1
|
Cifuentes C, Horndler L, Grosso P, Oeste CL, Hortal AM, Castillo J, Fernández-Pisonero I, Paradela A, Bustelo X, Alarcón B. The R-RAS2 GTPase is a signaling hub in triple-negative breast cancer cell metabolism and metastatic behavior. J Hematol Oncol 2025; 18:41. [PMID: 40221767 PMCID: PMC11993990 DOI: 10.1186/s13045-025-01693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Recent research from our group has shown that the overexpression of the wild-type RAS-family GTPase RRAS2 drives the onset of triple-negative breast cancer (TNBC) in mice following one or more pregnancies. This phenomenon mirrors human TNBC, where RRAS2 is overexpressed in approximately 75% of cases, particularly in tumors associated with the postpartum period. These findings underscore the relevance of R-RAS2 in TNBC development and progression. METHODS We conducted RNA sequencing on tumors derived from conditional knock-in mice overexpressing human wild-type RRAS2 to identify the somatic mutation landscape associated with TNBC development in these mice. Additionally, we developed a TNBC cell line from RRAS2-overexpressing mice, enabling loss-of-function studies to investigate the role of R-RAS2 in various pathobiological parameters of TNBC cells, including cell migration, invasiveness, metabolic activity, and metastatic spread. Furthermore, proteomic analysis of a freshly isolated tumor identified plasma membrane receptors interacting with R-RAS2. RESULTS Our findings demonstrate that TNBC driven by RRAS2 overexpression exhibits a pattern of somatic mutations similar to those observed in human breast cancer, particularly in genes involved in stemness, extracellular matrix interactions, and actin cytoskeleton regulation. Proteomic analysis revealed that wild-type R-RAS2 interacts with 245 membrane-associated proteins, including key solute carriers involved in cell metabolism (CD98/LAT1, GLUT1, and basigin), adhesion and matrix interaction proteins (CD44, EpCAM, MCAM, ICAM1, integrin-α6, and integrin-β1), and stem cell markers (β1-catenin, α1-catenin, PTK7, and CD44). We show that R-RAS2 regulates CD98/LAT1 transporter-mediated mTOR pathway activation and mediates CD44-dependent cancer cell migration and invasion, thus providing a mechanism by which R-RAS2 promotes breast cancer cell metastasis. CONCLUSIONS R-RAS2 associates with CD44, CD98/LAT1, and other plasma membrane receptors to regulate metabolic activity, actin cytoskeleton reorganization, cell migration, invasion, and distant metastasis formation in TNBC. These findings establish R-RAS2 as a central driver of TNBC malignancy and highlight its potential as a promising therapeutic target, particularly in aggressive, postpartum-associated breast cancers.
Collapse
Affiliation(s)
- Claudia Cifuentes
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Lydia Horndler
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pilar Grosso
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Clara L Oeste
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Savana, S.L., Calle Gran Vía 30, Madrid, 28013, Spain
| | - Alejandro M Hortal
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Jennifer Castillo
- University Hospital Miguel Servet, P.º de Isabel la Católica, 1-3, Zaragoza, 50009, Spain
| | - Isabel Fernández-Pisonero
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Campus Unamuno s/n, Salamanca, 37007, Spain
| | - Alberto Paradela
- Proteomics Unit, Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Xosé Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Campus Unamuno s/n, Salamanca, 37007, Spain
| | - Balbino Alarcón
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
2
|
Chutake YK, Mayo MF, Dumont N, Filiatrault J, Breitkopf SB, Cho P, Chen D, Dixit VS, Proctor WR, Kuhn EW, Bollinger Martinez S, McDonald AA, Qi J, Hu KN, Karnik R, Growney JD, Sharma K, Schalm SS, Gollerkeri AM, Mainolfi N, Williams JA, Weiss MM. KT-253, a Novel MDM2 Degrader and p53 Stabilizer, Has Superior Potency and Efficacy than MDM2 Small-Molecule Inhibitors. Mol Cancer Ther 2025; 24:497-510. [PMID: 39648478 PMCID: PMC11962396 DOI: 10.1158/1535-7163.mct-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Murine double minute 2 (MDM2) is an E3 ligase that inhibits the tumor suppressor protein p53. Clinical trials employing small-molecule MDM2/p53 interaction inhibitors have demonstrated limited activity, underscoring an unmet need for a better approach to target MDM2. KT-253 is a highly potent and selective heterobifunctional degrader that overcomes the MDM2 feedback loop seen with small-molecule MDM2/p53 interaction inhibitors and induces apoptosis in a range of hematologic and solid tumor lines. A single intravenous dose of KT-253 triggered rapid apoptosis and sustained tumor regression in p53 wild-type acute myeloid leukemia and acute lymphoblastic leukemia xenograft models. Additionally, a single intravenous dose of KT-253 in combination with standard-of-care venetoclax overcame venetoclax resistance in an acute myeloid leukemia xenograft model. The data herein define the therapeutic potential of KT-253 and support its clinical development in a range of hematologic and solid p53 wild-type malignancies, as a monotherapy and in combination with standard-of-care agents.
Collapse
Affiliation(s)
- Yogesh K. Chutake
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Michele F. Mayo
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Nancy Dumont
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Jessica Filiatrault
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | | | - Patricia Cho
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Dapeng Chen
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Vaishali S. Dixit
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - William R. Proctor
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Eric W. Kuhn
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | | | - Alice A. McDonald
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Jianfeng Qi
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Kan-Nian Hu
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Rahul Karnik
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Joseph D. Growney
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Kirti Sharma
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Stefanie S. Schalm
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | | | - Nello Mainolfi
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Juliet A. Williams
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Matthew M. Weiss
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| |
Collapse
|
3
|
Malcolm JR, Bridge KS, Holding AN, Brackenbury WJ. Identification of robust RT-qPCR reference genes for studying changes in gene expression in response to hypoxia in breast cancer cell lines. BMC Genomics 2025; 26:59. [PMID: 39838295 PMCID: PMC11748566 DOI: 10.1186/s12864-025-11216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Hypoxia is common in breast tumours and is linked to therapy resistance and advanced disease. To understand hypoxia-driven breast cancer progression, RT-qPCR is a widely used technique to quantify transcriptional changes that occur during malignant transformation. Reference genes (RGs) are endogenous RT-qPCR controls used to normalise mRNA levels, allowing accurate assessment of transcriptional changes. However, hypoxia reprograms transcription and post-transcriptional processing of RNA such that favoured RGs including GAPDH or PGK1 are unsuitable for this purpose. To address the need for robust RGs to study hypoxic breast cancer cell lines, we identified 10 RG candidates by analysing public RNA-seq data of MCF-7 and T-47D (Luminal A), and, MDA-MB-231 and MDA-MB-468 (triple negative breast cancer (TNBC)) cells cultured in normoxia or hypoxia. We used RT-qPCR to determine RG candidate levels in normoxic breast cancer cells, removing TBP and EPAS1 from downstream analysis due to insufficient transcript abundance. Assessing primer efficiency further removed ACTB, CCSER2 and GUSB from consideration. Following culture in normoxia, acute, or chronic hypoxia, we ascertained robust non-variable RGs using RefFinder. Here we present RPLP1 and RPL27 as optimal RGs for our panel of two Luminal A and two TNBC cell lines cultured in normoxia or hypoxia. Our result enables accurate evaluation of gene expression in selected hypoxic breast cancer cell lines and provides an essential resource for assessing the impact of hypoxia on breast cancer progression.
Collapse
Affiliation(s)
- Jodie R Malcolm
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Katherine S Bridge
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
- Centre for Blood Research, University of York, York, YO10 5DD, UK
| | - Andrew N Holding
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, York, YO10 5DD, UK.
| |
Collapse
|
4
|
Chan A, Gill J, Chih H, Wright SCE, Vasilevski N, Eichhorn PJA. Influence of Epithelial-Mesenchymal Transition on Risk of Relapse and Outcome to Eribulin or Cyclin-Dependent Kinase Inhibitors in Metastatic Breast Cancer. JCO Precis Oncol 2024; 8:e2400274. [PMID: 39642326 PMCID: PMC11634087 DOI: 10.1200/po.24.00274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 12/08/2024] Open
Abstract
PURPOSE The presence of epithelial-mesenchymal transition (EMT) in breast cancer (BC) cells has been linked to worse prognosis and may influence response to systemic treatment. We explored the effect of EMT in tumor samples of patients with metastatic BC on disease-free interval and overall survival in those patients receiving eribulin or cyclin-dependent kinase 4/6 inhibitors (CDK4/6i). MATERIALS AND METHODS Key inclusion criteria included available archived primary BC tissue and, where available, matched metastatic biopsy. Patients received eribulin and/or a CDK4/6i in the metastatic setting. Specimens were assessed for biomarkers by immunohistochemistry (CDH1, AE1/3, VIM, CDH2, ZEB1, pSMAD2, and SMAD4) and gene expression by droplet digital polymerase chain reaction (CDH1, CDH2, SNAI1 & 2, TWIST1, VIM, PTEN, and ZEB1 & 2). RESULTS Between 2002 and 2020, 127 patients were included (95 early-stage disease at diagnosis with metastatic relapse, 32 de novo metastatic disease). In metastatic samples, presence of ZEB1 overexpression was associated with shorter time to recurrence (48.1 months shorter; P = .003), with pSMAD2 overexpression suggesting clinical significance of 52.0 months shorter; P = .01. High gene expression levels for SNAIL1, TWIST1, and PTEN in the primary BC were associated with significantly longer survival in patients who received eribulin (P < .05); high VIM was associated with a clinically relevant trend toward shorter survival after a CDK4/6i (P = .013). CONCLUSION We demonstrate in our exploratory study that biomarkers involved in the process of EMT could have a prognostic impact in a cohort of patients with BC uniformly treated and with long-term follow-up. Genes known to be involved in EMT were associated with improved eribulin efficacy, while suggesting a poorer outcome with CDK4/6i.
Collapse
Affiliation(s)
- Arlene Chan
- Breast Cancer Research Centre-WA and Curtin University, Perth, Australia
- Curtin Medical School, Curtin University, Bentley, Australia
| | - Jespal Gill
- Anatomical Pathology, Western Diagnostics, Jandakot and PathWest, Murdoch, Australia
| | - HuiJun Chih
- School of Population Health, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Sarah Christine Elisabeth Wright
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Natali Vasilevski
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Pieter Johan Adam Eichhorn
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
5
|
Souza JLN, Antunes-Porto AR, da Silva Oliveira I, Amorim CCO, Pires LO, de Brito Duval I, Amaral LVBD, Souza FR, Oliveira EA, Cassali GD, Cardoso VN, Fernandes SOA, Fujiwara RT, Russo RC, Bueno LL. Screening and validating the optimal panel of housekeeping genes for 4T1 breast carcinoma and metastasis studies in mice. Sci Rep 2024; 14:26476. [PMID: 39488625 PMCID: PMC11531515 DOI: 10.1038/s41598-024-77126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
The 4T1 model is extensively employed in murine studies to elucidate the mechanisms underlying the carcinogenesis of triple-negative breast cancer. Molecular biology serves as a cornerstone in these investigations. However, accurate gene expression analyses necessitate data normalization employing housekeeping genes (HKGs) to avert spurious results. Here, we initially delve into the characteristics of the tumor evolution induced by 4T1 in mice, underscoring the imperative for additional tools for tumor monitoring and assessment methods for tracking the animals, thereby facilitating prospective studies employing this methodology. Subsequently, leveraging various software platforms, we assessed ten distinct HKGs (GAPDH, 18 S, ACTB, HPRT1, B2M, GUSB, PGK1, CCSER2, SYMPK, ANKRD17) not hitherto evaluated in the 4T1 breast cancer model, across tumors and diverse tissues afflicted by metastasis. Our principal findings underscore GAPDH as the optimal HKG for gene expression analyses in tumors, while HPRT1 emerged as the most stable in the liver and CCSER2 in the lung. These genes demonstrated consistent expression and minimal variation among experimental groups. Furthermore, employing these HKGs for normalization, we assessed TNF-α and VEGF expression in tissues and discerned significant disparities among groups. We posit that this constitutes the inaugural delineation of an ideal HKG for experiments utilizing the 4T1 model, particularly in vivo settings.
