1
|
Li X, Rehman A, Wang Z, Li H, Ma J, Du X, Peng Z, He S. Evaluation of Salt-Tolerant Germplasms and Identification of Salt Tolerance-Related Proteins in Upland Cotton at the Seedling Stage. Int J Mol Sci 2025; 26:1982. [PMID: 40076608 PMCID: PMC11900572 DOI: 10.3390/ijms26051982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Currently, developing cotton cultivation in saline-alkali soils is a vital focus for restructuring the cotton industry in China. The seedling stage, specifically the three-leaf stage, is a crucial period for assessing the salt tolerance of cotton. This research examined 430 natural populations of upland cotton, including 45 semi-wild germlines of Gossypium purpurascens. We measured the phenotypic responses of salt stress injury on seedlings as well as potassium (K), calcium (Ca), sodium (Na), and magnesium (Mg) concentrations in the roots, stems, and leaves following a 72 h exposure. The comprehensive salt tolerance index (CSTI) was determined using a membership function, principal component analysis, and cluster analysis based on 48 phenotypic traits related to salt tolerance. The results revealed significant variations in the phenotypic traits of the ion group under salt stress. Salt stress greatly affected the relative contents of Mg, K, and Ca ions in the aboveground parts of cotton, and correlations were observed among the 48 indices. The CSTI was calculated using seven principal component indexes, identifying 30 salt-tolerant, 114 weakly salt-tolerant, 39 salt-sensitive, and 4 highly sensitive materials based on cluster analysis. Among the 45 G. purpurascens cotton resources, 28 were weakly salt-tolerant, while 17 were salt-sensitive. Through TMT (Tandem Mass Tag)-based quantitative analysis, we identified 3107 unique peptides among 28,642 detected peptides, resulting in 203,869 secondary mass spectra, with 50,039 spectra successfully matched to peptides. Additionally, we identified several salt tolerance-related pathways (carbon metabolism; glutathione metabolism; the biosynthesis of amino acids, etc.) and proteins classified within the CAZy (Carbohydrate-Active EnZYme) family and expansin proteins. The results of this study concerning salt-tolerant materials provide a crucial theoretical foundation for the identification and evaluation of salt-tolerant breeding parents in cultivated cotton.
Collapse
Affiliation(s)
- Xiawen Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (A.R.); (H.L.)
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (A.R.); (H.L.)
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China;
| | - Zhenzhen Wang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (J.M.)
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (A.R.); (H.L.)
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China;
| | - Jun Ma
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (J.M.)
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China;
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (A.R.); (H.L.)
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China;
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (X.L.); (A.R.); (H.L.)
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang 455000, China;
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
2
|
Kun W, Shoupu H, Yuxian Z. Cotton2035: From genomics research to optimized breeding. MOLECULAR PLANT 2025; 18:298-312. [PMID: 39844464 DOI: 10.1016/j.molp.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Cotton is the world's most important natural fiber crop and serves as an ideal model for studying plant genome evolution, cell differentiation, elongation, and cell wall biosynthesis. The first draft genome assembly for Gossypium raimondii, completed in 2012, marked the beginning of global efforts in studying cotton genomics. Over the past decade, the cotton research community has continued to assemble and refine the genomes for both wild and cultivated Gossypium species. With the accumulation of de novo genome assemblies and resequencing data across virous cotton populations, significant progress has been made in uncovering the genetic basis of key agronomic traits. Achieving the goal of cotton genomics-to-breeding (G2B) will require a deeper understanding of the spatiotemporal regulatory mechanisms involved in genome information storage and expression. We advocate for a cotton ENCODE project to systematically decode the functional elements and regulatory networks within the cotton genome. Technological advances, particularly on single-cell sequencing and high-resolution spatiotemporal omics, will be essential for elucidating these regulatory mechanisms. By integrating multi-omics data, genome editing tools, and artificial intelligence, these efforts will empower the genomics-driven strategies needed for future cotton G2B breeding.
