1
|
Ramos L. Novel non-synonymous and synonymous gene variants of SRD5A2 in patients with 46,XY-DSD and DSD-free subjects. PLoS One 2025; 20:e0316497. [PMID: 40043094 PMCID: PMC11882032 DOI: 10.1371/journal.pone.0316497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 12/10/2024] [Indexed: 05/13/2025] Open
Abstract
SRD5A2 gene variants are associated with deficiency of steroid 5α-reductase type 2, which is an autosomal recessive disorder of sex development (DSD) present in 46,XY males with ambiguous genitalia. To determine the causality of the disorder, this study involved genetic screening of SRD5A2 in six unrelated patients with this condition. Polymerase chain reaction (PCR) assays excluded large duplications, insertions, or deletions, while bidirectional Sanger sequencing identified 15 single-nucleotide variants (SNVs), six patients with 46,XY-DSD carrying pathogenic non-synonymous SNVs (nsSNVs), and three subjects who were DSD-free with novel synonymous SNVs (sSNVs). Genomic outcomes showed that 9 non-synonymous coding SNVs are linked to patients with SRD5A2-associated steroid 5α-reductase type 2 deficiency (c.169G > C: p.E57Q; c.145G > A: p.A49T/c.686T > C: p.F229S; c.100G > A: p.G34R/c.344G > A: p.G115D; c.591G > T: p.E197D; c.92C > T: p.S31F/c.481A > C: p.I161L (a novel missense variant; Km,app = 1.19 ± 0.1 μM, Vmax,app = 688 ± 145.8 pmol/mg P/min); c.686T > C: p.F229S). This analysis also highlighted 2 non-disease-causing sSNVs in three DSD-free subjects (c.243G > T: p.T81 = ; c.594C > T: p.I198=). These silent mutations or sSNVs in the SRD5A2 gene have no functional consequences and might not be involved in steroid 5α-reductase 2 deficiency. The identification of these sSNVs in both healthy controls and patients might suggest natural genetic variability with a very low allele frequency in the Mexican population. Furthermore, these findings indicated that nsSNVs in the SRD5A2 gene altered normal development of external male genitalia, supporting their pathogenicity.
Collapse
Affiliation(s)
- Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| |
Collapse
|
2
|
Laxmi, Golmei P, Srivastava S, Kumar S. Single nucleotide polymorphism-based biomarker in primary hypertension. Eur J Pharmacol 2024; 972:176584. [PMID: 38621507 DOI: 10.1016/j.ejphar.2024.176584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/19/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Primary hypertension is a multiplex and multifactorial disease influenced by various strong components including genetics. Extensive research such as Genome-wide association studies and candidate gene studies have revealed various single nucleotide polymorphisms (SNPs) related to hypertension, providing insights into the genetic basis of the condition. This review summarizes the current status of SNP research in primary hypertension, including examples of hypertension-related SNPs, their location, function, and frequency in different populations. The potential clinical implications of SNP research for primary hypertension management are also discussed, including disease risk prediction, personalized medicine, mechanistic understanding, and lifestyle modifications. Furthermore, this review highlights emerging technologies and methodologies that have the potential to revolutionize the vast understanding of the basis of genetics in primary hypertension. Gene editing holds the potential to target and correct any kind of genetic mutations that contribute to the development of hypertension or modify genes involved in blood pressure regulation to prevent or treat the condition. Advances in computational biology and machine learning enable researchers to analyze large datasets and identify complex genetic interactions contributing to hypertension risk. In conclusion, SNP research in primary hypertension is rapidly evolving with emerging technologies and methodologies that have the potential to transform the knowledge about genetic basis related to the condition. These advances hold promise for personalized prevention and treatment strategies tailored to an individual's genetic profile ultimately improving patient outcomes and reducing healthcare costs.
Collapse
Affiliation(s)
- Laxmi
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Pougang Golmei
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, M B Road, New Delhi, 110017, India.
| |
Collapse
|
3
|
Li W, Wang X, Zhang X, Li F, Zhang D, Li X, Zhang Y, Zhao Y, Zhao L, Xu D, Cheng J, Wang J, Zhou B, Lin C, Wang W. Polymorphism of sheep PRKAA2 gene and its association with growth traits. Anim Biotechnol 2023; 34:1324-1330. [PMID: 34971343 DOI: 10.1080/10495398.2021.2021215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Small ruminants farming plays an important role in the livelihood of a large part of the population. Herein we aimed to analyze the effects of single nucleotide polymorphisms in PRKAA2 gene on the growth-related traits of Hu sheep and Dorper sheep. The body weight and body type of 1254 sheep were measured at 80, 100, 120, 140, 160 and 180d, and 37620 phenotypic data were collected. RT-qPCR analysis was performed to test PRKAA2 gene expressed in different tissues of sheep, with the highest expression level in spleen, followed by kidney. In the present study, the PRKAA2 gene sequencing revealed one polymorphism located on Chr1 (Oar_rambouillet_v1.0), termed as chr1:32832382 G > A, and were significantly associated with growth traits of sheep (p < 0.05). The body weight, body length, chest circumference, and cannon circumference of individuals with AA genotype were significantly higher than those with the GG and GA genotypes (p < 0.05). Our findings reveal that PRKAA2 gene could be used as a marker-assisted selection to improve the growth-related traits of sheep.
Collapse
Affiliation(s)
- Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Engineering Laboratory of Sheep Breeding and Reproduction Biotechnology in Gansu Province, Minqin, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Chau VQ, Kolb AW, Miller DL, Yannuzzi NA, Brandt CR. Phylogenetic and Genomic Characterization of Whole Genome Sequences of Ocular Herpes Simplex Virus Type 1 Isolates Identifies Possible Virulence Determinants in Humans. Invest Ophthalmol Vis Sci 2023; 64:16. [PMID: 37450309 DOI: 10.1167/iovs.64.10.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Purpose There are limited data on the prevalence and genetic diversity of herpes simplex virus type 1 (HSV-1) virulence genes in ocular isolates. Here, we sequenced 36 HSV-1 ocular isolates, collected by the Bascom Palmer Eye Institute, a university-based eye hospital, from three different ocular anatomical sites (conjunctiva, cornea, and eyelid) and carried out a genomic and phylogenetic analyses. Methods The PacBio Sequel II long read platform was used for genome sequencing. Phylogenetic analysis and genomic analysis were performed to help better understand genetic variability among common virulence genes in ocular herpetic disease. Results A phylogenetic network generated using the genome sequences of the 36 Bascom Palmer ocular isolates, plus 174 additional strains showed that ocular isolates do not group together phylogenetically. Analysis of the thymidine kinase and DNA polymerase protein sequences from the Bascom Palmer isolates showed multiple novel single nucleotide polymorphisms, but only one, BP-K14 encoded a known thymidine kinase acyclovir resistance mutation. An analysis of the multiple sequence alignment comprising the 51 total ocular isolates versus 159 nonocular strains detected several possible single nucleotide polymorphisms in HSV-1 genes that were found significantly more often in the ocular isolates. These genes included UL6, gM, VP19c, VHS, gC, VP11/12, and gG. Conclusions There does not seem to be a specific genetic feature of viruses causing ocular infection. The identification of novel and common recurrent polymorphisms may help to understand the drivers of herpetic pathogenicity and specific factors that may influence the virulence of ocular disease.
Collapse
Affiliation(s)
- Viet Q Chau
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Aaron W Kolb
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
| | - Darlene L Miller
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Nicolas A Yannuzzi
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Curtis R Brandt
- Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Wisconsin, United States
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Wisconsin, United States
| |
Collapse
|
5
|
Alonso AM, Diambra L. Dicodon-based measures for modeling gene expression. Bioinformatics 2023; 39:btad380. [PMID: 37307098 PMCID: PMC10287933 DOI: 10.1093/bioinformatics/btad380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/20/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023] Open
Abstract
MOTIVATION Codon usage preference patterns have been associated with modulation of translation efficiency, protein folding, and mRNA decay. However, new studies support that codon pair usage has also a remarkable effect at the gene expression level. Here, we expand the concept of CAI to answer if codon pair usage patterns can be understood in terms of codon usage bias, or if they offer new information regarding coding translation efficiency. RESULTS Through the implementation of a weighting strategy to consider the dicodon contributions, we observe that the dicodon-based measure has greater correlations with gene expression level than CAI. Interestingly, we have noted that dicodons associated with a low value of adaptiveness are related to dicodons which mediate strong translational inhibition in yeast. We have also noticed that some codon-pairs have a smaller dicodon contribution than estimated by the product of the respective codon contributions. AVAILABILITY AND IMPLEMENTATION Scripts, implemented in Python, are freely available for download at https://zenodo.org/record/7738276#.ZBIDBtLMIdU.