Collapse
Affiliation(s)
- Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Rafaela Antunes-Porto
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela da Silva Oliveira
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Octávio Pires
- Laboratory of Radioisotopes, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela de Brito Duval
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luisa Vitor Braga do Amaral
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Rezende Souza
- Laboratory of Comparative Pathology, Department of Genetal Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Evelyn Ane Oliveira
- Laboratory of Comparative Pathology, Department of Genetal Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of Genetal Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Laboratory of Radioisotopes, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratory of Radioisotopes, Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, 31270- 901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Abdelhamid AM, Zeinelabdeen Y, Manie T, Khallaf E, Assal RA, Youness RA. miR-17-5p/STAT3/H19: A novel regulatory axis tuning ULBP2 expression in young breast cancer patients. Pathol Res Pract 2024; 263:155638. [PMID: 39388743 DOI: 10.1016/j.prp.2024.155638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND AND AIM UL-16 binding protein 2 (ULBP2) is a highly altered ligand for the activating receptor, NKG2D in breast cancer (BC). However, the mechanism behind its de-regulation in BC patients remains to be explored. The sophisticated crosstalk between miR-17-5p, the lncRNA H19, and STAT3 as a possible upstream regulatory loop for ULBP2 in young BC patients and cell lines remains as an unexplored area. Therefore, this study aimed at unravelling the ncRNA circuit regulating ULBP2 in young BC patients and cell lines. PATIENTS AND METHODS A total of 30 BC patients were recruited for this study. The expression levels of miR-17-5p, lncRNA H19, and STAT3 were examined in 30 BC tissues compared to their normal counterparts. In addition, the expression signatures of those transcripts were compared in young (<40 years) and old BC (≥40 years) patients. miR-17-5p oligonucleotides, STAT3 and H19 siRNAs were transfected in MDA-MB-231 cells using HiPerfect® Transfection Reagent. miR-17-5p and the transcripts of the target genes quantified using RT-qPCR. Their relative expression was calculated using the 2-ΔΔCT method. RESULTS Through acting as a ceRNA circuit that antagonizes the function of miR-17-5p, H19 prevented the miR-17-5p-induced downregulation of STAT3; this mechanism further contributes to the pathogenesis of BC. Ectopic expression of miR-17-5p in MDA-MB-231 cells displayed its prominent role as an indirect potential activator of NK cells by significantly repressing the expression levels of the oncogenic mediator STAT3 and the oncogenic lncRNA H19 and inducing ULBP2 expression level by 3 folds in TNBC cell lines compared to mock cells. Furthermore, knocking down of STAT3 repressed the lncRNA H19 and increased ULBP2 expression levels, whereas siRNAs against H19 increased the expression levels of ULBP2. CONCLUSION This study highlighted the crosstalk between the novel regulatory network composed of miR-17-5p, H19 and STAT3, and their impact on ULBP2 in BC. Moreover, this study underscored the potential role of miR-17-5p in counteracting the immune evasion tactics, particularly the shedding of ULBP2 in young BC patients, through the modulation of the STAT3/H19/ULBP2 regulatory axis. Thus, targeting this novel regulatory network could potentially enhance our understanding and advance the future application of the innate system-mediated immunotherapy in BC.
Collapse
Affiliation(s)
- A M Abdelhamid
- Biotechnology School, Nile University, Giza 12588, Egypt
| | - Y Zeinelabdeen
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - T Manie
- Department of Breast Surgery, National Cancer Institute, Cairo University, Cairo, Egypt
| | - E Khallaf
- Department of General Surgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - R A Assal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - R A Youness
- Molecular Genetics Research Team (MGRT), Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University, New Administrative Capital 11835, Egypt.
| |
Collapse
|
7
|
Stewart DC, Brisson BK, Dekky B, Berger AC, Yen W, Mauldin EA, Loebel C, Gillette D, Assenmacher CA, Quincey C, Stefanovski D, Cristofanilli M, Cukierman E, Burdick JA, Borges VF, Volk SW. Prognostic and therapeutic implications of tumor-restrictive type III collagen in the breast cancer microenvironment. NPJ Breast Cancer 2024; 10:86. [PMID: 39358397 PMCID: PMC11447064 DOI: 10.1038/s41523-024-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and bioinformatic experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in non-invasive and invasive breast cancer cell lines. In human triple-negative breast cancer biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in non-invasive compared to invasive regions. Similarly, bioinformatics analysis of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free, and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces the formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective therapeutic modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashton C Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corisa Quincey
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Cifuentes C, Oeste CL, Fernández-Pisonero I, Hortal AM, García-Macías C, Hochart J, Rubira R, Horndler L, Horndler C, Bustelo XR, Alarcón B. Unmutated RRAS2 emerges as a key oncogene in post-partum-associated triple negative breast cancer. Mol Cancer 2024; 23:142. [PMID: 38987766 PMCID: PMC11234613 DOI: 10.1186/s12943-024-02054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common cancer in women, with triple negative BC (TNBC) accounting for 20% of cases. While early detection and targeted therapies have improved overall life expectancy, TNBC remains resistant to current treatments. Although parity reduces the lifetime risk of developing BC, pregnancy increases the risk of developing TNBC for years after childbirth. Although numerous gene mutations have been associated with BC, no single gene alteration has been identified as a universal driver. RRAS2 is a RAS-related GTPase rarely found mutated in cancer. METHODS Conditional knock-in mice were generated to overexpress wild type human RRAS2 in mammary epithelial cells. A human sample cohort was analyzed by RT-qPCR to measure RRAS2 transcriptional expression and to determine the frequency of both a single-nucleotide polymorphism (SNP rs8570) in the 3'UTR region of RRAS2 and of genomic DNA amplification in tumoral and non-tumoral human BC samples. RESULTS Here we show that overexpression of wild-type RRAS2 in mice is sufficient to develop TNBC in 100% of females in a pregnancy-dependent manner. In human BC, wild-type RRAS2 is overexpressed in 68% of tumors across grade, location, and molecular type, surpassing the prevalence of any previously implicated alteration. Still, RRAS2 overexpression is notably higher and more frequent in TNBC and young parous patients. The increased prevalence of the alternate C allele at the SNP position in tumor samples, along with frequent RRAS2 gene amplification in both tumors and blood of BC patients, suggests a cause-and-effect relationship between RRAS2 overexpression and breast cancer. CONCLUSIONS Higher than normal expression of RRAS2 not bearing activating mutations is a key driver in the majority of breast cancers, especially those of the triple-negative type and those linked to pregnancy.
Collapse
Affiliation(s)
- Claudia Cifuentes
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, 28049, Spain
| | - Clara L Oeste
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, 28049, Spain
- LynxCare, Tiensevest 132, Leuven, 3000, Belgium
| | - Isabel Fernández-Pisonero
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Campus Unamuno s/n, Salamanca, 37007, Spain
| | - Alejandro M Hortal
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, 28049, Spain
| | - Carmen García-Macías
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Campus Unamuno s/n, Salamanca, 37007, Spain
| | - Jeanne Hochart
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, 28049, Spain
| | - Regina Rubira
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, 28049, Spain
| | - Lydia Horndler
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, 28049, Spain
| | - Carlos Horndler
- University Hospital Miguel Servet, P.º de Isabel la Católica, 1-3, Zaragoza, 50009, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-Universidad de Salamanca, Campus Unamuno s/n, Salamanca, 37007, Spain
| | - Balbino Alarcón
- Immune System Development and Function Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, 28049, Spain.
| |
Collapse
|
9
|
Carels N. Assessing RNA-Seq Workflow Methodologies Using Shannon Entropy. BIOLOGY 2024; 13:482. [PMID: 39056677 PMCID: PMC11274087 DOI: 10.3390/biology13070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
RNA-seq faces persistent challenges due to the ongoing, expanding array of data processing workflows, none of which have yet achieved standardization to date. It is imperative to determine which method most effectively preserves biological facts. Here, we used Shannon entropy as a tool for depicting the biological status of a system. Thus, we assessed the measurement of Shannon entropy by several RNA-seq workflow approaches, such as DESeq2 and edgeR, but also by combining nine normalization methods with log2 fold change on paired samples of TCGA RNA-seq representing datasets of 515 patients and spanning 12 different cancer types with 5-year overall survival rates ranging from 20% to 98%. Our analysis revealed that TPM, RLE, and TMM normalization, coupled with a threshold of log2 fold change ≥1, for identifying differentially expressed genes, yielded the best results. We propose that Shannon entropy can serve as an objective metric for refining the optimization of RNA-seq workflows and mRNA sequencing technologies.
Collapse
Affiliation(s)
- Nicolas Carels
- Laboratory of Biological System Modeling, Center of Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
10
|
Tung KF, Pan CY, Lin WC. Housekeeping protein-coding genes interrogated with tissue and individual variations. Sci Rep 2024; 14:12454. [PMID: 38816574 PMCID: PMC11139953 DOI: 10.1038/s41598-024-63269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Housekeeping protein-coding genes are stably expressed genes in cells and tissues that are thought to be engaged in fundamental cellular biological functions. They are often utilized as normalization references in molecular biology research and are especially important in integrated bioinformatic investigations. Prior studies have examined human housekeeping protein-coding genes by analyzing various gene expression datasets. The inclusion of different tissue types significantly impacted the discovery of housekeeping genes. In this report, we investigated particularly individual human subject expression differences in protein-coding genes across different tissue types. We used GTEx V8 gene expression datasets obtained from more than 16,000 human normal tissue samples. Furthermore, the Gini index is utilized to investigate the expression variations of protein-coding genes between tissue and individual donor subjects. Housekeeping protein-coding genes found using Gini index profiles may vary depending on the tissue subtypes investigated, particularly given the diverse sample size collections across the GTEx tissue subtypes. We subsequently selected major tissues and identified subsets of housekeeping genes with stable expression levels among human donors within those tissues. In this work, we provide alternative sets of housekeeping protein-coding genes that show more consistent expression patterns in human subjects across major solid organs. Weblink: https://hpsv.ibms.sinica.edu.tw .
Collapse
Affiliation(s)
- Kuo-Feng Tung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, R.O.C
| | - Chao-Yu Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, R.O.C
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan, R.O.C..
| |
Collapse
|
11
|
Souza JLN, Lopes CDA, Leal-Silva T, Vieira-Santos F, Amorim CCO, Padrão LDLS, Antunes Porto AR, Fujiwara RT, Russo RC, Bueno LL. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in different tissues from mice infected by Ascaris suum. Microb Pathog 2024; 189:106567. [PMID: 38364877 DOI: 10.1016/j.micpath.2024.106567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Human ascariasis is the most prevalent helminth infection, affecting 445 million people worldwide. To better understand the impact of the immune system on the pathophysiology of individuals infected with Ascaris suum, mice have been used as experimental models. The RT-qPCR technique is a critical auxiliary tool of investigation used to quantify mRNA levels. However, proper normalization using reference genes is essential to ensure reliable outcomes to avoid analytical errors and false results. Despite the importance of reference genes for experimental A. suum infection studies, no specific reference genes have been identified yet. Therefore, we conducted a study to assess five potential reference genes (GAPDH, 18s, ACTB, B2M, and HPRT1) in different tissues (liver, lungs, small and large intestines) affected by A. suum larval migration in C57BL/6j mice. Tissue collection was carried out to analyze parasite burden and confirm the presence of larvae during the peak of migration in each tissue. Upon confirmation, we analyzed different genes in the tissues and found no common gene with stable expression. Our results highlight the importance of analyzing different genes and using different software programs to ensure reliable relative expression results. Based on our findings, B2M was ranked as the ideal reference gene for the liver, while 18S was the most stable gene in the lung and small intestine. ACTB, or a combination of ACTB with GAPDH, was deemed suitable as reference genes for the large intestine due to their stable expression and less variation between the control and infected groups. To further demonstrate the impact of using different reference genes, we normalized the expression of a chemokine gene (CXCL9) in all tissues. Significant differences in CXCL9 expression levels were observed between different groups in all tissues except for the large intestine. This underscores the importance of selecting appropriate reference genes to avoid overestimating target gene expression levels and encountering normalization-related issues that can lead to false results. In conclusion, our study highlights the significance of using reliable reference genes for accurate RT-qPCR analysis, especially in the context of A. suum infection studies in different tissues. Proper normalization is crucial to ensure the validity of gene expression data and avoid potential pitfalls in interpreting results.