Collapse
Affiliation(s)
- Wang Kun
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China.
| | - He Shoupu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572000, China.
| | - Zhu Yuxian
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Peng Z, Rehman A, Jiang X, Tian C, Wang Z, Li H, Wang X, Ahmad A, Azhar MT, Du X, He S. Comparative transcriptome analysis and functional verification revealed that GhSAP6 negatively regulates salt tolerance in upland cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109406. [PMID: 39700916 DOI: 10.1016/j.plaphy.2024.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Owing to the scarcity of cultivable land in China, the agricultural sector is primarily focused on grain and oil crops. Simultaneously, the cultivation of cotton has gradually shifted towards regions characterized by elevated soil salinity levels. Additionally, the mechanism behind cotton's ability to tolerate salt remains elusive. In this study, we identified the Z9807 genotype as highly tolerant to salt stress, exhibiting superior leaf wilting resistance, antioxidant activity, catalase activity, K+/Na+ ratio, and growth compared to the salt-sensitive ZJ0102. Comparative transcriptome analysis revealed marked differences in salt stress responses between Z9807 and ZJ0102. This study identified a considerable number of differentially expressed genes associated with salt tolerance across multiple time points. By integration of QTL and GWAS mapping data, we successfully identified 621 candidate genes associated with salt tolerance. Weighted gene correlation network analysis exhibited three co-expression modules related to salt-tolerant Z9807 samples, ultimately identifying 15 core salt-tolerant candidate genes. We also conducted in-depth research on the salt tolerance of the stress-associated protein (SAP) GhSAP6 (GhSAP6_At and GhSAP6_Dt homologs). Results revealed that these candidate genes may inhibit salt tolerance through Virus-Induced Gene Silencing (VIGS) and transgenic overexpression assays conducted in Arabidopsis thaliana. Furthermore, we used yeast two-hybrid and luciferase assay experiments to confirm the ubiquitin degradation pathway between selected interacting proteins and verified the interaction with RAD23C. This study will provide new insights into the mechanisms related to salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuran Jiang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Adeel Ahmad
- Central Cotton Research Institute, Pakistan Central Cotton Committee, Multan, 60000, Pakistan
| | - Muhammad Tehseen Azhar
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China; Henan International Joint Laboratory of Cotton Biology, Anyang, 455000, China.
| |
Collapse
|
4
|
Liú R, Xiāo X, Gōng J, Lǐ J, Yán H, Gě Q, Lú Q, Lǐ P, Pān J, Shāng H, Shí Y, Chén Q, Yuán Y, Gǒng W. Genetic linkage analysis of stable QTLs in Gossypium hirsutum RIL population revealed function of GhCesA4 in fiber development. J Adv Res 2024; 65:33-46. [PMID: 38065406 PMCID: PMC11519737 DOI: 10.1016/j.jare.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/27/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Upland cotton is an important allotetrapolyploid crop providing natural fibers for textile industry. Under the present high-level breeding and production conditions, further simultaneous improvement of fiber quality and yield is facing unprecedented challenges due to their complex negative correlations. OBJECTIVES The study was to adequately identify quantitative trait loci (QTLs) and dissect how they orchestrate the formation of fiber quality and yield. METHODS A high-density genetic map (HDGM) based on an intraspecific recombinant inbred line (RIL) population consisting of 231 individuals was used to identify QTLs and QTL clusters of fiber quality and yield traits. The weighted gene correlation network analysis (WGCNA) package in R software was utilized to identify WGCNA network and hub genes related to fiber development. Gene functions were verified via virus-induced gene silencing (VIGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 strategies. RESULTS An HDGM consisting of 8045 markers was constructed spanning 4943.01 cM of cotton genome. A total of 295 QTLs were identified based on multi-environmental phenotypes. Among 139 stable QTLs, including 35 newly identified ones, seventy five were of fiber quality and 64 yield traits. A total of 33 QTL clusters harboring 74 QTLs were identified. Eleven candidate hub genes were identified via WGCNA using genes in all stable QTLs and QTL clusters. The relative expression profiles of these hub genes revealed their correlations with fiber development. VIGS and CRISPR/Cas9 edition revealed that the hub gene cellulose synthase 4 (GhCesA4, GH_D07G2262) positively regulate fiber length and fiber strength formation and negatively lint percentage. CONCLUSION Multiple analyses demonstrate that the hub genes harbored in the QTLs orchestrate the fiber development. The hub gene GhCesA4 has opposite pleiotropic effects in regulating trait formation of fiber quality and yield. The results facilitate understanding the genetic basis of negative correlation between cotton fiber quality and yield.
