1
|
Choudhury ST, Piper KR, Montoya-Giraldo M, Ikhimiukor OO, Dettman JR, Kassen R, Andam CP. Heterogeneity in recombination rates and accessory gene co-occurrence distinguish Pseudomonas aeruginosa phylogroups. mSystems 2025; 10:e0030125. [PMID: 40304385 PMCID: PMC12090758 DOI: 10.1128/msystems.00301-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Pseudomonas aeruginosa (class Gammaproteobacteria) is a ubiquitous, ecologically widespread, and metabolically versatile species. It is also an opportunistic pathogen that causes a variety of chronic and acute infections in humans. Its ability to thrive in diverse environments and exhibit a wide range of phenotypes lies in part on its large gene pool, but the processes that govern inter-strain genomic variation remain unclear. Here, we aim to characterize the recombination features and accessory genome structure of P. aeruginosa using 840 globally distributed genome sequences. The species can be subdivided into five phylogenetic sequence clusters (corresponding to known phylogroups), two of which are most prominent. Notable epidemic clones are found in the two phylogroups: ST17, ST111, ST146, ST274, and ST395 in phylogroup 1, and ST235 and ST253 in phylogroup 2. The two phylogroups differ in the frequency and characteristics of homologous recombination in their core genomes, including the specific genes that most frequently recombine and the impact of recombination on sequence diversity. Each phylogroup's accessory genome is characterized by a unique gene pool, co-occurrence networks of shared genes, and anti-phage defense systems. Different pools of antimicrobial resistance and virulence genes exist in the two phylogroups and display dissimilar patterns of co-occurrence. Altogether, our results indicate that each phylogroup displays distinct histories and patterns of acquiring exogenous DNA, which may contribute in part to their predominance in the global population. Our study has important implications for understanding the genome dynamics, within-species heterogeneity, and clinically relevant traits of P. aeruginosa. IMPORTANCE The consummate opportunist Pseudomonas aeruginosa inhabits many nosocomial and non-clinical environments, posing a major health burden worldwide. Our study reveals phylogroup-specific differences in recombination features and co-occurrence networks of accessory genes within the species. This genomic variation partly explains its remarkable ability to exhibit diverse ecological and phenotypic traits, and thus contribute to circumventing clinical and public health intervention strategies to contain it. Our results may help inform efforts to control and prevent P. aeruginosa diseases, including managing transmission, therapeutic efforts, and pathogen circulation in non-clinical environmental reservoirs.
Collapse
Affiliation(s)
- Samara T. Choudhury
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kathryn R. Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Manuela Montoya-Giraldo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Jeremy R. Dettman
- Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada
| | - Rees Kassen
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
2
|
Terra LA, Klepa MS, Nogueira MA, Hungria M. Pangenome analysis indicates evolutionary origins and genetic diversity: emphasis on the role of nodulation in symbiotic Bradyrhizobium. FRONTIERS IN PLANT SCIENCE 2025; 16:1539151. [PMID: 40241821 PMCID: PMC12000093 DOI: 10.3389/fpls.2025.1539151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025]
Abstract
The Bradyrhizobium genus is widely known for encompassing many species capable of forming nodules and establishing the biological nitrogen fixation process with several legumes, significantly contributing to agriculture and environmental sustainability. Despite its importance, questions about the evolution, pangenome, and symbiotic genes of Bradyrhizobium are still poorly understood. In this study, we analyzed the pangenome of a set of Bradyrhizobium symbiotic species using the Roary and GET_HOMOLOGUES tools in strains originated from the Northern and Southern Hemispheres. We also investigated the presence and correlation of the fix, nif, nod, Type III secretion system (T3SS) and their effector proteins, and T4SS genes, trying to find differences between clades, hosts, and biogeographic origin. Pangenome analysis of Bradyrhizobium species from the Northern and Southern Hemispheres provided valuable insights into their diversity, biogeography, origin, and co-evolution with their legume host plants. The genus possesses a relatively small core genome compared to the expanded accessory genome, a key feature that facilitates genetic exchange and acquisition of new genes, allowing adaptation to a variety of environments. Notably, the presence or absence of T3SS effector proteins varied significantly according to the geographic location, suggesting specific environmental adaptations, as well as a direct relationship with nodulation genes. Comparative analysis indicated that symbiotic Bradyrhizobium species originated in the Northern Hemisphere and present a greater diversity of orthologous groups than those from the Southern Hemisphere. These results contribute to our understanding of the evolutionary history of these symbiotic bacteria.
Collapse
Affiliation(s)
| | | | - Marco Antonio Nogueira
- CNPq, Brasília, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, Londrina, Paraná, Brazil
| | - Mariangela Hungria
- CNPq, Brasília, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, Londrina, Paraná, Brazil
| |
Collapse
|
3
|
Karampatakis T, Tsergouli K, Behzadi P. Carbapenem-Resistant Pseudomonas aeruginosa's Resistome: Pan-Genomic Plasticity, the Impact of Transposable Elements and Jumping Genes. Antibiotics (Basel) 2025; 14:353. [PMID: 40298491 PMCID: PMC12024412 DOI: 10.3390/antibiotics14040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative, motile bacterium, may cause significant infections in both community and hospital settings, leading to substantial morbidity and mortality. This opportunistic pathogen can thrive in various environments, making it a public health concern worldwide. P. aeruginosa's genomic pool is highly dynamic and diverse, with a pan-genome size ranging from 5.5 to 7.76 Mbp. This versatility arises from its ability to acquire genes through horizontal gene transfer (HGT) via different genetic elements (GEs), such as mobile genetic elements (MGEs). These MGEs, collectively known as the mobilome, facilitate the spread of genes encoding resistance to antimicrobials (ARGs), resistance to heavy metals (HMRGs), virulence (VGs), and metabolic functions (MGs). Of particular concern are the acquired carbapenemase genes (ACGs) and other β-lactamase genes, such as classes A, B [metallo-β-lactamases (MBLs)], and D carbapenemases, which can lead to increased antimicrobial resistance. This review emphasizes the importance of the mobilome in understanding antimicrobial resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Theodoros Karampatakis
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Katerina Tsergouli
- Department of Clinical Microbiology, University Hospital Kerry, V92 NX94 Tralee, Ireland; (T.K.); (K.T.)
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| |
Collapse
|
4
|
Habib MB, Shah NA, Amir A, Alghamdi HA, Tariq MH, Nisa K, Ammoun M. Decoding MexB efflux pump genes: structural, molecular, and phylogenetic analysis of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa. Front Cell Infect Microbiol 2025; 14:1519737. [PMID: 39906216 PMCID: PMC11791646 DOI: 10.3389/fcimb.2024.1519737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Objective Emerging drug resistance in Pseudomonas aeruginosa is of great concern in clinical settings. P. aeruginosa activates its efflux-pump system in order to evade the effect of antibiotics. The current investigation aims to detect MexB genes in P. aeruginosa, their structural and molecular analysis and their impact on antimicrobial susceptibility profiling. Methods A total of 42 clinical specimens were aseptically collected from hospitalized patients who had underlying infections related to medical implants. Matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) were used for the identification of isolates. The methods used in this study were antibiotic susceptibility profiling, minimum inhibitory concentration (MIC), polymerase chain reaction (PCR), sanger sequencing, phylogenetic analysis, MolProbity score, Ramachandran plot analysis and multiple sequence alignment. Results The highest resistance was shown by P. aeruginosa against cefoperazone (67%), gentamycin and amikacin (66%) each, followed by cefotaxime (64%). The prevalence of multi-drug resistant (MDR) and extensively drug resistant (XDR) was 57% and 12%, respectively. The presence of an active efflux-pump system was indicated by the MexB genes found in most of the resistant isolates (p<0.05). Following addition of efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a significant decrease (p<0.05) in MIC was observed in resistance, that revealed the presence of active efflux pump system. Phylogenetic analysis revealed evolutionary relationships with the P. aeruginosa strains isolated in Switzerland, Denmark and Germany. Protein domain architecture revealed that MexB gene proteins were involved in particular efflux pump function. Protein sequences aligned by multiple sequence alignment revealed conserved regions and sequence variants, which suggested antibiotic translocation and evolutionary divergence. These highly conserved regions could be used for diagnostic purposes of efflux pump MexB genes. Conclusion To avoid their spread in hospital settings, responsible authorities ought to begin rigorous initiatives in order to reduce the prevalence of multi-drug resistant, extensively drug resistant, and efflux pump carrying isolates in clinical settings.
Collapse
Affiliation(s)
| | - Naseer Ali Shah
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Afreenish Amir
- Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Kiran Nisa
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mariam Ammoun
- Department of Pathology, Viva Health Laboratories, Windsor, United Kingdom
| |
Collapse
|
5
|
Jdeed G, Morozova VV, Tikunova NV. Genome Analysis of Anti-Phage Defense Systems and Defense Islands in Stenotrophomonas maltophilia: Preservation and Variability. Viruses 2024; 16:1903. [PMID: 39772210 PMCID: PMC11680222 DOI: 10.3390/v16121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Anti-phage defense systems are widespread in bacteria due to the latter continuous adaptation to infection by bacteriophages (phages). Stenotrophomonas maltophilia has a high degree of intrinsic antibiotic resistance, which makes phage therapy relevant for the treatment of infections caused by this species. Studying the array of anti-phage defense systems that could be found in S. maltophilia helps in better adapting the phages to the systems present in the pathogenic bacteria. Pangenome analysis of the available S. maltophilia strains with complete genomes that were downloaded from GenBank, including five local genomes, indicated a wide set of 72 defense systems and subsystems that varied between the strains. Seven of these systems were present in more than 20% of the studied genomes and the proteins encoded by the systems were variable in most of the cases. A total of 27 defense islands were revealed where defense systems were found; however, more than 60% of the instances of systems were found in four defense islands. Several elements linked to the transfer of these systems were found. No obvious associations between the pattern of distribution of the anti-phage defense systems of S. maltophilia and the phylogenetic features or the isolation site were found.
