1
|
Bhattacharya M, Scherr TD, Lister J, Kielian T, Horswill AR. Extracellular adherence proteins reduce matrix porosity and enhance Staphylococcus aureus biofilm survival during prosthetic joint infection. Infect Immun 2025; 93:e0008625. [PMID: 40116480 PMCID: PMC11977312 DOI: 10.1128/iai.00086-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/23/2025] Open
Abstract
Biofilms are a cause of chronic, non-healing infections. Staphylococcus aureus is a proficient biofilm-forming pathogen commonly isolated from prosthetic joint infections that develop following primary arthroplasty. Extracellular adherence protein (Eap), previously characterized in planktonic or non-biofilm populations as being an adhesin and immune evasion factor, was recently identified in the exoproteome of S. aureus biofilms. This work demonstrates that Eap and its two functionally orphaned homologs EapH1 and EapH2 contribute to biofilm structure and prevent macrophage invasion and phagocytosis in these communities. Biofilms unable to express Eap proteins demonstrated increased porosity and reduced biomass. We describe the role of Eap proteins in vivo using a mouse model of S. aureus prosthetic joint infection. The Results suggest that the protection conferred to biofilms by Eap proteins is a function of biofilm structural stability that interferes with the leukocyte response to biofilm-associated bacteria.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tyler D. Scherr
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Jessica Lister
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, Colorado, USA
| |
Collapse
|
2
|
Akter S, Rahman MA, Ashrafudoulla M, Mahamud AGMSU, Chowdhury MAH, Ha SD. Mechanistic and bibliometric insights into RpoS-mediated biofilm regulation and its strategic role in food safety applications. Crit Rev Food Sci Nutr 2025:1-15. [PMID: 39879107 DOI: 10.1080/10408398.2025.2458755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Biofilm, complex structures formed by microorganisms within an extracellular polymeric matrix, pose significant challenges in the sector by harboring dangerous pathogens and complicating decontamination, thereby increasing the risk of foodborne illnesses. This article provides a comprehensive review of the sigma factor, rpoS's role in biofilm development, specifically in gram-negative bacteria, and how the genetic, environmental, and regulatory elements influence rpoS activity with its critical role in bacterial stress responses. Our findings reveal that rpoS is a pivotal regulator of biofilm formation, enhancing bacterial survival in adverse conditions. Key factors affecting rpoS activity include oxidative and osmotic stress and nutrient availability. Understanding rpoS-mediated regulatory pathways is essential for developing targeted biofilm management strategies to improve food quality and safety. Furthermore, a bibliometric analysis highlights significant research trends and gaps in the literature, guiding future research directions. Future research should focus on detailed mechanistic studies of rpoS-mediated biofilm regulation, the development of specific rpoS inhibitors, and innovative approaches like biofilm-resistant surface coatings. This knowledge can lead to more effective contamination prevention and overall food safety enhancements.
Collapse
Affiliation(s)
- Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
- Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh
| | - Md Ashrafudoulla
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- National Institutes of Health, Bethesda, MD, USA
- Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR, USA
| | | | - Md Anamul Hasan Chowdhury
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea
- GreenTech-Based Food Safety Research Group, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
3
|
Bhattacharya M, Scherr TD, Lister J, Kielian T, Horswill AR. Matrix porosity is associated with Staphylococcus aureus biofilm survival during prosthetic joint infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627279. [PMID: 39677627 PMCID: PMC11643045 DOI: 10.1101/2024.12.06.627279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Biofilms are a cause of chronic, non-healing infections. Staphylococcus aureus is a proficient biofilm forming pathogen commonly isolated from prosthetic joint infections that develop following primary arthroplasty. Extracellular adhesion protein (Eap), previously characterized in planktonic or non-biofilm populations as being an adhesin and immune evasion factor, was recently identified in the exoproteome of S. aureus biofilms. This work demonstrates that Eap and its two functionally orphaned homologs EapH1 and EapH2, contribute to biofilm structure and prevent macrophage invasion and phagocytosis into these communities. Biofilms unable to express Eap proteins demonstrated increased porosity and reduced biomass. We describe a role for Eap proteins in vivo using a mouse model of S. aureus prosthetic joint infection. Results suggest that the protection conferred to biofilms by Eap proteins is a function of biofilm structural stability that interferes with the leukocyte response to biofilm-associated bacteria.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tyler D. Scherr
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jessica Lister
- Department of Microbiology, University of Iowa, Iowa City, Iowa, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO, USA
| |
Collapse
|
4
|
Dramé I, Rossez Y, Krzewinski F, Charbonnel N, Ollivier-Nakusi L, Briandet R, Dague E, Forestier C, Balestrino D. FabR, a regulator of membrane lipid homeostasis, is involved in Klebsiella pneumoniae biofilm robustness. mBio 2024; 15:e0131724. [PMID: 39240091 PMCID: PMC11481535 DOI: 10.1128/mbio.01317-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024] Open
Abstract
Biofilm is a dynamic structure from which individual bacteria and micro-aggregates are released to subsequently colonize new niches by either detachment or dispersal. Screening of a transposon mutant library identified genes associated with the alteration of Klebsiella pneumoniae biofilm including fabR, which encodes a transcriptional regulator involved in membrane lipid homeostasis. An isogenic ∆fabR mutant formed more biofilm than the wild-type (WT) strain and its trans-complemented strain. The thick and round aggregates observed with ∆fabR were resistant to extensive washes, unlike those of the WT strain. Confocal microscopy and BioFlux microfluidic observations showed that fabR deletion was associated with biofilm robustness and impaired erosion over time. The genes fabB and yqfA associated with fatty acid metabolism were significantly overexpressed in the ∆fabR strain, in both planktonic and biofilm conditions. Two monounsaturated fatty acids, palmitoleic acid (C16:1) and oleic acid (C18:1), were found in higher proportion in biofilm cells than in planktonic forms, whereas heptadecenoic acid (C17:1) and octadecanoic acid, 11-methoxy (C18:0-OCH3) were found in higher proportion in the planktonic lifestyle. The fabR mutation induced variations in the fatty acid composition, with no clear differences in the amounts of saturated fatty acids (SFA) and unsaturated fatty acids for the planktonic lifestyle but lower SFA in the biofilm form. Atomic force microscopy showed that deletion of fabR is associated with decreased K. pneumoniae cell rigidity in the biofilm lifestyle, as well as a softer, more elastic biofilm with increased cell cohesion compared to the wild-type strain.IMPORTANCEKlebsiella pneumoniae is an opportunistic pathogen responsible for a wide range of nosocomial infections. The success of this pathogen is due to its high resistance to antibiotics and its ability to form biofilms. The molecular mechanisms involved in biofilm formation have been largely described but the dispersal process that releases individual and aggregate cells from mature biofilm is less well documented while it is associated with the colonization of new environments and thus new threats. Using a multidisciplinary approach, we show that modifications of bacterial membrane fatty acid composition lead to variations in the biofilm robustness, and subsequent bacterial detachment and biofilm erosion over time. These results enhance our understanding of the genetic requirements for biofilm formation in K. pneumoniae that affect the time course of biofilm development and the embrittlement step preceding its dispersal that will make it possible to control K. pneumoniae infections.
Collapse
Affiliation(s)
- Ibrahima Dramé
- Université Clermont Auvergne, CNRS, LMGE, Clermont–Ferrand, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Frederic Krzewinski
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | | | | | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Etienne Dague
- LAAS-CNRS, CNRS, Univeristé de Toulouse, Toulouse, France
| | | | | |
Collapse
|
5
|
Tajuelo A, Gato E, Oteo-Iglesias J, Pérez-Vázquez M, McConnell MJ, Martín-Galiano AJ, Pérez A. Deep Intraclonal Analysis for the Development of Vaccines against Drug-Resistant Klebsiella pneumoniae Lineages. Int J Mol Sci 2024; 25:9837. [PMID: 39337325 PMCID: PMC11431857 DOI: 10.3390/ijms25189837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Despite its medical relevance, there is no commercial vaccine that protects the population at risk from multidrug-resistant (MDR) Klebsiella pneumoniae infections. The availability of massive omic data and novel algorithms may improve antigen selection to develop effective prophylactic strategies. Up to 133 exposed proteins in the core proteomes, between 516 and 8666 genome samples, of the six most relevant MDR clonal groups (CGs) carried conserved B-cell epitopes, suggesting minimized future evasion if utilized for vaccination. Antigens showed a range of epitopicity, functional constraints, and potential side effects. Eleven antigens, including three sugar porins, were represented in all MDR-CGs, constitutively expressed, and showed limited reactivity with gut microbiota. Some of these antigens had important interactomic interactions and may elicit adhesion-neutralizing antibodies. Synergistic bivalent to pentavalent combinations that address expression conditions, interactome location, virulence activities, and clone-specific proteins may overcome the limiting protection of univalent vaccines. The combination of five central antigens accounted for 41% of all non-redundant interacting partners of the antigen dataset. Specific antigen mixtures represented in a few or just one MDR-CG further reduced the chance of microbiota interference. Rational antigen selection schemes facilitate the design of high-coverage and "magic bullet" multivalent vaccines against recalcitrant K. pneumoniae lineages.