Collapse
Affiliation(s)
- Andres M Alonso
- Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino km 8.2, Chascomús, 7130 Provincia de Buenos Aires, Argentina
- CCT-La Plata, CONICET, Calle 8 Nº 1467, La Plata, B1904CMC Provincia de Buenos Aires, Argentina
| | - Luis Diambra
- CCT-La Plata, CONICET, Calle 8 Nº 1467, La Plata, B1904CMC Provincia de Buenos Aires, Argentina
- Centro Regional de Estudios Genómicos, FCE-UNLP, Blvd 120 N∘ 1461, La Plata, 1900 Provincia de Buenos Aires, Argentina
| |
Collapse
|
6
|
Densi A, Iyer RS, Bhat PJ. Synonymous and Nonsynonymous Substitutions in Dictyostelium discoideum Ammonium Transporter amtA Are Necessary for Functional Complementation in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0384722. [PMID: 36840598 PMCID: PMC10100761 DOI: 10.1128/spectrum.03847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Ammonium transporters are present in all three domains of life. They have undergone extensive horizontal gene transfer (HGT), gene duplication, and functional diversification and therefore offer an excellent paradigm to study protein evolution. We attempted to complement a mep1Δmep2Δmep3Δ strain of Saccharomyces cerevisiae (triple-deletion strain), which otherwise cannot grow on ammonium as a sole nitrogen source at concentrations of <3 mM, with amtA of Dictyostelium discoideum, an orthologue of S. cerevisiae MEP2. We observed that amtA did not complement the triple-deletion strain of S. cerevisiae for growth on low-ammonium medium. We isolated two mutant derivatives of amtA (amtA M1 and amtA M2) from a PCR-generated mutant plasmid library that complemented the triple-deletion strain of S. cerevisiae. amtA M1 bears three nonsynonymous and two synonymous substitutions, which are necessary for its functionality. amtA M2 bears two nonsynonymous substitutions and one synonymous substitution, all of which are necessary for functionality. Interestingly, AmtA M1 transports ammonium but does not confer methylamine toxicity, while AmtA M2 transports ammonium and confers methylamine toxicity, demonstrating functional diversification. Preliminary biochemical analyses indicated that the mutants differ in their conformations as well as their mechanisms of ammonium transport. These intriguing results clearly point out that protein evolution cannot be fathomed by studying nonsynonymous and synonymous substitutions in isolation. The above-described observations have significant implications for various facets of biological processes and are discussed in detail. IMPORTANCE Functional diversification following gene duplication is one of the major driving forces of protein evolution. While the role of nonsynonymous substitutions in the functional diversification of proteins is well recognized, knowledge of the role of synonymous substitutions in protein evolution is in its infancy. Using functional complementation, we isolated two functional alleles of the D. discoideum ammonium transporter gene (amtA), which otherwise does not function in S. cerevisiae as an ammonium transporters. One of them is an ammonium transporter, while the other is an ammonium transporter that also confers methylammonium (ammonium analogue) toxicity, suggesting functional diversification. Surprisingly, both alleles require a combination of synonymous and nonsynonymous substitutions for their functionality. These results bring out a hitherto-unknown pathway of protein evolution and pave the way for not only understanding protein evolution but also interpreting single nucleotide polymorphisms (SNPs).
Collapse
Affiliation(s)
- Asha Densi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Revathi S. Iyer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Paike Jayadeva Bhat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
7
|
Stefanski KM, Li GC, Marinko JT, Carter BD, Samuels DC, Sanders CR. How T118M peripheral myelin protein 22 predisposes humans to Charcot-Marie-Tooth disease. J Biol Chem 2023; 299:102839. [PMID: 36581210 PMCID: PMC9860121 DOI: 10.1016/j.jbc.2022.102839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
Data from gnomAD indicate that a missense mutation encoding the T118M variation in human peripheral myelin protein 22 (PMP22) is found in roughly one of every 75 genomes of western European lineage (1:120 in the overall human population). It is unusual among PMP22 variants that cause Charcot-Marie-Tooth (CMT) disease in that it is not 100% penetrant. Here, we conducted cellular and biophysical studies to determine why T118M PMP22 predisposes humans to CMT, but with only incomplete penetrance. We found that T118M PMP22 is prone to mistraffic but differs even from the WT protein in that increased expression levels do not result in a reduction in trafficking efficiency. Moreover, the T118M mutant exhibits a reduced tendency to form large intracellular aggregates relative to other disease mutants and even WT PMP22. NMR spectroscopy revealed that the structure and dynamics of T118M PMP22 resembled those of WT. These results show that the main consequence of T118M PMP22 in WT/T118M heterozygous individuals is a reduction in surface-trafficked PMP22, unaccompanied by formation of toxic intracellular aggregates. This explains the incomplete disease penetrance and the mild neuropathy observed for WT/T118M CMT cases. We also analyzed BioVU, a biobank linked to deidentified electronic medical records, and found a statistically robust association of the T118M mutation with the occurrence of long and/or repeated episodes of carpal tunnel syndrome. Collectively, our results illuminate the cellular effects of the T118M PMP22 variation leading to CMT disease and indicate a second disorder for which it is a risk factor.
Collapse
Affiliation(s)
- Katherine M Stefanski
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Geoffrey C Li
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Justin T Marinko
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bruce D Carter
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David C Samuels
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
8
|
Wang G, Wang Y, Gao C, Xie W. Novel compound heterozygous variants in EMC1 associated with global developmental delay: a lesson from a non-silent synonymous exonic mutation. Front Mol Neurosci 2023; 16:1153156. [PMID: 37187958 PMCID: PMC10175691 DOI: 10.3389/fnmol.2023.1153156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background The endoplasmic reticulum-membrane protein complex (EMC) as a molecular chaperone is required for the proper synthesis, folding and traffic of several transmembrane proteins. Variants in the subunit 1 of EMC (EMC1) have been implicated in neurodevelopmental disorders. Methods Whole exome sequencing (WES) with Sanger sequencing validation was performed for a Chinese family, including the proband (a 4-year-old girl who displayed global developmental delay, severe hypotonia and visual impairment), her affected younger sister and her non-consanguineous parents. RT-PCR assay and Sanger sequencing were used to detect abnormal RNA splicing. Results Novel compound heterozygous variants in EMC1, including the maternally inherited chr1: 19566812_1956800delinsATTCTACTT[hg19];NM_015047.3:c.765_777delins ATTCTACTT;p.(Leu256fsTer10) and the paternally inherited chr1:19549890G> A[hg19];NM_015047.3:c.2376G>A;p.(Val792=) are identified in the proband and her affected sister. RT-PCR assay followed by Sanger sequencing reveals that the c.2376G>A variant leads to aberrant splicing, with retention of intron 19 (561bp) in the mature mRNA, which is presumed to introduce a premature translational termination codon (p.(Val792fsTer31)). Conclusion Novel compound heterozygous variants in EMC1 have been identified in individuals with global developmental delay. Non-silent synonymous mutations should be kept in mind in genetic analysis.