Collapse
Affiliation(s)
- Ghadeer Jdeed
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prosp. Lavrentieva 8, Novosibirsk 630090, Russia;
| | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prosp. Lavrentieva 8, Novosibirsk 630090, Russia;
| |
Collapse
|
6
|
Chanket W, Pipatthana M, Sangphukieo A, Harnvoravongchai P, Chankhamhaengdecha S, Janvilisri T, Phanchana M. The complete catalog of antimicrobial resistance secondary active transporters in Clostridioides difficile: evolution and drug resistance perspective. Comput Struct Biotechnol J 2024; 23:2358-2374. [PMID: 38873647 PMCID: PMC11170357 DOI: 10.1016/j.csbj.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Secondary active transporters shuttle substrates across eukaryotic and prokaryotic membranes, utilizing different electrochemical gradients. They are recognized as one of the antimicrobial efflux pumps among pathogens. While primary active transporters within the genome of C. difficile 630 have been completely cataloged, the systematical study of secondary active transporters remains incomplete. Here, we not only identify secondary active transporters but also disclose their evolution and role in drug resistance in C. difficile 630. Our analysis reveals that C. difficile 630 carries 147 secondary active transporters belonging to 27 (super)families. Notably, 50 (34%) of them potentially contribute to antimicrobial resistance (AMR). AMR-secondary active transporters are structurally classified into five (super)families: the p-aminobenzoyl-glutamate transporter (AbgT), drug/metabolite transporter (DMT) superfamily, major facilitator (MFS) superfamily, multidrug and toxic compound extrusion (MATE) family, and resistance-nodulation-division (RND) family. Surprisingly, complete RND genes found in C. difficile 630 are likely an evolutionary leftover from the common ancestor with the diderm. Through protein structure comparisons, we have potentially identified six novel AMR-secondary active transporters from DMT, MATE, and MFS (super)families. Pangenome analysis revealed that half of the AMR-secondary transporters are accessory genes, which indicates an important role in adaptive AMR function rather than innate physiological homeostasis. Gene expression profile firmly supports their ability to respond to a wide spectrum of antibiotics. Our findings highlight the evolution of AMR-secondary active transporters and their integral role in antibiotic responses. This marks AMR-secondary active transporters as interesting therapeutic targets to synergize with other antibiotic activity.
Collapse
Affiliation(s)
- Wannarat Chanket
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Methinee Pipatthana
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Zhang Y, Wang X, Liang Y, Zhang L, Fan J, Yang Y. A Semisynthetic Oligomannuronic Acid-Based Glycoconjugate Vaccine against Pseudomonas aeruginosa. ACS CENTRAL SCIENCE 2024; 10:1515-1523. [PMID: 39220693 PMCID: PMC11363335 DOI: 10.1021/acscentsci.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and has become increasingly resistant to multiple antibiotics. However, development of novel classes of antibacterial agents against multidrug-resistant P. aeruginosa is extremely difficult. Herein we develop a semisynthetic oligomannuronic acid-based glycoconjugate vaccine that confers broad protection against infections of both mucoid and nonmucoid strains of P. aeruginosa. The well-defined glycoconjugate vaccine formulated with Freund's adjuvant (FA) employing a highly conserved antigen elicited a strong and specific immune response and protected mice against both mucoid and nonmucoid strains of P. aeruginosa. The resulting antibodies recognized different strains of P. aeruginosa and mediated the opsonic killing of the bacteria at varied levels depending on the amount of alginate expressed on the surface of the strains. Vaccination with the glycoconjugate vaccine plus FA significantly promoted the pulmonary and blood clearance of the mucoid PAC1 strain of P. aeruginosa and considerably improved the survival rates of mice against the nonmucoid PAO1 strain of P. aeruginosa. Thus, the semisynthetic glycoconjugate is a promising vaccine that may provide broad protection against both types of P. aeruginosa.
Collapse
Affiliation(s)
- Yiyue Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaotong Wang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Youling Liang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liangliang Zhang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiahao Fan
- Engineering
Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - You Yang
- Shanghai
Frontiers Science Center of Optogenetic Techniques for Cell Metabolism,
Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Engineering
Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
8
|
Chandler CE, Hofstaedter CE, Hazen TH, Rasko DA, Ernst RK. Genomic and Functional Characterization of Longitudinal Pseudomonas aeruginosa Isolates from Young Patients with Cystic Fibrosis. Microbiol Spectr 2023; 11:e0155623. [PMID: 37358436 PMCID: PMC10433850 DOI: 10.1128/spectrum.01556-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
Individuals with cystic fibrosis (CF) suffer from frequent and recurring microbial airway infections. The Gram-negative bacterium Pseudomonas aeruginosa is one of the most common organisms isolated from CF patient airways. P. aeruginosa establishes chronic infections that persist throughout a patient's lifetime and is a major cause of morbidity and mortality. Throughout the course of infection, P. aeruginosa must evolve and adapt from an initial state of early, transient colonization to chronic colonization of the airways. Here, we examined isolates of P. aeruginosa from children under the age of 3 years old with CF to determine genetic adaptations the bacterium undergoes during this early stage of colonization and infection. These isolates were collected when early aggressive antimicrobial therapy was not the standard of care and therefore highlight strain evolution under limited antibiotic pressure. Examination of specific phenotypic adaptations, such as lipid A palmitoylation, antibiotic resistance, and loss of quorum sensing, did not reveal a clear genetic basis for such changes. Additionally, we demonstrate that the geography of patient origin, within the United States or among other countries, does not appear to significantly influence genetic adaptation. In summary, our results support the long-standing model that patients acquire individual isolates of P. aeruginosa that subsequently become hyperadapted to the patient-specific airway environment. This study provides a multipatient genomic analysis of isolates from young CF patients in the United States and contributes data regarding early colonization and adaptation to the growing body of research about P. aeruginosa evolution in the context of CF airway disease. IMPORTANCE Chronic lung infection with Pseudomonas aeruginosa is of major concern for patients with cystic fibrosis (CF). During infection, P. aeruginosa undergoes genomic and functional adaptation to the hyperinflammatory CF airway, resulting in worsening lung function and pulmonary decline. All studies that describe these adaptations use P. aeruginosa obtained from older children or adults during late chronic lung infection; however, children with CF can be infected with P. aeruginosa as early as 3 months of age. Therefore, it is unclear when these genomic and functional adaptations occur over the course of CF lung infection, as access to P. aeruginosa isolates in children during early infection is limited. Here, we present a unique cohort of CF patients who were identified as being infected with P. aeruginosa at an early age prior to aggressive antibiotic therapy. Furthermore, we performed genomic and functional characterization of these isolates to address whether chronic CF P. aeruginosa phenotypes are present during early infection.
Collapse
Affiliation(s)
- Courtney E. Chandler
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Casey E. Hofstaedter
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - David A. Rasko
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Huang W, Hu S, Zhu Y, Liu S, Zhou X, Fang Y, Lu Y, Wang R. Metagenomic surveillance and comparative genomic analysis of Chlamydia psittaci in patients with pneumonia. Front Microbiol 2023; 14:1157888. [PMID: 37323913 PMCID: PMC10265514 DOI: 10.3389/fmicb.2023.1157888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Chlamydia psittaci, a strictly intracellular bacterium, is an underestimated etiologic agent leading to infections in a broad range of animals and mild illness or pneumonia in humans. In this study, the metagenomes of bronchoalveolar lavage fluids from the patients with pneumonia were sequenced and highly abundant C. psittaci was found. The target-enriched metagenomic reads were recruited to reconstruct draft genomes with more than 99% completeness. Two C. psittaci strains from novel sequence types were detected and these were closely related to the animal-borne isolates derived from the lineages of ST43 and ST28, indicating the zoonotic transmissions of C. psittaci would benefit its prevalence worldwide. Comparative genomic analysis combined with public isolate genomes revealed that the pan-genome of C. psittaci possessed a more stable gene repertoire than those of other extracellular bacteria, with ~90% of the genes per genome being conserved core genes. Furthermore, the evidence for significantly positive selection was identified in 20 virulence-associated gene products, particularly bacterial membrane-embedded proteins and type three secretion machines, which may play important roles in the pathogen-host interactions. This survey uncovered novel strains of C. psittaci causing pneumonia and the evolutionary analysis characterized prominent gene candidates involved in bacterial adaptation to immune pressures. The metagenomic approach is of significance to the surveillance of difficult-to-culture intracellular pathogens and the research into molecular epidemiology and evolutionary biology of C. psittaci.
Collapse
Affiliation(s)
- Weifeng Huang
- Department of Intensive Care Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqin Hu
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yongzhe Zhu
- Department of Microbiology, Navy Medical University, Shanghai, China
| | - Shijia Liu
- Department of Pulmonary Disease, PLA 905 Hospital, Shanghai, China
| | - Xingya Zhou
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Yuan Fang
- Genoxor Medical Science and Technology Inc., Shanghai, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
10
|
Fortunato G, Vaz-Moreira I, Gajic I, Manaia CM. Insight into phylogenomic bias of bla VIM-2 or bla NDM-1 dissemination amongst carbapenem-resistant Pseudomonas aeruginosa. Int J Antimicrob Agents 2023; 61:106788. [PMID: 36924802 DOI: 10.1016/j.ijantimicag.2023.106788] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVES Pseudomonas aeruginosa (P. aeruginosa) are ubiquitous opportunistic pathogens that combine intrinsic and acquired multidrug resistance phenotypes. Due to different types of acquired genes, carbapenem resistance has been expanding in this species. This study hypothesised that the spread of carbapenem resistance among P. aeruginosa is influenced by phylogenomic features, being distinct for different genes. METHODS To test this hypothesis, the genomes of P. aeruginosa harbouring blaVIM-2 or blaNDM-1 genes were compared. The blaVIM-2 gene was selected because, although frequent, it is almost restricted to this species and blaNDM-1 gene due to its wide interspecies distribution. A group of genomes harbouring the genes blaVIM-2 (n = 116) or blaNDM-1 (n = 27), available in GenBank, was characterised based on core phylogenomic analysis, functional categories in the accessory genome and mobile genetic elements flanking the selected genes. RESULTS Most blaVIM-2 gene hosts belonged to multilocus sequence types (ST) ST111 (n = 32 of 116) and ST233 (n = 27 of 116) and were reported in Europe (n = 75 of 116). The blaNDM-1 gene hosts were distributed by different STs (ST38, ST773, ST235, ST357 and ST654), frequently from Asia (n = 11 of 27). Significant differences in the prevalence of functional protein/enzyme annotations per number of accessory genomes were observed between blaVIM-2+ and blaNDM-1+. The blaVIM-2 gene was frequently inserted in the Tn402-like and Tn21 transposons family and rarely in IS6100, while blaNDM-1 gene was preferentially flanked by ISAba125 and bleMBL genes or associated with IS91 insertion sequence. CONCLUSION The hypothesis that carbapenem resistance gene acquisition is not random among phylogenomic lineages was confirmed, suggesting the importance of phylogeny in the dissemination of antibiotic resistance genes.
Collapse
Affiliation(s)
- Gianuario Fortunato
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ina Gajic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal.
| |
Collapse
|
11
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
12
|
Korpi F, Irajian G, Forouhi F, Mohammadian T. A chimeric vaccine targeting Pseudomonas aeruginosa virulence factors protects mice against lethal infection. Microb Pathog 2023; 178:106033. [PMID: 36813005 DOI: 10.1016/j.micpath.2023.106033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/25/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
Pseudomonas aeruginosa is an important and hazardous nosocomial pathogen in respiratory tract infections and rapidly achieves antibiotic resistance, so it is necessary to develop an effective vaccine to combat the infection. The Type III secretion system (T3SS) protein P. aeruginosa V-antigen (PcrV), outer membrane protein F (OprF), and two kinds of flagellins (FlaA and FlaB) all play important roles in the pathogenesis of P. aeruginosa lung infection and its spread into deeper tissues. In a mouse acute pneumonia model, the protective effects of a chimer vaccine including PcrV, FlaA, FlaB, and OprF (PABF) protein were investigated. PABF immunization prompted robust opsonophagocytic titer of IgG antibodies and decreased bacterial burden, and improved survival afterward intranasal challenge with ten times 50% lethal doses (LD50) of P. aeruginosa strains, indicating its broad-spectrum immunity. Moreover, these findings showed a promise chimeric vaccine candidate to treat and control P. aeruginosa infections.