Collapse
Affiliation(s)
- Ana Tajuelo
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- Universidad Nacional de Educación a Distancia (UNED), 28015 Madrid, Spain
| | - Eva Gato
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Jesús Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María Pérez-Vázquez
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Michael J McConnell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Antonio J Martín-Galiano
- Core Scientific and Technical Units, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| | - Astrid Pérez
- Intrahospital Infections Unit, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
6
|
Eghbalpoor F, Gorji M, Alavigeh MZ, Moghadam MT. Genetically engineered phages and engineered phage-derived enzymes to destroy biofilms of antibiotics resistance bacteria. Heliyon 2024; 10:e35666. [PMID: 39170521 PMCID: PMC11336853 DOI: 10.1016/j.heliyon.2024.e35666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
"An impregnable stronghold where one or more warrior clans can evade enemy attacks" may serve as a description of bacterial biofilm on a smaller level than human conflicts. Consider this hypothetical conflict: who would emerge victorious? The occupants of secure trenches or those carrying out relentless assault? Either faction has the potential for triumph; the defenders will prevail if they can fortify the trench with unwavering resolve, while the assailants will succeed if they can devise innovative means to breach the trench. Hence, bacterial biofilms pose a significant challenge and are formidable adversaries for medical professionals, often leading to the failure of antibiotic treatments in numerous hospital infections. Phage engineering has become the foundation for the targeted enhancement of various phage properties, facilitating the eradication of biofilms. Researchers across the globe have studied the impact of engineered phages and phage-derived enzymes on biofilms formed by difficult-to-treat bacteria. These novel biological agents have shown promising results in addressing biofilm-related challenges. The compilation of research findings highlights the impressive capabilities of engineered phages in combating antibiotic-resistant bacteria, superbugs, and challenging infections. Specifically, these engineered phages exhibit enhanced biofilm destruction, penetration, and prevention capabilities compared to their natural counterparts. Additionally, the engineered enzymes derived from phages demonstrate improved effectiveness in addressing bacterial biofilms. As a result, these novel solutions, which demonstrate high penetration, destruction, and inhibition of biofilms, can be regarded as a viable option for addressing infectious biofilms in the near future.
Collapse
Affiliation(s)
- Fatemeh Eghbalpoor
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdieh Gorji
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Zamani Alavigeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Rossetti AP, Perpetuini G, Tofalo R. Sniffing the wine differences: The role of Starmerella bacillaris biofilm-detached cells. Heliyon 2024; 10:e35692. [PMID: 39170400 PMCID: PMC11336881 DOI: 10.1016/j.heliyon.2024.e35692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
This study investigated the impact of 10 strains of Starmerella bacillaris, co-inoculated as planktonic or biofilm-detached cells with Saccharomyces cerevisiae, on the volatilome of a red wine. The wines produced with St. bacillaris biofilm-detached cells exhibited a greater concentration of glycerol and a lower quantity of ethanol than the other wines. Furthermore, these wines exhibited elevated levels of higher alcohols, organic acids, esters, terpenes, and norisoprenoids. Based on the odor activity value and relative odor contribution, isoamyl acetate, ethyl octanoate, ethyl isobutanoate, and methyl decanoate were the main aroma components of wines made with planktonic cells. The main compounds characterizing the wines obtained with biofilm-detached cells were: phenethyl alcohol, β-damascenone, citronellol, β-ionone, and nerol. The sensory analysis revealed that the wines produced with biofilm-detached cells had higher scores for mouth-feel, spicy, floral, and raspberry notes than the others. The present study provides evidence that St. bacillaris biofilm-detached cells released specific volatile compounds in red wines.
Collapse
Affiliation(s)
- Alessio Pio Rossetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, via Balzarini 1, 64100, Teramo, Italy
| | - Giorgia Perpetuini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, via Balzarini 1, 64100, Teramo, Italy
| | - Rosanna Tofalo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, via Balzarini 1, 64100, Teramo, Italy
| |
Collapse
|
8
|
Li X, Lin S, Wang Y, Chen Y, Zhang W, Shu G, Li H, Xu F, Lin J, Peng G, Fu H. Application of biofilm dispersion-based nanoparticles in cutting off reinfection. Appl Microbiol Biotechnol 2024; 108:386. [PMID: 38896257 PMCID: PMC11186951 DOI: 10.1007/s00253-024-13120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 06/21/2024]
Abstract
Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.
Collapse
Affiliation(s)
- Xiaojuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueli Wang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Suresh G, Srivastava S. A concise review on genes involved in biofilm-related disease and differential gene expression in medical-related biofilms. MICROBIAL BIOFILMS 2024:215-235. [DOI: 10.1016/b978-0-443-19252-4.00012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Dergham Y, Le Coq D, Nicolas P, Bidnenko E, Dérozier S, Deforet M, Huillet E, Sanchez-Vizuete P, Deschamps J, Hamze K, Briandet R. Direct comparison of spatial transcriptional heterogeneity across diverse Bacillus subtilis biofilm communities. Nat Commun 2023; 14:7546. [PMID: 37985771 PMCID: PMC10661151 DOI: 10.1038/s41467-023-43386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Bacillus subtilis can form various types of spatially organised communities on surfaces, such as colonies, pellicles and submerged biofilms. These communities share similarities and differences, and phenotypic heterogeneity has been reported for each type of community. Here, we studied spatial transcriptional heterogeneity across the three types of surface-associated communities. Using RNA-seq analysis of different regions or populations for each community type, we identified genes that are specifically expressed within each selected population. We constructed fluorescent transcriptional fusions for 17 of these genes, and observed their expression in submerged biofilms using time-lapse confocal laser scanning microscopy (CLSM). We found mosaic expression patterns for some genes; in particular, we observed spatially segregated cells displaying opposite regulation of carbon metabolism genes (gapA and gapB), indicative of distinct glycolytic or gluconeogenic regimes coexisting in the same biofilm region. Overall, our study provides a direct comparison of spatial transcriptional heterogeneity, at different scales, for the three main models of B. subtilis surface-associated communities.
Collapse
Affiliation(s)
- Yasmine Dergham
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Lebanese University, Faculty of Science, Beirut, Lebanon
| | - Dominique Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- Université Paris-Saclay, INRAE, MAIAGE, Jouy-en-Josas, France
| | - Elena Bidnenko
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sandra Dérozier
- Université Paris-Saclay, INRAE, MAIAGE, Jouy-en-Josas, France
| | - Maxime Deforet
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Eugénie Huillet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pilar Sanchez-Vizuete
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Julien Deschamps
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kassem Hamze
- Lebanese University, Faculty of Science, Beirut, Lebanon.
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
11
|
Chu WHW, Tan YH, Tan SY, Chen Y, Yong M, Lye DC, Kalimuddin S, Archuleta S, Gan YH. Acquisition of regulator on virulence plasmid of hypervirulent Klebsiella allows bacterial lifestyle switch in response to iron. mBio 2023; 14:e0129723. [PMID: 37530523 PMCID: PMC10470599 DOI: 10.1128/mbio.01297-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 08/03/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae causes liver abscess and potentially devastating metastatic complications. The majority of Klebsiella-induced liver abscess are caused by the CG23-I sublineage of hypervirulent Klebsiella pneumoniae. This and some other lineages possess a >200-kb virulence plasmid. We discovered a novel protein IroP nestled in the virulence plasmid-encoded salmochelin operon that cross-regulates and suppresses the promoter activity of chromosomal type 3 fimbriae (T3F) gene transcription. IroP is itself repressed by iron through the ferric uptake regulator. Iron-rich conditions increase T3F and suppress capsule mucoviscosity, leading to biofilm formation and cell adhesion. Conversely, iron-poor conditions cause a transcriptional switch to hypermucoid capsule production and T3F repression. The likely acquisition of iroP on mobile genetic elements and successful adaptive integration into the genetic circuitry of a major lineage of hypervirulent K. pneumoniae reveal a powerful example of plasmid chromosomal cross talk that confers an evolutionary advantage. Our discovery also addresses the conundrum of how the hypermucoid capsule that impedes adhesion could be regulated to facilitate biofilm formation and colonization. The acquired ability of the bacteria to alternate between a state favoring dissemination and one that favors colonization in response to iron availability through transcriptional regulation offers novel insights into the evolutionary success of this pathogen. IMPORTANCE Hypervirulent Klebsiella pneumoniae contributes to the majority of monomicrobial-induced liver abscess infections that can lead to several other metastatic complications. The large virulence plasmid is highly stable in major lineages, suggesting that it provides survival benefits. We discovered a protein IroP encoded on the virulence plasmid that suppresses expression of the type 3 fimbriae. IroP itself is regulated by iron, and we showed that iron regulates hypermucoid capsule production while inversely regulating type 3 fimbriae expression through IroP. The acquisition and integration of this inverse transcriptional switch between fimbriae and capsule mucoviscosity shows an evolved sophisticated plasmid-chromosomal cross talk that changes the behavior of hypervirulent K. pneumoniae in response to a key nutrient that could contribute to the evolutionary success of this pathogen.
Collapse
Affiliation(s)
- Wilson H. W. Chu
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Han Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Si Yin Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yahua Chen
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Melvin Yong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David C. Lye
- National Centre for Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Sophia Archuleta
- Division of Infectious Diseases, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Element SJ, Moran RA, Beattie E, Hall RJ, van Schaik W, Buckner MM. Growth in a biofilm promotes conjugation of a bla NDM-1-bearing plasmid between Klebsiella pneumoniae strains. mSphere 2023; 8:e0017023. [PMID: 37417759 PMCID: PMC10449501 DOI: 10.1128/msphere.00170-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/08/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing problem, especially in Gram-negative Enterobacteriaceae such as Klebsiella pneumoniae. Horizontal transfer of conjugative plasmids contributes to AMR gene dissemination. Bacteria such as K. pneumoniae commonly exist in biofilms, yet most studies focus on planktonic cultures. Here we studied the transfer of a multi-drug resistance plasmid in planktonic and biofilm populations of K. pneumoniae. We determined plasmid transfer from a clinical isolate, CPE16, which carried four plasmids, including the 119-kbp blaNDM-1-bearing F-type plasmid pCPE16_3, in planktonic and biofilm conditions. We found that transfer frequency of pCPE16_3 in a biofilm was orders-of-magnitude higher than between planktonic cells. In 5/7 sequenced transconjugants (TCs) multiple plasmids had transferred. Plasmid acquisition had no detectable growth impact on TCs. Gene expression of the recipient and a transconjugant was investigated by RNA-sequencing in three lifestyles: planktonic exponential growth, planktonic stationary phase, and biofilm. We found that lifestyle had a substantial impact on chromosomal gene expression, and plasmid carriage affected chromosomal gene expression most in stationary planktonic and biofilm lifestyles. Furthermore, expression of plasmid genes was lifestyle-dependent, with distinct signatures across the three conditions. Our study shows that growth in biofilm greatly increased the risk of conjugative transfer of a carbapenem resistance plasmid in K. pneumoniae without fitness costs and minimal transcriptional rearrangements, thus highlighting the importance of biofilms in the spread of AMR in this opportunistic pathogen. IMPORTANCE Carbapenem-resistant K. pneumoniae is particularly problematic in hospital settings. Carbapenem resistance genes can transfer between bacteria via plasmid conjugation. Alongside drug resistance, K. pneumoniae can form biofilms on hospital surfaces, at infection sites and on implanted devices. Biofilms are naturally protected and can be inherently more tolerant to antimicrobials than their free-floating counterparts. There have been indications that plasmid transfer may be more likely in biofilm populations, thus creating a conjugation "hotspot". However, there is no clear consensus on the effect of the biofilm lifestyle on plasmid transfer. Therefore, we aimed to explore the transfer of a plasmid in planktonic and biofilm conditions, and the impact of plasmid acquisition on a new bacterial host. Our data show transfer of a resistance plasmid is increased in a biofilm, which may be a significant contributing factor to the rapid dissemination of resistance plasmids in K. pneumoniae.