Collapse
Affiliation(s)
- Jorge Lucas Nascimento Souza
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila de Almeida Lopes
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Leal-Silva
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira-Santos
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Lima Silva Padrão
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Rafaela Antunes Porto
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
12
|
Wang H, Zhou Z, Zhang J, Hao T, Wang P, Wu P, Su R, Yang H, Deng G, Chen S, Gu L, He Y, Zeng L, Zhang C, Yin S. Pumilio1 regulates NPM3/NPM1 axis to promote PD-L1-mediated immune escape in gastric cancer. Cancer Lett 2024; 581:216498. [PMID: 38029539 DOI: 10.1016/j.canlet.2023.216498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Abnormal regulation of RNA binding proteins (RBPs) plays an essential role in tumorigenesis and progression, but their functions and mechanisms remain largely elusive. Previously, we reported that Pumilio 1 (PUM1), a RBP, could regulate glycolysis metabolism and promote the progression of gastric cancer (GC). However, the role of PUM1 in tumor immune regulation remains largely elusive. In this study, we report that PUM1 induces immune escape through posttranscriptional regulation of PD-L1 in GC. We used multiplexed immunohistochemistry to analyze the correlation between PUM1 expression and immune microenvironment in GC. The effect of PUM1 deficiency on tumor killing of T cells was examined in vitro and in vivo. The molecular mechanism of PUM1 was evaluated via RNA immunoprecipitation, chromatin immunoprecipitation, Western blot, co-immunoprecipitation, and RNA stability assays. Clinically, elevated PUM1 expression is associated with high-expression of PD-L1, lack of CD8+ T cell infiltration and poor prognosis in GC patients. PUM1 positively regulates PD-L1 expression and PUM1 reduction enhances T cell killing of tumors. Mechanistically, PUM1 directly binds to nucleophosmin/nucleoplasmin 3 (NPM3) mRNA and stabilizes NPM3. NPM3 interacts with NPM1 to promote NPM1 translocation into the nucleus and increase the transcription of PD-L1. PUM1 inhibits the anti-tumor activity of T cells through the PUM1/NPM3/PD-L1 axis. In summary, this study reveals the critical post-transcriptional effect of PUM1 in the modulation of PD-L1-dependent GC immune escape, thus provides a novel indicator and potential therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Han Wang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Gastrointestinal Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Junchang Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Tengfei Hao
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Pengliang Wang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei Wu
- Department of Gastrointestinal Surgery, Yongchuan Hospital of Chongqing Medical university, Chongqing, China
| | - Rishun Su
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huan Yang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Guofei Deng
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Songyao Chen
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Liang Gu
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yulong He
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China; Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Leli Zeng
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Changhua Zhang
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Songcheng Yin
- Digestive Diseases Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Yin S, Liu H, Zhou Z, Xu X, Wang P, Chen W, Deng G, Wang H, Yu H, Gu L, Huo M, Li M, Zeng L, He Y, Zhang C. PUM1 Promotes Tumor Progression by Activating DEPTOR-Meditated Glycolysis in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301190. [PMID: 37469018 PMCID: PMC10520643 DOI: 10.1002/advs.202301190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Indexed: 07/21/2023]
Abstract
RNA-binding proteins (RBPs) play essential roles in tumorigenesis and progression, but their functions in gastric cancer (GC) remain largely elusive. Here, it is reported that Pumilio 1 (PUM1), an RBP, induces metabolic reprogramming through post-transcriptional regulation of DEP domain-containing mammalian target of rapamycin (mTOR)-interacting protein (DEPTOR) in GC. In clinical samples, elevated expression of PUM1 is associated with recurrence, metastasis, and poor survival. In vitro and in vivo experiments demonstrate that knockdown of PUM1 inhibits the proliferation and metastasis of GC cells. In addition, RNA-sequencing and bioinformatics analyses show that PUM1 is enriched in the glycolysis gene signature. Metabolomics studies confirm that PUM1 deficiency suppresses glycolytic metabolism. Mechanistically, PUM1 binds directly to DEPTOR mRNA pumilio response element to maintain the stability of the transcript and prevent DEPTOR degradation through post-transcriptional pathway. PUM1-mediated DEPTOR upregulation inhibits mTORC1 and alleviates the inhibitory feedback signal transmitted from mTORC1 to PI3K under normal conditions, thus activating the PI3K-Akt signal and glycolysis continuously. Collectively, these results reveal the critical epigenetic role of PUM1 in modulating DEPTOR-dependent GC progression. These conclusions support further clinical investigation of PUM1 inhibitors as a metabolic-targeting treatment strategy for GC.
Collapse
Affiliation(s)
- Songcheng Yin
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Huifang Liu
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
- Department of RadiotherapyAffiliated Cancer Hospital of Zhengzhou UniversityHenan Cancer HospitalZhengzhouHenan450000China
| | - Zhijun Zhou
- Department of MedicineThe University of Oklahoma Health Sciences CenterOklahoma CityOK 73104USA
| | - Xiaoyu Xu
- Department of Gynecology and ObstetricsThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Pengliang Wang
- Department of Gastrointestinal SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouGuangdong510120China
| | - Wei Chen
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Guofei Deng
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Han Wang
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Hong Yu
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Liang Gu
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Mingyu Huo
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Min Li
- Department of MedicineThe University of Oklahoma Health Sciences CenterOklahoma CityOK 73104USA
| | - Leli Zeng
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Yulong He
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510062China
| | - Changhua Zhang
- Digestive Diseases CenterGuangdong Provincial Key Laboratory of Digestive Cancer ResearchThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| |
Collapse
|
14
|
Zappe K, Kopic A, Scheichel A, Schier AK, Schmidt LE, Borutzki Y, Miedl H, Schreiber M, Mendrina T, Pirker C, Pfeiler G, Hacker S, Haslik W, Pils D, Bileck A, Gerner C, Meier-Menches S, Heffeter P, Cichna-Markl M. Aberrant DNA Methylation, Expression, and Occurrence of Transcript Variants of the ABC Transporter ABCA7 in Breast Cancer. Cells 2023; 12:1462. [PMID: 37296582 PMCID: PMC10252461 DOI: 10.3390/cells12111462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The ABC transporter ABCA7 has been found to be aberrantly expressed in a variety of cancer types, including breast cancer. We searched for specific epigenetic and genetic alterations and alternative splicing variants of ABCA7 in breast cancer and investigated whether these alterations are associated with ABCA7 expression. By analyzing tumor tissues from breast cancer patients, we found CpGs at the exon 5-intron 5 boundary aberrantly methylated in a molecular subtype-specific manner. The detection of altered DNA methylation in tumor-adjacent tissues suggests epigenetic field cancerization. In breast cancer cell lines, DNA methylation levels of CpGs in promoter-exon 1, intron 1, and at the exon 5-intron 5 boundary were not correlated with ABCA7 mRNA levels. By qPCR involving intron-specific and intron-flanking primers, we identified intron-containing ABCA7 mRNA transcripts. The occurrence of intron-containing transcripts was neither molecular subtype-specific nor directly correlated with DNA methylation at the respective exon-intron boundaries. Treatment of breast cancer cell lines MCF-7, BT-474, SK-BR3, and MDA-MB-231 with doxorubicin or paclitaxel for 72 h resulted in altered ABCA7 intron levels. Shotgun proteomics revealed that an increase in intron-containing transcripts was associated with significant dysregulation of splicing factors linked to alternative splicing.
Collapse
Affiliation(s)
- Katja Zappe
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Antonio Kopic
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alexandra Scheichel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Ann-Katrin Schier
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Lukas Emanuel Schmidt
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Yasmin Borutzki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Heidi Miedl
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Schreiber
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Theresa Mendrina
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Pfeiler
- Division of Gynecology and Gynecological Oncology, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Hacker
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Werner Haslik
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Pils
- Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Samuel Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Margit Cichna-Markl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Mosly D, MacLeod K, Moir N, Turnbull A, Sims AH, Langdon SP. Variation in IL6ST cytokine family function and the potential of IL6 trans-signalling in ERα positive breast cancer cells. Cell Signal 2023; 103:110563. [PMID: 36565897 DOI: 10.1016/j.cellsig.2022.110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
High expression of the transmembrane receptor IL6ST (gp130) has been identified as a predictive biomarker of endocrine treatment response in ERα-positive breast cancers. To investigate its function further in this disease, this study evaluated the expression, function and signalling of IL6ST in ERα-positive breast cancer cell lines and investigated crosstalk between ERα and IL6ST. IL6ST was differentially expressed in ERα-positive breast cancer cell lines (low in MCF-7, high in ZR751 and T47D), while multiple soluble isoforms of IL6ST were identified. IL6ST is the common signal transducing receptor component for the IL6ST family of cytokines and the effects of seven IL6ST cytokines on these cell lines were studied. These cytokines caused differential growth and migration effects in these cell lines e.g. MCF-7 cells were growth-stimulated, while ZR751 cells were inhibited by IL6 and OSM.. Activation of the STAT and ERK pathways is associated with these responses. Evidence to support trans-signalling involved in cell growth and migration was obtained in both MCF-7 and ZR751 models. Interaction between cytokines and estrogen on ERα-positive cell lines growth were analysed. High expression of IL6ST (in ZR751) may lead to growth inhibition by interacting cytokines while lower expression (in MCF-7) appears associated with proliferation. High IL6ST expression is consistent with a more beneficial clinical outcome if cytokine action contributes to anti-estrogen action.
Collapse
Affiliation(s)
- Duniya Mosly
- Edinburgh Cancer Research and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom; Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, Edinburgh, EH4 2XR, United Kingdom
| | - Kenneth MacLeod
- Edinburgh Cancer Research and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Nicholas Moir
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, Edinburgh, EH4 2XR, United Kingdom
| | - Arran Turnbull
- Edinburgh Cancer Research and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, Edinburgh, EH4 2XR, United Kingdom
| | - Simon P Langdon
- Edinburgh Cancer Research and Edinburgh Pathology, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom.
| |
Collapse
|
16
|
The Botrytis cinerea Gene Expression Browser. J Fungi (Basel) 2023; 9:jof9010084. [PMID: 36675905 PMCID: PMC9861337 DOI: 10.3390/jof9010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
For comprehensive gene expression analyses of the phytopathogenic fungus Botrytis cinerea, which infects a number of plant taxa and is a cause of substantial agricultural losses worldwide, we developed BEB, a web-based B. cinerea gene Expression Browser. This computationally inexpensive web-based application and its associated database contain manually curated RNA-Seq data for B. cinerea. BEB enables expression analyses of genes of interest under different culture conditions by providing publication-ready heatmaps depicting transcript levels, without requiring advanced computational skills. BEB also provides details of each experiment and user-defined gene expression clustering and visualization options. If needed, tables of gene expression values can be downloaded for further exploration, including, for instance, the determination of differentially expressed genes. The BEB implementation is based on open-source computational technologies that can be deployed for other organisms. In this case, the new implementation will be limited only by the number of transcriptomic experiments that are incorporated into the platform. To demonstrate the usability and value of BEB, we analyzed gene expression patterns across different conditions, with a focus on secondary metabolite gene clusters, chromosome-wide gene expression, previously described virulence factors, and reference genes, providing the first comprehensive expression overview of these groups of genes in this relevant fungal phytopathogen. We expect this tool to be broadly useful in B. cinerea research, providing a basis for comparative transcriptomics and candidate gene identification for functional assays.
Collapse
|
17
|
Sun Y, Cheng Z, Guo Z, Dai G, Li Y, Chen Y, Xie R, Wang X, Cui M, Lu G, Wang A, Gao C. Preliminary Study of Genome-Wide Association Identified Novel Susceptibility Genes for Hemorheological Indexes in a Chinese Population. Transfus Med Hemother 2022; 49:346-357. [PMID: 36654975 PMCID: PMC9768296 DOI: 10.1159/000524849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/01/2022] [Indexed: 01/21/2023] Open
Abstract
Background Genome-wide association studies for various hemorheological characteristics have not been reported. We aimed to identify genetic loci associated with hemorheological indexes in a cohort of healthy Chinese Han individuals. Methods Genotyping was performed using Applied Biosystems Axiom™ Precision Medicine Diversity Array in 838 individuals, and 6,423,076 single nucleotide polymorphisms were available for genotyping. The relations were examined in an additive genetic model using mixed linear regression and combined with identical by descent matrix. Results We identified 38 genetic loci (p < 5 × 10-6) related to hemorheological traits. In which, LOC102724502-OLIG2 rs28371438 was related to the levels of nd30 (p = 8.58 × 10-07), nd300 (p = 1.89 × 10-06), erythrocyte rigidity (p = 1.29 × 10-06), assigned viscosity (p = 6.20 × 10-08) and whole blood high cut relative (p = 7.30 × 10-08). The association of STK32B rs4689231 for nd30 (p = 3.85 × 10-06) and nd300 (p = 2.94 × 10-06) and GTSCR1-LINC01541 rs11661911 for erythrocyte rigidity (p = 9.93 × 10-09) and whole blood high cut relative (p = 2.09 × 10-07) was found. USP25-MIR99AHG rs1297329 was associated with erythrocyte rigidity (p = 1.81 × 10-06) and erythrocyte deformation (p = 1.14 × 10-06). Moreover, the association of TMEM232-SLC25A46 rs3985087 and LINC00470-METTL4 rs9966987 for fibrinogen (p = 1.31 × 10-06 and p = 4.29 × 10-07) and plasma viscosity (p = 1.01 × 10-06 and p = 4.59 × 10-07) was found. Conclusion These findings may represent biological candidates for hemorheological indexes and contribute to hemorheological study.
