dependent on sample composition, being negatively influenced by increased host and bacterial reads. However, at high influenza virus titers, we were able to reconstruct >99% complete sequences for all eight gene segments. We also detected a human coronavirus coinfection in one clinical sample. While further optimization is required to improve sensitivity, this approach shows promise for the Nanopore platform to be used in the diagnosis and genetic analysis of influenza virus and other respiratory viruses.
Collapse
Affiliation(s)
- Kuiama Lewandowski
- Public Health England, National infection Service, Porton Down, Salisbury, United Kingdom
| | - Yifei Xu
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Oxford NIHR BRC, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Steven T Pullan
- Public Health England, National infection Service, Porton Down, Salisbury, United Kingdom
| | - Sheila F Lumley
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Dona Foster
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Oxford NIHR BRC, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Nicholas Sanderson
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Oxford NIHR BRC, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Alison Vaughan
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Oxford NIHR BRC, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Marcus Morgan
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Nicole Bright
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Richard Vipond
- Public Health England, National infection Service, Porton Down, Salisbury, United Kingdom
| | - Miles Carroll
- Public Health England, National infection Service, Porton Down, Salisbury, United Kingdom
| | - Anthony C Marriott
- Public Health England, National infection Service, Porton Down, Salisbury, United Kingdom
| | - Karen E Gooch
- Public Health England, National infection Service, Porton Down, Salisbury, United Kingdom
| | - Monique Andersson
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Katie Jeffery
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Timothy E A Peto
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Oxford NIHR BRC, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Oxford NIHR BRC, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Philippa C Matthews
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford NIHR BRC, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|