Collapse
Affiliation(s)
- Fatemeh Korpi
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran
| | - Gholamreza Irajian
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Forouhi
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran
| | - Taher Mohammadian
- Department of Cell and Molecular Biology, Faculty of Basic Science, Islamic Azad University Shahre Qods Branch, Iran
| |
Collapse
|
13
|
Next Generation Sequencing and Comparative Genomic Analysis Reveal Extreme Plasticity of Two Burkholderia glumae Strains HN1 and HN2. Pathogens 2022; 11:pathogens11111265. [DOI: 10.3390/pathogens11111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Burkholderia glumae is an important rice pathogen, thus the genomic and evolutionary history may be helpful to control this notorious pathogen. Here, we present two complete genomes of the B. glumae strains HN1 and HN2, which were isolated from diseased rice seed in China. Average nucleotide identity (ANI) analysis shows greater than 99% similarity of the strains HN1 and HN2 with other published B. glumae genomes. Genomic annotation revealed that the genome of strain HN1 consists of five replicons (6,680,415 bp) with an overall G + C content of 68.06%, whereas the genome of strain HN2 comprises of three replicons (6,560,085 bp) with an overall G + C content of 68.34%. The genome of HN1 contains 5434 protein-coding genes, 351 pseudogenes, and 1 CRISPR, whereas the genome of HN2 encodes 5278 protein-coding genes, 357 pseudogenes, and 2 CRISPR. Both strains encode many pathogenic-associated genes (143 genes in HN1 vs. 141 genes in HN2). Moreover, comparative genomic analysis shows the extreme plasticity of B. glumae, which may contribute to its pathogenicity. In total, 259 single-copy genes were affected by positive selection. These genes may contribute to the adaption to different environments. Notably, six genes were characterized as virulence factors which may be an additional way to assist the pathogenicity of B. glumae.
Collapse
|
14
|
Genomic Diversity of Hospital-Acquired Infections Revealed through Prospective Whole-Genome Sequencing-Based Surveillance. mSystems 2022; 7:e0138421. [PMID: 35695507 PMCID: PMC9238379 DOI: 10.1128/msystems.01384-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Healthcare-associated infections (HAIs) cause mortality, morbidity, and waste of health care resources. HAIs are also an important driver of antimicrobial resistance, which is increasing around the world. Beginning in November 2016, we instituted an initiative to detect outbreaks of HAIs using prospective whole-genome sequencing-based surveillance of bacterial pathogens collected from hospitalized patients. Here, we describe the diversity of bacteria sampled from hospitalized patients at a single center, as revealed through systematic analysis of bacterial isolate genomes. We sequenced the genomes of 3,004 bacterial isolates from hospitalized patients collected over a 25-month period. We identified bacteria belonging to 97 distinct species, which were distributed among 14 groups of related species. Within these groups, isolates could be distinguished from one another by both average nucleotide identity (ANI) and principal-component analysis of accessory genes (PCA-A). Core genome genetic distances and rates of evolution varied among species, which has practical implications for defining shared ancestry during outbreaks and for our broader understanding of the origins of bacterial strains and species. Finally, antimicrobial resistance genes and putative mobile genetic elements were frequently observed, and our systematic analysis revealed patterns of occurrence across the different species sampled from our hospital. Overall, this study shows how understanding the population structure of diverse pathogens circulating in a single health care setting can improve the discriminatory power of genomic epidemiology studies and can help define the processes leading to strain and species differentiation. IMPORTANCE Hospitalized patients are at increased risk of becoming infected with antibiotic-resistant organisms. We used whole-genome sequencing to survey and compare over 3,000 clinical bacterial isolates collected from hospitalized patients at a large medical center over a 2-year period. We identified nearly 100 different bacterial species, which we divided into 14 different groups of related species. When we examined how genetic relatedness differed between species, we found that different species were likely evolving at different rates within our hospital. This is significant because the identification of bacterial outbreaks in the hospital currently relies on genetic similarity cutoffs, which are often applied uniformly across organisms. Finally, we found that antibiotic resistance genes and mobile genetic elements were abundant and were shared among the bacterial isolates we sampled. Overall, this study provides an in-depth view of the genomic diversity and evolutionary processes of bacteria sampled from hospitalized patients, as well as genetic similarity estimates that can inform hospital outbreak detection and prevention efforts.
Collapse
|
15
|
Gonzaga ZJC, Zhang J, Rehm BHA. Intranasal Delivery of Antigen-Coated Polymer Particles Protects against Pseudomonas aeruginosa Infection. ACS Infect Dis 2022; 8:744-756. [PMID: 35238554 DOI: 10.1021/acsinfecdis.1c00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is intrinsically resistant to multiple antibiotics, causing severe and persistent infections in immunocompromised individuals. This bacterium has been listed as a priority pathogen by the WHO in 2017, and there is no vaccine available for human use. In this study, 10 vaccine candidate antigens were selected for particulate vaccine design. We engineered Escherichia coli to assemble biopolymer particles (BPs) that were either coated with epitopes (Ag) derived from OprF/I-AlgE proteins or PopB or PopB-Ag or coated with single or double copies of epitopes (10Ag and 10Ag(2x)) derived from OprF, OprI, AlgE, OprL, PopB, PilA, PilO, FliC, Hcp1, and CdrA. Antigen-coated BPs showed a diameter of 0.93-1.16 μm with negative surface charge. Antigens attached to BPs were identified by mass spectrometry. Vaccination with BP-Ag, BP-PopB, BP-PopBAg, PB-10Ag, and BP-10Ag(2x) with and without Alhydrogel adjuvant induced significant antigen-specific humoral and cell-mediated immune responses in mice. All particulate vaccines with Alhydrogel induced protection in an acute pneumonia murine model of P. aeruginosa infection, contributing to up to 80% survival when administered intramuscularly, and the addition of Alhydrogel boosted immunity. The BP-10Ag(2x) vaccine candidate showed the best performance and even induced protective immunity in the absence of Alhydrogel. Intramuscular administration of the BP-10Ag(2x) without Alhydrogel vaccine resulted in 60% survival. Intranasal vaccination induced immunity, contributing to about 90% survival. Overall, our data suggest that vaccination with BPs coated with P. aeruginosa antigens induce protective immunity against P. aeruginosa infections. The possibility of intranasal delivery will strongly facilitate administration and use of BP vaccines.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
16
|
Esmaeilzadeh F, Mahmoodi S. A Novel Design of Multi-epitope Peptide Vaccine Against Pseudomonas
aeruginosa. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211013110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
As an opportunistic pathogen, Pseudomonas aeruginosa causes many different
hazardous infections. The high mortality rate resulting from infection with this antibiotic-resistant pathogen
has made it a major challenge in clinical treatment; it has been listed as the most harmful bacterium to
humans by the WHO. So far, no vaccine has been approved for P. aeruginosa.
Objective:
Infections performed by bacterial attachment and colonization with type IV pili (T4P), known
as the most essential adhesive vital for adhesion, while pilQ is necessary for the biogenesis of T4P, also
outer membrane proteins of a pathogen is also effective in stimulating the immune system; in this regard,
pilQ, OprF, and OprI, are excellent candidate antigens for production of an effective vaccine against P.
aeruginosa.
Methods:
In this research, various bioinformatics methods were employed in order to design a new multiepitope
peptide vaccine versus P. aeruginosa. Since T CD4+ cell immunity is important in eradicating P.
aeruginosa, OprF, OprI, and pilQ antigens were analyzed to determine Helper T cell Lymphocyte (HTL)
epitopes by many different immunoinformatics servers. One of the receptor agonists 2 (TLR2), a segment
of the Por B protein from Neisseria meningitides was used as an adjuvant in order to stimulate an effective
cellular immune response, and suitable linkers were used to connect all the above mentioned parts. In
the vaccine construct, linear B cell epitopes were also identified.
Results:
Conforming the bioinformatics forecasts, the designed vaccine possesses high antigenicity and is
not allergen.
Conclusion:
In this regard, the designed vaccine candidate is strongly believed to possess the potential of
inducing cellular and humoral immunity against P. aeruginosa.
Collapse
Affiliation(s)
| | - Shirin Mahmoodi
- Department of Medical Biotechnology,
School of Medicine, Fasa University of Medical Sciences, Fasa, Fars, Iran
| |
Collapse
|
17
|
Landa KJ, Mossman LM, Whitaker RJ, Rapti Z, Clifton SM. Phage-Antibiotic Synergy Inhibited by Temperate and Chronic Virus Competition. Bull Math Biol 2022; 84:54. [PMID: 35316421 DOI: 10.1007/s11538-022-01006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
As antibiotic resistance grows more frequent for common bacterial infections, alternative treatment strategies such as phage therapy have become more widely studied in the medical field. While many studies have explored the efficacy of antibiotics, phage therapy, or synergistic combinations of phages and antibiotics, the impact of virus competition on the efficacy of antibiotic treatment has not yet been considered. Here, we model the synergy between antibiotics and two viral types, temperate and chronic, in controlling bacterial infections. We demonstrate that while combinations of antibiotic and temperate viruses exhibit synergy, competition between temperate and chronic viruses inhibits bacterial control with antibiotics. In fact, our model reveals that antibiotic treatment may counterintuitively increase the bacterial load when a large fraction of the bacteria are antibiotic resistant, and both chronic and temperate phages are present.
Collapse
Affiliation(s)
- Kylie J Landa
- Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN, 55057, USA
| | - Lauren M Mossman
- Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN, 55057, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sara M Clifton
- Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN, 55057, USA.
| |
Collapse
|
18
|
Pseudomonas aeruginosa Pangenome: Core and Accessory Genes of a Highly Resourceful Opportunistic Pathogen. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:3-28. [DOI: 10.1007/978-3-031-08491-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Whelan FJ, Hall RJ, McInerney JO. Evidence for Selection in the Abundant Accessory Gene Content of a Prokaryote Pangenome. Mol Biol Evol 2021; 38:3697-3708. [PMID: 33963386 PMCID: PMC8382901 DOI: 10.1093/molbev/msab139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A pangenome is the complete set of genes (core and accessory) present in a phylogenetic clade. We hypothesize that a pangenome's accessory gene content is structured and maintained by selection. To test this hypothesis, we interrogated the genomes of 40 Pseudomonas species for statistically significant coincident (i.e., co-occurring/avoiding) gene patterns. We found that 86.7% of common accessory genes are involved in ≥1 coincident relationship. Further, genes that co-occur and/or avoid each other-but are not vertically inherited-are more likely to share functional categories, are more likely to be simultaneously transcribed, and are more likely to produce interacting proteins, than would be expected by chance. These results are not due to coincident genes being adjacent to one another on the chromosome. Together, these findings suggest that the accessory genome is structured into sets of genes that function together within a given strain. Given the similarity of the Pseudomonas pangenome with open pangenomes of other prokaryotic species, we speculate that these results are generalizable.