Collapse
Affiliation(s)
- Yuxiao Sun
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China,Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou, China
| | - Zhaoyun Cheng
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiping Guo
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China,Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou, China
| | - Guoyou Dai
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China,Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou, China
| | - Yongqiang Li
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Chen
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruigang Xie
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianqing Wang
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingxia Cui
- FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoqing Lu
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Aifeng Wang
- FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuanyu Gao
- Department of Cardiology, Henan Provincial People's Hospital, Zhengzhou, China,FuWai Central China Cardiovascular Hospital, Zhengzhou, China,People's Hospital of Zhengzhou University, Zhengzhou, China,Henan Provincial Key Lab for Control of Coronary Heart Disease, Zhengzhou, China,*Chuanyu Gao,
| |
Collapse
|
18
|
Krishnarao K, Bruno KA, Di Florio DN, Edenfield BH, Whelan ER, Macomb LP, McGuire MM, Hill AR, Ray JC, Cornell LF, Tan W, Geiger XJ, Salomon GR, Douglass EJ, Fairweather D, Yamani MH. Upregulation of Endothelin-1 May Predict Chemotherapy-Induced Cardiotoxicity in Women with Breast Cancer. J Clin Med 2022; 11:3547. [PMID: 35743613 PMCID: PMC9224558 DOI: 10.3390/jcm11123547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
As survival in breast cancer patients from newer therapies increases, concerns for chemotherapy-induced cardiotoxicity (CIC) have offset some of these benefits, manifesting as a decline in left ventricular ejection fraction (LVEF). Patients receiving anthracycline-based chemotherapy followed by trastuzumab are at risk for CIC. Previous research evaluating whether clinical biomarkers predict cardiotoxicity has been inconsistent. Recently, angiotensin II type 1 receptor (ATR1) and endothelin 1 (ET1) have been shown to play a role in breast tumor growth. We evaluated ATR1 and ET1 expression in breast cancer tissue and its association with CIC. A total of 33 paraffin-embedded breast tissue specimens from women with breast cancer treated with anthracycline-based chemotherapy and trastuzumab were analyzed by immunohistochemistry (IHC) and qRT-PCR. We found that ET1 expression was increased in patients with an LVEF ≤ 50% (p = 0.032) with a lower LVEF correlating with higher ET1 expression (r = 0.377, p = 0.031). In patients with a change in LVEF of greater than 10%, greater ET1 expression was noted compared to those without a change in LVEF (p = 0.017). Increased ET1 expression in breast tumor tissue is associated with reduced LVEF. Future studies need to examine whether ET1 may be a tissue biomarker that helps predict the risk of developing CIC in women with breast cancer.
Collapse
Affiliation(s)
- Krithika Krishnarao
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
- Department of Cardiovascular Medicine, Ochsner Health, New Orleans, LA 70121, USA
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Molly M. McGuire
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Jordan C. Ray
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Lauren F. Cornell
- Department of Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (L.F.C.); (W.T.)
| | - Winston Tan
- Department of Oncology, Mayo Clinic, Jacksonville, FL 32224, USA; (L.F.C.); (W.T.)
| | | | - Gary R. Salomon
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - Erika J. Douglass
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Mohamad H. Yamani
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA; (K.A.B.); (D.N.D.F.); (E.R.W.); (L.P.M.); (M.M.M.); (A.R.H.); (J.C.R.); (G.R.S.); (E.J.D.); (D.F.); (M.H.Y.)
| |
Collapse
|
19
|
de Brito e Cunha D, Frederico ABT, Azamor T, Melgaço JG, da Costa Neves PC, Bom APDA, Tilli TM, Missailidis S. Biotechnological Evolution of siRNA Molecules: From Bench Tool to the Refined Drug. Pharmaceuticals (Basel) 2022; 15:ph15050575. [PMID: 35631401 PMCID: PMC9146980 DOI: 10.3390/ph15050575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
The depth and versatility of siRNA technologies enable their use in disease targets that are undruggable by small molecules or that seek to achieve a refined turn-off of the genes for any therapeutic area. Major extracellular barriers are enzymatic degradation of siRNAs by serum endonucleases and RNAases, renal clearance of the siRNA delivery system, the impermeability of biological membranes for siRNA, activation of the immune system, plasma protein sequestration, and capillary endothelium crossing. To overcome the intrinsic difficulties of the use of siRNA molecules, therapeutic applications require nanometric delivery carriers aiming to protect double-strands and deliver molecules to target cells. This review discusses the history of siRNAs, siRNA design, and delivery strategies, with a focus on progress made regarding siRNA molecules in clinical trials and how siRNA has become a valuable asset for biopharmaceutical companies.
Collapse
Affiliation(s)
- Danielle de Brito e Cunha
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Ana Beatriz Teixeira Frederico
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Tamiris Azamor
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Juliana Gil Melgaço
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Patricia Cristina da Costa Neves
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| | - Tatiana Martins Tilli
- Translational Oncology Platform, Center for Technological Development in Health, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil
- Laboratory of Cardiovascular Research, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil
- Correspondence: ; Tel.: +55-21-2562-1312
| | - Sotiris Missailidis
- Immunological Technology Laboratory, Institute of Technology in Immunobiologicals, Bio-Manguinhos, Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro 21040-900, Brazil; (D.d.B.e.C.); (A.B.T.F.); (T.A.); (J.G.M.); (P.C.d.C.N.); (A.P.D.A.B.); (S.M.)
| |
Collapse
|
20
|
Influence of the autotaxin-lysophosphatidic acid axis on cellular function and cytokine expression in different breast cancer cell lines. Sci Rep 2022; 12:5565. [PMID: 35365723 PMCID: PMC8975816 DOI: 10.1038/s41598-022-09565-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/23/2022] [Indexed: 11/08/2022] Open
Abstract
Previous studies provide high evidence that autotaxin (ATX)-lysophosphatidic acid (LPA) signaling through LPA receptors (LPAR) plays an important role in breast cancer initiation, progression, and invasion. However, its specific role in different breast cancer cell lines remains to be fully elucidated to offer improvements in targeted therapies. Within this study, we analyzed in vitro the effect of LPA 18:1 and the LPAR1, LPAR3 (and LPAR2) inhibitor Ki16425 on cellular functions of different human breast cancer cell lines (MDA-MB-231, MDA-MB-468, MCF-7, BT-474, SKBR-3) and the human breast epithelial cell line MCF-10A, as well as Interleukin 8 (IL-8), Interleukin 6 (IL-6) and tumor necrosis factor (TNF)-alpha cytokine secretion after LPA-incubation. ATX-LPA signaling showed a dose-dependent stimulatory effect especially on cellular functions of triple-negative and luminal A breast cancer cell lines. Ki16425 inhibited the LPA-induced stimulation of triple-negative breast cancer and luminal A cell lines in variable intensity depending on the functional assay, indicating the interplay of different LPAR in those assays. IL-8, IL-6 and TNF-alpha secretion was induced by LPA in MDA-MB-468 cells. This study provides further evidence about the role of the ATX-LPA axis in different breast cancer cell lines and might contribute to identify subtypes suitable for a future targeted therapy of the ATX-LPA axis.
Collapse
|
21
|
da Conceição Braga L, Gonçalves BÔP, Coelho PL, da Silva Filho AL, Silva LM. Identification of best housekeeping genes for the normalization of RT-qPCR in human cell lines. Acta Histochem 2022; 124:151821. [PMID: 34861601 DOI: 10.1016/j.acthis.2021.151821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/01/2022]
Abstract
The identification of the best reference gene is a critical step to evaluate the relative change in mRNA expression of a target gene by RT-qPCR. In this work, we evaluated nineteen genes of different functional classes using Real Time Human Reference Gene Panel (Roche Applied Sciences), to identify the internal housekeeping genes (HKGs) most suitable for gene expression normalization data in human cell lines. Normal cell lines CCD-19LU (lung fibroblast), HEK-293 (epithelial cell of embryonic kidney), WI-26 VA4 (lung fibroblast), and human cancer cells, BT-549 (breast cancer), Hs 578T (breast cancer), MACL-1 (breast cancer), HeLa (cervical carcinoma), U-87 MG (glioblastoma/astrocytoma), RKO-AS45-1 (colorectal carcinoma), and TOV-21G (ovarian adenocarcinoma) were cultivated according to manufacturer's protocol. Twelve candidate reference genes were commonly expressed in five cell lines (CCD-19Lu, HEK-293, RKO-AS45-1, TOV-21G, and U-87 MG). To verify the expression stability, we used the RefFinder web tool, which integrates data from the computational programs Normfinder, BestKeeper, geNorm, and the comparative Delta-Ct method. The ACTB was the most stable reference gene to the CCD-19Lu and HEK-293 cells. The best combination of HKGs for the RKO-AS45-1 and TOV-21G cell lines were B2M/GAPDH and PBGD/B2M, respectively. For the U-87 MG cells, GAPDH and IPO8 were the most suitable HKGs. Thus, our findings showed that it is crucial to use the right HKGs to precise normalize gene expression levels in cancer studies, once a suitable HKG for one cell type cannot be to the other.
Collapse
|
22
|
Song Q, Dou L, Zhang W, Peng Y, Huang M, Wang M. Public transcriptome database-based selection and validation of reliable reference genes for breast cancer research. Biomed Eng Online 2021; 20:124. [PMID: 34895237 PMCID: PMC8665499 DOI: 10.1186/s12938-021-00963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/21/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is the most sensitive technique for evaluating gene expression levels. Choosing appropriate reference genes (RGs) is critical for normalizing and evaluating changes in the expression of target genes. However, uniform and reliable RGs for breast cancer research have not been identified, limiting the value of target gene expression studies. Here, we aimed to identify reliable and accurate RGs for breast cancer tissues and cell lines using the RNA-seq dataset. METHODS First, we compiled the transcriptome profiling data from the TCGA database involving 1217 samples to identify novel RGs. Next, ten genes with relatively stable expression levels were chosen as novel candidate RGs, together with six conventional RGs. To determine and validate the optimal RGs we performed qRT-PCR experiments on 87 samples from 11 types of surgically excised breast tumor specimens (n = 66) and seven breast cancer cell lines (n = 21). Five publicly available algorithms (geNorm, NormFinder, ΔCt method, BestKeeper, and ComprFinder) were used to assess the expression stability of each RG across all breast cancer tissues and cell lines. RESULTS Our results show that RG combinations SF1 + TRA2B + THRAP3 and THRAP3 + RHOA + QRICH1 showed stable expression in breast cancer tissues and cell lines, respectively, and that they displayed good interchangeability. We propose that these combinations are optimal triplet RGs for breast cancer research. CONCLUSIONS In summary, we identified novel and reliable RG combinations for breast cancer research based on a public RNA-seq dataset. Our results lay a solid foundation for the accurate normalization of qRT-PCR results across different breast cancer tissues and cells.
Collapse
Affiliation(s)
- Qiang Song
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China
| | - Lu Dou
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China
| | - Wenjin Zhang
- Department of Central Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, 404000, China
| | - Yang Peng
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Man Huang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, No.165, Xin Cheng Lu, Wanzhou, Chongqing, 404000, China.
| | - Mengyuan Wang
- Department of Breast Surgery, Chongqing University Three Gorges Hospital, No.165, Xin Cheng Lu, Wanzhou, Chongqing, 404000, China.
| |
Collapse
|
23
|
Identification of Novel Endogenous Controls for qPCR Normalization in SK-BR-3 Breast Cancer Cell Line. Genes (Basel) 2021; 12:genes12101631. [PMID: 34681026 PMCID: PMC8535678 DOI: 10.3390/genes12101631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Normalization of gene expression using internal controls or reference genes (RGs) has been the method of choice for standardizing the technical variations in reverse transcription quantitative polymerase chain reactions (RT-qPCR). Conventionally, ACTB and GAPDH have been used as reference genes despite evidence from literature discouraging their use. Hence, in the present study we identified and investigated novel reference genes in SK-BR-3, an HER2-enriched breast cancer cell line. Transcriptomic data of 82 HER2-E breast cancer samples from TCGA database were analyzed to identify twelve novel genes with stable expression. Additionally, thirteen RGs from the literature were analyzed. The expression variations of the candidate genes were studied over five successive passages (p) in two parallel cultures S1 and S2 and in acute and chronic hypoxia using various algorithms. Finally, the most stable RGs were selected and validated for normalization of the expression of three genes of interest (GOIs) in normoxia and hypoxia. Our results indicate that HSP90AB1, DAD1, PFN1 and PUM1 can be used in any combination of three (triplets) for optimizing intra- and inter-assay gene expression differences in the SK-BR-3 cell line. Additionally, we discourage the use of conventional RGs (ACTB, GAPDH, RPL13A, RNA18S and RNA28S) as internal controls for RT-qPCR in SK-BR-3 cell line.