Collapse
Affiliation(s)
- Ruìxián Liú
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Xiànghuī Xiāo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China; College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Jǔwǔ Gōng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jùnwén Lǐ
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hàoliàng Yán
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qún Gě
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Quánwěi Lú
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Péngtāo Lǐ
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Jìngtāo Pān
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Hǎihóng Shāng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yùzhēn Shí
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qúanjiā Chén
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China.
| | - Yǒulù Yuán
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Wànkuí Gǒng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
5
|
Lu M, Li J, Sun X, Zhao D, Zong H, Tang C, Li K, Zhou Y, Xiao J. Genotyping single nucleotide polymorphisms in homologous regions using multiplex kb level amplicon capture sequencing. Mol Genet Genomics 2024; 299:99. [PMID: 39460824 DOI: 10.1007/s00438-024-02192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Single nucleotide polymorphisms (SNPs) in homologous regions play a critical role in the field of genetics. However, genotyping these SNPs is challenging due to the presence of repetitive sequences within genome, which demand specific method. We introduce a new, mid-throughput method that simplifies SNP genotyping in homologous DNA sequences by utilizing a combination of multiplex kb level PCR (PCR size 2.5k-3.5 kb) for capturing targeted regions and multiplex nested PCR library construction for next-generation sequencing (Multi-kb level capture-seq). First of all, we randomly selected 7 SNPs in homologous regions and successfully captured 6-plex kb level amplicons (one of segments contains 2 SNPs, while the remaining segments each have only one SNP) in a single tube. And then, the amplification products were subjected to multiplex nested PCR for library construction and sequenced on Illumina platform. We tested this strategy using 600 amplicons from 100 samples and accurately genotyped 96.8% of target SNPs with a coverage depth of ≥ 15×. For the uniformity within the samples, over 66.7% (4/6) of the amplicons had a coverage depth above 0.2-fold of average sequencing depth. To validate the accuracy of this approach, we performed Ligase detection reaction PCR for genotyping the 100 samples, and found that the genotyping data was 97.71% consistent with our NGS results. In conclusion, we have developed a highly efficient and accurate method for SNP genotyping in homologous regions, which offers researchers a new strategy to explore the complex regions of genome.
Collapse
Affiliation(s)
- Meng Lu
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin north Road, Shanghai, 201620, China
| | - Jie Li
- Department of Emergency, The Second Affiliated Hospital of Air Force Medical University of PLA, Xi'an, Shaanxi, 710038, China
| | - Xiuxiu Sun
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin north Road, Shanghai, 201620, China
| | - Dongqing Zhao
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin north Road, Shanghai, 201620, China
| | - Huanhuan Zong
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin north Road, Shanghai, 201620, China
| | - Chen Tang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin north Road, Shanghai, 201620, China
| | - Kai Li
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin north Road, Shanghai, 201620, China
| | - Yuxun Zhou
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin north Road, Shanghai, 201620, China
| | - Junhua Xiao
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin north Road, Shanghai, 201620, China.