Collapse
Affiliation(s)
- Fiona J Whelan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca J Hall
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James O McInerney
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
20
|
Quest for Novel Preventive and Therapeutic Options Against Multidrug-Resistant Pseudomonas aeruginosa. Int J Pept Res Ther 2021; 27:2313-2331. [PMID: 34393689 PMCID: PMC8351238 DOI: 10.1007/s10989-021-10255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a critical healthcare challenge due to its ability to cause persistent infections and the acquisition of antibiotic resistance mechanisms. Lack of preventive vaccines and rampant drug resistance phenomenon has rendered patients vulnerable. As new antimicrobials are in the preclinical stages of development, mining for the unexploited drug targets is also crucial. In the present study, we designed a B- and T-cell multi-epitope vaccine against P. aeruginosa using a subtractive proteomics and immunoinformatics approach. A total of five proteins were shortlisted based on essentiality, extracellular localization, virulence, antigenicity, pathway association, hydrophilicity, and low molecular weight. These include two outer membrane porins; OprF (P13794) and OprD (P32722), a protein activator precursor pra (G3XDA9), a probable outer membrane protein precursor PA1288 (Q9I456), and a conserved hypothetical protein PA4874 (Q9HUT9). These shortlisted proteins were further analyzed to identify immunogenic and antigenic B- and T-cell epitopes. The best scoring epitopes were then further subjected to the construction of a polypeptide multi-epitope vaccine and joined with cholera toxin B subunit adjuvant. The final chimeric construct was docked with TLR4 and confirmed by normal mode simulation studies. The designed B- and T-cell multi-epitope vaccine candidate is predicted immunogenic in nature and has shown strong interactions with TLR-4. Immune simulation predicted high-level production of B- and T-cell population and maximal expression was ensured in E. coli strain K12. The identified drug targets qualifying the screening criteria were: UDP-2-acetamido-2-deoxy-d-glucuronic acid 3-dehydrogenase WbpB (G3XD23), aspartate semialdehyde dehydrogenase (Q51344), 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine pyrophosphokinase (Q9HV71), 3-deoxy-D-manno-octulosonic-acid transferase (Q9HUH7), glycyl-tRNA synthetase alpha chain (Q9I7B7), riboflavin kinase/FAD synthase (Q9HVM3), aconitate hydratase 2 (Q9I2V5), probable glycosyltransferase WbpH (G3XD85) and UDP-3-O-[3-hydroxylauroyl] glucosamine N-acyltransferase (Q9HXY6). For druggability and pocketome analysis crystal and homology structures of these proteins were retrieved and developed. A sequence-based search was performed in different databases (ChEMBL, Drug Bank, PubChem and Pseudomonas database) for the availability of reported ligands and tested drugs for the screened targets. These predicted targets may provide a basis for the development of reliable antibacterial preventive and therapeutic options against P. aeruginosa.
Collapse
|
21
|
Long DR, Wolter DJ, Lee M, Precit M, McLean K, Holmes E, Penewit K, Waalkes A, Hoffman LR, Salipante SJ. Polyclonality, Shared Strains, and Convergent Evolution in Chronic Cystic Fibrosis Staphylococcus aureus Airway Infection. Am J Respir Crit Care Med 2021; 203:1127-1137. [PMID: 33296290 DOI: 10.1164/rccm.202003-0735oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rationale: Staphylococcus aureus is the most common respiratory pathogen isolated from patients with cystic fibrosis (CF) in the United States. Although modes of acquisition and genetic adaptation have been described for Pseudomonas aeruginosa, resulting in improved diagnosis and treatment, these features remain more poorly defined for S. aureus.Objectives: To characterize the molecular epidemiology and genetic adaptation of S. aureus during chronic CF airway infection and in response to antibiotic therapy.Methods: We performed whole-genome sequencing of 1,382 S. aureus isolates collected longitudinally over a mean 2.2 years from 246 children with CF at five U.S. centers between 2008 and 2017. Results were integrated with clinical and demographic data to characterize bacterial population dynamics and identify common genetic targets of in vivo adaptation.Measurements and Main Results: Results showed that 45.5% of patients carried multiple, coexisting S. aureus lineages, often having different antibiotic susceptibility profiles. Adaptation during the course of infection commonly occurred in a set of genes related to persistence and antimicrobial resistance. Individual sequence types demonstrated wide geographic distribution, and we identified limited strain-sharing among children linked by common household or clinical exposures. Unlike P. aeruginosa, S. aureus genetic diversity was unconstrained, with an ongoing flow of new genetic elements into the population of isolates from children with CF.Conclusions: CF airways are frequently coinfected by multiple, genetically distinct S. aureus lineages, indicating that current clinical procedures for sampling isolates and selecting antibiotics are likely inadequate. Strains can be shared by patients in close domestic or clinical contact and can undergo convergent evolution in key persistence and antimicrobial-resistance genes, suggesting novel diagnostic and therapeutic approaches for future study.
Collapse
Affiliation(s)
- Dustin R Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine
| | - Daniel J Wolter
- Department of Pediatrics.,Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | | | | | - Kathryn McLean
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Elizabeth Holmes
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| | - Lucas R Hoffman
- Department of Pediatrics.,Department of Microbiology, and.,Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
22
|
Talagrand-Reboul E, Colston SM, Graf J, Lamy B, Jumas-Bilak E. Comparative and Evolutionary Genomics of Isolates Provide Insight into the Pathoadaptation of Aeromonas. Genome Biol Evol 2021; 12:535-552. [PMID: 32196086 PMCID: PMC7250499 DOI: 10.1093/gbe/evaa055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Aeromonads are ubiquitous aquatic bacteria that cause opportunistic infections in humans, but their pathogenesis remains poorly understood. A pathogenomic approach was undertaken to provide insights into the emergence and evolution of pathogenic traits in aeromonads. The genomes of 64 Aeromonas strains representative of the whole genus were analyzed to study the distribution, phylogeny, and synteny of the flanking sequences of 13 virulence-associated genes. The reconstructed evolutionary histories varied markedly depending on the gene analyzed and ranged from vertical evolution, which followed the core genome evolution (alt and colAh), to complex evolution, involving gene loss by insertion sequence-driven gene disruption, horizontal gene transfer, and paraphyly with some virulence genes associated with a phylogroup (aer, ser, and type 3 secretion system components) or no phylogroup (type 3 secretion system effectors, Ast, ExoA, and RtxA toxins). The general pathogenomic overview of aeromonads showed great complexity with diverse evolution modes and gene organization and uneven distribution of virulence genes in the genus; the results provided insights into aeromonad pathoadaptation or the ability of members of this group to emerge as pathogens. Finally, these findings suggest that aeromonad virulence-associated genes should be examined at the population level and that studies performed on type or model strains at the species level cannot be generalized to the whole species.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Laboratoire de Bactériologie, Hôpitaux universitaires de Strasbourg, France
| | - Sophie M Colston
- US Naval Research Laboratory, National Academy of Sciences, National Research Council, Washington, District of Columbia
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Département de Bactériologie, CHU de Nice and Université Côte d'Azur, INSERM, C3M, Nice, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, University of Montpellier, France.,Département d'Hygiène Hospitalière, CHRU de Montpellier, France
| |
Collapse
|
23
|
Dettman JR, Kassen R. Evolutionary Genomics of Niche-Specific Adaptation to the Cystic Fibrosis Lung in Pseudomonas aeruginosa. Mol Biol Evol 2021; 38:663-675. [PMID: 32898270 PMCID: PMC7826180 DOI: 10.1093/molbev/msaa226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The comparative genomics of the transition of the opportunistic pathogen Pseudomonas aeruginosa from a free-living environmental strain to one that causes chronic infection in the airways of cystic fibrosis (CF) patients remain poorly studied. Chronic infections are thought to originate from colonization by a single strain sampled from a diverse, globally distributed population, followed by adaptive evolution to the novel, stressful conditions of the CF lung. However, we do not know whether certain clades are more likely to form chronic infections than others and we lack a comprehensive view of the suite of genes under positive selection in the CF lung. We analyzed whole-genome sequence data from 1,000 P. aeruginosa strains with diverse ecological provenances including the CF lung. CF isolates were distributed across the phylogeny, indicating little genetic predisposition for any one clade to cause chronic infection. Isolates from the CF niche experienced stronger positive selection on core genes than those derived from environmental or acute infection sources, consistent with recent adaptation to the lung environment. Genes with the greatest differential positive selection in the CF niche include those involved in core cellular processes such as metabolism, energy production, and stress response as well as those linked to patho-adaptive processes such as antibiotic resistance, cell wall and membrane modification, quorum sensing, biofilms, mucoidy, motility, and iron homeostasis. Many genes under CF-specific differential positive selection had regulatory functions, consistent with the idea that regulatory mutations play an important role in rapid adaptation to novel environments.
Collapse
Affiliation(s)
| | - Rees Kassen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
24
|
Maturana JL, Cárdenas JP. Insights on the Evolutionary Genomics of the Blautia Genus: Potential New Species and Genetic Content Among Lineages. Front Microbiol 2021; 12:660920. [PMID: 33981291 PMCID: PMC8107234 DOI: 10.3389/fmicb.2021.660920] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/25/2021] [Indexed: 12/02/2022] Open
Abstract
Blautia, a genus established in 2008, is a relevantly abundant taxonomic group present in the microbiome of human and other mammalian gastrointestinal (GI) tracts. Several described (or proposed) Blautia species are available at this date. However, despite the increasing level of knowledge about Blautia, its diversity is still poorly understood. The increasing availability of Blautia genomic sequences in the public databases opens the possibility to study this genus from a genomic perspective. Here we report the pangenome analysis and the phylogenomic study of 225 Blautia genomes available in RefSeq. We found 33 different potential species at the genomic level, 17 of them previously undescribed; we also confirmed by genomic standards the status of 4 previously proposed new Blautia species. Comparative genomic analyses suggest that the Blautia pangenome is open, with a relatively small core genome (∼ 700-800 gene families). Utilizing a set of representative genomes, we performed a gene family gain/loss model for the genus, showing that despite terminal nodes suffered more massive gene gain events than internal nodes (i.e., predicted ancestors), some ancestors were predicted to have gained an important number of gene families, some of them associated with the possible acquisition of metabolic abilities. Gene loss events remained lower than gain events in most cases. General aspects regarding pangenome composition and gene gain/loss events are discussed, as well as the proposition of changes in the taxonomic assignment of B. coccoides TY and the proposition of a new species, "B. pseudococcoides.".