Collapse
|
24
|
Zhu Z, Gregg K, Zhou W. iRGvalid: A Robust in silico Method for Optimal Reference Gene Validation. Front Genet 2021; 12:716653. [PMID: 34422018 PMCID: PMC8372526 DOI: 10.3389/fgene.2021.716653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background Appropriate reference genes are critical to accurately quantifying relative gene expression in research and clinical applications. Numerous efforts have been made to select the most stable reference gene(s), but a consensus has yet to be achieved. In this report, we propose an in silico reference gene validation method, iRGvalid, that can be used as a universal tool to validate the reference genes recommended from different resources so as to identify the best ones without a need for any wet lab validation tests. Methods iRGvalid takes advantage of high throughput gene expression data and is built on a double-normalization strategy. First, the expression level of each individual gene is normalized against the total gene expression level of each sample, followed by a target gene normalization to the candidate reference gene(s). Linear regression analysis is then performed between the pre- and post- normalized target gene across the whole sample set to evaluate the stability of the reference gene(s), which is positively associated with the Pearson correlation coefficient, Rt. The higher the Rt value, the more stable the reference gene. We applied iRGvalid to 14 candidate reference genes to validate and identify the most stable reference genes in four cancer types: lung adenocarcinoma, breast cancer, colon adenocarcinoma, and nasopharyngeal cancer. The stability of the reference gene is evaluated both individually and in groups of all possible combinations. Results Highly stable reference genes resulted in high Rt values regardless of the target gene used. The highest stability was achieved with a specific combination of 3 to 6 reference genes. A few genes were among the best reference genes across the cancer types studied here. Conclusion iRGvalid provides an easy and robust method to validate and identify the most stable reference gene or genes from a pool of candidate reference genes. The inclusivity of large expression data sets as well as the direct comparison of candidate reference genes makes it possible to identify reference genes with universal quality. This method can be used in any other gene expression studies when large cohorts of expression data are available.
Collapse
Affiliation(s)
| | | | - Wenli Zhou
- XYZ Laboratory, Austin, TX, United States
| |
Collapse
|
25
|
Ghanbari S, Salimi A, Rahmani S, Nafissi N, Sharifi-Zarchi A, Mowla SJ. miR-361-5p as a promising qRT-PCR internal control for tumor and normal breast tissues. PLoS One 2021; 16:e0253009. [PMID: 34101749 PMCID: PMC8186776 DOI: 10.1371/journal.pone.0253009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND One of the most widely used evaluation methods in miRNA experiments is qRT-PCR. However, selecting suitable internal controls (IC) is crucial for qRT-PCR experiments. Currently, there is no consensus on the ICs for miRNA qRT-PCR experiments in breast cancer. To this end, we tried to identify the most stable (the least expression alteration) and promising miRNAs in normal and tumor breast tissues by employing TCGA miRNA-Seq data and then experimentally validated them on fresh clinical samples. METHODS A multi-component scoring system was used which takes into account multiple expression stability criteria as well as correlation with clinical characteristics. Furthermore, we extended the scoring system for more than two biological sub-groups. TCGA BRCA samples were analyzed based on two grouping criteria: Tumor & Normal samples and Tumor subtypes. The top 10 most stable miRNAs were further investigated by differential expression and survival analysis. Then, we examined the expression level of the top scored miRNA (hsa-miR-361-5p) along with two commonly used ICs hsa-miR-16-5p and U48 on 34 pairs of Primary breast tumor and their adjacent normal tissues using qRT-PCR. RESULTS According to our multi-component scoring system, hsa-miR-361-5p had the highest stability score in both grouping criteria and hsa-miR-16-5p showed significantly lower scores. Based on our qRT-PCR assay, while U48 was the most abundant IC, hsa-miR-361-5p had lower standard deviation and also was the only IC capable of detecting a significant up-regulation of hsa-miR-21-5p in breast tumor tissue. CONCLUSIONS miRNA-Seq data is a great source to discover stable ICs. Our results demonstrated that hsa-miR-361-5p is a highly stable miRNA in tumor and non-tumor breast tissue and we recommend it as a suitable reference gene for miRNA expression studies in breast cancer. Additionally, although hsa-miR-16-5p is a commonly used IC, it's not a suitable one for breast cancer studies.
Collapse
Affiliation(s)
- Sogol Ghanbari
- Molecular Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Adel Salimi
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Saeid Rahmani
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Nahid Nafissi
- Surgical Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Sharifi-Zarchi
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Seyed Javad Mowla
- Molecular Genetics Department, Biological Sciences Faculty, Tarbiat Modares University, Tehran, Iran
- * E-mail:
| |
Collapse
|
26
|
Gomes FG, Almeida VH, Martins-Cardoso K, Martins-Dinis MMDC, Rondon AMR, Melo ACD, Tilli TM, Monteiro RQ. Epidermal growth factor receptor regulates fibrinolytic pathway elements in cervical cancer: functional and prognostic implications. ACTA ACUST UNITED AC 2021; 54:e10754. [PMID: 33886813 PMCID: PMC8055187 DOI: 10.1590/1414-431x202010754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Epidermal growth factor receptor (EGFR) signaling and components of the fibrinolytic system, including urokinase-type plasminogen activator (uPA) and thrombomodulin (TM), have been implicated in tumor progression. In the present study, we employed cBioPortal platform (http://www.cbioportal.org/), cancer cell lines, and an in vivo model of immunocompromised mice to evaluate a possible cooperation between EGFR signaling, uPA, and TM expression/function in the context of cervical cancer. cBioPortal analysis revealed that EGFR, uPA, and TM are positively correlated in tumor samples of cervical cancer patients, showing a negative prognostic impact. Aggressive human cervical cancer cells (CASKI) presented higher gene expression levels of EGFR, uPA, and TM compared to its less aggressive counterpart (C-33A cells). EGFR induces uPA expression in CASKI cells through both PI3K-Akt and MEK1/2-ERK1/2 downstream effectors, whereas TM expression induced by EGFR was dependent on PI3K/Akt signaling alone. uPA induced cell-morphology modifications and cell migration in an EGFR-dependent and -independent manner, respectively. Finally, treatment with cetuximab reduced in vivo CASKI xenografted-tumor growth in nude mice, and decreased intratumoral uPA expression, while TM expression was unaltered. In conclusion, we showed that EGFR signaling regulated expression of the fibrinolytic system component uPA in both in vitro and in vivo settings, while uPA also participated in cell-morphology modifications and migration in a human cervical cancer model.
Collapse
Affiliation(s)
- F G Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - V H Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - K Martins-Cardoso
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - M M D C Martins-Dinis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - A M R Rondon
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - A C de Melo
- Clinical Research Division, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brasil
| | - T M Tilli
- Plataforma de Oncologia Translacional, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - R Q Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
27
|
Murillo Carrasco A, Acosta O, Ponce J, Cotrina J, Aguilar A, Araujo J, Rebaza P, Pinto JA, Fujita R, Buleje J. PUM1 and RNase P genes as potential cell-free DNA markers in breast cancer. J Clin Lab Anal 2021; 35:e23720. [PMID: 33522650 PMCID: PMC8059717 DOI: 10.1002/jcla.23720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) is used in clinical research to identify biomarkers for diagnosis of and follow-up on cancer. Here, we propose a fast and innovative approach using traditional housekeeping genes as cfDNA targets in a copy number analysis. We focus on the application of highly sensitive technology such as digital PCR (dPCR) to differentiate breast cancer (BC) patients and controls by quantifying regions of PUM1 and RPPH1 (RNase P) in plasma samples. METHODS We conducted a case-control study with 82 BC patients and 82 healthy women. cfDNA was isolated from plasma using magnetic beads and quantified by spectrophotometry to estimate total cfDNA. Then, both PUM1 and RPPH1 genes were specifically quantified by dPCR. Data analysis was calibrated using a reference genomic DNA in different concentrations. RESULTS We found RNase P and PUM1 values were correlated in the patient group (intraclass correlation coefficient [ICC] = 0.842), but they did not have any correlation in healthy women (ICC = 0.519). In dPCR quantification, PUM1 showed the capacity to distinguish early-stage patients and controls with good specificity (98.67%) and sensitivity (100%). Conversely, RNase P had lower cfDNA levels in triple-negative BC patients than luminal subtypes (p < 0.025 for both), confirming their utility for patient classification. CONCLUSION We propose the PUM1 gene as a cfDNA marker for early diagnosis of BC and RNase P as a cfDNA marker related to hormonal status and subtype classification in BC. Further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Alexis Murillo Carrasco
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú
| | - Oscar Acosta
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú.,Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Jaime Ponce
- Oncosalud-AUNA, Unidad de la Mama, Lima, Perú
| | - José Cotrina
- Departamento de Cirugía de Mamas, Instituto Nacional de Enfermedades Neoplásicas-INEN, Lima, Perú
| | - Alfredo Aguilar
- Oncosalud-AUNA, Unidad de Investigación Básica y Traslacional, Lima, Perú
| | - Jhajaira Araujo
- Oncosalud-AUNA, Unidad de Investigación Básica y Traslacional, Lima, Perú
| | | | - Joseph A Pinto
- Oncosalud-AUNA, Unidad de Investigación Básica y Traslacional, Lima, Perú
| | - Ricardo Fujita
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú
| | - José Buleje
- Facultad de Medicina Humana, Centro de Investigación de Genética y Biología Molecular, Instituto de Investigación, Universidad de San Martín de Porres, Lima, Perú
| |
Collapse
|
28
|
Heitor da Silva Maués J, Ferreira Ribeiro H, de Maria Maués Sacramento R, Maia de Sousa R, Pereira de Tommaso R, Dourado Kovacs Machado Costa B, Cardoso Soares P, Pimentel Assumpção P, de Fátima Aquino Moreira-Nunes C, Mário Rodriguez Burbano R. Downregulated genes by silencing MYC pathway identified with RNA-SEQ analysis as potential prognostic biomarkers in gastric adenocarcinoma. Aging (Albany NY) 2020; 12:24651-24670. [PMID: 33351778 PMCID: PMC7803532 DOI: 10.18632/aging.202260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/31/2020] [Indexed: 12/24/2022]
Abstract
MYC overexpression is a common phenomenon in gastric carcinogenesis. In this study, we identified genes differentially expressed with a downregulated profile in gastric cancer (GC) cell lines with silenced MYC. The TTLL12, CDKN3, CDC16, PTPRA, MZT2B, UBE2T genes were validated using qRT-PCR, western blot and immunohistochemistry in tissues of 213 patients with diffuse and intestinal GC. We identified high levels of TTLL12, MZT2B, CDC16, UBE2T, associated with early and advanced stages, lymph nodes, distant metastases and risk factors such as H. pylori. Our results show that in the diffuse GC the overexpression of CDC16 and UBE2T indicate markers of poor prognosis higher than TTLL12. That is, patients with overexpression of these two genes live less than patients with overexpression of TTLL12. In the intestinal GC, patients who overexpressed CDC16 had a significantly lower survival rate than patients who overexpressed MZT2B and UBE2T, indicating in our data a worse prognostic value of CDC16 compared to the other two genes. PTPRA and CDKN3 proved to be important for assessing tumor progression in the early and advanced stages. In summary, in this study, we identified diagnostic and prognostic biomarkers of GC under the control of MYC, related to the cell cycle and the neoplastic process.
Collapse
Affiliation(s)
- Jersey Heitor da Silva Maués
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | - Helem Ferreira Ribeiro
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Center of Biological and Health Sciences, Department of Biomedicine, University of Amazon, Belém 66060-000, PA, Brazil
| | | | - Rafael Maia de Sousa
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | | | | | - Paulo Cardoso Soares
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| | - Paulo Pimentel Assumpção
- Oncology Research Nucleus, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-000, PA, Brazil
| | | | - Rommel Mário Rodriguez Burbano
- Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Laboratory of Molecular Biology, Ophir Loyola Hospital, Belém, Belém 66063-240, PA, Brazil
| |
Collapse
|
29
|
The pseudogene problem and RT-qPCR data normalization; SYMPK: a suitable reference gene for papillary thyroid carcinoma. Sci Rep 2020; 10:18408. [PMID: 33110161 PMCID: PMC7592052 DOI: 10.1038/s41598-020-75495-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/14/2020] [Indexed: 01/23/2023] Open
Abstract
In RT-qPCR, accuracy requires multiple levels of standardization, but results could be obfuscated by human errors and technical limitations. Data normalization against suitable reference genes is critical, yet their observed expression can be confounded by pseudogenes. Eight reference genes were selected based on literature review and analysis of papillary thyroid carcinoma (PTC) microarray data. RNA extraction and cDNA synthesis were followed by RT-qPCR amplification in triplicate with exon-junction or intron-spanning primers. Several statistical analyses were applied using Microsoft Excel, NormFinder, and BestKeeper. In normal tissues, the least correlation of variation (CqCV%) and the lowest maximum fold change (MFC) were respectively recorded for PYCR1 and SYMPK. In PTC tissues, SYMPK had the lowest CqCV% (5.16%) and MFC (1.17). According to NormFinder, the best reference combination was SYMPK and ACTB (stability value = 0.209). BestKeeper suggested SYMPK as the best reference in both normal (r = 0.969) and PTC tissues (r = 0.958). SYMPK is suggested as the best reference gene for overcoming the pseudogene problem in RT-qPCR data normalization, with a stability value of 0.319.