Collapse
Affiliation(s)
- Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanli Wang
- Department of Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
| | - Chao Gao
- Department of Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou, China
- *Correspondence: Chao Gao
| | - Wanqin Xie
- National Health Committee Key Laboratory of Birth Defects for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Wanqin Xie
| |
Collapse
|
9
|
Vasu K, Khan D, Ramachandiran I, Blankenberg D, Fox P. Analysis of nested alternate open reading frames and their encoded proteins. NAR Genom Bioinform 2022; 4:lqac076. [PMID: 36267124 PMCID: PMC9580016 DOI: 10.1093/nargab/lqac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/14/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Transcriptional and post-transcriptional mechanisms diversify the proteome beyond gene number, while maintaining a sequence relationship between original and altered proteins. A new mechanism breaks this paradigm, generating novel proteins by translating alternative open reading frames (Alt-ORFs) within canonical host mRNAs. Uniquely, ‘alt-proteins’ lack sequence homology with host ORF-derived proteins. We show global amino acid frequencies, and consequent biochemical characteristics of Alt-ORFs nested within host ORFs (nAlt-ORFs), are genetically-driven, and predicted by summation of frequencies of hundreds of encompassing host codon-pairs. Analysis of 101 human nAlt-ORFs of length ≥150 codons confirms the theoretical predictions, revealing an extraordinarily high median isoelectric point (pI) of 11.68, due to anomalous charged amino acid levels. Also, nAlt-ORF proteins exhibit a >2-fold preference for reading frame 2 versus 3, predicted mitochondrial and nuclear localization, and elevated codon adaptation index indicative of natural selection. Our results provide a theoretical and conceptual framework for exploration of these largely unannotated, but potentially significant, alternative ORFs and their encoded proteins.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel Blankenberg
- Correspondence may also be addressed to Daniel Blankenberg. Tel: +1 216 444 4336;
| | - Paul L Fox
- To whom correspondence should be addressed. Tel: +1 216 444 8053; Fax: +1 216 444 9404;
| |
Collapse
|
10
|
Ran X, Xiao J, Cheng F, Wang T, Teng H, Sun Z. Pan-cancer analyses of synonymous mutations based on tissue-specific codon optimality. Comput Struct Biotechnol J 2022; 20:3567-3580. [PMID: 35860410 PMCID: PMC9287186 DOI: 10.1016/j.csbj.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022] Open
Abstract
Developed tissue-specific codon optimality in 29 human tissues. Applied these to analyze synonymous mutations in ∼10,000 tumor and normal samples. Synonymous mutations frequently increase optimal codons in most cancer types. Synonymous mutations frequently increase optimal codons cell cycle-related genes. Frequency of optimal codon gain relates to proliferation, DDR deficiency, and survival.
Codon optimality has been demonstrated to be an important determinant of mRNA stability and expression levels in multiple model organisms and human cell lines. However, tissue-specific codon optimality has not been developed to investigate how codon optimality is usually perturbed by somatic synonymous mutations in human cancers. Here, we determined tissue-specific codon optimality in 29 human tissues based on mRNA expression data from the Genotype-Tissue Expression project. We found that optimal codons were associated with differentiation, whereas non-optimal codons were correlated with proliferation. Furthermore, codons biased toward differentiation displayed greater tissue specificity in codon optimality, and the tissue specificity of codon optimality was primarily present in amino acids with high degeneracy of the genetic code. By applying tissue-specific codon optimality to somatic synonymous mutations in 8532 tumor samples across 24 cancer types and to those in 416 normal cells across six human tissues, we found that synonymous mutations frequently increased optimal codons in tumor cells and cancer-related genes (e.g., genes involved in cell cycle). Furthermore, an elevated frequency of optimal codon gain was found to promote tumor cell proliferation in three cancer types characterized by DNA damage repair deficiency and could act as a prognostic biomarker for patients with triple-negative breast cancer. In summary, this study profiled tissue-specific codon optimality in human tissues, revealed alterations in codon optimality caused by synonymous mutations in human cancers, and highlighted the non-negligible role of optimal codon gain in tumorigenesis and therapeutics.
Collapse
Affiliation(s)
- Xia Ran
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyuan Xiao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Fang Cheng
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Tao Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Kaifu District, Changsha, Hunan 410078, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
11
|
Gómez-Aguado I, Rodríguez-Castejón J, Beraza-Millor M, Rodríguez-Gascón A, Del Pozo-Rodríguez A, Solinís MÁ. mRNA delivery technologies: Toward clinical translation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:207-293. [PMID: 36064265 DOI: 10.1016/bs.ircmb.2022.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Messenger RNA (mRNA)-therapies have recently taken a huge step toward clinic thanks to the first mRNA-based medicinal products marketed. mRNA features for clinical purposes are improved by chemical modifications, but the inclusion in a delivery system is a regular requirement. mRNA nanomedicines must be designed for the specific therapeutic purpose, protecting the nucleic acid and facilitating the overcoming of biological barriers. Polymers, polypeptides, and cationic lipids are the main used materials to design mRNA delivery systems. Among them, lipid nanoparticles (LNPs) are the most advanced ones, and currently they are at the forefront of preclinical and clinical evaluation in several fields, including immunotherapy (against infectious diseases and cancer), protein replacement, gene editing and regenerative medicine. This chapter includes an overview on mRNA delivery technologies, with special interest in LNPs, and the most recent advances in their clinical application. Liposomes are the mRNA delivery technology with the highest clinical translation among LNPs, whereas the first clinical trial of a therapeutic mRNA formulated in exosomes has been recently approved for protein replacement therapy. The first mRNA products approved by the regulatory agencies worldwide are LNP-based mRNA vaccines against viral infections, specifically against the 2019 coronavirus disease (COVID-19). The clinical translation of mRNA-therapies for cancer is mainly focused on three strategies: anti-cancer vaccination by means of delivering cancer antigens or acting as an adjuvant, mRNA-engineered chimeric antigen receptors (CARs) and T-cell receptors (TCRs), and expression of antibodies and immunomodulators. Cancer immunotherapy and, more recently, COVID-19 vaccines spearhead the advance of mRNA clinical use.
Collapse
Affiliation(s)
- Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Vitoria-Gasteiz, Spain.
| |
Collapse
|
12
|
Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol 2022; 164:113008. [PMID: 35436552 PMCID: PMC9012513 DOI: 10.1016/j.fct.2022.113008] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022]
Abstract
The mRNA SARS-CoV-2 vaccines were brought to market in response to the public health crises of Covid-19. The utilization of mRNA vaccines in the context of infectious disease has no precedent. The many alterations in the vaccine mRNA hide the mRNA from cellular defenses and promote a longer biological half-life and high production of spike protein. However, the immune response to the vaccine is very different from that to a SARS-CoV-2 infection. In this paper, we present evidence that vaccination induces a profound impairment in type I interferon signaling, which has diverse adverse consequences to human health. Immune cells that have taken up the vaccine nanoparticles release into circulation large numbers of exosomes containing spike protein along with critical microRNAs that induce a signaling response in recipient cells at distant sites. We also identify potential profound disturbances in regulatory control of protein synthesis and cancer surveillance. These disturbances potentially have a causal link to neurodegenerative disease, myocarditis, immune thrombocytopenia, Bell's palsy, liver disease, impaired adaptive immunity, impaired DNA damage response and tumorigenesis. We show evidence from the VAERS database supporting our hypothesis. We believe a comprehensive risk/benefit assessment of the mRNA vaccines questions them as positive contributors to public health.
Collapse
Affiliation(s)
- Stephanie Seneff
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA, 02139.
| | - Greg Nigh
- Immersion Health, Portland, OR, 97214, USA.
| | - Anthony M Kyriakopoulos
- Research and Development, Nasco AD Biotechnology Laboratory, Department of Research and Development, Sachtouri 11, 18536, Piraeus, Greece.