Collapse
Affiliation(s)
- Sarah J. Element
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Robert A. Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Emilie Beattie
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Rebecca J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | - Michelle M.C. Buckner
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| |
Collapse
|
13
|
Bacterial, Archaeal, and Eukaryote Diversity in Planktonic and Sessile Communities Inside an Abandoned and Flooded Iron Mine (Quebec, Canada). Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abandoned and flooded ore mines are examples of hostile environments (cold, dark, oligotrophic, trace metal) with a potential vast diversity of microbial communities rarely characterized. This study aimed to understand the effects of depth, the source of water (surface or groundwater), and abiotic factors on the communities present in the old Forsyth iron mine in Quebec (Canada). Water and biofilm samples from the mine were sampled by a team of technical divers who followed a depth gradient (0 to 183 m deep) to study the planktonic and sessile communities’ diversity and structure. We used 16S/18S rRNA amplicon to characterize the taxonomic diversity of Bacteria, Archaea, and Eukaryotes. Our results show that depth was not a significant factor explaining the difference in community composition observed, but lifestyle (planktonic/sessile) was. We discovered a vast diversity of microbial taxa, with taxa involved in carbon- and sulfur-cycling. Sessile communities seem to be centered on C1-cycling with fungi and heterotrophs likely adapted to heavy-metal stress. Planktonic communities were dominated by ultra-small archaeal and bacterial taxa, highlighting harsh conditions in the mine waters. Microbial source tracking indicated sources of communities from surface to deeper layers and vice versa, suggesting the dispersion of organisms in the mine, although water connectivity remains unknown.
Collapse
|
14
|
Alam F, Blair JMA, Hall RA. Transcriptional profiling of Pseudomonas aeruginosa mature single- and dual-species biofilms in response to meropenem. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001271. [PMID: 36748572 PMCID: PMC9993114 DOI: 10.1099/mic.0.001271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen frequently isolated from chronic infections of the cystic fibrosis lung and burn wounds, and is a major cause of antimicrobial-resistant nosocomial infections. P. aeruginosa is frequently co-isolated with the opportunistic fungal pathogen Candida albicans, with the presence of C. albicans in dual-species biofilms promoting tolerance to meropenem. Here, transcription profiling of mature P. aeruginosa single- or dual-species biofilms was carried out to understand the molecular mechanism(s) by which C. albicans enhances meropenem tolerance. C. albicans appeared to have a mild impact on the transcriptome of P. aeruginosa mature biofilms, with most differentially regulated genes being involved in interkingdom interactions (i.e. quorum sensing and phenazine biosynthesis). The addition of meropenem to mature single- or dual-species biofilms resulted in a significant bacterial transcriptional response, including the induction of the beta-lactamase, ampC, genes involved in biofilm formation. P. aeruginosa elicited a similar transcriptional response to meropenem in the presence of C. albicans, but C. albicans promoted the expression of additional efflux pumps, which could play roles in increasing the tolerance of P. aeruginosa to meropenem.
Collapse
Affiliation(s)
- Farhana Alam
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Rebecca A Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
15
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
16
|
Jenior ML, Dickenson ME, Papin JA. Genome-scale metabolic modeling reveals increased reliance on valine catabolism in clinical isolates of Klebsiella pneumoniae. NPJ Syst Biol Appl 2022; 8:41. [PMID: 36307414 PMCID: PMC9616910 DOI: 10.1038/s41540-022-00252-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Infections due to carbapenem-resistant Enterobacteriaceae have recently emerged as one of the most urgent threats to hospitalized patients within the United States and Europe. By far the most common etiological agent of these infections is Klebsiella pneumoniae, frequently manifesting in hospital-acquired pneumonia with a mortality rate of ~50% even with antimicrobial intervention. We performed transcriptomic analysis of data collected previously from in vitro characterization of both laboratory and clinical isolates which revealed shifts in expression of multiple master metabolic regulators across isolate types. Metabolism has been previously shown to be an effective target for antibacterial therapy, and genome-scale metabolic network reconstructions (GENREs) have provided a powerful means to accelerate identification of potential targets in silico. Combining these techniques with the transcriptome meta-analysis, we generated context-specific models of metabolism utilizing a well-curated GENRE of K. pneumoniae (iYL1228) to identify novel therapeutic targets. Functional metabolic analyses revealed that both composition and metabolic activity of clinical isolate-associated context-specific models significantly differs from laboratory isolate-associated models of the bacterium. Additionally, we identified increased catabolism of L-valine in clinical isolate-specific growth simulations. These findings warrant future studies for potential efficacy of valine transaminase inhibition as a target against K. pneumoniae infection.
Collapse
Affiliation(s)
- Matthew L Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Mary E Dickenson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA. .,Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, VA, USA. .,Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
17
|
Ma R, Hu X, Zhang X, Wang W, Sun J, Su Z, Zhu C. Strategies to prevent, curb and eliminate biofilm formation based on the characteristics of various periods in one biofilm life cycle. Front Cell Infect Microbiol 2022; 12:1003033. [PMID: 36211965 PMCID: PMC9534288 DOI: 10.3389/fcimb.2022.1003033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are colonies of bacteria embedded inside a complicated self-generating intercellular. The formation and scatter of a biofilm is an extremely complex and progressive process in constant cycles. Once formed, it can protect the inside bacteria to exist and reproduce under hostile conditions by establishing tolerance and resistance to antibiotics as well as immunological responses. In this article, we reviewed a series of innovative studies focused on inhibiting the development of biofilm and summarized a range of corresponding therapeutic methods for biological evolving stages of biofilm. Traditionally, there are four stages in the biofilm formation, while we systematize the therapeutic strategies into three main periods precisely:(i) period of preventing biofilm formation: interfering the colony effect, mass transport, chemical bonds and signaling pathway of plankton in the initial adhesion stage; (ii) period of curbing biofilm formation:targeting several pivotal molecules, for instance, polysaccharides, proteins, and extracellular DNA (eDNA) via polysaccharide hydrolases, proteases, and DNases respectively in the second stage before developing into irreversible biofilm; (iii) period of eliminating biofilm formation: applying novel multifunctional composite drugs or nanoparticle materials cooperated with ultrasonic (US), photodynamic, photothermal and even immune therapy, such as adaptive immune activated by stimulated dendritic cells (DCs), neutrophils and even immunological memory aroused by plasmocytes. The multitargeted or combinational therapies aim to prevent it from developing to the stage of maturation and dispersion and eliminate biofilms and planktonic bacteria simultaneously.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Su
- *Correspondence: Chen Zhu, ; Zheng Su,
| | - Chen Zhu
- *Correspondence: Chen Zhu, ; Zheng Su,
| |
Collapse
|
18
|
Rathore SS, Cheepurupalli L, Gangwar J, Raman T, Ramakrishnan J. Biofilm of Klebsiella pneumoniae minimize phagocytosis and cytokine expression by macrophage cell line. AMB Express 2022; 12:122. [PMID: 36121578 PMCID: PMC9485320 DOI: 10.1186/s13568-022-01465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/10/2022] [Indexed: 12/05/2022] Open
Abstract
Infectious bacteria in biofilm mode are involved in many persistent infections. Owing to its importance in clinical settings, many in vitro and in vivo studies are being conducted to study the structural and functional properties of biofilms, their drug resistant mechanism and the s urvival mechanism of planktonic and biofilm cells. In this regard, there is not sufficient information on the interaction between Klebsiella biofilm and macrophages. In this study, we have attempted to unravel the interaction between Klebsiella biofilm and macrophages in terms of phagocytic response and cytokine expression. In vitro phagocytosis assays were performed for heat inactivated and live biofilms of K. pneumoniae, together with the expression analysis of TLR2, iNOS, inflammatory cytokines such as IL-β1, IFN-γ, IL-6, IL-12, IL-4, TNF-α and anti-inflammatory cytokine, IL-10. A phagocytic rate of an average of 15% was observed against both heat inactivated and live biofilms when LPS + IFN-γ activated macrophages were used. This was significantly higher than non-activated macrophages when tested against heat inactivated and live biofilms (average 8%). Heat-inactivated and live biofilms induced similar phagocytic responses and up-regulation of pro-inflammatory genes in macrophages, indirectly conveying that macrophage responses are to some extent dependent on the biofilm matrix.