Collapse
|
30
|
Jain N, Nitisa D, Pirsko V, Cakstina I. Selecting suitable reference genes for qPCR normalization: a comprehensive analysis in MCF-7 breast cancer cell line. BMC Mol Cell Biol 2020; 21:68. [PMID: 32977762 PMCID: PMC7519550 DOI: 10.1186/s12860-020-00313-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background MCF-7 breast cancer cell line is undoubtedly amongst the most extensively studied patient-derived research models, providing pivotal results that have over the decades translated to constantly improving patient care. Many research groups, have previously identified suitable reference genes for qPCR normalization in MCF-7 cell line. However, over the course of identification of suitable reference genes, a comparative analysis comprising these genes together in a single study has not been reported. Furthermore, the expression dynamics of these reference genes within sub-clones cultured over multiple passages (p) has attracted limited attention from research groups. Therefore, we investigated the expression dynamics of 12 previously suggested reference genes within two sub-clones (culture A1 and A2) cultured identically over multiple passages. Additionally, the effect of nutrient stress on reference gene expression was examined to postulate an evidence-based recommendation of the least variable reference genes that could be employed in future gene expression studies. Results The analysis revealed the presence of differential reference gene expression within the sub-clones of MCF-7. In culture A1, GAPDH-CCSER2 were identified as the least variable reference genes while for culture A2, GAPDH-RNA28S were identified. However, upon validation using genes of interest, both these pairs were found to be unsuitable control pairs. Normalization of AURKA and KRT19 with triplet pair GAPDH-CCSER2-PCBP1 yielded successful results. The triplet also proved its capability to handle variations arising from nutrient stress. Conclusions The variance in expression behavior amongst sub-clones highlights the potential need for exercising caution while selecting reference genes for MCF-7. GAPDH-CCSER2-PCBP1 triplet offers a reliable alternative to otherwise traditionally used internal controls for optimizing intra- and inter-assay gene expression differences. Furthermore, we suggest avoiding the use of ACTB, GAPDH and PGK1 as single internal controls.
Collapse
Affiliation(s)
- Nityanand Jain
- Laboratory of Molecular Genetics, Institute of Oncology, Riga Stradiņš University, Dzirciema street 16, Riga, LV-1007, Latvia
| | - Dina Nitisa
- Laboratory of Molecular Genetics, Institute of Oncology, Riga Stradiņš University, Dzirciema street 16, Riga, LV-1007, Latvia
| | - Valdis Pirsko
- Laboratory of Molecular Genetics, Institute of Oncology, Riga Stradiņš University, Dzirciema street 16, Riga, LV-1007, Latvia
| | - Inese Cakstina
- Laboratory of Molecular Genetics, Institute of Oncology, Riga Stradiņš University, Dzirciema street 16, Riga, LV-1007, Latvia.
| |
Collapse
|
31
|
Grimaldi AM, Conte F, Pane K, Fiscon G, Mirabelli P, Baselice S, Giannatiempo R, Messina F, Franzese M, Salvatore M, Paci P, Incoronato M. The New Paradigm of Network Medicine to Analyze Breast Cancer Phenotypes. Int J Mol Sci 2020; 21:E6690. [PMID: 32932728 PMCID: PMC7555916 DOI: 10.3390/ijms21186690] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous and complex disease as witnessed by the existence of different subtypes and clinical characteristics that poses significant challenges in disease management. The complexity of this tumor may rely on the highly interconnected nature of the various biological processes as stated by the new paradigm of Network Medicine. We explored The Cancer Genome Atlas (TCGA)-BRCA data set, by applying the network-based algorithm named SWItch Miner, and mapping the findings on the human interactome to capture the molecular interconnections associated with the disease modules. To characterize BC phenotypes, we constructed protein-protein interaction modules based on "hub genes", called switch genes, both common and specific to the four tumor subtypes. Transcriptomic profiles of patients were stratified according to both clinical (immunohistochemistry) and genetic (PAM50) classifications. 266 and 372 switch genes were identified from immunohistochemistry and PAM50 classifications, respectively. Moreover, the identified switch genes were functionally characterized to select an interconnected pathway of disease genes. By intersecting the common switch genes of the two classifications, we selected a unique signature of 28 disease genes that were BC subtype-independent and classification subtype-independent. Data were validated both in vitro (10 BC cell lines) and ex vivo (66 BC tissues) experiments. Results showed that four of these hub proteins (AURKA, CDC45, ESPL1, and RAD54L) were over-expressed in all tumor subtypes. Moreover, the inhibition of one of the identified switch genes (AURKA) similarly affected all BC subtypes. In conclusion, using a network-based approach, we identified a common BC disease module which might reflect its pathological signature, suggesting a new vision to face with the disease heterogeneity.
Collapse
Affiliation(s)
- Anna Maria Grimaldi
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (K.P.); (P.M.); (S.B.); (M.F.); (M.S.)
| | - Federica Conte
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, 00185 Rome, Italy; (F.C.); (G.F.)
| | - Katia Pane
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (K.P.); (P.M.); (S.B.); (M.F.); (M.S.)
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, 00185 Rome, Italy; (F.C.); (G.F.)
| | - Peppino Mirabelli
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (K.P.); (P.M.); (S.B.); (M.F.); (M.S.)
| | - Simona Baselice
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (K.P.); (P.M.); (S.B.); (M.F.); (M.S.)
| | - Rosa Giannatiempo
- Ospedale Evangelico Betania, Via Argine 604, 80147 Naples, Italy; (R.G.); (F.M.)
| | - Francesco Messina
- Ospedale Evangelico Betania, Via Argine 604, 80147 Naples, Italy; (R.G.); (F.M.)
| | - Monica Franzese
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (K.P.); (P.M.); (S.B.); (M.F.); (M.S.)
| | - Marco Salvatore
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (K.P.); (P.M.); (S.B.); (M.F.); (M.S.)
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, 00185 Rome, Italy
| | - Mariarosaria Incoronato
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.M.G.); (K.P.); (P.M.); (S.B.); (M.F.); (M.S.)
| |
Collapse
|
32
|
Molavi G, Samadi N, Hashemzadeh S, Halimi M, Hosseingholi EZ. Moonlight human ribosomal protein L13a downregulation is associated with p53 and HER2/neu expression in breast cancer. J Appl Biomed 2020; 18:46-53. [PMID: 34907725 DOI: 10.32725/jab.2020.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignancy among females worldwide. Recent studies have shown extra-ribosomal roles of the moonlight ribosomal proteins in the development of human cancers. Accurate quantification of the gene expression level is based on the selection of the reference genes whose expression is independent of cancer properties and patient's characteristics. The aim of this study was the evaluation of the expression level of a previously proposed ribosomal protein as moonlight, L13a (RPL13A), in breast cancer samples and their adjacent tissues. Its association with genes of known roles in developing cancers was also investigated. Traditionally used housekeeping genes were selected and their expression was analyzed in 80 surgically excised breast tissue specimens (40 tumors and 40 tumor-adjacent tissues) by applying three software tools including GeNorm, NormFinder, and BestKeeper to select the most stable reference genes. Then, mRNA expression levels of RPL13A and p53 were evaluated. Additionally, protein expression levels of RPL13A were measured. It was demonstrated that PUM1 and ACTB are the most reliable reference genes and RPL13A is the least stable gene. There was a positive correlation between RPL13A and p53 mRNA expression levels in all the tumor samples. Moreover, significant downregulation of RPL13A expression levels was revealed in HER2+ tumor samples compared to HER2- ones. There was also a marked decrease in p53 mRNA expression levels in HER2+ tumor subtypes. Our results suggest that there is a probable relationship between RPL13A decreased expression with p53 and HER2/neu expression in the breast cancer.
Collapse
Affiliation(s)
- Ghader Molavi
- Tabriz University of Medical Sciences, Drug Applied Research Center, Tabriz, Iran.,Tabriz University of Medical Sciences, Faculty of Advanced Medical Sciences, Department of Molecular Medicine, Tabriz, Iran
| | - Nasser Samadi
- Tabriz University of Medical Sciences, Drug Applied Research Center, Tabriz, Iran.,Tabriz University of Medical Sciences, Faculty of Advanced Medical Sciences, Department of Molecular Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Faculty of Medicine, Department of Biochemistry, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Tabriz University of Medical Sciences, Tuberculosis and Lung Disease Research Center, Tabriz, Iran.,Tabriz University of Medical Sciences, Imam Reza Hospital, General and Vascular Surgery Department, Tabriz, Iran
| | - Monireh Halimi
- Tabriz University of Medical Sciences, School of Medicine, Department of Pathology, Tabriz, Iran
| | | |
Collapse
|
33
|
Barbitoff YA, Tsarev AA, Vashukova ES, Maksiutenko EM, Kovalenko LV, Belotserkovtseva LD, Glotov AS. A Data-Driven Review of the Genetic Factors of Pregnancy Complications. Int J Mol Sci 2020; 21:ijms21093384. [PMID: 32403311 PMCID: PMC7246997 DOI: 10.3390/ijms21093384] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
Over the recent years, many advances have been made in the research of the genetic factors of pregnancy complications. In this work, we use publicly available data repositories, such as the National Human Genome Research Institute GWAS Catalog, HuGE Navigator, and the UK Biobank genetic and phenotypic dataset to gain insights into molecular pathways and individual genes behind a set of pregnancy-related traits, including the most studied ones—preeclampsia, gestational diabetes, preterm birth, and placental abruption. Using both HuGE and GWAS Catalog data, we confirm that immune system and, in particular, T-cell related pathways are one of the most important drivers of pregnancy-related traits. Pathway analysis of the data reveals that cell adhesion and matrisome-related genes are also commonly involved in pregnancy pathologies. We also find a large role of metabolic factors that affect not only gestational diabetes, but also the other traits. These shared metabolic genes include IGF2, PPARG, and NOS3. We further discover that the published genetic associations are poorly replicated in the independent UK Biobank cohort. Nevertheless, we find novel genome-wide associations with pregnancy-related traits for the FBLN7, STK32B, and ACTR3B genes, and replicate the effects of the KAZN and TLE1 genes, with the latter being the only gene identified across all data resources. Overall, our analysis highlights central molecular pathways for pregnancy-related traits, and suggests a need to use more accurate and sophisticated association analysis strategies to robustly identify genetic risk factors for pregnancy complications.
Collapse
Affiliation(s)
- Yury A. Barbitoff
- Bioinformatics Institute, 197342 St. Petersburg, Russia; (Y.A.B.); (A.A.T.)
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 St. Petersburg, Russia;
- Department of Genomic Medicine, D.O.Ott Research Institute for Obstetrics, Gynaecology and Reproductology, 199034 St. Petersburg, Russia;
| | - Alexander A. Tsarev
- Bioinformatics Institute, 197342 St. Petersburg, Russia; (Y.A.B.); (A.A.T.)