| | | |
Collapse
|
13
|
Li X, Ding N, Zhang Z, Tian D, Han B, Liu D, Liu S, Tian F, Fu D, Song X, Zhao K. Identification of SSTR5 Gene Polymorphisms and Their Association With Growth Traits in Hulun Buir Sheep. Front Genet 2022; 13:831599. [PMID: 35559027 PMCID: PMC9086292 DOI: 10.3389/fgene.2022.831599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to locate SSTR5 polymorphisms and evaluate their association with growth traits in Hulun Buir sheep. The study followed up 884 Hulun Buir sheep from birth to 16 months of age, which were born in the same pasture and the same year, and a consistent grazing management strategy was maintained. The birth weight (BRW) was recorded at birth, and body weight (BW), body height (BH), body length (BL), chest circumference (ChC), chest depth (ChD), chest width (ChW), hip width (HW), and cannon circumference (CaC) were measured at 4 and 9 months of age. BW, BH, BL, ChD, HW, and CaC were also recorded at 16 months of age. Based on the growth traits, 233 sheep were selected as experimental animals. Sanger sequencing was performed, and seven single-nucleotide polymorphisms (SNPs) were identified. Association analyses of the SNPs and the growth traits were then conducted. Seven SNPs of the SSTR5 exhibited moderate polymorphism (0.25
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ning Ding
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhichao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dejun Fu
- Inner Mongolia Daxing 'anling Agricultural Reclamation Group Co. LTD., Hulun Buir, China
| | - Xiaoliang Song
- Inner Mongolia Daxing 'anling Agricultural Reclamation Group Co. LTD., Hulun Buir, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
14
|
Ramazzotti D, Angaroni F, Maspero D, Mauri M, D’Aliberti D, Fontana D, Antoniotti M, Elli EM, Graudenzi A, Piazza R. Large-Scale Analysis of SARS-CoV-2 Synonymous Mutations Reveals the Adaptation to the Human Codon Usage During the Virus Evolution. Virus Evol 2022; 8:veac026. [PMID: 35371557 PMCID: PMC8971538 DOI: 10.1093/ve/veac026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022] Open
Abstract
Many large national and transnational studies have been dedicated to the analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genome, most of which focused on missense and nonsense mutations. However, approximately 30 per cent of the SARS-CoV-2 variants are synonymous, therefore changing the target codon without affecting the corresponding protein sequence. By performing a large-scale analysis of sequencing data generated from almost 400,000 SARS-CoV-2 samples, we show that silent mutations increasing the similarity of viral codons to the human ones tend to fixate in the viral genome overtime. This indicates that SARS-CoV-2 codon usage is adapting to the human host, likely improving its effectiveness in using the human aminoacyl-tRNA set through the accumulation of deceitfully neutral silent mutations. One-Sentence Summary. Synonymous SARS-CoV-2 mutations related to the activity of different mutational processes may positively impact viral evolution by increasing its adaptation to the human codon usage.
Collapse
Affiliation(s)
- Daniele Ramazzotti
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
| | - Fabrizio Angaroni
- Dept. of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca; Milan, Italy
| | - Davide Maspero
- Dept. of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca; Milan, Italy
- Inst. of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR); Segrate, Milan, Italy
| | - Mario Mauri
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
| | - Deborah D’Aliberti
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
| | - Diletta Fontana
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
| | - Marco Antoniotti
- Dept. of Informatics, Systems and Communication, Università degli Studi di Milano-Bicocca; Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Center – B4; Milan, Italy
| | - Elena Maria Elli
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Alex Graudenzi
- Inst. of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR); Segrate, Milan, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Center – B4; Milan, Italy
| | - Rocco Piazza
- Dept. of Medicine and Surgery, Università degli Studi di Milano-Bicocca; Monza, Italy
- Bicocca Bioinformatics, Biostatistics and Bioimaging Center – B4; Milan, Italy
| |
Collapse
|
15
|
|
16
|
Alrashid MH, Al-Serri A, Alshemmari SH, Geo JA, Al-Bustan SA. Association analysis of genetic variants in the ghrelin and tumor necrosis factor α genes and the risk for non-Hodgkin's lymphoma in Kuwaitis. Cancer Biomark 2021; 32:11-18. [PMID: 34024815 PMCID: PMC8461683 DOI: 10.3233/cbm-200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Non-Hodgkin’s lymphoma (NHL) is the most common hematological malignancy in the world. Many etiologic factors have been implicated in the risk of developing NHL, including genetic susceptibility and obesity. Single-nucleotide polymorphisms (SNPs) in Ghrelin (GHRL), an anti-inflammatory hormone, and tumor necrosis factor α (TNF-α), an inflammatory cytokine, have been independently associated with the risk for obesity and NHL. OBJECTIVE: To investigate the association between SNPs in GHRL and TNF-α and the risk for NHL and obesity in Kuwaitis. METHODS: We recruited 154 Kuwaiti NHL patients and 217 controls. Genotyping was performed for rs1629816 (GHRL promoter region), rs35684 (GHRL 3’ untranslated region), and rs1800629 (TNF-α promoter region). Logistic regression analysis was performed to assess the association of the investigated SNPs with NHL and the relationship between the selected SNPs with BMI in each group separately. RESULTS: We show that rs1629816 GG was associated with an increased risk for NHL in our sample (p= 0.0003, OR 1.82; CI: 1.31–2.54). None of the investigated SNPs were associated with obesity, nor was obesity found to be associated with the risk for NHL. CONCLUSIONS: Our study demonstrates an association between rs1629816, a SNP in the GHRL regulatory region, and NHL in Kuwaitis.
Collapse
Affiliation(s)
- Maryam H Alrashid
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Ahmad Al-Serri
- Department of Pathology, Unit of Human Genetics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Salem H Alshemmari
- Department of Medicine, Faculty of Medicine, Kuwait University, Safat, Kuwait.,Kuwait Cancer Control Center, Kuwait City, Kuwait
| | - Jeethu Anu Geo
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Suzanne A Al-Bustan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| |
Collapse
|
17
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functional analysis of novel genetic variants of NKX2-5 associated with nonsyndromic congenital heart disease. Am J Med Genet A 2021; 185:3644-3663. [PMID: 34214246 DOI: 10.1002/ajmg.a.62413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
NKX2-5, a master cardiac regulatory transcription factor was the first known genetic cause of congenital heart diseases (CHDs). To further investigate its role in CHD pathogenesis, we performed mutational screening of 285 CHD probands and 200 healthy controls. Five coding sequence variants were identified in six CHD cases (2.1%), including three in the N-terminal region (p.A61G, p.R95L, and p.E131K) and one each in homeodomain (HD) (p.A148E) and tyrosine-rich domain (p.P247A). Variant-p.A148E showed tertiary structure changes and differential DNA binding affinity of mutant compared to wild type. Two N-terminal variants-p.A61G and p.E131K along with HD variant p.A148E demonstrated significantly reduced transcriptional activity of Nppa and Actc1 promoters in dual luciferase promoter assay supported by their reduced expression in qRT-PCR. Nonetheless, variant p.R95L affected the synergy of NKX2-5 with serum response factor and TBX5 leading to significantly decreased Actc1 promoter activity depicting a distinctive role of this region. The aberrant expression of other target genes-Irx4, Mef2c, Bmp10, Myh6, Myh7, and Myocd is also observed in response to NKX2-5 variants, possibly due to the defective gene regulatory network. Severely impaired downstream promoter activities and abnormal expression of target genes due to N-terminal variants supports the emerging role of this region during cardiac-developmental pathways.
Collapse
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, India
| | - Vijayalakshmi I Balekundri
- Super Speciality Hospital, Pradhan Mantri Swasthya Suraksha Yojana (PMSSY), Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Damyanti Agrawal
- Department of Cardiothoracic and Vascular Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
18
|
Postnikova OA, Uppal S, Huang W, Kane MA, Villasmil R, Rogozin IB, Poliakov E, Redmond TM. The Functional Consequences of the Novel Ribosomal Pausing Site in SARS-CoV-2 Spike Glycoprotein RNA. Int J Mol Sci 2021; 22:6490. [PMID: 34204305 PMCID: PMC8235447 DOI: 10.3390/ijms22126490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
The SARS-CoV-2 Spike glycoprotein (S protein) acquired a unique new 4 amino acid -PRRA- insertion sequence at amino acid residues (aa) 681-684 that forms a new furin cleavage site in S protein as well as several new glycosylation sites. We studied various statistical properties of the -PRRA- insertion at the RNA level (CCUCGGCGGGCA). The nucleotide composition and codon usage of this sequence are different from the rest of the SARS-CoV-2 genome. One of such features is two tandem CGG codons, although the CGG codon is the rarest codon in the SARS-CoV-2 genome. This suggests that the insertion sequence could cause ribosome pausing as the result of these rare codons. Due to population variants, the Nextstrain divergence measure of the CCU codon is extremely large. We cannot exclude that this divergence might affect host immune responses/effectiveness of SARS-CoV-2 vaccines, possibilities awaiting further investigation. Our experimental studies show that the expression level of original RNA sequence "wildtype" spike protein is much lower than for codon-optimized spike protein in all studied cell lines. Interestingly, the original spike sequence produces a higher titer of pseudoviral particles and a higher level of infection. Further mutagenesis experiments suggest that this dual-effect insert, comprised of a combination of overlapping translation pausing and furin sites, has allowed SARS-CoV-2 to infect its new host (human) more readily. This underlines the importance of ribosome pausing to allow efficient regulation of protein expression and also of cotranslational subdomain folding.
Collapse
Affiliation(s)
- Olga A. Postnikova
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.A.P.); (S.U.)
| | - Sheetal Uppal
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.A.P.); (S.U.)