Collapse
Affiliation(s)
- Sudarshan Singh Rathore
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tamil Nadu, Tirumalaisamudram, Thanjavur, 613401, India
| | - Lalitha Cheepurupalli
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tamil Nadu, Tirumalaisamudram, Thanjavur, 613401, India
| | - Jaya Gangwar
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tamil Nadu, Tirumalaisamudram, Thanjavur, 613401, India
| | - Thiagarajan Raman
- Department of Advanced Zoology and Biotechnology, Ramakrishna Mission Vivekananda College, Mylapore, Chennai, 600004, India.
| | - Jayapradha Ramakrishnan
- Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology (SCBT), SASTRA Deemed University, Tamil Nadu, Tirumalaisamudram, Thanjavur, 613401, India.
| |
Collapse
|
19
|
Pouget C, Dunyach-Remy C, Magnan C, Pantel A, Sotto A, Lavigne JP. Polymicrobial Biofilm Organization of Staphylococcus aureus and Pseudomonas aeruginosa in a Chronic Wound Environment. Int J Mol Sci 2022; 23:ijms231810761. [PMID: 36142675 PMCID: PMC9504628 DOI: 10.3390/ijms231810761] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Biofilm on the skin surface of chronic wounds is an important step that involves difficulties in wound healing. The polymicrobial nature inside this pathogenic biofilm is key to understanding the chronicity of the lesion. Few in vitro models have been developed to study bacterial interactions inside this chronic wound. We evaluated the biofilm formation and the evolution of bacteria released from this biofilm on the two main bacteria isolated in this condition, Staphylococcus aureus and Pseudomonas aeruginosa, using a dynamic system (BioFlux™ 200) and a chronic wound-like medium (CWM) that mimics the chronic wound environment. We observed that all species constituted a faster biofilm in the CWM compared to a traditional culture medium (p < 0.01). The percentages of biofilm formation were significantly higher in the mixed biofilm compared to those determined for the bacterial species alone (p < 0.01). Biofilm organization was a non-random structure where S. aureus aggregates were located close to the wound surface, whereas P. aeruginosa was located deeper in the wound bed. Planktonic biofilm-detached bacteria showed decreased growth, overexpression of genes encoding biofilm formation, and an increase in the mature biofilm biomass formed. Our data confirmed the impact of the chronic wound environment on biofilm formation and on bacterial lifecycle inside the biofilm.
Collapse
Affiliation(s)
- Cassandra Pouget
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Catherine Dunyach-Remy
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Chloé Magnan
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Alix Pantel
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Albert Sotto
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Infectious Diseases, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Jean-Philippe Lavigne
- Bacterial Virulence and Chronic Infections, INSERM U1047, Department of Microbiology and Hospital Hygiene, CHU Nîmes, University Montpellier, CEDEX 09, 30029 Nîmes, France
- Correspondence: ; Tel.: +33-466-683-202
| |
Collapse
|
20
|
Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, Darrieux M, Converso TR. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front Cell Infect Microbiol 2022; 12:877995. [PMID: 35646720 PMCID: PMC9132050 DOI: 10.3389/fcimb.2022.877995] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
The ability to form biofilms is a crucial virulence trait for several microorganisms, including Klebsiella pneumoniae - a Gram-negative encapsulated bacterium often associated with nosocomial infections. It is estimated that 65-80% of bacterial infections are biofilm related. Biofilms are complex bacterial communities composed of one or more species encased in an extracellular matrix made of proteins, carbohydrates and genetic material derived from the bacteria themselves as well as from the host. Bacteria in the biofilm are shielded from immune responses and antibiotics. The present review discusses the characteristics of K. pneumoniae biofilms, factors affecting biofilm development, and their contribution to infections. We also explore different model systems designed to study biofilm formation in this species. A great number of factors contribute to biofilm establishment and maintenance in K. pneumoniae, which highlights the importance of this mechanism for the bacterial fitness. Some of these molecules could be used in future vaccines against this bacterium. However, there is still a lack of in vivo models to evaluate the contribution of biofilm development to disease pathogenesis. With that in mind, the combination of different methodologies has great potential to provide a more detailed scenario that more accurately reflects the steps and progression of natural infection.
Collapse
Affiliation(s)
- Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Giulia Destro
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Brenda Vieira
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Alice S. Lima
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucio Fabio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
21
|
Martínez OF, Duque HM, Franco OL. Peptidomimetics as Potential Anti-Virulence Drugs Against Resistant Bacterial Pathogens. Front Microbiol 2022; 13:831037. [PMID: 35516442 PMCID: PMC9062693 DOI: 10.3389/fmicb.2022.831037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
The uncontrollable spread of superbugs calls for new approaches in dealing with microbial-antibiotic resistance. Accordingly, the anti-virulence approach has arisen as an attractive unconventional strategy to face multidrug-resistant pathogens. As an emergent strategy, there is an imperative demand for discovery, design, and development of anti-virulence drugs. In this regard, peptidomimetic compounds could be a valuable source of anti-virulence drugs, since these molecules circumvent several shortcomings of natural peptide-based drugs like proteolytic instability, immunogenicity, toxicity, and low bioavailability. Some emerging evidence points to the feasibility of peptidomimetics to impair pathogen virulence. Consequently, in this review, we shed some light on the potential of peptidomimetics as anti-virulence drugs to overcome antibiotic resistance. Specifically, we address the anti-virulence activity of peptidomimetics against pathogens' secretion systems, biofilms, and quorum-sensing systems.
Collapse
Affiliation(s)
- Osmel Fleitas Martínez
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Harry Morales Duque
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil.,Programa de Pós-Graduação em Biotecnologia, S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
22
|
Santa Maria PL, Kaufman AC, Bacacao B, Thai A, Chen X, Xia A, Cao Z, Fouad A, Bekale LA. Topical Therapy Failure in Chronic Suppurative Otitis Media is Due to Persister Cells in Biofilms. Otol Neurotol 2021; 42:e1263-e1272. [PMID: 34149028 DOI: 10.1097/mao.0000000000003222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Chronic suppurative otitis media (CSOM) is characterized by a chronically draining middle ear. CSOM is typically treated with multiple courses of antibiotics or antiseptics which are successful in achieving quiescence; however, the disease is prone to relapse. Understanding why these treatment failures occur is essential. STUDY DESIGN The minimum inhibitory concentration (MIC), minimal biofilm eradication concentration, and the inhibitory zone were determined for ototopicals and ofloxacin for the laboratory strains and CSOM-derived isolates. The percentage of persister cells and bacterial biofilm formation were measured. Disease eradication was tested in a validated in-vivo model of CSOM after treatment with ofloxacin. SETTING Microbiology Laboratory. METHODS Basic science experiments were performed to measure the effectiveness of a number of compounds against CSOM bacteria in a number of distinct settings. RESULTS The minimal biofilm eradication concentration is higher than is physiologically achievable with commercial preparations, except for povo-iodine. Clincial isolates of CSOM have equivalent biofilm-forming ability but increased proportions of persister cells. Ofloxacin can convert to inactive disease temporarily but fails to eradicate disease in an in-vivo model. CONCLUSIONS Higher percentages of persister cells in clinical CSOM isolates are associated with resistance to ototopicals. Current ototopicals, except povo-iodine, have limited clinical effectiveness; however, it is unknown what the maximum achievable concentration is and there are ototoxicity concerns. Fluoroquinolones, while successful in producing inactive disease in the short term, have the potential to encourage antimicrobial resistance and disease recalcitrance and do not achieve a permanent remission. Given these limitations, clinicians should consider surgery earlier or use of clinically safe concentrations of povo-iodine earlier into the treatment algorithm.
Collapse
Affiliation(s)
- Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Adam C Kaufman
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Brian Bacacao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Anthony Thai
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Xiaohua Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California, USA
- Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California, USA
| | - Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California, USA
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, China
| | - Ayman Fouad
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California, USA
- Department of Otolaryngology, Head and Neck Surgery, Tanta University, Tanta, Eqypt
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
23
|
Pacheco T, Gomes AÉI, Siqueira NMG, Assoni L, Darrieux M, Venter H, Ferraz LFC. SdiA, a Quorum-Sensing Regulator, Suppresses Fimbriae Expression, Biofilm Formation, and Quorum-Sensing Signaling Molecules Production in Klebsiella pneumoniae. Front Microbiol 2021; 12:597735. [PMID: 34234747 PMCID: PMC8255378 DOI: 10.3389/fmicb.2021.597735] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen that has become a worldwide concern due to the emergence of multidrug-resistant isolates responsible for various invasive infectious diseases. Biofilm formation constitutes a major virulence factor for K. pneumoniae and relies on the expression of fimbrial adhesins and aggregation of bacterial cells on biotic or abiotic surfaces in a coordinated manner. During biofilm aggregation, bacterial cells communicate with each other through inter- or intra-species interactions mediated by signallng molecules, called autoinducers, in a mechanism known as quorum sensing (QS). In most Gram-negative bacteria, intra-species communication typically involves the LuxI/LuxR system: LuxI synthase produces N-acyl homoserine lactones (AHLs) as autoinducers and the LuxR transcription factor is their cognate receptor. However, K. pneumoniae does not produce AHL but encodes SdiA, an orphan LuxR-type receptor that responds to exogenous AHL molecules produced by other bacterial species. While SdiA regulates several cellular processes and the expression of virulence factors in many pathogens, the role of this regulator in K. pneumoniae remains unknown. In this study, we describe the characterization of sdiA mutant strain of K. pneumoniae. The sdiA mutant strain has increased biofilm formation, which correlates with the increased expression of type 1 fimbriae, thus revealing a repressive role of SdiA in fimbriae expression and bacterial cell adherence and aggregation. On the other hand, SdiA acts as a transcriptional activator of cell division machinery assembly in the septum, since cells lacking SdiA regulator exhibited a filamentary shape rather than the typical rod shape. We also show that K. pneumoniae cells lacking SdiA regulator present constant production of QS autoinducers at maximum levels, suggesting a putative role for SdiA in the regulation of AI-2 production. Taken together, our results demonstrate that SdiA regulates cell division and the expression of virulence factors such as fimbriae expression, biofilm formation, and production of QS autoinducers in K. pneumoniae.