- Department of Biochemistry, Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena S. Vashukova
- Department of Genomic Medicine, D.O.Ott Research Institute for Obstetrics, Gynaecology and Reproductology, 199034 St. Petersburg, Russia;
| | - Evgeniia M. Maksiutenko
- Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 St. Petersburg, Russia;
- St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Liudmila V. Kovalenko
- Department of Pathology, Medical Institute, Surgut State University, 628416 Surgut, Russia;
| | - Larisa D. Belotserkovtseva
- Department of Obstetrics, Gynecology and Perinatology, Medical Institute, Surgut State University, 628416 Surgut, Russia;
| | - Andrey S. Glotov
- Department of Genomic Medicine, D.O.Ott Research Institute for Obstetrics, Gynaecology and Reproductology, 199034 St. Petersburg, Russia;
- Laboratory of Biobanking and Genomic Medicine, Saint-Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
34
|
Morro B, Doherty MK, Balseiro P, Handeland SO, MacKenzie S, Sveier H, Albalat A. Plasma proteome profiling of freshwater and seawater life stages of rainbow trout (Oncorhynchus mykiss). PLoS One 2020; 15:e0227003. [PMID: 31899766 PMCID: PMC6941806 DOI: 10.1371/journal.pone.0227003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
The sea-run phenotype of rainbow trout (Oncorhynchus mykiss), like other anadromous salmonids, present a juvenile stage fully adapted to life in freshwater known as parr. Development in freshwater is followed by the smolt stage, where preadaptations needed for seawater life are developed making fish ready to migrate to the ocean, after which event they become post-smolts. While these three life stages have been studied using a variety of approaches, proteomics has never been used for such purpose. The present study characterised the blood plasma proteome of parr, smolt and post-smolt rainbow trout using a gel electrophoresis liquid chromatography tandem mass spectrometry approach alone or in combination with low-abundant protein enrichment technology (combinatorial peptide ligand library). In total, 1,822 proteins were quantified, 17.95% of them being detected only in plasma post enrichment. Across all life stages, the most abundant proteins were ankyrin-2, DNA primase large subunit, actin, serum albumin, apolipoproteins, hemoglobin subunits, hemopexin-like proteins and complement C3. When comparing the different life stages, 17 proteins involved in mechanisms to cope with hyperosmotic stress and retinal changes, as well as the downregulation of nonessential processes in smolts, were significantly different between parr and smolt samples. On the other hand, 11 proteins related to increased growth in post-smolts, and also related to coping with hyperosmotic stress and to retinal changes, were significantly different between smolt and post-smolt samples. Overall, this study presents a series of proteins with the potential to complement current seawater-readiness assessment tests in rainbow trout, which can be measured non-lethally in an easily accessible biofluid. Furthermore, this study represents a first in-depth characterisation of the rainbow trout blood plasma proteome, having considered three life stages of the fish and used both fractionation alone or in combination with enrichment methods to increase protein detection.
Collapse
Affiliation(s)
- Bernat Morro
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Mary K. Doherty
- Institute of Health Research and Innovation, Centre for Health Science, University of the Highlands and Islands, Inverness, Scotland, United Kingdom
| | | | | | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
- NORCE AS, Universitetet i Bergen, Bergen, Norway
| | - Harald Sveier
- Lerøy Seafood Group ASA, Universitetet i Bergen, Bergen, Norway
| | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
35
|
Assessment of doxorubicin-induced remodeling of Ca 2+ signaling and associated Ca 2+ regulating proteins in MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 2019; 522:532-538. [PMID: 31780263 DOI: 10.1016/j.bbrc.2019.11.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancers (TNBC) are often associated with high relapse rates, despite treatment with chemotherapy agents such as doxorubicin. A better understanding of the signaling and molecular changes associated with doxorubicin may provide novel insights into strategies to enhance treatment efficacy. Calcium signaling is involved in many pathways influencing the efficacy of chemotherapy agents such as proliferation and cell death. However, there are a limited number of studies exploring the effect of doxorubicin on calcium signaling in TNBC. In this study, MDA-MB-231 triple-negative, basal breast cancer cells stably expressing the genetically-encoded calcium indicator GCaMP6m (GCaMP6m-MDA-MB-231) were used to define alterations in calcium signaling. The effects of doxorubicin in GCaMP6m-MDA-MB-231 cells were determined using live cell imaging and fluorescence microscopy. Changes in mRNA levels of specific calcium regulating proteins as a result of doxorubicin treatment were also assessed using real time qPCR. Doxorubicin (1 μM) produced alterations in intracellular calcium signaling, including enhancing the sensitivity of MDA-MB-231 cells to ATP stimulation and prolonging the recovery time after store-operated calcium entry. Upregulation in mRNA levels of ORAI1, TRPC1, SERCA1, IP3R2 and PMCA2 with doxorubicin 1 μM treatment was also observed. Doxorubicin treatment is associated with specific remodeling in calcium signaling in MDA-MB-231 cells, with associated changes in mRNA levels of specific calcium-regulating proteins.
Collapse
|
36
|
Validation of Reference Genes for Normalization of Relative qRT-PCR Studies in Papillary Thyroid Carcinoma. Sci Rep 2019; 9:15241. [PMID: 31645594 PMCID: PMC6811563 DOI: 10.1038/s41598-019-49247-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) in thyroid tumors require accurate data normalization, however, there are no sufficient studies addressing the suitable reference genes for gene expression analysis in malignant and normal thyroid tissue specimens. The purpose of this study was to identify valid internal control genes for normalization of relative qRT-PCR studies in human papillary thyroid carcinoma tissue samples. The expression characteristics of 12 candidate reference genes (GAPDH, ACTB, HPRT1, TBP, B2M, PPIA, 18SrRNA, HMBS, GUSB, PGK1, RPLP0, and PGM1) were assessed by qRT-PCR in 45 thyroid tissue samples (15 papillary thyroid carcinoma, 15 paired normal tissues and 15 multinodular goiters). These twelve candidate reference genes were selected by a systematic literature search. GeNorm, NormFinder, and BestKeeper statistical algorithms were applied to determine the most stable reference genes. The three algorithms were in agreement in identifying GUSB and HPRT1 as the most stably expressed genes in all thyroid tumors investigated. According to the NormFinder software, the pair of genes including ‘GUSB and HPRT1’ or ‘GUSB and HMBS’ or ‘GUSB and PGM1’ were the best combinations for selection of pair reference genes. The optimal number of genes required for reliable normalization of qPCR data in thyroid tissues would be three according to calculations made by GeNorm algorithm. These results suggest that GUSB and HPRT1 are promising reference genes for normalization of relative qRT-PCR studies in papillary thyroid carcinoma.
Collapse
|
37
|
Genomic variants associated with the number and diameter of muscle fibers in pigs as revealed by a genome-wide association study. Animal 2019; 14:475-481. [PMID: 31610816 DOI: 10.1017/s1751731119002374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Muscle fiber characteristics comprise a set of complex traits that influence the meat quality and lean meat production of livestock. However, the genetic and biological mechanisms regulating muscle fiber characteristics are largely unknown in pigs. Based on a genome-wide association study (GWAS) performed on 421 Large White × Min pig F2 individuals presenting well-characterized phenotypes, this work aimed to detect genome variations and candidate genes for five muscle fiber characteristics: percentage of type I fibers (FIB1P), percentage of type IIA fibers (FIB2AP), percentage of type IIB fibers (FIB2BP), diameter of muscle fibers (DIAMF) and number of muscle fibers per unit area (NUMMF). The GWAS used the Illumina Porcine SNP60K genotypic data, which were analyzed by a mixed model. Seven and 10 single nucleotide polymorphisms (SNPs) were significantly associated with DIAMF and NUMMF, respectively (P < 1.10E-06); no SNP was significantly associated with FIB1P, FIB2AP or FIB2B. For DIAMF, the significant SNPs on chromosome 4 were located in the previously reported quantitative trait loci (QTL) interval. Because the significant SNPs on chromosome 6 were not mapped in the previously reported QTL interval, a putative novel QTL was suggested for this locus. None of the previously reported QTL intervals on chromosomes 6 and 14 harbored significant SNPs for NUMMF; thus, new potential QTLs on these two chromosomes are suggested in the present work. The most significant SNPs associated with DIAMF (ALGA0025682) and NUMMF (MARC0046984) explained 12.02% and 11.59% of the phenotypic variation of these traits, respectively. In addition, both SNPs were validated as associated with DIAMF and NUMMF in Beijing Black pigs (P < 0.01). Some candidate genes or non-coding RNAs, such as solute carrier family 44 member 5 and miR-124a-1 for DIAMF, and coiled-coil serine rich protein 2 for NUMMF, were identified based on their close location to the significant SNPs. This study revealed some genome-wide association variants for muscle fiber characteristics, and it provides valuable information to discover the genetic mechanisms controlling these traits in pigs.
Collapse
|
38
|
Miller L, Smith EC. Breast Cancer Prognostic Tests: Helping Patients Understand Testing Results and Their Implications. Clin J Oncol Nurs 2019; 23:478-481. [PMID: 31538973 DOI: 10.1188/19.cjon.478-481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Breast cancer prognostic tests have become an essential component of breast cancer care. Oncology nurses play an important role in assisting patients in their understanding of and decision making regarding the use of prognostic tests in treatment planning. This article outlines the most commonly used breast cancer prognostic tests, including the individual assay's purpose, its genomic makeup, the targeted patient population, and its prognostic and predictive abilities. Key nursing implications are discussed, highlighting how nurses can best apply knowledge of breast cancer prognostic tests to nursing practice.
Collapse
|
39
|
Xu L, Luo H, Wang R, Wu WW, Phue JN, Shen RF, Juhl H, Wu L, Alterovitz WL, Simonyan V, Pelosof L, Rosenberg AS. Novel reference genes in colorectal cancer identify a distinct subset of high stage tumors and their associated histologically normal colonic tissues. BMC MEDICAL GENETICS 2019; 20:138. [PMID: 31409279 PMCID: PMC6693228 DOI: 10.1186/s12881-019-0867-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Background Reference genes are often interchangeably called housekeeping genes due to 1) the essential cellular functions their proteins provide and 2) their constitutive expression across a range of normal and pathophysiological conditions. However, given the proliferative drive of malignant cells, many reference genes such as beta-actin (ACTB) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) which play critical roles in cell membrane organization and glycolysis, may be dysregulated in tumors versus their corresponding normal controls Methods Because Next Generation Sequencing (NGS) technology has several advantages over hybridization-based technologies, such as independent detection and quantitation of transcription levels, greater sensitivity, and increased dynamic range, we evaluated colorectal cancers (CRC) and their histologically normal tissue counterparts by NGS to evaluate the expression of 21 “classical” reference genes used as normalization standards for PCR based methods. Seventy-nine paired tissue samples of CRC and their patient matched healthy colonic tissues were subjected to NGS analysis of their mRNAs. Results We affirmed that 17 out of 21 classical reference genes had upregulated expression in tumors compared to normal colonic epithelial tissue and dramatically so in some cases. Indeed, tumors were distinguished from normal controls in both unsupervised hierarchical clustering analyses (HCA) and principal component analyses (PCA). We then identified 42 novel potential reference genes with minimal coefficients of variation (CV) across 79 CRC tumor pairs. Though largely consistently expressed across tumors and normal control tissues, a subset of high stage tumors (HSTs) as well as some normal tissue samples (HSNs) located adjacent to these HSTs demonstrated dysregulated expression, thus identifying a subset of tumors with a potentially distinct and aggressive biological profile. Conclusion While classical CRC reference genes were found to be differentially expressed between tumors and normal controls, novel reference genes, identified via NGS, were more consistently expressed across malignant and normal colonic tissues. Nonetheless, a subset of HST had profound dysregulation of such genes as did many of the histologically normal tissues adjacent to such HSTs, indicating that the HSTs so distinguished may have unique biological properties and that their histologically normal tissues likely harbor a small population of microscopically undetected but metabolically active tumors. Electronic supplementary material The online version of this article (10.1186/s12881-019-0867-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lai Xu
- OBP/DBRR-III, CDER, FDA, Silver Spring, MD, 20993, USA. .,Office of Hematology and Oncology Products CDER, FDA, Silver Spring, MD, 20993, USA. .,, Silver Spring, USA.
| | - Helen Luo
- OBP/DBRR-III, CDER, FDA, Silver Spring, MD, 20993, USA
| | - Rong Wang
- OBP/DBRR-III, CDER, FDA, Silver Spring, MD, 20993, USA
| | - Wells W Wu
- Facility for Biotechnology Resources CBER, FDA, Silver Spring, MD, 20993, USA
| | - Je-Nie Phue
- Facility for Biotechnology Resources CBER, FDA, Silver Spring, MD, 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources CBER, FDA, Silver Spring, MD, 20993, USA
| | | | - Leihong Wu
- OCS/NCTR/DBB, FDA, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | | | | | - Lorraine Pelosof
- Office of Hematology and Oncology Products CDER, FDA, Silver Spring, MD, 20993, USA
| | | |
Collapse
|
40
|
Yoon SB, Park YH, Choi SA, Yang HJ, Jeong PS, Cha JJ, Lee S, Lee SH, Lee JH, Sim BW, Koo BS, Park SJ, Lee Y, Kim YH, Hong JJ, Kim JS, Jin YB, Huh JW, Lee SR, Song BS, Kim SU. Real-time PCR quantification of spliced X-box binding protein 1 (XBP1) using a universal primer method. PLoS One 2019; 14:e0219978. [PMID: 31329612 PMCID: PMC6645673 DOI: 10.1371/journal.pone.0219978] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
X-box binding protein 1 (XBP1) mRNA processing plays a crucial role in the unfolded protein response (UPR), which is activated in response to endoplasmic reticulum (ER) stress. Upon accumulation of the UPR-converted XBP1 mRNA splicing from an unspliced (u) XBP1 (inactive) isoform to the spliced (s) XBP1 (active) isoform, inositol-requiring enzyme 1 α (IRE1α) removes a 26-nucleotide intron from uXBP1 mRNA. Recent studies have reported the assessment of ER stress by examining the ratio of sXBP1 to uXBP1 mRNA (s/uXBP1 ratio) via densitometric analysis of PCR bands relative to increased levels of sXBP1 to uXBP1 using a housekeeping gene for normalization. However, this measurement is visualized by gel electrophoresis, making it very difficult to quantify differences between the two XBP1 bands and complicating data interpretation. Moreover, most commonly used housekeeping genes display an unacceptably high variable expression pattern of the s/uXBP1 ratio under different experimental conditions, such as various phases of development and different cell types, limiting their use as internal controls. For a more quantitative determination of XBP1 splicing activity, we measured the expression levels of total XBP1 (tXBP1: common region of s/uXBP1) and sXBP1 via real-time PCR using specific primer sets. We also designed universal real-time PCR primer sets capable of amplifying a portion of each u/s/tXBP1 mRNA that is highly conserved in eukaryotes, including humans, monkeys, cows, pigs, and mice. Therefore, we provide a more convenient and easily approachable quantitative real-time PCR method that can be used in various research fields to assess ER stress.