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, Baltimore, MD 21201, USA; (W.H.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy Mass Spectrometry Center, University of Maryland, Baltimore, MD 21201, USA; (W.H.); (M.A.K.)
| | - Rafael Villasmil
- Flow Cytometry Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.A.P.); (S.U.)
| | - T. Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA; (O.A.P.); (S.U.)
| |
Collapse
|
19
|
Gaither JBS, Lammi GE, Li JL, Gordon DM, Kuck HC, Kelly BJ, Fitch JR, White P. Synonymous variants that disrupt messenger RNA structure are significantly constrained in the human population. Gigascience 2021; 10:giab023. [PMID: 33822938 PMCID: PMC8023685 DOI: 10.1093/gigascience/giab023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/10/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The role of synonymous single-nucleotide variants in human health and disease is poorly understood, yet evidence suggests that this class of "silent" genetic variation plays multiple regulatory roles in both transcription and translation. One mechanism by which synonymous codons direct and modulate the translational process is through alteration of the elaborate structure formed by single-stranded mRNA molecules. While tools to computationally predict the effect of non-synonymous variants on protein structure are plentiful, analogous tools to systematically assess how synonymous variants might disrupt mRNA structure are lacking. RESULTS We developed novel software using a parallel processing framework for large-scale generation of secondary RNA structures and folding statistics for the transcriptome of any species. Focusing our analysis on the human transcriptome, we calculated 5 billion RNA-folding statistics for 469 million single-nucleotide variants in 45,800 transcripts. By considering the impact of all possible synonymous variants globally, we discover that synonymous variants predicted to disrupt mRNA structure have significantly lower rates of incidence in the human population. CONCLUSIONS These findings support the hypothesis that synonymous variants may play a role in genetic disorders due to their effects on mRNA structure. To evaluate the potential pathogenic impact of synonymous variants, we provide RNA stability, edge distance, and diversity metrics for every nucleotide in the human transcriptome and introduce a "Structural Predictivity Index" (SPI) to quantify structural constraint operating on any synonymous variant. Because no single RNA-folding metric can capture the diversity of mechanisms by which a variant could alter secondary mRNA structure, we generated a SUmmarized RNA Folding (SURF) metric to provide a single measurement to predict the impact of secondary structure altering variants in human genetic studies.
Collapse
Affiliation(s)
- Jeffrey B S Gaither
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Grant E Lammi
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - James L Li
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - David M Gordon
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Harkness C Kuck
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Benjamin J Kelly
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - James R Fitch
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Peter White
- Computational Genomics Group, The Institute for Genomic Medicine, Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Eun Kang J, Ciampi A, Hijri M. SeSaMe PS Function: Functional Analysis of the Whole Metagenome Sequencing Data of the Arbuscular Mycorrhizal Fungi. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:613-623. [PMID: 33346085 PMCID: PMC8377382 DOI: 10.1016/j.gpb.2018.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 07/07/2018] [Accepted: 07/27/2018] [Indexed: 11/29/2022]
Abstract
In this study, we introduce a novel bioinformatics program, Spore-associated Symbiotic Microbes Position-specific Function (SeSaMe PS Function), for position-specific functional analysis of short sequences derived from metagenome sequencing data of the arbuscular mycorrhizal fungi. The unique advantage of the program lies in databases created based on genus-specific sequence properties derived from protein secondary structure, namely amino acid usages, codon usages, and codon contexts of 3-codon DNA 9-mers. SeSaMe PS Function searches a query sequence against reference sequence database, identifies 3-codon DNA 9-mers with structural roles, and creates a comparative dataset containing the codon usage biases of the 3-codon DNA 9-mers from 54 bacterial and fungal genera. The program applies correlation principal component analysis in conjunction with K-means clustering method to the comparative dataset. 3-codon DNA 9-mers clustered as a sole member or with only a few members are often structurally and functionally distinctive sites that provide useful insights into important molecular interactions. The program provides a versatile means for studying functions of short sequences from metagenome sequencing and has a wide spectrum of applications. SeSaMe PS Function is freely accessible at www.fungalsesame.org.
Collapse
Affiliation(s)
- Jee Eun Kang
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, QC H1X 2B2, Canada.
| | - Antonio Ciampi
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC H3A 1A2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, QC H1X 2B2, Canada.
| |
Collapse
|
21
|
Silva MC, da Silva Medina T, Fuzo CA, Dias FC, Freitas-Castro F, Fukutani KF, Donadi EA, Cunha-Neto E, Cunha TM, Silva JS. Polymorphism in the catalytic subunit of the PI3Kγ gene is associated with Trypanosoma cruzi-induced chronic chagasic cardiomyopathy. INFECTION GENETICS AND EVOLUTION 2020; 88:104671. [PMID: 33301989 DOI: 10.1016/j.meegid.2020.104671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/13/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. During the chronic phase of disease, while most infected people do not present symptoms, characterizing the asymptomatic form, some patients develop the cardiac form or chronic chagasic cardiomyopathy, which is considered the most severe manifestation of this disease. Considering that the activation of the PI3Kγ signaling pathway is essential for an efficient immune response against T. cruzi infection, we evaluated the PIK3CG C > T (rs1129293) polymorphism in exon 3 of this gene, which encodes the catalytic subunit of PI3Kγ. The PIK3CG CT and TT genotypes were found to be associated with an increased risk of developing the cardiac form of the disease rather than the asymptomatic or digestive forms. In conclusion, the presence of the T allele at single or double doses may differentiate the cardiac from other clinical manifestations of Chagas disease. This finding should help in further studies to evaluate the mechanisms underlying the differential association of PIK3CG in Chagas disease.
Collapse
Affiliation(s)
- Maria Cláudia Silva
- Department of Biochemistry and Immunology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tiago da Silva Medina
- Department of Biochemistry and Immunology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabrício Cesar Dias
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Felipe Freitas-Castro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kiyoshi Ferreira Fukutani
- Department of Biochemistry and Immunology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Antônio Donadi
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Thiago Mattar Cunha
- Department of Pharmacology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - João Santana Silva
- Department of Biochemistry and Immunology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
22
|
Hanif F, Amir QUA, Washdev W, Bilwani F, Simjee SU, Haque Z. A Novel Variant in Dopamine Receptor Type 2 Gene is Associated with Schizophrenia. Arch Med Res 2020; 52:348-353. [PMID: 33187731 DOI: 10.1016/j.arcmed.2020.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Being the primary target of antipsychotic therapy, dopamine receptor type 2 (DRD2) remains a point of interest in schizophrenia pathology. Polymorphisms in DRD2 have been shown to alter patients' response to antipsychotics. DRD2 SNP rs6275 (C>T) have found to be associated with schizophrenia in different populations; however, data remains inconsistent. AIM OF THE STUDY Keeping in view the genetic diversity the present study was aimed to explore association of rs6275 with schizophrenia in population from Pakistan. METHOD Using Diagnostic and statistical Manual 5 (DSM 5) criteria, 100 schizophrenia cases and 100 controls (individuals without any psychiatric illness) were enrolled in the study. Severity of illness was determined using PANSS score. Genotyping was done via Sanger sequencing. MEGA-X was used to align the sequences, Expasy translate tool was used to translate nucleotide sequences. Difference in genotype and allele frequencies between cases and controls was determined using χ2 test. RESULT No significant difference in genotype or allele frequencies of rs6275 (p >0.0.5) was found between cases and controls. Interestingly, a novel SNP (C>A, Pro297Thr) was spotted during electropherogram analysis at position chr11:113412805. Significant difference was found in genotype and allele frequency of this novel SNP among schizophrenia cases and controls (p = 0.003). CONCLUSION No association of rs6275 was observed with schizophrenia in Pakistani population. However, the study found significant association of a novel missense SNP of DRD2 at chr11:113412805 (C>T) with schizophrenia in Pakistani population. A large-scale multicenter study will be required to confirm the association of this novel SNP with schizophrenia.