Collapse
Affiliation(s)
- Thaisy Pacheco
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Ana Érika Inácio Gomes
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | | | - Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Henrietta Venter
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
24
|
Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol 2021; 18:314-334. [PMID: 33510461 DOI: 10.1038/s41575-020-00397-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host-microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host-mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France.
| | - John L Wallace
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Antibe Therapeutics Inc., Toronto, ON, Canada
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Céline Deraison
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
25
|
An AY, Choi KYG, Baghela AS, Hancock REW. An Overview of Biological and Computational Methods for Designing Mechanism-Informed Anti-biofilm Agents. Front Microbiol 2021; 12:640787. [PMID: 33927701 PMCID: PMC8076610 DOI: 10.3389/fmicb.2021.640787] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/23/2021] [Indexed: 12/29/2022] Open
Abstract
Bacterial biofilms are complex and highly antibiotic-resistant aggregates of microbes that form on surfaces in the environment and body including medical devices. They are key contributors to the growing antibiotic resistance crisis and account for two-thirds of all infections. Thus, there is a critical need to develop anti-biofilm specific therapeutics. Here we discuss mechanisms of biofilm formation, current anti-biofilm agents, and strategies for developing, discovering, and testing new anti-biofilm agents. Biofilm formation involves many factors and is broadly regulated by the stringent response, quorum sensing, and c-di-GMP signaling, processes that have been targeted by anti-biofilm agents. Developing new anti-biofilm agents requires a comprehensive systems-level understanding of these mechanisms, as well as the discovery of new mechanisms. This can be accomplished through omics approaches such as transcriptomics, metabolomics, and proteomics, which can also be integrated to better understand biofilm biology. Guided by mechanistic understanding, in silico techniques such as virtual screening and machine learning can discover small molecules that can inhibit key biofilm regulators. To increase the likelihood that these candidate agents selected from in silico approaches are efficacious in humans, they must be tested in biologically relevant biofilm models. We discuss the benefits and drawbacks of in vitro and in vivo biofilm models and highlight organoids as a new biofilm model. This review offers a comprehensive guide of current and future biological and computational approaches of anti-biofilm therapeutic discovery for investigators to utilize to combat the antibiotic resistance crisis.
Collapse
Affiliation(s)
| | | | | | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Pessione E. The Less Expensive Choice: Bacterial Strategies to Achieve Successful and Sustainable Reciprocal Interactions. Front Microbiol 2021; 11:571417. [PMID: 33584557 PMCID: PMC7873842 DOI: 10.3389/fmicb.2020.571417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria, the first organisms that appeared on Earth, continue to play a central role in ensuring life on the planet, both as biogeochemical agents and as higher organisms' symbionts. In the last decades, they have been employed both as bioremediation agents for cleaning polluted sites and as bioconversion effectors for obtaining a variety of products from wastes (including eco-friendly plastics and green energies). However, some recent reports suggest that bacterial biodiversity can be negatively affected by the present environmental crisis (global warming, soil desertification, and ocean acidification). This review analyzes the behaviors positively selected by evolution that render bacteria good models of sustainable practices (urgent in these times of climate change and scarcity of resources). Actually, bacteria display a tendency to optimize rather than maximize, to economize energy and building blocks (by using the same molecule for performing multiple functions), and to recycle and share metabolites, and these are winning strategies when dealing with sustainability. Furthermore, their ability to establish successful reciprocal relationships by means of anticipation, collective actions, and cooperation can also constitute an example highlighting how evolutionary selection favors behaviors that can be strategic to contain the present environmental crisis.
Collapse
Affiliation(s)
- Enrica Pessione
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
27
|
Alotaibi GF. Occurrence of Potentially Pathogenic Bacteria in Epilithic Biofilm Forming Bacteria isolated from Porter Brook River-stones, Sheffield, UK. Saudi J Biol Sci 2020; 27:3405-3414. [PMID: 33304149 PMCID: PMC7715045 DOI: 10.1016/j.sjbs.2020.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 10/24/2022] Open
Abstract
Biofilms in aquatic ecosystems develop on wet benthic surfaces and are primarily comprised of various allochthonous microorganisms, including bacteria embedded within a self-produced matrix of extracellular polymeric substances (EPS). In such environment, where there is a continuous flow of water, attachment of microbes to surfaces prevents cells being washed out of a suitable habitat with the added benefits of the water flow and the surface itself providing nutrients for growth of attached cells. When watercourses are contaminated with pathogenic bacteria, these can become incorporated into biofilms. This study aimed to isolate and identify the bacterial species within biofilms retrieved from river-stones found in the Porter Brook, Sheffield based on morphological, biochemical characteristics and molecular characteristics, such as 16S rDNA sequence phylogeny analysis. Twenty-two bacterial species were identified. Among these were 10 gram-negative pathogenic bacteria, establishing that potential human pathogens were present within the biofilms. Klebsiella pneumoniae MBB9 isolate showed the greatest ability to form a biofilm using a microtiter plate-based crystal violet assay. Biofilm by K. pneumoniae MBB9 formed rapidly (within 6 h) under static conditions at 37 °C and then increased up to 24 h of incubation before decreasing with further incubation (48 h), whereas the applied shear forces (horizontal orbital shaker; diameter of 25 mm at 150 rpm) had no effect on K. pneumoniae MBB9 biofilm formation.
Collapse
Affiliation(s)
- Ghazay F. Alotaibi
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Environment and Marine Biology, Saline Water Desalination Technologies Research Institute, P.O. 8328 Al-Jubail 31951 Al-Jubail, Saudi Arabia
| |
Collapse
|
28
|
Mokrzan EM, Ahearn CP, Buzzo JR, Novotny LA, Zhang Y, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae newly released (NRel) from biofilms by antibody-mediated dispersal versus antibody-mediated disruption are phenotypically distinct. Biofilm 2020; 2:100039. [PMID: 33447823 PMCID: PMC7798465 DOI: 10.1016/j.bioflm.2020.100039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Biofilms contribute significantly to the chronicity and recurrence of bacterial diseases due to the fact that biofilm-resident bacteria are highly recalcitrant to killing by host immune effectors and antibiotics. Thus, antibody-mediated release of bacteria from biofilm residence into the surrounding milieu supports a powerful strategy to resolve otherwise difficult-to-treat biofilm-associated diseases. In our prior work, we revealed that antibodies directed against two unique determinants of nontypeable Haemophilus influenzae (NTHI) [e.g. the Type IV pilus (T4P) or a bacterial DNABII DNA-binding protein, a species-independent target that provides structural integrity to bacterial biofilms] release biofilm-resident bacteria via discrete mechanisms. Herein, we now show that the phenotype of the resultant newly released (or NRel) NTHI is dependent upon the specific mechanism of release. We used flow cytometry, proteomic profiles, and targeted transcriptomics to demonstrate that the two NRel populations were significantly different not only from planktonically grown NTHI, but importantly, from each other despite genetic identity. Moreover, each NRel population had a distinct, significantly increased susceptibility to killing by either a sulfonamide or β-lactam antibiotic compared to planktonic NTHI, an observation consistent with their individual proteomes and further supported by relative differences in targeted gene expression. The distinct phenotypes of NTHI released from biofilms by antibodies directed against specific epitopes of T4P or DNABII binding proteins provide new opportunities to develop targeted therapeutic strategies for biofilm eradication and disease resolution.
Collapse
Affiliation(s)
- Elaine M Mokrzan
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Christian P Ahearn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John R Buzzo
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura A Novotny
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yan Zhang
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center (OSUCCC - James), Columbus, OH, USA
| | - Steven D Goodman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
29
|
Abstract
The formation of microbial biofilms enables single planktonic cells to assume a multicellular mode of growth. During dispersion, the final step of the biofilm life cycle, single cells egress from the biofilm to resume a planktonic lifestyle. As the planktonic state is considered to be more vulnerable to antimicrobial agents and immune responses, dispersion is being considered a promising avenue for biofilm control. In this Review, we discuss conditions that lead to dispersion and the mechanisms by which native and environmental cues contribute to dispersion. We also explore recent findings on the role of matrix degradation in the dispersion process, and the distinct phenotype of dispersed cells. Last, we discuss the translational and therapeutic potential of dispersing bacteria during infection.
Collapse
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of the TTUHSC Surgery Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, NY, USA.
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
30
|
Pannella G, Lombardi SJ, Coppola F, Vergalito F, Iorizzo M, Succi M, Tremonte P, Iannini C, Sorrentino E, Coppola R. Effect of Biofilm Formation by Lactobacillus plantarum on the Malolactic Fermentation in Model Wine. Foods 2020; 9:E797. [PMID: 32560415 PMCID: PMC7353508 DOI: 10.3390/foods9060797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022] Open
Abstract
Biofilm life-style of Lactobacillus plantarum (L. plantarum) strains was evaluated in vitro as a new and suitable biotechnological strategy to assure L-malic acid conversion in wine stress conditions. Sixty-eight L. plantarum strains isolated from diverse sources were assessed for their ability to form biofilm in acid (pH 3.5 or 3.2) or in ethanol (12% or 14%) stress conditions. The effect of incubation times (24 and 72 h) on the biofilm formation was evaluated. The study highlighted that, regardless of isolation source and stress conditions, the ability to form biofilm was strain-dependent. Specifically, two clusters, formed by high and low biofilm producer strains, were identified. Among high producer strains, L. plantarum Lpls22 was chosen as the highest producer strain and cultivated in planktonic form or in biofilm using oak supports. Model wines at 12% of ethanol and pH 3.5 or 3.2 were used to assess planktonic and biofilm cells survival and to evaluate the effect of biofilm on L-malic acid conversion. For cells in planktonic form, a strong survival decay was detected. In contrast, cells in biofilm life-style showed high resistance, assuring a prompt and complete L-malic acid conversion.
Collapse
Affiliation(s)
- Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (G.P.); (S.J.L.); (F.V.); (M.S.); (P.T.); (C.I.); (E.S.); (R.C.)
| | - Silvia Jane Lombardi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (G.P.); (S.J.L.); (F.V.); (M.S.); (P.T.); (C.I.); (E.S.); (R.C.)
| | - Francesca Coppola
- Department of Agricultural Sciences, Grape and Wine Science Division, University of Naples “Federico II”, Viale Italia, 83100 Avellino, Italy;
| | - Franca Vergalito
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (G.P.); (S.J.L.); (F.V.); (M.S.); (P.T.); (C.I.); (E.S.); (R.C.)
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (G.P.); (S.J.L.); (F.V.); (M.S.); (P.T.); (C.I.); (E.S.); (R.C.)
| | - Mariantonietta Succi
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (G.P.); (S.J.L.); (F.V.); (M.S.); (P.T.); (C.I.); (E.S.); (R.C.)
| | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (G.P.); (S.J.L.); (F.V.); (M.S.); (P.T.); (C.I.); (E.S.); (R.C.)
| | - Caterina Iannini
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (G.P.); (S.J.L.); (F.V.); (M.S.); (P.T.); (C.I.); (E.S.); (R.C.)
| | - Elena Sorrentino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (G.P.); (S.J.L.); (F.V.); (M.S.); (P.T.); (C.I.); (E.S.); (R.C.)