Collapse
Affiliation(s)
- José Luis Maturana
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Juan P. Cárdenas
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
25
|
Temperate and chronic virus competition leads to low lysogen frequency. J Theor Biol 2021; 523:110710. [PMID: 33839160 DOI: 10.1016/j.jtbi.2021.110710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 11/23/2022]
Abstract
The canonical bacteriophage is obligately lytic: the virus infects a bacterium and hijacks cell functions to produce large numbers of new viruses which burst from the cell. These viruses are well-studied, but there exist a wide range of coexisting virus lifestyles that are less understood. Temperate viruses exhibit both a lytic cycle and a latent (lysogenic) cycle, in which viral genomes are integrated into the bacterial host. Meanwhile, chronic (persistent) viruses use cell functions to produce more viruses without killing the cell; chronic viruses may also exhibit a latent stage in addition to the productive stage. Here, we study the ecology of these competing viral strategies. We demonstrate the conditions under which each strategy is dominant, which aids in control of human bacterial infections using viruses. We find that low lysogen frequencies provide competitive advantages for both virus types; however, chronic viruses maximize steady state density by eliminating lysogeny entirely, while temperate viruses exhibit a non-zero 'sweet spot' lysogen frequency. Viral steady state density maximization leads to coexistence of temperate and chronic viruses, explaining the presence of multiple viral strategies in natural environments.
Collapse
|
26
|
Flagella hook protein FlgE is a novel vaccine candidate of Pseudomonas aeruginosa identified by a genomic approach. Vaccine 2021; 39:2386-2395. [PMID: 33775439 DOI: 10.1016/j.vaccine.2021.03.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023]
Abstract
Infections due to Pseudomonas aeruginosa (PA) are becoming a serious threat to patients in intensive care units. A PA vaccine is a practical and economical solution to solve the problems caused by PA infection successfully. In recent years, several antigen candidates have been tested in animal and human clinical trials, but none of them has been approved to date. An alternative strategy for antigen screening and protective antigens is in urgent demand. In this study, we generated a genome-wide library of PA protein fragments tagged with maltose-binding protein (MBP). Using sera from patients who recovered after PA infection, we identified a novel protective antigen, FlgE, which is the structural component of the flagella hook. Vaccination with recombinant FlgE (reFlgE) induced a Th2-predominant immune response and reduced bacterial load and inflammation in PA-infected mice. Anti-reFlgE antibodies recognized native FlgE on the bacterial membrane in vitro and conferred protection in mice, which may be due to the mediation of opsonophagocytic killing and inhibition of bacterial motility. In addition, the combination of reFlgE with rePcrVNH, an engineered antigen we reported previously, provided elevated protection against PA infection. Our data demonstrate that FlgE is a promising vaccine candidate for PA and provide a new strategy for the efficient screening of antigens of other pathogens.
Collapse
|
27
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Rosselli R, La Porta N, Muresu R, Stevanato P, Concheri G, Squartini A. Pangenomics of the Symbiotic Rhizobiales. Core and Accessory Functions Across a Group Endowed with High Levels of Genomic Plasticity. Microorganisms 2021; 9:microorganisms9020407. [PMID: 33669391 PMCID: PMC7920277 DOI: 10.3390/microorganisms9020407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pangenome analyses reveal major clues on evolutionary instances and critical genome core conservation. The order Rhizobiales encompasses several families with rather disparate ecological attitudes. Among them, Rhizobiaceae, Bradyrhizobiaceae, Phyllobacteriacreae and Xanthobacteriaceae, include members proficient in mutualistic symbioses with plants based on the bacterial conversion of N2 into ammonia (nitrogen-fixation). The pangenome of 12 nitrogen-fixing plant symbionts of the Rhizobiales was analyzed yielding total 37,364 loci, with a core genome constituting 700 genes. The percentage of core genes averaged 10.2% over single genomes, and between 5% to 7% were found to be plasmid-associated. The comparison between a representative reference genome and the core genome subset, showed the core genome highly enriched in genes for macromolecule metabolism, ribosomal constituents and overall translation machinery, while membrane/periplasm-associated genes, and transport domains resulted under-represented. The analysis of protein functions revealed that between 1.7% and 4.9% of core proteins could putatively have different functions.
Collapse
Affiliation(s)
- Riccardo Rosselli
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, NL-1790 AB Den Burg, The Netherlands;
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 Alicante, Spain
| | - Nicola La Porta
- Department of Sustainable Agrobiosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy;
- MOUNTFOR Project Centre, European Forest Institute, 38098 San Michele all’Adige, Italy
| | - Rosella Muresu
- Institute of Animal Production Systems in Mediterranean Environments-National Research Council, 07040 Sassari, Italy;
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; (P.S.); (G.C.)
- Correspondence: ; Tel.: +39-049-8272-923
| |
Collapse
|
29
|
Molina-Mora JA, Chinchilla-Montero D, García-Batán R, García F. Genomic context of the two integrons of ST-111 Pseudomonas aeruginosa AG1: A VIM-2-carrying old-acquaintance and a novel IMP-18-carrying integron. INFECTION GENETICS AND EVOLUTION 2021; 89:104740. [PMID: 33516973 DOI: 10.1016/j.meegid.2021.104740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa is an opportunist and versatile organism responsible for infections mainly in immunocompromised hosts. This pathogen has high intrinsic resistance to most antimicrobials. P. aeruginosa AG1 (PaeAG1) is a Costa Rican high-risk ST-111 strain with resistance to multiple antibiotics, including carbapenems, due to the activity of VIM-2 and IMP-18 metallo-β-lactamases (MBLs). These genes are harbored in two class 1 integrons located inone out of the 57 PaeAG1 genomic islands. However, the genomic context associated to these determinants in PaeAG1 and other P. aeruginosa strains is unclear. Thus, we first assessed the transcriptional activity of VIM-2 and IMP-18 genes when exposed to imipenem (a carbapenem) by RT-qPCR. To select related genomes to PaeAG1, we implemented a pan-genome analysis to define and up-date the phylogenetic relationship among complete P. aeruginosa genomes. We also studied the PaeAG1 genomic islands content in the related strains and finally we described the architecture and possible evolutionary steps of the genomic regions around the VIM-2- and IMP-18-carrying integrons. Expression of VIM-2 and IMP-18 genes was demonstrated to be induced after imipenem exposure. In a subsequent comparative genomics analysis with 211 strains, the P. aeruginosa pan-genome revealed that complete genome sequences are able to separate clones by MLST profile, including a clear ST-111 cluster with PaeAG1. The PaeAG1 genomic islands were found to define a diverse presence/absence pattern among related genomes. Finally, landscape reconstruction of genomic regions showed that VIM-2-carrying integron (In59-like) is an old-acquaintance element harbored in the same known region found in other two ST-111 strains. Also, PaeAG1 has an exclusive genomic region containing a novel IMP-18-carrying integron (registered as In1666), with an arrangement never reported before. Altogether, we provide new insights about the genomic determinants associated with the resistance to carbapenems in this high-risk P. aeruginosa using comparative genomics.
Collapse
Affiliation(s)
| | | | - Raquel García-Batán
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| | - Fernando García
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| |
Collapse
|
30
|
Zoledowska S, Motyka-Pomagruk A, Misztak A, Lojkowska E. Comparative Genomics, from the Annotated Genome to Valuable Biological Information: A Case Study. Methods Mol Biol 2021; 2242:91-112. [PMID: 33961220 DOI: 10.1007/978-1-0716-1099-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High availability of fast, cheap, and high-throughput next generation sequencing techniques resulted in acquisition of numerous de novo sequenced and assembled bacterial genomes. It rapidly became clear that digging out useful biological information from such a huge amount of data presents a considerable challenge. In this chapter we share our experience with utilization of several handy open source comparative genomic tools. All of them were applied in the studies focused on revealing inter- and intraspecies variation in pectinolytic plant pathogenic bacteria classified to Dickeya solani and Pectobacterium parmentieri. As the described software performed well on the species within the Pectobacteriaceae family, it presumably may be readily utilized on some closely related taxa from the Enterobacteriaceae family. First of all, implementation of various annotation software is discussed and compared. Then, tools computing whole genome comparisons including generation of circular juxtapositions of multiple sequences, revealing the order of synteny blocks or calculation of ANI or Tetra values are presented. Besides, web servers intended either for functional annotation of the genes of interest or for detection of genomic islands, plasmids, prophages, CRISPR/Cas are described. Last but not least, utilization of the software designed for pangenome studies and the further downstream analyses is explained. The presented work not only summarizes broad possibilities assured by the comparative genomic approach but also provides a user-friendly guide that might be easily followed by nonbioinformaticians interested in undertaking similar studies.
Collapse
Affiliation(s)
- Sabina Zoledowska
- Department of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk & Medical University of Gdansk, University of Gdansk, Gdansk, 58 Abrahama, Poland
- Institute of Biotechnology and Molecular Medicine, Gdansk, 3 Trzy Lipy, Poland
| | - Agata Motyka-Pomagruk
- Department of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk & Medical University of Gdansk, University of Gdansk, Gdansk, 58 Abrahama, Poland
| | - Agnieszka Misztak
- Department of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk & Medical University of Gdansk, University of Gdansk, Gdansk, 58 Abrahama, Poland
| | - Ewa Lojkowska
- Department of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk & Medical University of Gdansk, University of Gdansk, Gdansk, 58 Abrahama, Poland.
| |
Collapse
|
31
|
María Hernández-Domínguez E, Sofía Castillo-Ortega L, García-Esquivel Y, Mandujano-González V, Díaz-Godínez G, Álvarez-Cervantes J. Bioinformatics as a Tool for the Structural and Evolutionary Analysis of Proteins. Comput Biol Chem 2020. [DOI: 10.5772/intechopen.89594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This chapter deals with the topic of bioinformatics, computational, mathematics, and statistics tools applied to biology, essential for the analysis and characterization of biological molecules, in particular proteins, which play an important role in all cellular and evolutionary processes of the organisms. In recent decades, with the next generation sequencing technologies and bioinformatics, it has facilitated the collection and analysis of a large amount of genomic, transcriptomic, proteomic, and metabolomic data from different organisms that have allowed predictions on the regulation of expression, transcription, translation, structure, and mechanisms of action of proteins as well as homology, mutations, and evolutionary processes that generate structural and functional changes over time. Although the information in the databases is greater every day, all bioinformatics tools continue to be constantly modified to improve performance that leads to more accurate predictions regarding protein functionality, which is why bioinformatics research remains a great challenge.