Collapse
Affiliation(s)
- Farina Hanif
- Institute of Biomedical Sciences, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi, Pakistan.
| | - Qurat-Ul-Ain Amir
- Institute of Biomedical Sciences, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi, Pakistan
| | - Washdev Washdev
- Institute of Behavioral Sciences, Dow University of Health Sciences, OJHA Campus SUPARCO Road, Karachi, Pakistan
| | - Fareena Bilwani
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan
| | - Shabana Usman Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zeba Haque
- Institute of Biomedical Sciences, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi, Pakistan
| |
Collapse
|
23
|
Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing Res Rev 2020; 62:101119. [PMID: 32603841 DOI: 10.1016/j.arr.2020.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Protein aggregation is a phenomenon of major relevance in neurodegenerative and neuromuscular disorders, cataracts, diabetes and many other diseases. Research has unveiled that proteins also aggregate in multiple tissues during healthy aging yet, the biological and biomedical relevance of this apparently asymptomatic phenomenon remains to be understood. It is known that proteome homeostasis (proteostasis) is maintained by a balanced protein synthesis rate, high protein synthesis accuracy, efficient protein folding and continual tagging of damaged proteins for degradation, suggesting that protein aggregation during healthy aging may be associated with alterations in both protein synthesis and the proteostasis network (PN) pathways. In particular, dysregulation of protein synthesis and alterations in translation fidelity are hypothesized to lead to the production of misfolded proteins which could explain the occurrence of age-related protein aggregation. Nevertheless, some data on this topic is controversial and the biological mechanisms that lead to widespread protein aggregation remain to be elucidated. We review the recent literature about the age-related decline of proteostasis, highlighting the need to build an integrated view of protein synthesis rate, fidelity and quality control pathways in order to better understand the proteome alterations that occur during aging and in age-related diseases.
Collapse
|
24
|
Alonso AM, Diambra L. SARS-CoV-2 Codon Usage Bias Downregulates Host Expressed Genes With Similar Codon Usage. Front Cell Dev Biol 2020; 8:831. [PMID: 32974353 PMCID: PMC7468442 DOI: 10.3389/fcell.2020.00831] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome has spread quickly throughout the world and was declared a pandemic by the World Health Organization (WHO). The pathogenic agent is a new coronavirus (SARS-CoV-2) that infects pulmonary cells with great effectiveness. In this study we focus on the codon composition for the viral protein synthesis and its relationship with the protein synthesis of the host. Our analysis reveals that SARS-CoV-2 preferred codons have poor representation of G or C nucleotides in the third position, a characteristic which could result in an unbalance in the tRNAs pools of the infected cells with serious implications in host protein synthesis. By integrating this observation with proteomic data from infected cells, we observe a reduced translation rate of host proteins associated with highly expressed genes and that they share the codon usage bias of the virus. The functional analysis of these genes suggests that this mechanism of epistasis can contribute to understanding how this virus evades the immune response and the etiology of some deleterious collateral effect as a result of the viral replication. In this manner, our finding contributes to the understanding of the SARS-CoV-2 pathogeny and could be useful for the design of a vaccine based on the live attenuated strategy.
Collapse
Affiliation(s)
- Andres Mariano Alonso
- InTech, Universidad Nacional de San Martin, Chascomús, Argentina
- CONICET, Chascomús, Argentina
| | - Luis Diambra
- CONICET, Chascomús, Argentina
- CREG, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
25
|
The association between polymorphism of norepinephrine transporter G1287A and major depressive disorder, antidepressant response: a meta-analysis. Psychiatr Genet 2020; 30:101-109. [PMID: 32459709 DOI: 10.1097/ypg.0000000000000254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Massive research has examined the cause of major depressive disorder (MDD) and accumulating evidence has revealed that the gene for the norepinephrine transporter (NET) is involved in MDDs etiology as well as the antidepressant response. The G1287A (rs5569, GRCh38, Chromosome 16, 55697923) is located in the exon 9 region of the SLC6A2 gene. It was found to be connected with MDD and antidepressant response in people of different genetic ancestries. However, the results are still inconsistent. METHODS A meta-analysis was conducted to evaluate the overall association of rs5569 polymorphisms with MDD and the antidepressant response. RESULTS Sixteen articles that studied the connection between the G1287A polymorphism and MDD or antidepressant response were identified, and their outcomes revealed there was a significant connection between the polymorphisms and MDD and antidepressant response. Our study indicated that the GG genotype may be a protection factor against the development of MDD [odds ratio (OR = 0.78, 95% confidence interval (CI) = 0.64-0.96, P = 0.02 for Asian population; OR = 0.79, 95% CI = 0.63-0.98, P = 0.03 for Han Chinese population] while the GG genotype had a worse antidepressant response (OR = 0.49, 95% CI = 0.25-0.94, P = 0.03). CONCLUSIONS NET G1287A polymorphisms are involved in the etiology of MDD and antidepressant response.
Collapse
|
26
|
Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. NANOMATERIALS 2020; 10:nano10020364. [PMID: 32093140 PMCID: PMC7075285 DOI: 10.3390/nano10020364] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
The use of messenger RNA (mRNA) in gene therapy is increasing in recent years, due to its unique features compared to plasmid DNA: Transient expression, no need to enter into the nucleus and no risk of insertional mutagenesis. Nevertheless, the clinical application of mRNA as a therapeutic tool is limited by its instability and ability to activate immune responses; hence, mRNA chemical modifications together with the design of suitable vehicles result essential. This manuscript includes a revision of the strategies employed to enhance in vitro transcribed (IVT) mRNA functionality and efficacy, including the optimization of its stability and translational efficiency, as well as the regulation of its immunostimulatory properties. An overview of the nanosystems designed to protect the mRNA and to overcome the intra and extracellular barriers for successful delivery is also included. Finally, the present and future applications of mRNA nanomedicines for immunization against infectious diseases and cancer, protein replacement, gene editing, and regenerative medicine are highlighted.
Collapse
|
27
|
Cotranslational folding allows misfolding-prone proteins to circumvent deep kinetic traps. Proc Natl Acad Sci U S A 2020; 117:1485-1495. [PMID: 31911473 DOI: 10.1073/pnas.1913207117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many large proteins suffer from slow or inefficient folding in vitro. It has long been known that this problem can be alleviated in vivo if proteins start folding cotranslationally. However, the molecular mechanisms underlying this improvement have not been well established. To address this question, we use an all-atom simulation-based algorithm to compute the folding properties of various large protein domains as a function of nascent chain length. We find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by nonnative interactions involving C-terminal residues. Thus, cotranslational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins' sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modeling, we show that under certain conditions, such a slowdown indeed improves cotranslational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from cotranslational folding due to a lack of significant nonnative interactions, and indeed these proteins' sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell and how biomolecular self-assembly may be optimized evolutionarily.
Collapse
|
28
|
Alexaki A, Hettiarachchi GK, Athey JC, Katneni UK, Simhadri V, Hamasaki-Katagiri N, Nanavaty P, Lin B, Takeda K, Freedberg D, Monroe D, McGill JR, Peters R, Kames JM, Holcomb DD, Hunt RC, Sauna ZE, Gelinas A, Janjic N, DiCuccio M, Bar H, Komar AA, Kimchi-Sarfaty C. Effects of codon optimization on coagulation factor IX translation and structure: Implications for protein and gene therapies. Sci Rep 2019; 9:15449. [PMID: 31664102 PMCID: PMC6820528 DOI: 10.1038/s41598-019-51984-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022] Open
Abstract
Synonymous codons occur with different frequencies in different organisms, a phenomenon termed codon usage bias. Codon optimization, a common term for a variety of approaches used widely by the biopharmaceutical industry, involves synonymous substitutions to increase protein expression. It had long been presumed that synonymous variants, which, by definition, do not alter the primary amino acid sequence, have no effect on protein structure and function. However, a critical mass of reports suggests that synonymous codon variations may impact protein conformation. To investigate the impact of synonymous codons usage on protein expression and function, we designed an optimized coagulation factor IX (FIX) variant and used multiple methods to compare its properties to the wild-type FIX upon expression in HEK293T cells. We found that the two variants differ in their conformation, even when controlling for the difference in expression levels. Using ribosome profiling, we identified robust changes in the translational kinetics of the two variants and were able to identify a region in the gene that may have a role in altering the conformation of the protein. Our data have direct implications for codon optimization strategies, for production of recombinant proteins and gene therapies.