Collapse
Affiliation(s)
- Seung-Bin Yoon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeollabuk-do, Republic of Korea
| | - Young-Ho Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Seon-A Choi
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Hae-Jun Yang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Pil-Soo Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Jae-Jin Cha
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Sanghoon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Seung Hwan Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Jong-Hee Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Primate Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeollabuk-do, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Bong-Seok Song
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
- * E-mail: (BSS); (SUK)
| | - Sun-Uk Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
- * E-mail: (BSS); (SUK)
| |
Collapse
|
41
|
Krasnov GS, Kudryavtseva AV, Snezhkina AV, Lakunina VA, Beniaminov AD, Melnikova NV, Dmitriev AA. Pan-Cancer Analysis of TCGA Data Revealed Promising Reference Genes for qPCR Normalization. Front Genet 2019; 10:97. [PMID: 30881377 PMCID: PMC6406071 DOI: 10.3389/fgene.2019.00097] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Quantitative PCR (qPCR) remains the most widely used technique for gene expression evaluation. Obtaining reliable data using this method requires reference genes (RGs) with stable mRNA level under experimental conditions. This issue is especially crucial in cancer studies because each tumor has a unique molecular portrait. The Cancer Genome Atlas (TCGA) project provides RNA-Seq data for thousands of samples corresponding to dozens of cancers and presents the basis for assessment of the suitability of genes as reference ones for qPCR data normalization. Using TCGA RNA-Seq data and previously developed CrossHub tool, we evaluated mRNA level of 32 traditionally used RGs in 12 cancer types, including those of lung, breast, prostate, kidney, and colon. We developed an 11-component scoring system for the assessment of gene expression stability. Among the 32 genes, PUM1 was one of the most stably expressed in the majority of examined cancers, whereas GAPDH, which is widely used as a RG, showed significant mRNA level alterations in more than a half of cases. For each of 12 cancer types, we suggested a pair of genes that are the most suitable for use as reference ones. These genes are characterized by high expression stability and absence of correlation between their mRNA levels. Next, the scoring system was expanded with several features of a gene: mutation rate, number of transcript isoforms and pseudogenes, participation in cancer-related processes on the basis of Gene Ontology, and mentions in PubMed-indexed articles. All the genes covered by RNA-Seq data in TCGA were analyzed using the expanded scoring system that allowed us to reveal novel promising RGs for each examined cancer type and identify several "universal" pan-cancer RG candidates, including SF3A1, CIAO1, and SFRS4. The choice of RGs is the basis for precise gene expression evaluation by qPCR. Here, we suggested optimal pairs of traditionally used RGs for 12 cancer types and identified novel promising RGs that demonstrate high expression stability and other features of reliable and convenient RGs (high expression level, low mutation rate, non-involvement in cancer-related processes, single transcript isoform, and absence of pseudogenes).
Collapse
Affiliation(s)
- George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
42
|
Karakus E, Zahner D, Grosser G, Leidolf R, Gundogdu C, Sánchez-Guijo A, Wudy SA, Geyer J. Estrone-3-Sulfate Stimulates the Proliferation of T47D Breast Cancer Cells Stably Transfected With the Sodium-Dependent Organic Anion Transporter SOAT (SLC10A6). Front Pharmacol 2018; 9:941. [PMID: 30186172 PMCID: PMC6111516 DOI: 10.3389/fphar.2018.00941] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/02/2018] [Indexed: 02/01/2023] Open
Abstract
Estrogens play a pivotal role in the development and proliferation of hormone-dependent breast cancer. Apart from free estrogens, which can directly activate the estrogen receptor (ER) of tumor cells, sulfo-conjugated steroids, which maintain high plasma concentrations even after menopause, first have to be imported into tumor cells by carrier-mediated uptake and then can be cleaved by the steroid sulfatase to finally activate ERs and cell proliferation. In the present study, expression of the sodium-dependent organic anion transporter SOAT was analyzed in breast cancer and its role for hormone-dependent proliferation of T47D breast cancer cells was elucidated. The SOAT protein was localized to the ductal epithelium of the mammary gland by immunohistochemistry. SOAT showed high expression in different pathologies of the breast with a clear ductal localization, including ductal hyperplasia, intraductal papilloma, and intraductal carcinoma. In a larger breast cancer cDNA array, SOAT mRNA expression was high in almost all adenocarcinoma specimen, but expression did not correlate with either the ER, progesterone receptor, or human epidermal growth factor receptor 2 status. Furthermore, SOAT expression did not correlate with tumor stage or grade, indicating widespread SOAT expression in breast cancer. To analyze the role of SOAT for breast cancer cell proliferation, T47D cells were stably transfected with SOAT and incubated under increasing concentrations of estrone-3-sulfate (E1S) and estradiol at physiologically relevant concentrations. Cell proliferation was significantly increased by 10-9 M estradiol as well as by E1S with EC50 of 2.2 nM. In contrast, T47D control cells showed 10-fold lower sensitivity to E1S stimulation with EC50 of 21.7 nM. The E1S-stimulated proliferation of SOAT-T47D cells was blocked by the SOAT inhibitor 4-sulfooxymethylpyrene. In conclusion: The present study clearly demonstrates expression of SOAT in breast cancer tissue with ductal localization. SOAT inhibition can block the E1S-stimulated proliferation of T47D breast cancer cells, demonstrating that SOAT is an interesting novel drug target from the group of E1S uptake carriers for anti-proliferative breast cancer therapy.
Collapse
Affiliation(s)
- Emre Karakus
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Daniel Zahner
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Gary Grosser
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Regina Leidolf
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Cemal Gundogdu
- Department of Pathology, Private Practitioner of Medicine, Erzurum, Turkey
| | - Alberto Sánchez-Guijo
- Steroid Research and Mass Spectrometry Unit, Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research and Mass Spectrometry Unit, Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
43
|
PUM1 promotes ovarian cancer proliferation, migration and invasion. Biochem Biophys Res Commun 2018; 497:313-318. [DOI: 10.1016/j.bbrc.2018.02.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/07/2018] [Indexed: 01/30/2023]
|
44
|
Kim J, Geyer FC, Martelotto LG, Ng CKY, Lim RS, Selenica P, Li A, Pareja F, Fusco N, Edelweiss M, Kumar R, Gularte-Merida R, Forbes AN, Khurana E, Mariani O, Badve S, Vincent-Salomon A, Norton L, Reis-Filho JS, Weigelt B. MYBL1 rearrangements and MYB amplification in breast adenoid cystic carcinomas lacking the MYB-NFIB fusion gene. J Pathol 2018; 244:143-150. [PMID: 29149504 PMCID: PMC5839480 DOI: 10.1002/path.5006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/03/2017] [Accepted: 11/11/2017] [Indexed: 01/14/2023]
Abstract
Breast adenoid cystic carcinoma (AdCC), a rare type of triple-negative breast cancer, has been shown to be driven by MYB pathway activation, most often underpinned by the MYB-NFIB fusion gene. Alternative genetic mechanisms, such as MYBL1 rearrangements, have been reported in MYB-NFIB-negative salivary gland AdCCs. Here we report on the molecular characterization by massively parallel sequencing of four breast AdCCs lacking the MYB-NFIB fusion gene. In two cases, we identified MYBL1 rearrangements (MYBL1-ACTN1 and MYBL1-NFIB), which were associated with MYBL1 overexpression. A third AdCC harboured a high-level MYB amplification, which resulted in MYB overexpression at the mRNA and protein levels. RNA-sequencing and whole-genome sequencing revealed no definite alternative driver in the fourth AdCC studied, despite high levels of MYB expression and the activation of pathways similar to those activated in MYB-NFIB-positive AdCCs. In this case, a deletion encompassing the last intron and part of exon 15 of MYB, including the binding site of ERG-1, a transcription factor that may downregulate MYB, and the exon 15 splice site, was detected. In conclusion, we demonstrate that MYBL1 rearrangements and MYB amplification probably constitute alternative genetic drivers of breast AdCCs, functioning through MYBL1 or MYB overexpression. These observations emphasize that breast AdCCs probably constitute a convergent phenotype, whereby activation of MYB and MYBL1 and their downstream targets can be driven by the MYB-NFIB fusion gene, MYBL1 rearrangements, MYB amplification, or other yet to be identified mechanisms. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jisun Kim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
- Department of Surgery, Ulsan University, College of Medicine, Asan
Medical Center, Seoul, Korea
| | - Felipe C. Geyer
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | - Luciano G Martelotto
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
- Institute of Pathology, University Hospital Basel and Department of
Biomedicine, University of Basel, Basel, Switzerland
| | - Raymond S Lim
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | - Anqi Li
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | - Nicola Fusco
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
- Division of Pathology, Fondazione IRCCS Ca’Granda Ospedale
Maggiore Policlinico, University of Milan, Milan, Italy
| | - Marcia Edelweiss
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | - Rahul Kumar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | | | - Andre N Forbes
- Institute for Computational Medicine and Department of Physiology
and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | - Ekta Khurana
- Institute for Computational Medicine and Department of Physiology
and Biophysics, Weill Cornell Medical College, New York, NY, USA
| | | | - Sunil Badve
- IU Health Pathology Laboratory, Indiana University, Indianapolis,
IN, USA
| | | | - Larry Norton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New
York, NY, USA
| |
Collapse
|
45
|
Gayan S, Teli A, Dey T. Inherent aggressive character of invasive and non-invasive cells dictates the in vitro migration pattern of multicellular spheroid. Sci Rep 2017; 7:11527. [PMID: 28912559 PMCID: PMC5599661 DOI: 10.1038/s41598-017-10078-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/21/2017] [Indexed: 11/24/2022] Open
Abstract
Cellular migration, a process relevant to metastasis, is mostly studied in the conventional 2D condition. However, cells cultured in the 3D condition assumed to mimic the in vivo conditions better. The current study is designed to compare an invasive and non-invasive adenocarcinoma cell with an invasive fibrosarcoma cell to understand the migration pattern of the multicellular spheroid. It is observed that conventional haplotaxis, chemotactic and pseudo-3D migration assay cannot distinguish between the invasive and non-invasive cells conclusively under 2D condition. Invasive spheroids migrate rapidly in sprouting assay in comparison to non-invasive spheroids. Effects of cytochalasin B, marimastat and blebbistatin are tested to determine the influence of different migration modality namely actin polymerization, matrix metalloprotease and acto-myosin in both culture conditions. Altered mRNA profile of cellular migration related genes (FAK, Talin, Paxillin, p130cas and Vinculin) is observed between 2D and 3D condition followed by the changed expression of matrix metallo proteases. A distinct difference is observed in distribution and formation of focal adhesion complex under these culture conditions. This study demonstrates the efficacy of multicellular spheroids in identifying the intrinsic aggressive behavior of different cell lines as a proof of concept and recognizes the potential of spheroids as a migration model.
Collapse
Affiliation(s)
- Sukanya Gayan
- Institute of Bioinformatics and Biotechnology,Savitribai Phule Pune University, Pune, India
| | - Abhishek Teli
- Institute of Bioinformatics and Biotechnology,Savitribai Phule Pune University, Pune, India
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology,Savitribai Phule Pune University, Pune, India.
| |
Collapse
|