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, via De Sanctis snc, 86100 Campobasso, Italy; (G.P.); (S.J.L.); (F.V.); (M.S.); (P.T.); (C.I.); (E.S.); (R.C.)
| |
Collapse
|
31
|
Idso MN, Akhade AS, Arrieta-Ortiz ML, Lai BT, Srinivas V, Hopkins JP, Gomes AO, Subramanian N, Baliga N, Heath JR. Antibody-recruiting protein-catalyzed capture agents to combat antibiotic-resistant bacteria. Chem Sci 2020; 11:3054-3067. [PMID: 34122810 PMCID: PMC8157486 DOI: 10.1039/c9sc04842a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistant infections are projected to cause over 10 million deaths by 2050, yet the development of new antibiotics has slowed. This points to an urgent need for methodologies for the rapid development of antibiotics against emerging drug resistant pathogens. We report on a generalizable combined computational and synthetic approach, called antibody-recruiting protein-catalyzed capture agents (AR-PCCs), to address this challenge. We applied the combinatorial protein catalyzed capture agent (PCC) technology to identify macrocyclic peptide ligands against highly conserved surface protein epitopes of carbapenem-resistant Klebsiella pneumoniae, an opportunistic Gram-negative pathogen with drug resistant strains. Multi-omic data combined with bioinformatic analyses identified epitopes of the highly expressed MrkA surface protein of K. pneumoniae for targeting in PCC screens. The top-performing ligand exhibited high-affinity (EC50 ∼50 nM) to full-length MrkA, and selectively bound to MrkA-expressing K. pneumoniae, but not to other pathogenic bacterial species. AR-PCCs that bear a hapten moiety promoted antibody recruitment to K. pneumoniae, leading to enhanced phagocytosis and phagocytic killing by macrophages. The rapid development of this highly targeted antibiotic implies that the integrated computational and synthetic toolkit described here can be used for the accelerated production of antibiotics against drug resistant bacteria.
Collapse
Affiliation(s)
- Matthew N Idso
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Bert T Lai
- Indi Molecular, Inc. 6162 Bristol Parkway Culver City CA 90230 USA
| | - Vivek Srinivas
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James P Hopkins
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | | | | | - Nitin Baliga
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| | - James R Heath
- Institute for Systems Biology 401 Terry Ave North Seattle 98109 USA
| |
Collapse
|
32
|
Brescia F, Marchetti-Deschmann M, Musetti R, Perazzolli M, Pertot I, Puopolo G. The rhizosphere signature on the cell motility, biofilm formation and secondary metabolite production of a plant-associated Lysobacter strain. Microbiol Res 2020; 234:126424. [PMID: 32036275 DOI: 10.1016/j.micres.2020.126424] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022]
Abstract
Lysobacter spp. are common bacterial inhabitants of the rhizosphere of diverse plant species. However, the impact of the rhizosphere conditions on their physiology is still relatively understudied. To provide clues on the behaviour of Lysobacter spp. in this ecological niche, we investigated the physiology of L. capsici AZ78 (AZ78), a biocontrol strain isolated from tobacco rhizosphere, on a common synthetic growth medium (LBA) and on a growth medium containing components of the plant rhizosphere (RMA). The presence of a halo surrounding the AZ78 colony on RMA was a first visible effect related to differences in growth medium composition and it corresponded to the formation of a large outer ring. The lower quantity of nutrients available in RMA as compared with LBA was associated to a higher expression of a gene encoding cAMP-receptor-like protein (Clp), responsible for cell motility and biofilm formation regulation. AZ78 cells on RMA were motile, equipped with cell surface appendages and organised in small groups embedded in a dense layer of fibrils. Metabolic profiling by mass spectrometry imaging revealed increased diversity of analytes produced by AZ78 on RMA as compared with LBA. In particular, putative cyclic lipodepsipeptides, polycyclic tetramate macrolactams, cyclic macrolactams and other putative secondary metabolites with antibiotic activity were identified. Overall, the results obtained in this study shed a light on AZ78 potential to thrive in the rhizosphere by its ability to move, form biofilm and release secondary metabolites.
Collapse
Affiliation(s)
- Francesca Brescia
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy; PhD school in Agricultural Science and Biotechnology, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Vienna, 1060, Austria
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, 33100, Italy
| | - Michele Perazzolli
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy; Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Ilaria Pertot
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy; Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Gerardo Puopolo
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy; Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38010, San Michele all'Adige, Italy.
| |
Collapse
|
33
|
Karballaei Mirzahosseini H, Hadadi-Fishani M, Morshedi K, Khaledi A. Meta-Analysis of Biofilm Formation, Antibiotic Resistance Pattern, and Biofilm-Related Genes in Pseudomonas aeruginosa Isolated from Clinical Samples. Microb Drug Resist 2020; 26:815-824. [PMID: 31976811 DOI: 10.1089/mdr.2019.0274] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Resistant microorganisms such as Pseudomonas aeruginosa grow by developing biofilms in hospitals. We aimed to investigate the biofilm formation and the frequencies of biofilm-related genes and their associations with antibiotic resistance pattern in P. aeruginosa isolated from Iranians' clinical samples. This review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We conducted a systematic literature search in scientific databases using medical subject heading terms, including "Pseudomonas aeruginosa," "biofilm formation," "biofilm-related genes," "antibiotic resistance," and "prevalence," to obtain related articles published from 1st January, 2000, to 30th March, 2019. The studies reporting the prevalence of biofilm formation, the frequencies of biofilm-related genes, and the antibiotic resistance pattern in P. aeruginosa retrieved from Iranian patients were included. Meta-analysis was performed using the Comprehensive Meta-Analysis software. The pooled rate of biofilm formation was calculated as 86.5% (95% confidence interval [CI]: 79-91.6). The combined frequencies of strong, moderate, and weak biofilms were 51% (95% CI: 37.4-64.4), 29.2% (95% CI: 20.9-39.1), and 25.4% (95% CI: 11.5-47.2), respectively. The pooled prevalence of laslR, algD, algU, ppyR, and pelF genes were 93.6% (95% CI: 88.1-96.6), 91.4% (95% CI: 80.8-96.4), 89.3% (95% CI: 85.2-92.3), 98.7% (95% CI: 96.5-99.6), and 93% (95% CI: 82.7-97.3), respectively. The highest combined antibiotic resistance rates of P. aeruginosa isolates were against piperacillin/tazobactam (90%). This study showed that biofilm formation was higher in multidrug-resistant (MDR) P. aeruginosa than non-MDRs. A significant correlation was observed between biofilm formation and antibiotic resistance in 50% of studies included in this review.
Collapse
Affiliation(s)
| | - Mehdi Hadadi-Fishani
- Department of Medical Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, I.R. Iran
| | - Korosh Morshedi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
34
|
Martín-Galiano AJ, McConnell MJ. Using Omics Technologies and Systems Biology to Identify Epitope Targets for the Development of Monoclonal Antibodies Against Antibiotic-Resistant Bacteria. Front Immunol 2019; 10:2841. [PMID: 31921119 PMCID: PMC6914692 DOI: 10.3389/fimmu.2019.02841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, antimicrobial resistance has emerged as an important threat to public health due to the global dissemination of multidrug-resistant strains from several bacterial species. This worrisome trend, in addition to the paucity of new antibiotics with novel mechanisms of action in the development pipeline, warrants the development of non-antimicrobial approaches to combating infection caused by these isolates. Monoclonal antibodies (mAbs) have emerged as highly effective molecules for the treatment of multiple diseases. However, in spite of the fact that antibodies play an important role in protective immunity against bacteria, only three mAb therapies have been approved for clinical use in the treatment of bacterial infections. In the present review, we briefly outline the therapeutic potential of mAbs in the treatment of bacterial diseases and discuss how their development can be facilitated when assisted by “omics” technologies and interpreted under a systems biology paradigm. Specifically, methods employing large genomic, transcriptomic, structural, and proteomic datasets allow for the rational identification of epitopes. Ideally, these include those that are present in the majority of circulating isolates, highly conserved at the amino acid level, surface-exposed, located on antigens essential for virulence, and expressed during critical stages of infection. Therefore, these knowledge-based approaches can contribute to the identification of high-value epitopes for the development of effective mAbs against challenging bacterial clones.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Michael J McConnell
- Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
35
|
Yu M, Chua SL. Demolishing the great wall of biofilms in Gram‐negative bacteria: To disrupt or disperse? Med Res Rev 2019; 40:1103-1116. [DOI: 10.1002/med.21647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Miao Yu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
- State Key Laboratory of Chemical Biology and Drug DiscoveryThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
| | - Song Lin Chua
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
- State Key Laboratory of Chemical Biology and Drug DiscoveryThe Hong Kong Polytechnic University, KowloonHong Kong SAR China
| |
Collapse
|
36
|
Guilhen C, Miquel S, Charbonnel N, Joseph L, Carrier G, Forestier C, Balestrino D. Colonization and immune modulation properties of Klebsiella pneumoniae biofilm-dispersed cells. NPJ Biofilms Microbiomes 2019; 5:25. [PMID: 31583108 PMCID: PMC6760147 DOI: 10.1038/s41522-019-0098-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Biofilm-dispersal is a key determinant for further dissemination of biofilm-embedded bacteria. Recent evidence indicates that biofilm-dispersed bacteria have transcriptional features different from those of both biofilm and planktonic bacteria. In this study, the in vitro and in vivo phenotypic properties of Klebsiella pneumoniae cells spontaneously dispersed from biofilm were compared with those of planktonic and sessile cells. Biofilm-dispersed cells, whose growth rate was the same as that of exponential planktonic bacteria but significantly higher than those of sessile and stationary planktonic forms, colonized both abiotic and biotic surfaces more efficiently than their planktonic counterparts regardless of their initial adhesion capabilities. Microscopy studies suggested that dispersed bacteria initiate formation of microcolonies more rapidly than planktonic bacteria. In addition, dispersed cells have both a higher engulfment rate and better survival/multiplication inside macrophages than planktonic cells and sessile cells. In an in vivo murine pneumonia model, the bacterial load in mice lungs infected with biofilm-dispersed bacteria was similar at 6, 24 and 48 h after infection to that of mice lungs infected with planktonic or sessile bacteria. However, biofilm-dispersed and sessile bacteria trend to elicit innate immune response in lungs to a lesser extent than planktonic bacteria. Collectively, the findings from this study suggest that the greater ability of K. pneumoniae biofilm-dispersed cells to efficiently achieve surface colonization and to subvert the host immune response confers them substantial advantages in the first steps of the infection process over planktonic bacteria.