Collapse
Affiliation(s)
- Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gaya K Hettiarachchi
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - John C Athey
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Upendra K Katneni
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vijaya Simhadri
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Nobuko Hamasaki-Katagiri
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Puja Nanavaty
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Brian Lin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kazuyo Takeda
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Darón Freedberg
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Dougald Monroe
- University of North Carolina at Chapel hill, Chapel hill, NC, USA
| | - Joseph R McGill
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | - Jacob M Kames
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David D Holcomb
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Ryan C Hunt
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Zuben E Sauna
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | | | | | - Michael DiCuccio
- National Center of Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - Chava Kimchi-Sarfaty
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
29
|
Nezos A, Makri P, Gandolfo S, De Vita S, Voulgarelis M, Crow MK, Mavragani CP. TREX1 variants in Sjogren's syndrome related lymphomagenesis. Cytokine 2019; 132:154781. [PMID: 31326279 DOI: 10.1016/j.cyto.2019.154781] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Genetic variants of the three-prime repair exonuclease 1 (TREX1) -an exonuclease involved in DNA repair and degradation- have been previously found to increase susceptibility to Aicardi Goutieres syndrome, familial chilblain lupus and systemic lupus erythematosus. We aimed to explore whether TREX1 common variants could influence the risk of primary Sjogren's syndrome (SS) and SS-related lymphoma. Three single nucleotide polymorphisms (SNPs) of the TREX1 gene (rs11797, rs3135941 and rs3135945) were evaluated in 229 SS, 89 SS-lymphoma (70 SS-MALT and 19 SS non-MALT) and 240 healthy controls by PCR-based assays. In available 52 peripheral blood and 26 minor salivary gland tissues from our SS cohort, mRNA expression of type I interferon (IFN) related genes and TREX1 was determined by real-time PCR. Significantly decreased prevalence of rs11797 A minor allele was detected in SS patients complicated by non-MALT lymphoma compared to controls (ΟR [95% CI]: 0.4 [0.2-0.9], p-value: 0.02). SS patients carrying the rs11797 AA genotype had increased type I IFN related gene mRNA expression in minor salivary gland tissues. These data support genetically related dampened type I IFN production as an additional mechanism for SS-related lymphomagenesis.
Collapse
Affiliation(s)
- Adrianos Nezos
- Department of Physiology, School of Medicine, National University of Athens, Athens, Greece
| | - Panagiota Makri
- Department of Physiology, School of Medicine, National University of Athens, Athens, Greece
| | - Saviana Gandolfo
- Rheumatology Clinic, Department of Medical and Biological Sciences, Azienda Ospedaliero-Universitaria 'S. Maria della Misericordia', Udine, Italy
| | - Salvatore De Vita
- Rheumatology Clinic, Department of Medical and Biological Sciences, Azienda Ospedaliero-Universitaria 'S. Maria della Misericordia', Udine, Italy
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National University of Athens, Athens, Greece
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY, USA
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National University of Athens, Athens, Greece; Department of Pathophysiology, School of Medicine, National University of Athens, Athens, Greece; Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
30
|
Fornasiero EF, Rizzoli SO. Pathological changes are associated with shifts in the employment of synonymous codons at the transcriptome level. BMC Genomics 2019; 20:566. [PMID: 31288782 PMCID: PMC6617700 DOI: 10.1186/s12864-019-5921-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/20/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The usage of different synonymous codons reflects the genome organization and has been connected to parameters such as mRNA abundance and protein folding. It is also been established that mutations targeting specific synonymous codons can trigger disease. RESULTS We performed a systematic meta-analysis of transcriptome results from 75 datasets representing 40 pathologies. We found that a subset of codons was preferentially employed in abundant transcripts, while other codons were preferentially found in low-abundance transcripts. By comparing control and pathological transcriptomes, we observed a shift in the employment of synonymous codons for every analyzed disease. For example, cancerous tissue employed preferentially A- or U-ending codons, shifting from G- or C-ending codons, which were preferred by control tissues. This analysis was able to discriminate patients and controls with high specificity and sensitivity. CONCLUSIONS Here we show that the employment of specific synonymous codons, quantified at the whole transcriptome level, changes profoundly in many diseases. We propose that the changes in codon employment offer a novel perspective for disease studies, and could be used to design new diagnostic tools.
Collapse
Affiliation(s)
- Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany.
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany.
| |
Collapse
|
31
|
Honey bee predisposition of resistance to ubiquitous mite infestations. Sci Rep 2019; 9:7794. [PMID: 31127129 PMCID: PMC6534585 DOI: 10.1038/s41598-019-44254-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/07/2019] [Indexed: 11/18/2022] Open
Abstract
Host-parasite co-evolution history is lacking when parasites switch to novel hosts. This was the case for Western honey bees (Apis mellifera) when the ectoparasitic mite, Varroa destructor, switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe biological threat to A. mellifera worldwide. However, some A. mellifera populations are known to survive infestations, largely by suppressing mite population growth. One known mechanism is suppressed mite reproduction (SMR), but the underlying genetics are poorly understood. Here, we take advantage of haploid drones, originating from one queen from the Netherlands that developed Varroa-resistance, whole exome sequencing and elastic-net regression to identify genetic variants associated with SMR in resistant honeybees. An eight variants model predicted 88% of the phenotypes correctly and identified six risk and two protective variants. Reproducing and non-reproducing mites could not be distinguished using DNA microsatellites, which is in agreement with the hypothesis that it is not the parasite but the host that adapted itself. Our results suggest that the brood pheromone-dependent mite oogenesis is disrupted in resistant hosts. The identified genetic markers have a considerable potential to contribute to a sustainable global apiculture.
Collapse
|
32
|
Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design. J Mol Biol 2019; 431:2434-2441. [PMID: 31029701 DOI: 10.1016/j.jmb.2019.04.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
Usage of sequential codon-pairs is non-random and unique to each species. Codon-pair bias is related to but clearly distinct from individual codon usage bias. Codon-pair bias is thought to affect translational fidelity and efficiency and is presumed to be under the selective pressure. It was suggested that changes in codon-pair utilization may affect human disease more significantly than changes in single codons. Although recombinant gene technologies often take codon-pair usage bias into account, codon-pair usage data/tables are not readily available, thus potentially impeding research efforts. The present computational resource (https://hive.biochemistry.gwu.edu/review/codon2) systematically addresses this issue. Building on our recent HIVE-Codon Usage Tables, we constructed a new database to include genomic codon-pair and dinucleotide statistics of all organisms with sequenced genome, available in the GenBank. We believe that the growing understanding of the importance of codon-pair usage will make this resource an invaluable tool to many researchers in academia and pharmaceutical industry.
Collapse
|
33
|
Implication of GATA4 synonymous variants in congenital heart disease: A comprehensive in-silico approach. Mutat Res 2018; 813:31-38. [PMID: 30590232 DOI: 10.1016/j.mrfmmm.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/17/2018] [Accepted: 12/14/2018] [Indexed: 11/22/2022]
Abstract
Synonymous variations, previously considered as neutral, are recently shown to have a significant impact on mRNA structure and stability thereby affecting protein expression and function. Their role in disease pathogenesis is also emerging. GATA4 is an important transcription factor involved in cardiac development and a well-known candidate gene associated with congenital heart disease (CHD). In the present study, we sought to conduct molecular screening of GATA4 gene in 285 sporadic and non-syndromic CHD cases. We identified four synonymous (c.27C>A, c.822C>T, c.1233G>A and c.1263C>T) and two intronic variants (g.83217T>G & g.85012T>A) in GATA4. Extensive computational analysis using widely acceptable tools i.e., Mfold, Human Splicing Finder (HSF) and Codon Usage bias was performed with a view to understand their putative downstream effects on GATA4 function. Mfold, a mRNA structure prediction tool showed the alterations of the mRNA structure and stability due to synonymous variants. Similarly, HSF also confidently predicted effect on the cis-acting regulatory elements of splicing due to four synonymous and one donor site intronic variants. Additionally, a significant change in 'Relative Synonymous Codon usage (RSCU) frequencies' and 'log ratio of codon usage frequencies' of variant codon was also noted that might affect the rate of translation. This study establishes that the synonymous variants are possibly associated with disease phenotype in CHD patients. Comprehensive computational analysis, using well-established web based tools, is suggestive of their potential downstream molecular effects on the structure, stability and expression of GATA4 protein.