| |
Collapse
|
6
|
Feng L, Chen Y, Ma T, Zhou C, Sang S, Li J, Ji S. Integrative physiology and transcriptome sequencing reveal differences between G. hirsutum and G. barbadense in response to salt stress and the identification of key salt tolerance genes. BMC PLANT BIOLOGY 2024; 24:787. [PMID: 39164616 PMCID: PMC11337788 DOI: 10.1186/s12870-024-05515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Soil salinity is one of the major abiotic stresses that threatens crop growth. Cotton has some degree of salt tolerance, known as the "pioneer crop" of saline-alkali land. Cultivation of cotton is of great significance to the utilization of saline-alkali land and the development of cotton industry. Gossypium hirsutum and G. barbadense, as two major cotton species, are widely cultivated worldwide. However, until recently, the regulatory mechanisms and specific differences of their responses to salt stress have rarely been reported. RESULTS In this study, we comprehensively compared the differences in the responses of G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 to salt stress. The results showed that Hai7124 exhibited better growth than did TM-1 under salt stress, with greater PRO content and antioxidant capability, whereas TM-1 only presented greater K+ content. Transcriptome analysis revealed significant molecular differences between the two cotton species in response to salt stress. The key pathways of TM-1 induced by salt are mainly related to growth and development, such as porphyrin metabolism, DNA replication, ribosome and photosynthesis. Conversely, the key pathways of Hai7124, such as plant hormone signal transduction, MAPK signaling pathway-plant, and phenylpropanoid biosynthesis, are mainly related to plant defense. Further comparative analyses of differentially expressed genes (DEGs) revealed that antioxidant metabolism, abscisic acid (ABA) and jasmonic acid (JA) signalling pathways were more strongly activated in Hai7124, whereas TM-1 was more active in K+ transporter-related genes and ethylene (ETH) signalling pathway. These differences underscore the various molecular strategies adopted by the two cotton species to navigate through salt stress, and Hai7124 responded more strongly to salt stress, which explains the potential reasons for the greater salt tolerance of Hai7124. Finally, we identified 217 potential salt tolerance-related genes, 167 of which overlapped with the confidence intervals of significant SNPs identified in previous genome-wide association studies (GWASs), indicating the high reliability of these genes. CONCLUSIONS These findings provide new insights into the differences in the regulatory mechanisms of salt tolerance between G. hirsutum and G. barbadense, and identify key candidate genes for salt tolerance molecular breeding in cotton.
Collapse
Affiliation(s)
- Liuchun Feng
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), Nanjing, 210014, China
| | - Tengyun Ma
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | | | - Shifei Sang
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Junhua Li
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Shengdong Ji
- Engineering Research Center of Crop Genetic Improvement and Germplasm Innovation in Henan Province, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
7
|
Burridge AJ, Winfield M, Przewieslik‐Allen A, Edwards KJ, Siddique I, Barral‐Arca R, Griffiths S, Cheng S, Huang Z, Feng C, Dreisigacker S, Bentley AR, Brown‐Guedira G, Barker GL. Development of a next generation SNP genotyping array for wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2235-2247. [PMID: 38520342 PMCID: PMC11258986 DOI: 10.1111/pbi.14341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
High-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible. Here we describe a novel Axiom genotyping array, the 'Triticum aestivum Next Generation' array (TaNG), largely derived from whole genome skim sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins 'Core Collection'. We used a novel haplotype optimization approach to select SNPs with the highest combined varietal discrimination and a design iteration step to test and replace SNPs which failed to convert to reliable markers. The final design with 43 372 SNPs contains a combination of haplotype-optimized novel SNPs and legacy cross-platform markers. We show that this design has an improved distribution of SNPs compared to previous arrays and can be used to generate genetic maps with a significantly higher number of distinct bins than our previous array. We also demonstrate the improved performance of TaNGv1.1 for Genome-wide association studies (GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially available with supporting marker annotations and initial genotyping results freely available.