Collapse
Affiliation(s)
- Cyril Guilhen
- 1Université Clermont Auvergne, CNRS 6023, LMGE, Clermont-Ferrand, France.,3Present Address: Université de Genève, Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, Genève, Suisse
| | - Sylvie Miquel
- 1Université Clermont Auvergne, CNRS 6023, LMGE, Clermont-Ferrand, France
| | - Nicolas Charbonnel
- 1Université Clermont Auvergne, CNRS 6023, LMGE, Clermont-Ferrand, France
| | - Laura Joseph
- 1Université Clermont Auvergne, CNRS 6023, LMGE, Clermont-Ferrand, France
| | - Guillaume Carrier
- 2Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, Clermont-Ferrand, France.,4Present Address: Department of Surgical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | | | - Damien Balestrino
- 1Université Clermont Auvergne, CNRS 6023, LMGE, Clermont-Ferrand, France
| |
Collapse
|
37
|
Long D, Zhu LL, Du FL, Xiang TX, Wan LG, Wei DD, Zhang W, Liu Y. Phenotypical profile and global transcriptomic profile of Hypervirulent Klebsiella pneumoniae due to carbapenemase-encoding plasmid acquisition. BMC Genomics 2019; 20:480. [PMID: 31185888 PMCID: PMC6558890 DOI: 10.1186/s12864-019-5705-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Plasmids play an vital role in driving the rapid global spread of antimicrobial resistance and adaptation to changing ambient conditions. It has been suggested that the presence of plasmids can pose tremendous impacts on the host physiology. However, little is known regarding the contributions of carbapenemase-encoding plasmid carriage on the physiology and pathogenicity of hypervirulent K. pneumoniae (hvKP). Results Here we performed a transcriptomic analysis of hvKP with or without carbapenemase-encoding plasmid p24835-NDM5. The results had shown 683 genes with differential expression (false discovery rate, ≤0.001; > 2-fold change), of which 107 were up-regulated and 576 were down-regulated. Gene groups with functions relating to carbohydrate metabolism and multidrug efflux system were increased in genes with increased expression, and those relating to capsule biosynthesis and virulence factors were increased in the genes with decreased expression. In agreement with these changes, survival rate of TfpNDM-hvKP in the presence of normal human serum decreased, and competitive index (CI values) indicated significant fitness defects in the plasmid-carrying hvKP strain when co-cultured with its plasmid-free isogenic ancestor and the ATCC control. Moreover, the p24835-NDM5-containing hvKP strain retained its high neutrophil-mediated phagocytosis and murine lethality. Conclusion These data indicate that hvKP responds to carbapenemase-encoding plasmid by altering the expression of genes involved in carbohydrate metabolism, antibiotic resistance, capsule biosynthesis and virulence expression. Apart from antibiotic resistance selective advantages, carbapenemase-encoding plasmid carriage may also lead to virulence change or adaption to specific habitats in hvKP strain. Electronic supplementary material The online version of this article (10.1186/s12864-019-5705-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Long
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, 330006, People's Republic of China
| | - Lan-Lan Zhu
- Department of Respiratory, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, 330006, People's Republic of China
| | - Fang-Ling Du
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, 330006, People's Republic of China
| | - Tian-Xin Xiang
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, 330006, People's Republic of China
| | - La-Gen Wan
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, 330006, People's Republic of China
| | - Dan-Dan Wei
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, 330006, People's Republic of China
| | - Wei Zhang
- Department of Respiratory, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, 330006, People's Republic of China
| | - Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
38
|
Sadiq FA, Flint S, Sakandar HA, He G. Molecular regulation of adhesion and biofilm formation in high and low biofilm producers of Bacillus licheniformis using RNA-Seq. BIOFOULING 2019; 35:143-158. [PMID: 30884970 DOI: 10.1080/08927014.2019.1575960] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
RNA sequencing was used to reveal transcriptional changes during the motile-to-sessile switch in high and low biofilm-forming dairy strains of B. licheniformis isolated from Chinese milk powders. A significant part of the whole gene content was affected during this transition in both strains. In terms of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, seven metabolic pathways were significantly downregulated in the planktonic state compared to the biofilm state in both strains. Lipid and sugar metabolism seemed to play an important role in matrix production. Several genes involved in adhesion, matrix production and the matrix coating were either absent or less expressed in the biofilm state of the low biofilm producer compared to the high biofilm producer. Genes related to sporulation and the production of extracellular polymeric substances were concomitantly expressed in the biofilm state of both strains. These comprehensive insights will be helpful for future research into mechanisms and targets.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- a School of Food Science and Technology , Jiangnan University , Wuxi , PR China
- b College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Steve Flint
- c School of Food and Nutrition , Massey University , Private Bag 11 222 , Palmerston North , New Zealand
| | - Hafiz Arbab Sakandar
- a School of Food Science and Technology , Jiangnan University , Wuxi , PR China
- d Faculty of Biological Sciences , Quaid-i-Azam University , Islamabad , Pakistan
| | - GuoQing He
- b College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| |
Collapse
|
39
|
Lim SY, Teh CSJ, Thong KL. Biofilm-Related Diseases and Omics: Global Transcriptional Profiling of Enterococcus faecium Reveals Different Gene Expression Patterns in the Biofilm and Planktonic Cells. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:592-602. [PMID: 29049010 DOI: 10.1089/omi.2017.0119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enterococcus faecium is an opportunistic pathogen with a remarkable ability to acquire resistance toward multiple antibiotics, including those of last-resort drugs such as vancomycin and daptomycin. The occurrence of vancomycin-resistant E. faecium is on the rise and there is a need to understand the virulence of this organism. One of the factors that contributes to the virulence is the ability to form biofilms. Since bacteria in biofilm state are more resistant to antibiotics and host immune response, understanding the molecular mechanism of biofilm development is important to control biofilm-related diseases. The aim of this study was to determine the global gene expression profiles of an E. faecium strain, VREr5, during the early event of sessile growth compared with its planktonic phase through RNA-sequencing approach. The results clearly illustrated distinct expression profiles of the planktonic and biofilm cells. A total of 177 genes were overexpressed in the biofilm cells. Most of them encode for proteins involved in adherence, such as the ebpABCfm locus. Genes associated with plasmid replication, gene exchange, and protein synthesis were also upregulated during the early event of biofilm development. Furthermore, the transcriptome analysis also identified genes such as fsrB, luxS, and spx that might suppress biofilm formation in VREr5. The putative biofilm-related bee locus was found to be downregulated. These new findings could provide caveats for future studies on the regulation and maintenance of biofilm and development of biomarkers for biofilm-related diseases.
Collapse
Affiliation(s)
- Shu Yong Lim
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- 2 Department of Medical Microbiology, Faculty of Medicine, University of Malaya , Kuala Lumpur, Malaysia
| | - Kwai Lin Thong
- 1 Institute of Biological Sciences, Faculty of Science, University of Malaya , Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Lagrafeuille R, Miquel S, Balestrino D, Vareille-Delarbre M, Chain F, Langella P, Forestier C. Opposing effect of Lactobacillus on in vitro Klebsiella pneumoniae in biofilm and in an in vivo intestinal colonisation model. Benef Microbes 2018; 9:87-100. [DOI: 10.3920/bm2017.0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Beneficial bacteria represent potential sources of therapy, particularly in the battle against antibiotic-resistant pathogens. The Gram-negative bacillus Klebsiella pneumoniae is not only a paradigm of multi-resistant opportunistic pathogen, but it is also able to colonise the human intestine and displays a high capacity to form biofilm. In this study, the anti-biofilm activity of 140 neutralised Lactobacillus supernatants was assessed against K. pneumoniae. Among the 13 strains whose supernatant significantly impaired biofilm formation, Lactobacillus plantarum CIRM653 was selected because it was also able to impair K. pneumoniae preformed biofilm, independently of a bactericidal effect. Mixed K. pneumoniae/L. plantarum CIRM653 biofilms had reduced tridimensional structures associated with a significant decrease in K. pneumoniae biomass. Further investigation showed that L. plantarum CIRM653 supernatant induced transcriptional modifications of K. pneumoniae biofilm-related genes, including down-regulation of the quorum sensing-related lsr operons and over-expression of type 3 pili structure genes. Increased production of type 3 pili was validated by Western-blot, hemagglutination and adhesion assays. L. plantarum CIRM653 activity against K. pneumoniae was also assessed in a murine intestinal colonisation model: a constant faecal pathogen burden was observed, as against a gradual decrease in the control group. These results reveal that an in vitro a priori attracting anti-biofilm activity of Lactobacillus might be counterbalanced by an in vivo behaviour in a complex microbiota environment with potential deleterious dispersal of highly adherent K. pneumoniae cells, raising the question of the accuracy of in vitro assays in screening of beneficial microbes.