Collapse
|
34
|
Gomes Torres ACMB, Leite N, Tureck LV, de Souza RLR, Titski ACK, Milano-Gai GE, Lazarotto L, da Silva LR, Furtado-Alle L. Association between Toll-like receptors (TLR) and NOD-like receptor (NLR) polymorphisms and lipid and glucose metabolism. Gene 2018; 685:211-221. [PMID: 30481552 DOI: 10.1016/j.gene.2018.11.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/31/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
Recent evidences had shown activation of TLR (toll-like receptors) and NLR (nod-like receptors) in response to imbalance in nutrients intake, such as lipid and glucose. The main aim of this study was to investigate possible associations between 11 SNPs in TLR2, TLR4, NLRC4, CARD8 and NEK7 genes and lipid and glucose metabolism. Sample was composed by healthy children and adolescents (n = 158) and adults (n = 115). DNA extraction was obtained by salting-out and sample genotyping by matrix-assisted laser desorption ionization time-of-flight mass spectrometry based system. LDL-cholesterol, HDL-cholesterol, triglycerides, total cholesterol, glucose and insulin were measured by standard automated methods. Means were compared by t-test or Mann-Whitney test. Univariate and multivariate logistic regression were used to verify association between polymorphisms and lipid and glucose markers. Seven polymorphisms in 5 genes were associated with lipid and glucose parameters. For lipid parameters, the following associations were found: higher LDL-C levels and C allele of rs1554973 (TLR4) and G allele of rs6671879 (NEK7); higher HDL-cholesterol levels and A allele of rs13105517 (TLR2); higher total cholesterol and TT genotype of rs3804099 (TLR2) and G allele of rs6671879 (NEK7); higher triglycerides levels and G allele of rs455060 (NLRC4). For glucose parameters associations were found between C allele of rs7258674 (CARD8) and higher glucose levels, and between C allele of rs212704 (NLRC4) and G allele of rs455060 (NLRC4) and insulin levels. These findings indicate a relationship between polymorphisms of TLRs and NLRs genes and markers of lipid and glucose metabolism.
Collapse
Affiliation(s)
- Ana Cláudia M B Gomes Torres
- Department of Genetics, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, Paraná, Brazil.
| | - Neiva Leite
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Luciane Viater Tureck
- Department of Genetics, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, Paraná, Brazil
| | | | - Ana Cláudia Kapp Titski
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Gerusa Eisfeld Milano-Gai
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Leilane Lazarotto
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Larissa Rosa da Silva
- Department of Physical Education, Federal University of Paraná, Coração de Maria, 92 Jardim Botânico, 80215-370 Curitiba, Paraná, Brazil
| | - Lupe Furtado-Alle
- Department of Genetics, Federal University of Paraná, Francisco H. dos Santos, 210 Jardim das Américas, 81531-970 Curitiba, Paraná, Brazil
| |
Collapse
|
35
|
Fu J, Dang Y, Counter C, Liu Y. Codon usage regulates human KRAS expression at both transcriptional and translational levels. J Biol Chem 2018; 293:17929-17940. [PMID: 30275015 DOI: 10.1074/jbc.ra118.004908] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
KRAS and HRAS are highly homologous oncogenic Ras GTPase family members that are mutated in a wide spectrum of human cancers. Despite having high amino acid identity, KRAS and HRAS have very different codon usage biases: the HRAS gene contains many common codons, and KRAS is enriched for rare codons. Rare codons in KRAS suppress its protein expression, which has been shown to affect both normal and cancer biology in mammals. Here, using HRAS or KRAS expression in different human cell lines and in vitro transcription and translation assays, we show that KRAS rare codons inhibit both translation efficiency and transcription and that the contribution of these two processes varies among different cell lines. We observed that codon usage regulates mRNA translation efficiency such that WT KRAS mRNA is poorly translated. On the other hand, common codons increased transcriptional rates by promoting activating histone modifications and recruitment of transcriptional coactivators. Finally, we found that codon usage also influences KRAS protein conformation, likely because of its effect on co-translational protein folding. Together, our results reveal that codon usage has multidimensional effects on protein expression, ranging from effects on transcription to protein folding in human cells.
Collapse
Affiliation(s)
- Jingjing Fu
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Christopher Counter
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, North Carolina 27708
| | - Yi Liu
- From the Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235.
| |
Collapse
|
36
|
Mauro VP. Codon Optimization in the Production of Recombinant Biotherapeutics: Potential Risks and Considerations. BioDrugs 2018; 32:69-81. [PMID: 29392566 DOI: 10.1007/s40259-018-0261-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotherapeutics are increasingly becoming the mainstay in the treatment of a variety of human conditions, particularly in oncology and hematology. The production of therapeutic antibodies, cytokines, and fusion proteins have markedly accelerated these fields over the past decade and are probably the major contributor to improved patient outcomes. Today, most protein therapeutics are expressed as recombinant proteins in mammalian cell lines. An expression technology commonly used to increase protein levels involves codon optimization. This approach is possible because degeneracy of the genetic code enables most amino acids to be encoded by more than one synonymous codon and because codon usage can have a pronounced influence on levels of protein expression. Indeed, codon optimization has been reported to increase protein expression by > 1000-fold. The primary tactic of codon optimization is to increase the rate of translation elongation by overcoming limitations associated with species-specific differences in codon usage and transfer RNA (tRNA) abundance. However, in mammalian cells, assumptions underlying codon optimization appear to be poorly supported or unfounded. Moreover, because not all synonymous codon mutations are neutral, codon optimization can lead to alterations in protein conformation and function. This review discusses codon optimization for therapeutic protein production in mammalian cells.
Collapse
|
37
|
Criscione A, Cunsolo V, Tumino S, Di Francesco A, Bordonaro S, Muccilli V, Saletti R, Marletta D. Polymorphism at donkey β-lactoglobulin II locus: identification and characterization of a new genetic variant with a very low expression. Amino Acids 2018; 50:735-746. [PMID: 29572574 DOI: 10.1007/s00726-018-2555-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
In the last years, donkey milk had evidenced a renewed interest as a potential functional food and a breast milk substitute. In this light, the study of the protein composition assumes an important role. In particular, β-lactoglobulin (β-LG), which is considered as one of the main allergenic milk protein, in donkey species consists of two molecular forms, namely β-LG I and β-LG II. In the present research, a genetic analysis coupled with a proteomic approach showed the presence of a new allele, here named F, which is apparently associated with a null or a severely reduced expression of β-LG II protein. The new β-LG II F genetic variant shows a theoretical average mass (Mav) of 18,310.64 Da, a value practically corresponding with that of the variant D (∆mass < 0.07 Da), but differs from β-LG II D for two amino acid substitutions: Thr100 (variant F) → Ala100 (variant D) and Thr118 (variant F) → Met118 (variant D). Proteomic investigation of the whey protein fraction of an individual milk sample, homozygous FF at β-LG II locus, allowed to identify, as very minor component, the new β-LG II F genetic variant. By MS/MS analysis of enzymatic digests, the sequence of the β-LG II F was characterized, and the predicted genomic data confirmed.
Collapse
Affiliation(s)
- Andrea Criscione
- Animal Production Section, Department of Agriculture, Food and Environment, University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Vincenzo Cunsolo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Serena Tumino
- Animal Production Section, Department of Agriculture, Food and Environment, University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Antonella Di Francesco
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Salvatore Bordonaro
- Animal Production Section, Department of Agriculture, Food and Environment, University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Vera Muccilli
- Animal Production Section, Department of Agriculture, Food and Environment, University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| | - Rosaria Saletti
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Donata Marletta
- Animal Production Section, Department of Agriculture, Food and Environment, University of Catania, Via Valdisavoia 5, 95123, Catania, Italy
| |
Collapse
|
38
|
Mauro VP, Chappell SA. Considerations in the Use of Codon Optimization for Recombinant Protein Expression. Methods Mol Biol 2018; 1850:275-288. [PMID: 30242693 DOI: 10.1007/978-1-4939-8730-6_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Codon optimization is a gene engineering approach that is commonly used for enhancing recombinant protein expression. This approach is possible because (1) degeneracy of the genetic code enables most amino acids to be encoded by multiple codons and (2) different mRNAs encoding the same protein can vary dramatically in the amount of protein expressed. However, because codon optimization potentially disrupts overlapping information encoded in mRNA coding regions, protein structure and function may be altered. This chapter discusses the use of codon optimization for various applications in mammalian cells as well as potential consequences, so that informed decisions can be made on the appropriateness of using this approach in each case.
Collapse
|