Collapse
Affiliation(s)
| | - Mark Winfield
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | - Imteaz Siddique
- Thermo Fisher Scientific3450 Central ExpresswaySanta ClaraCAUSA
| | | | | | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Zejian Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Cong Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | | | | | - Gina Brown‐Guedira
- Plant Science Research UnitUSDA Agricultural Research ServiceRaleighNCUSA
| | - Gary L. Barker
- School of Biological SciencesUniversity of BristolBristolUK
| |
Collapse
|
8
|
Li G, Che J, Gong J, Duan L, Zhang Z, Jiang X, Xu P, Fan S, Gong W, Shi Y, Liu A, Li J, Li P, Pan J, Deng X, Yuan Y, Shang H. Quantitative Trait Locus Mapping for Plant Height and Branch Number in CCRI70 Recombinant Inbred Line Population of Upland Cotton (Gossypium hirsutum). PLANTS (BASEL, SWITZERLAND) 2024; 13:1509. [PMID: 38891318 PMCID: PMC11174691 DOI: 10.3390/plants13111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Upland cotton accounts for a high percentage (95%) of the world's cotton production. Plant height (PH) and branch number (BN) are two important agronomic traits that have an impact on improving the level of cotton mechanical harvesting and cotton yield. In this research, a recombinant inbred line (RIL) population with 250 lines developed from the variety CCRI70 was used for constructing a high-density genetic map and identification of quantitative trait locus (QTL). The results showed that the map harbored 8298 single nucleotide polymorphism (SNP) markers, spanning a total distance of 4876.70 centimorgans (cMs). A total of 69 QTLs for PH (9 stable) and 63 for BN (11 stable) were identified and only one for PH was reported in previous studies. The QTLs for PH and BN harbored 495 and 446 genes, respectively. Combining the annotation information, expression patterns and previous studies of these genes, six genes could be considered as potential candidate genes for PH and BN. The results could be helpful for cotton researchers to better understand the genetic mechanism of PH and BN development, as well as provide valuable genetic resources for cotton breeders to manipulate cotton plant architecture to meet future demands.
Collapse
Affiliation(s)
- Gangling Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Jincan Che
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Li Duan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng 475001, China
| | - Zhen Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Xiao Jiang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Peng Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Senmiao Fan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Yuzhen Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Aiying Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Pengtao Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Jingtao Pan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Xiaoying Deng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Youlu Yuan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Haihong Shang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| |
Collapse
|
9
|
Sandhu N, Singh J, Ankush AP, Augustine G, Raigar OP, Verma VK, Pruthi G, Kumar A. Development of Novel KASP Markers for Improved Germination in Deep-Sown Direct Seeded Rice. RICE (NEW YORK, N.Y.) 2024; 17:33. [PMID: 38727876 PMCID: PMC11087395 DOI: 10.1186/s12284-024-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND The lack of stable-high yielding and direct-seeded adapted varieties with better germination ability from deeper soil depth and availability of molecular markers are major limitation in achieving the maximum yield potential of rice under water and resource limited conditions. Development of high-throughput and trait-linked markers are of great interest in genomics-assisted breeding. The aim of present study was to develop and validate novel KASP (Kompetitive Allele-Specific PCR) markers associated with traits improving germination and seedling vigor of deep sown direct seeded rice (DSR). RESULTS Out of 58 designed KASP assays, four KASP assays did not show any polymorphism in any of the eleven genetic backgrounds considered in the present study. The 54 polymorphic KASP assays were then validated for their robustness and reliability on the F1s plants developed from eight different crosses considered in the present study. The third next validation was carried out on 256 F3:F4 and 713 BC3F2:3 progenies. Finally, the reliability of the KASP assays was accessed on a set of random 50 samples from F3:F4 and 80-100 samples from BC3F2:3 progenies using the 10 random markers. From the 54 polymorphic KASP, based on the false positive rate, false negative rate, KASP utility in different genetic backgrounds and significant differences in the phenotypic values of the positive (desirable) and negative (undesirable) traits, a total of 12 KASP assays have been selected. These 12 KASP include 5 KASP on chromosome 3, 1 on chromosome 4, 3 on chromosome 7 and 3 on chromosome 8. The two SNPs lying in the exon regions of LOC_Os04g34290 and LOC_Os08g32100 led to non-synonymous mutations indicating a possible deleterious effect of the SNP variants on the protein structure. CONCLUSION The present research work will provide trait-linked KASP assays, improved breeding material possessing favourable alleles and breeding material in form of expected pre-direct-seeded adapted rice varieties. The marker can be utilized in introgression program during pyramiding of valuable QTLs/genes providing adaptation to rice under DSR. The functional studies of the genes LOC_Os04g34290 and LOC_Os08g32100 possessing two validated SNPs may provide valuable information about these genes.