Collapse
|
32
|
Slizen MV, Galzitskaya OV. Comparative Analysis of Proteomes of a Number of Nosocomial Pathogens by KEGG Modules and KEGG Pathways. Int J Mol Sci 2020; 21:ijms21217839. [PMID: 33105850 PMCID: PMC7660090 DOI: 10.3390/ijms21217839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023] Open
Abstract
Nosocomial (hospital-acquired) infections remain a serious challenge for health systems. The reason for this lies not only in the local imperfection of medical practices and protocols. The frequency of infection with antibiotic-resistant strains of bacteria is growing every year, both in developed and developing countries. In this work, a pangenome and comparative analysis of 201 genomes of Staphylococcus aureus, Enterobacter spp., Pseudomonas aeruginosa, and Mycoplasma spp. was performed on the basis of high-level functional annotations—KEGG pathways and KEGG modules. The first three organisms are serious nosocomial pathogens, often exhibiting multidrug resistance. Analysis of KEGG modules revealed methicillin resistance in 25% of S. aureus strains and resistance to carbapenems in 21% of Enterobacter spp. strains. P. aeruginosa has a wide range of unique efflux systems. One hundred percent of the analyzed strains have at least two drug resistance systems, and 75% of the strains have seven. Each of the organisms has a characteristic set of metabolic features, whose impact on drug resistance can be considered in future studies. Comparing the genomes of nosocomial pathogens with each other and with Mycoplasma genomes can expand our understanding of the versatility of certain metabolic features and mechanisms of drug resistance.
Collapse
Affiliation(s)
- Mikhail V. Slizen
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Correspondence:
| |
Collapse
|
33
|
Abstract
Variation in the genome of Pseudomonas aeruginosa, an important pathogen, can have dramatic impacts on the bacterium's ability to cause disease. We therefore asked whether it was possible to predict the virulence of P. aeruginosa isolates based on their genomic content. We applied a machine learning approach to a genetically and phenotypically diverse collection of 115 clinical P. aeruginosa isolates using genomic information and corresponding virulence phenotypes in a mouse model of bacteremia. We defined the accessory genome of these isolates through the presence or absence of accessory genomic elements (AGEs), sequences present in some strains but not others. Machine learning models trained using AGEs were predictive of virulence, with a mean nested cross-validation accuracy of 75% using the random forest algorithm. However, individual AGEs did not have a large influence on the algorithm's performance, suggesting instead that virulence predictions are derived from a diffuse genomic signature. These results were validated with an independent test set of 25 P. aeruginosa isolates whose virulence was predicted with 72% accuracy. Machine learning models trained using core genome single-nucleotide variants and whole-genome k-mers also predicted virulence. Our findings are a proof of concept for the use of bacterial genomes to predict pathogenicity in P. aeruginosa and highlight the potential of this approach for predicting patient outcomes.IMPORTANCE Pseudomonas aeruginosa is a clinically important Gram-negative opportunistic pathogen. P. aeruginosa shows a large degree of genomic heterogeneity both through variation in sequences found throughout the species (core genome) and through the presence or absence of sequences in different isolates (accessory genome). P. aeruginosa isolates also differ markedly in their ability to cause disease. In this study, we used machine learning to predict the virulence level of P. aeruginosa isolates in a mouse bacteremia model based on genomic content. We show that both the accessory and core genomes are predictive of virulence. This study provides a machine learning framework to investigate relationships between bacterial genomes and complex phenotypes such as virulence.
Collapse
|
34
|
Kumar R, Bröms JE, Sjöstedt A. Exploring the Diversity Within the Genus Francisella - An Integrated Pan-Genome and Genome-Mining Approach. Front Microbiol 2020; 11:1928. [PMID: 32849479 PMCID: PMC7431613 DOI: 10.3389/fmicb.2020.01928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 01/13/2023] Open
Abstract
Pan-genome analysis is a powerful method to explore genomic heterogeneity and diversity of bacterial species. Here we present a pan-genome analysis of the genus Francisella, comprising a dataset of 63 genomes and encompassing clinical as well as environmental isolates from distinct geographic locations. To determine the evolutionary relationship within the genus, we performed phylogenetic whole-genome studies utilizing the average nucleotide identity, average amino acid identity, core genes and non-recombinant loci markers. Based on the analyses, the phylogenetic trees obtained identified two distinct clades, A and B and a diverse cluster designated C. The sizes of the pan-, core-, cloud-, and shell-genomes of Francisella were estimated and compared to those of two other facultative intracellular pathogens, Legionella and Piscirickettsia. Francisella had the smallest core-genome, 692 genes, compared to 886 and 1,732 genes for Legionella and Piscirickettsia respectively, while the pan-genome of Legionella was more than twice the size of that of the other two genera. Also, the composition of the Francisella Type VI secretion system (T6SS) was analyzed. Distinct differences in the gene content of the T6SS were identified. In silico approaches performed to identify putative substrates of these systems revealed potential effectors targeting the cell wall, inner membrane, cellular nucleic acids as well as proteins, thus constituting attractive targets for site-directed mutagenesis. The comparative analysis performed here provides a comprehensive basis for the assessment of the phylogenomic relationship of members of the genus Francisella and for the identification of putative T6SS virulence traits.
Collapse
Affiliation(s)
- Rajender Kumar
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jeanette E Bröms
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Anders Sjöstedt
- Department of Clinical Microbiology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| |
Collapse
|
35
|
Costa SS, Guimarães LC, Silva A, Soares SC, Baraúna RA. First Steps in the Analysis of Prokaryotic Pan-Genomes. Bioinform Biol Insights 2020; 14:1177932220938064. [PMID: 32843837 PMCID: PMC7418249 DOI: 10.1177/1177932220938064] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/26/2020] [Indexed: 01/14/2023] Open
Abstract
Pan-genome is defined as the set of orthologous and unique genes of a specific group of organisms. The pan-genome is composed by the core genome, accessory genome, and species- or strain-specific genes. The pan-genome is considered open or closed based on the alpha value of the Heap law. In an open pan-genome, the number of gene families will continuously increase with the addition of new genomes to the analysis, while in a closed pan-genome, the number of gene families will not increase considerably. The first step of a pan-genome analysis is the homogenization of genome annotation. The same software should be used to annotate genomes, such as GeneMark or RAST. Subsequently, several software are used to calculate the pan-genome such as BPGA, GET_HOMOLOGUES, PGAP, among others. This review presents all these initial steps for those who want to perform a pan-genome analysis, explaining key concepts of the area. Furthermore, we present the pan-genomic analysis of 9 bacterial species. These are the species with the highest number of genomes deposited in GenBank. We also show the influence of the identity and coverage parameters on the prediction of orthologous and paralogous genes. Finally, we cite the perspectives of several research areas where pan-genome analysis can be used to answer important issues.
Collapse
Affiliation(s)
- Sávio Souza Costa
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Engenharia Biológica, Espaço Inovação, Parque de Ciência e Tecnologia Guamá, Belém, Brazil
| | - Luís Carlos Guimarães
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, Brazil
| | - Artur Silva
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Engenharia Biológica, Espaço Inovação, Parque de Ciência e Tecnologia Guamá, Belém, Brazil
| | - Siomar Castro Soares
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Rafael Azevedo Baraúna
- Centro de Genômica e Biologia de Sistemas, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Engenharia Biológica, Espaço Inovação, Parque de Ciência e Tecnologia Guamá, Belém, Brazil
| |
Collapse
|
36
|
Moulana A, Anderson RE, Fortunato CS, Huber JA. Selection Is a Significant Driver of Gene Gain and Loss in the Pangenome of the Bacterial Genus Sulfurovum in Geographically Distinct Deep-Sea Hydrothermal Vents. mSystems 2020; 5:e00673-19. [PMID: 32291353 PMCID: PMC7159903 DOI: 10.1128/msystems.00673-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Microbial genomes have highly variable gene content, and the evolutionary history of microbial populations is shaped by gene gain and loss mediated by horizontal gene transfer and selection. To evaluate the influence of selection on gene content variation in hydrothermal vent microbial populations, we examined 22 metagenome-assembled genomes (MAGs) (70 to 97% complete) from the ubiquitous vent Epsilonbacteraeota genus Sulfurovum that were recovered from two deep-sea hydrothermal vent regions, Axial Seamount in the northeastern Pacific Ocean (13 MAGs) and the Mid-Cayman Rise in the Caribbean Sea (9 MAGs). Genes involved in housekeeping functions were highly conserved across Sulfurovum lineages. However, genes involved in environment-specific functions, and in particular phosphate regulation, were found mostly in Sulfurovum genomes from the Mid-Cayman Rise in the low-phosphate Atlantic Ocean environment, suggesting that nutrient limitation is an important selective pressure for these bacteria. Furthermore, genes that were rare within the pangenome were more likely to undergo positive selection than genes that were highly conserved in the pangenome, and they also appeared to have experienced gene-specific sweeps. Our results suggest that selection is a significant driver of gene gain and loss for dominant microbial lineages in hydrothermal vents and highlight the importance of factors like nutrient limitation in driving microbial adaptation and evolution.IMPORTANCE Microbes can alter their gene content through the gain and loss of genes. However, there is some debate as to whether natural selection or neutral processes play a stronger role in molding the gene content of microbial genomes. In this study, we examined variation in gene content for the Epsilonbacteraeota genus Sulfurovum from deep-sea hydrothermal vents, which are dynamic habitats known for extensive horizontal gene transfer within microbial populations. Our results show that natural selection is a strong driver of Sulfurovum gene content and that nutrient limitation in particular has shaped the Sulfurovum genome, leading to differences in gene content between ocean basins. Our results also suggest that recently acquired genes undergo stronger selection than genes that were acquired in the more distant past. Overall, our results highlight the importance of natural selection in driving the evolution of microbial populations in these dynamic habitats.
Collapse
Affiliation(s)
- Alief Moulana
- Biology Department, Carleton College, Northfield, Minnesota, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | | | - Julie A Huber
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
37
|
Muthukumarasamy U, Preusse M, Kordes A, Koska M, Schniederjans M, Khaledi A, Häussler S. Single-Nucleotide Polymorphism-Based Genetic Diversity Analysis of Clinical Pseudomonas aeruginosa Isolates. Genome Biol Evol 2020; 12:396-406. [PMID: 32196089 PMCID: PMC7197496 DOI: 10.1093/gbe/evaa059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 01/26/2023] Open
Abstract
Extensive use of next-generation sequencing has the potential to transform our knowledge on how genomic variation within bacterial species impacts phenotypic versatility. Because different environments have unique selection pressures, they drive divergent evolution. However, there is also parallel or convergent evolution of traits in independent bacterial isolates inhabiting similar environments. The application of tools to describe population-wide genomic diversity provides an opportunity to measure the predictability of genetic changes underlying adaptation. Here, we describe patterns of sequence variations in the core genome among 99 individual Pseudomonas aeruginosa clinical isolates and identified single-nucleotide polymorphisms that are the basis for branching of the phylogenetic tree. We also identified single-nucleotide polymorphisms that were acquired independently, in separate lineages, and not through inheritance from a common ancestor. Although our results demonstrate that the Pseudomonas aeruginosa core genome is highly conserved and in general, not subject to adaptive evolution, instances of parallel evolution will provide an opportunity to uncover genetic changes that underlie phenotypic diversity.