Collapse
Affiliation(s)
- R. Lagrafeuille
- Université Clermont Auvergne, CNRS UMR 6023 Laboratoire Microorganismes: Génome et Environnement (LMGE), 63000 Clermont-Ferrand, France
| | - S. Miquel
- Université Clermont Auvergne, CNRS UMR 6023 Laboratoire Microorganismes: Génome et Environnement (LMGE), 63000 Clermont-Ferrand, France
| | - D. Balestrino
- Université Clermont Auvergne, CNRS UMR 6023 Laboratoire Microorganismes: Génome et Environnement (LMGE), 63000 Clermont-Ferrand, France
| | | | - F. Chain
- Commensal and Probiotics-Host Interactions Laboratory/AgroParisTech, UMR 1319 Micalis, INRA, 78352 Jouy-en-Josas, France
| | - P. Langella
- Commensal and Probiotics-Host Interactions Laboratory/AgroParisTech, UMR 1319 Micalis, INRA, 78352 Jouy-en-Josas, France
| | - C. Forestier
- Université Clermont Auvergne, CNRS UMR 6023 Laboratoire Microorganismes: Génome et Environnement (LMGE), 63000 Clermont-Ferrand, France
| |
Collapse
|
41
|
Berlanga M, Gomez-Perez L, Guerrero R. Biofilm formation and antibiotic susceptibility in dispersed cells versus planktonic cells from clinical, industry and environmental origins. Antonie van Leeuwenhoek 2017; 110:1691-1704. [PMID: 28770446 DOI: 10.1007/s10482-017-0919-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/25/2017] [Indexed: 12/14/2022]
Abstract
We examined the cell-surface physicochemical properties, the biofilm formation capability and the antibiotic susceptibility in dispersed cells (from an artificial biofilm of alginate beads) and compared with their planktonic (free-swimming) counterparts. The strains used were from different origins, such as clinical (Acinetobacter baumannii AB4), cosmetic industry (Klebsiella oxytoca EU213, Pseudomonas aeruginosa EU190), and environmental (Halomonas venusta MAT28). In general, dispersed cells adhered better to surfaces (measured as the "biofilm index") and had a greater hydrophobicity [measured as the microbial affinity to solvents (MATS)] than planktonic cells. The susceptibility to two antibiotics (ciprofloxacin and tetracycline) of dispersed cells was higher compared with that of their planktonic counterparts (tested by the "bactericidal index"). Dispersed and planktonic cells exhibited differences in cell permeability, especially in efflux pump activity, which could be related to the differences observed in susceptibility to antibiotics. At 1 h of biofilm formation in microtiter plates, dispersed cells treated with therapeutic concentration of ciprofloxacin yielded a lower biofilm index than the control dispersed cells without ciprofloxacin. With respect to the planktonic cells, the biofilm index was similar with and without the ciprofloxacin treatment. In both cases there were a reduction of the number of bacteria measured as viable count of the supernatant. The lower biofilm formation in dispersed cells with ciprofloxacin treatment may be due to a significant increase of biofilm disruption with respect to the biofilm from planktonic cells. From a clinical point of view, biofilms formed on medical devices such as catheters, cells that can be related to an infection were the dispersed cells. Our results showed that early treatment with ciprofloxacin of dispersed cells could diminishe bacterial dispersion and facilitate the partial elimination of the new biofilm formed.
Collapse
Affiliation(s)
- Mercedes Berlanga
- Department of Biology, Environment and Health, Section Microbiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain.
| | - Laura Gomez-Perez
- Department of Biology, Environment and Health, Section Microbiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII 27-31, 08028, Barcelona, Spain
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ricardo Guerrero
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, IDIBELL, Barcelona, Spain
- Barcelona Knowledge Hub, Academia Europaea, Barcelona, Spain
| |
Collapse
|
42
|
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front Microbiol 2017; 8:1364. [PMID: 28775718 PMCID: PMC5517491 DOI: 10.3389/fmicb.2017.01364] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed.
Collapse
Affiliation(s)
- Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, ANSESFougères, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Simon Labarthe
- MaIAGE, INRA, Université Paris-SaclayJouy-en-Josas, France
| | | | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|
43
|
Guilhen C, Forestier C, Balestrino D. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol 2017; 105:188-210. [PMID: 28422332 DOI: 10.1111/mmi.13698] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 01/22/2023]
Abstract
In most environments, microorganisms evolve in a sessile mode of growth, designated as biofilm, which is characterized by cells embedded in a self-produced extracellular matrix. Although a biofilm is commonly described as a "cozy house" where resident bacteria are protected from aggression, bacteria are able to break their biofilm bonds and escape to colonize new environments. This regulated process is observed in a wide variety of species; it is referred to as biofilm dispersal, and is triggered in response to various environmental and biological signals. The first part of this review reports the main regulatory mechanisms and effectors involved in biofilm dispersal. There is some evidence that dispersal is a necessary step between the persistence of bacteria inside biofilm and their dissemination. In the second part, an overview of the main methods used so far to study the dispersal process and to harvest dispersed bacteria was provided. Then focus was on the properties of the biofilm-dispersed bacteria and the fundamental role of the dispersal process in pathogen dissemination within a host organism. In light of the current body of knowledge, it was suggested that dispersal acts as a potent means of disseminating bacteria with enhanced colonization properties in the surrounding environment.
Collapse
Affiliation(s)
- Cyril Guilhen
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| | - Christiane Forestier
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| | - Damien Balestrino
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| |
Collapse
|
44
|
Bandeira M, Borges V, Gomes JP, Duarte A, Jordao L. Insights on Klebsiella pneumoniae Biofilms Assembled on Different Surfaces Using Phenotypic and Genotypic Approaches. Microorganisms 2017; 5:microorganisms5020016. [PMID: 28368366 PMCID: PMC5488087 DOI: 10.3390/microorganisms5020016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/06/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022] Open
Abstract
Klebsiella pneumoniae is a prominent etiological agent of healthcare associated infections (HAIs). In this context, multidrug-resistant and biofilm-producing bacteria are of special public health concern due to the difficulties associated with treatment of human infections and eradication from hospital environments. Here, in order to study the impact of medical devices-associated materials on the biofilm dynamics, we performed biofilm phenotypic analyses through a classic and a new scanning electron microscopy (SEM) technique for three multidrug-resistant K. pneumoniae isolates growing on polystyrene and silicone. We also applied whole-genome sequencing (WGS) to search for genetic clues underlying biofilm phenotypic differences. We found major differences in the extracellular polymeric substances (EPS) content among the three strains, which were further corroborated by in-depth EPS composition analysis. WGS analysis revealed a high nucleotide similarity within the core-genome, but relevant differences in the accessory genome that may account for the detected biofilm phenotypic dissimilarities, such as genes already associated with biofilm formation in other pathogenic bacteria (e.g., genes coding haemogglutinins and haemolysins). These data reinforce that the research efforts to defeat bacterial biofilms should take into account that their dynamics may be contingent on the medical devices-associated materials.
Collapse
Affiliation(s)
- Maria Bandeira
- Instituto Nacional de Saúde Dr Ricardo Jorge, Departamento de Saúde Ambiental, Unidade de Investigação e Desenvolvimento-Lisboa, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
- Universidade de Lisboa, Instituto Superior Técnico, Departamento de Engenharia Química, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Vítor Borges
- Instituto Nacional de Saúde Dr Ricardo Jorge, Departamento de Doenças Infeciosas, Núcleo de Bioinformática, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| | - João P Gomes
- Instituto Nacional de Saúde Dr Ricardo Jorge, Departamento de Doenças Infeciosas, Núcleo de Bioinformática, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| | - Aida Duarte
- Universidade de Lisboa, Faculdade de Farmácia, Av Prof Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Luisa Jordao
- Instituto Nacional de Saúde Dr Ricardo Jorge, Departamento de Saúde Ambiental, Unidade de Investigação e Desenvolvimento-Lisboa, Avenida Padre Cruz, 1649-016 Lisboa, Portugal.
| |
Collapse
|
45
|
Sadiq FA, Flint S, Li Y, Liu T, Lei Y, Sakandar HA, He G. New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review. BIOFOULING 2017; 33:306-326. [PMID: 28347177 DOI: 10.1080/08927014.2017.1304541] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
A biofilm is a complex assemblage of microbial communities adhered to a biotic or an abiotic surface which is embedded within a self-produced matrix of extracellular polymeric substances. Many transcriptional regulators play a role in triggering a motile-sessile switch and in consequently producing the biofilm matrix. This review is aimed at highlighting the role of two nucleotide signaling molecules (c-di-GMP and c-di-AMP), toxin antitoxin modules and a novel transcriptional regulator BolA in biofilm formation in various bacteria. In addition, it highlights the common themes that have appeared in recent research regarding the key regulatory components and signal transduction pathways that help Bacillus subtilis and Pseudomonas aeruginosa to acquire the biofilm mode of life.
Collapse
Affiliation(s)
- Faizan A Sadiq
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Steve Flint
- b School of Food and Nutrition , Massey University , Palmerston North , New Zealand
| | - Yun Li
- c School of Life Sciences and Food Technology , Hanshan Normal University , Chaozhou , PR China
| | - TongJie Liu
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | - Yuan Lei
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| | | | - GuoQing He
- a College of Biosystems Engineering and Food Science , Zhejiang University , Hangzhou , PR China
| |
Collapse
|
46
|
Berlanga M, Guerrero R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact 2016; 15:165. [PMID: 27716327 PMCID: PMC5045575 DOI: 10.1186/s12934-016-0569-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/23/2016] [Indexed: 01/18/2023] Open
Abstract
In nature, bacteria alternate between two modes of growth: a unicellular life phase, in which the cells are free-swimming (planktonic), and a multicellular life phase, in which the cells are sessile and live in a biofilm, that can be defined as surface-associated microbial heterogeneous structures comprising different populations of microorganisms surrounded by a self-produced matrix that allows their attachment to inert or organic surfaces. While a unicellular life phase allows for bacterial dispersion and the colonization of new environments, biofilms allow sessile cells to live in a coordinated, more permanent manner that favors their proliferation. In this alternating cycle, bacteria accomplish two physiological transitions via differential gene expression: (i) from planktonic cells to sessile cells within a biofilm, and (ii) from sessile to detached, newly planktonic cells. Many of the innate characteristics of biofilm bacteria are of biotechnological interest, such as the synthesis of valuable compounds (e.g., surfactants, ethanol) and the enhancement/processing of certain foods (e.g., table olives). Understanding the ecology of biofilm formation will allow the design of systems that will facilitate making products of interest and improve their yields.
Collapse
Affiliation(s)
- Mercedes Berlanga
- Section Microbiology, Department of Biology, Health and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Spain
| | - Ricardo Guerrero
- Laboratory of Molecular Microbiology and Antimicrobials, Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona-IDIBELL, Barcelona, Spain
- Barcelona Knowledge Hub, Academia Europaea, Barcelona, Spain
| |
Collapse
|