Collapse
Affiliation(s)
- Uthayakumar Muthukumarasamy
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Adrian Kordes
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Michal Koska
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Monika Schniederjans
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Ariane Khaledi
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| |
Collapse
|
38
|
Abstract
Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship. Most bacteria and archaea are infected by latent viruses that change their physiology and responses to environmental stress. We use a population model of the bacterium-phage relationship to examine the role that latent phage play in the bacterial population over time in response to antibiotic treatment. We demonstrate that the stress induced by antibiotic administration, even if bacteria are resistant to killing by antibiotics, is sufficient to control the infection under certain conditions. This work expands the breadth of understanding of phage-antibiotic synergy to include both temperate and chronic viruses persisting in their latent form in bacterial populations. IMPORTANCE Antibiotic resistance is a growing concern for management of common bacterial infections. Here, we show that antibiotics can be effective at subinhibitory levels when bacteria carry latent phage. Our findings suggest that specific treatment strategies based on the identification of latent viruses in individual bacterial strains may be an effective personalized medicine approach to antibiotic stewardship.
Collapse
|
39
|
McCarthy CGP, Fitzpatrick DA. Pangloss: A Tool for Pan-Genome Analysis of Microbial Eukaryotes. Genes (Basel) 2019; 10:E521. [PMID: 31295964 PMCID: PMC6678930 DOI: 10.3390/genes10070521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022] Open
Abstract
Although the pan-genome concept originated in prokaryote genomics, an increasing number of eukaryote species pan-genomes have also been analysed. However, there is a relative lack of software intended for eukaryote pan-genome analysis compared to that available for prokaryotes. In a previous study, we analysed the pan-genomes of four model fungi with a computational pipeline that constructed pan-genomes using the synteny-dependent Pan-genome Ortholog Clustering Tool (PanOCT) approach. Here, we present a modified and improved version of that pipeline which we have called Pangloss. Pangloss can perform gene prediction for a set of genomes from a given species that the user provides, constructs and optionally refines a species pan-genome from that set using PanOCT, and can perform various functional characterisation and visualisation analyses of species pan-genome data. To demonstrate Pangloss's capabilities, we constructed and analysed a species pan-genome for the oleaginous yeast Yarrowialipolytica and also reconstructed a previously-published species pan-genome for the opportunistic respiratory pathogen Aspergillus fumigatus. Pangloss is implemented in Python, Perl and R and is freely available under an open source GPLv3 licence via GitHub.
Collapse
Affiliation(s)
- Charley G P McCarthy
- Genome Evolution Laboratory, Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland.
- Human Health Research Institute, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland.
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
- Human Health Research Institute, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
40
|
Martínez-Carranza E, Ponce-Soto GY, Servín-González L, Alcaraz LD, Soberón-Chávez G. Evolution of bacteria seen through their essential genes: the case of Pseudomonas aeruginosa and Azotobacter vinelandii. MICROBIOLOGY-SGM 2019; 165:976-984. [PMID: 31274400 DOI: 10.1099/mic.0.000833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa is a metabolically versatile bacterium and also an important opportunistic pathogen. It has a remarkable genomic structure since the genetic information encoding its pathogenicity-related traits belongs to its core-genome while both environmental and clinical isolates are part of the same population with a highly conserved genomic sequence. Unexpectedly, considering the high level of sequence identity and homologue gene number shared between different P. aeruginosa isolates, the presence of specific essential genes of the two type strains PAO1 and PA14 has been reported to be highly variable. Here we report the detailed bioinformatics analysis of the essential genes of P. aeruginosa PAO1 and PA14 that have been previously experimentally identified and show that the reported gene variability was owed to sequencing and annotation inconsistencies, but that in fact they are highly conserved. This bioinformatics analysis led us to the definition of 348 P. aeruginosa general essential genes. In addition we show that 342 of these 348 essential genes are conserved in Azotobacter vinelandii, a nitrogen-fixing, cyst-forming, soil bacterium. These results support the hypothesis of A. vinelandii having a polyphyletic origin with a Pseudomonads genomic backbone, and are a challenge to the accepted theory of bacterial evolution.
Collapse
Affiliation(s)
- Enrique Martínez-Carranza
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, Mexico
| | - Gabriel-Yaxal Ponce-Soto
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, Mexico
| | - Luis David Alcaraz
- Facultad de Ciencias, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. Postal 70228, C. P. 04510, CDMX, Mexico
| |
Collapse
|
41
|
García-Ulloa M, Ponce-Soto GY, González-Valdez A, González-Pedrajo B, Díaz-Guerrero M, Souza V, Soberón-Chávez G. Two Pseudomonas aeruginosa clonal groups belonging to the PA14 clade are indigenous to the Churince system in Cuatro Ciénegas Coahuila, México. Environ Microbiol 2019; 21:2964-2976. [PMID: 31112340 DOI: 10.1111/1462-2920.14692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 02/05/2023]
Abstract
Pseudomonas aeruginosa is a widely distributed environmental bacterium but is also an opportunistic pathogen that represents an important health hazard due to its high intrinsic antibiotic resistance and its production of virulence factors. The genetic structure of P. aeruginosa populations using whole genome sequences shows the existence of three clades, one of which (PA7 clade) has a higher genetic diversity. These three clades include clinical and environmental isolates that are very diverse in terms of geographical origins and isolation date. Here, we report the characterization of two distinct clonal P. aeruginosa groups that form a part of the PA14 clade (clade 2) sampled from the Churince system in Cuatro Ciénegas Basin (CCB). One of the clonal groups that we report here was isolated in 2011 (group 2A) and was displaced by the other clonal group (2B) in 2015. Both Churince groups are unable to produce pyoverdine but can produce other virulence-associated traits. The existence of these unique P. aeruginosa clonal groups in the Churince system is of ecological and evolutionary significance since the microbiota of this site is generally very distinct from other lineages, and this is the first time that a population of P. aeruginosa has been found in CCB.
Collapse
Affiliation(s)
- Manuel García-Ulloa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Gabriel-Yaxal Ponce-Soto
- Institute for Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm Johnen Straße, Jülich, Germany
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| |
Collapse
|
42
|
Gonzalez-Miro M, Chen S, Gonzaga ZJ, Evert B, Wibowo D, Rehm BHA. Polyester as Antigen Carrier toward Particulate Vaccines. Biomacromolecules 2019; 20:3213-3232. [DOI: 10.1021/acs.biomac.9b00509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Majela Gonzalez-Miro
- School of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - Shuxiong Chen
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Zennia Jean Gonzaga
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Benjamin Evert
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - David Wibowo
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Bernd H. A. Rehm
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
43
|
Liu J, Zeng Q, Wang M, Cheng A, Liu M, Zhu D, Chen S, Jia R, Zhao XX, Wu Y, Yang Q, Zhang S, Liu Y, Yu Y, Zhang L, Chen X. Comparative genome-scale modelling of the pathogenic Flavobacteriaceae species Riemerella anatipestifer in China. Environ Microbiol 2019; 21:2836-2851. [PMID: 31004458 DOI: 10.1111/1462-2920.14635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Riemerella anatipestifer (RA) is a gram-negative bacterium that has a high potential to infect waterfowl. Although more and more genomes of RA have been generated comparaed to genomic analysis of RA still remains at the level of individual species. In this study, we analysed the pan-genome of 27 RA virulent isolates to reveal the intraspecies genomic diversity from various aspects. The multi-locus sequence typing (MLST) analysis suggests that the geographic origin of R. anatipestifer is Guangdong province, China. Results of pan-genome analysis revealed an open pan-genome for all 27 species with the sizes of 2967 genes. We identified 387 genes among 555 unique genes originated by horizontal gene transfer. Further studies showed 204 strain-specific HGT genes were predicted as virulent proteins. Screening the 1113 core genes in RA through subtractive genomic approach, 70 putative vaccine targets out of 125 non-cytoplasmic proteins have been predicted. Further analysis of these non A. platyrhynchos homologous proteins predicted that 56 essential proteins as drug target with more interaction partners were involved in unique metabolic pathways of RA. In conclusion, the present study indicated the essence and the diversity of RA and also provides useful information for identification of vaccine and drugs candidates in future.
Collapse
Affiliation(s)
- Jibin Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiurui Zeng
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
44
|
Wan C, Zhang J, Zhao L, Cheng X, Gao C, Wang Y, Xu W, Zou Q, Gu J. Rational Design of a Chimeric Derivative of PcrV as a Subunit Vaccine Against Pseudomonas aeruginosa. Front Immunol 2019; 10:781. [PMID: 31068928 PMCID: PMC6491502 DOI: 10.3389/fimmu.2019.00781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/25/2019] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a major cause of nosocomial infections, which remain an unsolved problem in the clinic despite conventional antibiotic treatment. A PA vaccine could be both an effective and economical strategy to address this issue. Many studies have shown that PcrV, a structural protein of the type 3 secretion system (T3SS) from PA, is an ideal target for immune prevention and therapy. However, difficulties in the production of high-quality PcrV likely hinder its further application in the vaccine industry. Thus, we hypothesized that an optimized PcrV derivative with a rational design could be produced. In this study, the full-length PcrV was divided into four domains with the guidance of its structure, and the Nter domain (Met1-Lys127) and H12 domain (Leu251-Ile294) were found to be immunodominant. Subsequently, Nter and H12 were combined with a flexible linker to generate an artificial PcrV derivative (PcrVNH). PcrVNH was successfully produced in E. coli and behaved as a homogenous monomer. Moreover, immunization with PcrVNH elicited a multifactorial immune response and conferred broad protection in an acute PA pneumonia model and was equally effective to full-length PcrV. In addition, passive immunization with anti-PcrVNH antibodies alone also showed significant protection, at least based on inhibition of the T3SS and mediation of opsonophagocytic killing activities. These results provide an additional example for the rational design of antigens and suggest that PcrVNH is a promising vaccine candidate for the control of PA infection.
Collapse
Affiliation(s)
- Chuang Wan
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jin Zhang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liqun Zhao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xin Cheng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Chen Gao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wanting Xu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiang Gu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
45
|
Klockgether J, Cramer N, Fischer S, Wiehlmann L, Tümmler B. Long-Term Microevolution of Pseudomonas aeruginosa Differs between Mildly and Severely Affected Cystic Fibrosis Lungs. Am J Respir Cell Mol Biol 2019; 59:246-256. [PMID: 29470920 DOI: 10.1165/rcmb.2017-0356oc] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic airway infections with Pseudomonas aeruginosa determine morbidity in most individuals with cystic fibrosis (CF). P. aeruginosa may persist for decades in CF lungs, which provides a rare opportunity to study the long-term within-host evolution of a bacterial airway pathogen. In this work, we sought to resolve the genetic adaptation of P. aeruginosa in CF lungs from the onset of colonization until the patient's death or permanent replacement by another P. aeruginosa clone. We followed the microevolution of the first persisting P. aeruginosa clone by whole-genome sequencing of serial isolates from highly divergent clinical courses of airway infection, i.e., a fatal outcome because of respiratory insufficiency within less than 15 years, or a rather normal daily life 25-35 years after acquisition of P. aeruginosa. Nonneutral mutations predominantly emerged in P. aeruginosa genes relevant for protection against and communication with signals from the lung environment, i.e., antibiotic resistance, cell wall components, and two-component systems. Drastic and loss-of-function mutations preferentially happened during the severe courses of infection, and the bacterial lineages of the mild courses more proficiently incorporated extra metabolic genes into their accessory genome. P. aeruginosa followed different evolutionary paths depending on whether the bacterium had taken up residence in a patient with CF and normal or already compromised lung function.
Collapse
Affiliation(s)
- Jens Klockgether
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and
| | - Nina Cramer
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and
| | - Sebastian Fischer
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and
| | - Lutz Wiehlmann
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and.,2 Research Core Unit Genomics, Hannover Medical School, Hannover, Germany; and
| | - Burkhard Tümmler
- 1 Clinical Research Group "Molecular Pathology of Cystic Fibrosis," Clinic for Pediatric Pneumology, Allergology and Neonatology, and.,3 Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre for Lung Research, Hannover, Germany
| |
Collapse
|
46
|
Recombination of ecologically and evolutionarily significant loci maintains genetic cohesion in the Pseudomonas syringae species complex. Genome Biol 2019; 20:3. [PMID: 30606234 PMCID: PMC6317194 DOI: 10.1186/s13059-018-1606-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Background Pseudomonas syringae is a highly diverse bacterial species complex capable of causing a wide range of serious diseases on numerous agronomically important crops. We examine the evolutionary relationships of 391 agricultural and environmental strains using whole-genome sequencing and evolutionary genomic analyses. Results We describe the phylogenetic distribution of all 77,728 orthologous gene families in the pan-genome, reconstruct the core genome phylogeny using the 2410 core genes, hierarchically cluster the accessory genome, identify the diversity and distribution of type III secretion systems and their effectors, predict ecologically and evolutionary relevant loci, and establish the molecular evolutionary processes operating on gene families. Phylogenetic and recombination analyses reveals that the species complex is subdivided into primary and secondary phylogroups, with the former primarily comprised of agricultural isolates, including all of the well-studied P. syringae strains. In contrast, the secondary phylogroups include numerous environmental isolates. These phylogroups also have levels of genetic diversity typically found among distinct species. An analysis of rates of recombination within and between phylogroups revealed a higher rate of recombination within primary phylogroups than between primary and secondary phylogroups. We also find that “ecologically significant” virulence-associated loci and “evolutionarily significant” loci under positive selection are over-represented among loci that undergo inter-phylogroup genetic exchange. Conclusions While inter-phylogroup recombination occurs relatively rarely, it is an important force maintaining the genetic cohesion of the species complex, particularly among primary phylogroup strains. This level of genetic cohesion, and the shared plant-associated niche, argues for considering the primary phylogroups as a single biological species. Electronic supplementary material The online version of this article (10.1186/s13059-018-1606-y) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Freschi L, Vincent AT, Jeukens J, Emond-Rheault JG, Kukavica-Ibrulj I, Dupont MJ, Charette SJ, Boyle B, Levesque RC. The Pseudomonas aeruginosa Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. Genome Biol Evol 2019; 11:109-120. [PMID: 30496396 PMCID: PMC6328365 DOI: 10.1093/gbe/evy259] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2018] [Indexed: 12/25/2022] Open
Abstract
The huge increase in the availability of bacterial genomes led us to a point in which we can investigate and query pan-genomes, for example, the full set of genes of a given bacterial species or clade. Here, we used a data set of 1,311 high-quality genomes from the human pathogen Pseudomonas aeruginosa, 619 of which were newly sequenced, to show that a pan-genomic approach can greatly refine the population structure of bacterial species, provide new insights to define species boundaries, and generate hypotheses on the evolution of pathogenicity. The 665-gene P. aeruginosa core genome presented here, which constitutes only 1% of the entire pan-genome, is the first to be in the same order of magnitude as the minimal bacterial genome and represents a conservative estimate of the actual core genome. Moreover, the phylogeny based on this core genome provides strong evidence for a five-group population structure that includes two previously undescribed groups of isolates. Comparative genomics focusing on antimicrobial resistance and virulence genes showed that variation among isolates was partly linked to this population structure. Finally, we hypothesized that horizontal gene transfer had an important role in this respect, and found a total of 3,010 putative complete and fragmented plasmids, 5% and 12% of which contained resistance or virulence genes, respectively. This work provides data and strategies to study the evolutionary trajectories of resistance and virulence in P. aeruginosa.
Collapse
Affiliation(s)
- Luca Freschi
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Antony T Vincent
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec City, Quebec, Canada.,Département de Biochimie, De Microbiologie et de Bio-informatique, Université Laval, Québec City, Quebec, Canada
| | - Julie Jeukens
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Jean-Guillaume Emond-Rheault
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Irena Kukavica-Ibrulj
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Marie-Josée Dupont
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Steve J Charette
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec City, Quebec, Canada.,Département de Biochimie, De Microbiologie et de Bio-informatique, Université Laval, Québec City, Quebec, Canada
| | - Brian Boyle
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département de microbiologie-infectiologie et immunologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
48
|
Parkins MD, Somayaji R, Waters VJ. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev 2018; 31:e00019-18. [PMID: 30158299 PMCID: PMC6148191 DOI: 10.1128/cmr.00019-18] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic lower airway infection with Pseudomonas aeruginosa is a major contributor to morbidity and mortality in individuals suffering from the genetic disease cystic fibrosis (CF). Whereas it was long presumed that each patient independently acquired unique strains of P. aeruginosa present in their living environment, multiple studies have since demonstrated that shared strains of P. aeruginosa exist among individuals with CF. Many of these shared strains, often referred to as clonal or epidemic strains, can be transmitted from one CF individual to another, potentially reaching epidemic status. Numerous epidemic P. aeruginosa strains have been described from different parts of the world and are often associated with an antibiotic-resistant phenotype. Importantly, infection with these strains often portends a worse prognosis than for infection with nonclonal strains, including an increased pulmonary exacerbation rate, exaggerated lung function decline, and progression to end-stage lung disease. This review describes the global epidemiology of clonal P. aeruginosa strains in CF and summarizes the current literature regarding the underlying biology and clinical impact of globally important CF clones. Mechanisms associated with patient-to-patient transmission are discussed, and best-evidence practices to prevent infections are highlighted. Preventing new infections with epidemic P. aeruginosa strains is of paramount importance in mitigating CF disease progression.
Collapse
Affiliation(s)
- Michael D Parkins
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ranjani Somayaji
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Valerie J Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Division of Infectious Diseases, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Kalesinskas L, Cudone E, Fofanov Y, Putonti C. S-plot2: Rapid Visual and Statistical Analysis of Genomic Sequences. Evol Bioinform Online 2018; 14:1176934318797354. [PMID: 30245567 PMCID: PMC6144591 DOI: 10.1177/1176934318797354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
With the daily release of data from whole genome sequencing projects, tools to facilitate comparative studies are hard-pressed to keep pace. Graphical software solutions can readily recognize synteny by measuring similarities between sequences. Nevertheless, regions of dissimilarity can prove to be equally informative; these regions may harbor genes acquired via lateral gene transfer (LGT), signify gene loss or gain, or include coding regions under strong selection. Previously, we developed the software S-plot. This tool employed an alignment-free approach for comparing bacterial genomes and generated a heatmap representing the genomes’ similarities and dissimilarities in nucleotide usage. In prior studies, this tool proved valuable in identifying genome rearrangements as well as exogenous sequences acquired via LGT in several bacterial species. Herein, we present the next generation of this tool, S-plot2. Similar to its predecessor, S-plot2 creates an interactive, 2-dimensional heatmap capturing the similarities and dissimilarities in nucleotide usage between genomic sequences (partial or complete). This new version, however, includes additional metrics for analysis, new reporting options, and integrated BLAST query functionality for the user to interrogate regions of interest. Furthermore, S-plot2 can evaluate larger sequences, including whole eukaryotic chromosomes. To illustrate some of the applications of the tool, 2 case studies are presented. The first examines strain-specific variation across the Pseudomonas aeruginosa genome and strain-specific LGT events. In the second case study, corresponding human, chimpanzee, and rhesus macaque autosomes were studied and lineage specific contributions to divergence were estimated. S-plot2 provides a means to both visually and quantitatively compare nucleotide sequences, from microbial genomes to eukaryotic chromosomes. The case studies presented illustrate just 2 potential applications of the tool, highlighting its capability to identify and investigate the variation in molecular divergence rates across sequences. S-plot2 is freely available through https://bitbucket.org/lkalesinskas/splot and is supported on the Linux and MS Windows operating systems.
Collapse
Affiliation(s)
- Laurynas Kalesinskas
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Evan Cudone
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA.,Department of Biology, Loyola University Chicago, Chicago, IL, USA.,Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, Hassan KA, Varghese N, Elbourne LDH, Paulsen IT, Kyrpides N, Woyke T, Loper JE. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142-2159. [PMID: 29633519 DOI: 10.1111/1462-2920.14130] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 01/09/2023]
Abstract
Pseudomonas is a large and diverse genus of Gammaproteobacteria. To provide a framework for discovery of evolutionary and taxonomic relationships of these bacteria, we compared the genomes of type strains of 163 species and 3 additional subspecies of Pseudomonas, including 118 genomes sequenced herein. A maximum likelihood phylogeny of the 166 type strains based on protein sequences of 100 single-copy orthologous genes revealed thirteen groups of Pseudomonas, composed of two to sixty three species each. Pairwise average nucleotide identities and alignment fractions were calculated for the data set of the 166 type strains and 1224 genomes of Pseudomonas available in public databases. Results revealed that 394 of the 1224 genomes were distinct from any type strain, suggesting that the type strains represent only a fraction of the genomic diversity of the genus. The core genome of Pseudomonas was determined to contain 794 genes conferring primarily housekeeping functions. The results of this study provide a phylogenetic framework for future studies aiming to resolve the classification and phylogenetic relationships, identify new gene functions and phenotypes, and explore the ecological and metabolic potential of the Pseudomonas spp.
Collapse
Affiliation(s)
- Cedar Hesse
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Frederik Schulz
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Carolee T Bull
- Department of Plant Pathology and Environmental Microbiology, Penn State, University Park, PA, USA
| | - Brenda T Shaffer
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Qing Yan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Nicole Shapiro
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Karl A Hassan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Neha Varghese
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Liam D H Elbourne
- Department of Molecular Sciences, Macquarie University, NSW, Australia
| | - Ian T Paulsen
- Department of Molecular Sciences, Macquarie University, NSW, Australia
| | - Nikos Kyrpides
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Tanja Woyke
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Joyce E Loper
- US Department of Agriculture, Agricultural Research Service, Horticultural Crops Research Laboratory, Corvallis, OR, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|