Collapse
Affiliation(s)
- Nitika Sandhu
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Jasneet Singh
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | | | | | | | | | - Gomsie Pruthi
- Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Arvind Kumar
- Delta Agrigenetics, Plot No. 99 & 100 Green Park Avenue, Village, Jeedimetla, Secunderabad, Telangana, 500055, India
| |
Collapse
|
10
|
Yadava YK, Chaudhary P, Yadav S, Rizvi AH, Kumar T, Srivastava R, Soren KR, Bharadwaj C, Srinivasan R, Singh NK, Jain PK. Genetic mapping of quantitative trait loci associated with drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 2023; 13:17623. [PMID: 37848483 PMCID: PMC10582051 DOI: 10.1038/s41598-023-44990-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Elucidation of the genetic basis of drought tolerance is vital for genomics-assisted breeding of drought tolerant crop varieties. Here, we used genotyping-by-sequencing (GBS) to identify single nucleotide polymorphisms (SNPs) in recombinant inbred lines (RILs) derived from a cross between a drought tolerant chickpea variety, Pusa 362 and a drought sensitive variety, SBD 377. The GBS identified a total of 35,502 SNPs and subsequent filtering of these resulted in 3237 high-quality SNPs included in the eight linkage groups. Fifty-one percent of these SNPs were located in the genic regions distributed throughout the genome. The high density linkage map has total map length of 1069 cm with an average marker interval of 0.33 cm. The linkage map was used to identify 9 robust and consistent QTLs for four drought related traits viz. membrane stability index, relative water content, seed weight and yield under drought, with percent variance explained within the range of 6.29%-90.68% and LOD scores of 2.64 to 6.38, which were located on five of the eight linkage groups. A genomic region on LG 7 harbors quantitative trait loci (QTLs) explaining > 90% phenotypic variance for membrane stability index, and > 10% PVE for yield. This study also provides the first report of major QTLs for physiological traits such as membrane stability index and relative water content for drought stress in chickpea. A total of 369 putative candidate genes were identified in the 6.6 Mb genomic region spanning these QTLs. In-silico expression profiling based on the available transcriptome data revealed that 326 of these genes were differentially expressed under drought stress. KEGG analysis resulted in reduction of candidate genes from 369 to 99, revealing enrichment in various signaling pathways. Haplotype analysis confirmed 5 QTLs among the initially identified 9 QTLs. Two QTLs, qRWC1.1 and qYLD7.1, were chosen based on high SNP density. Candidate gene-based analysis revealed distinct haplotypes in qYLD7.1 associated with significant phenotypic differences, potentially linked to pathways for secondary metabolite biosynthesis. These identified candidate genes bolster defenses through flavonoids and phenylalanine-derived compounds, aiding UV protection, pathogen resistance, and plant structure.The study provides novel genomic regions and candidate genes which can be utilized in genomics-assisted breeding of superior drought tolerant chickpea cultivars.
Collapse
Affiliation(s)
- Yashwant K Yadava
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - Pooja Chaudhary
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - Sheel Yadav
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - Aqeel Hasan Rizvi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Tapan Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rachna Srivastava
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - K R Soren
- ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | - C Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - R Srinivasan
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India
| | - P K Jain
- ICAR-National Institute for Plant Biotechnology, IARI Campus, New Delhi, 110012, India.
| |
Collapse
|
11
|
Huo WQ, Zhang ZQ, Ren ZY, Zhao JJ, Song CX, Wang XX, Pei XY, Liu YG, He KL, Zhang F, Li XY, Li W, Yang DG, Ma XF. Unraveling genomic regions and candidate genes for multiple disease resistance in upland cotton using meta-QTL analysis. Heliyon 2023; 9:e18731. [PMID: 37576216 PMCID: PMC10412778 DOI: 10.1016/j.heliyon.2023.e18731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023] Open
Abstract
Verticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance. Here, an improved and comprehensive meta-QTL analysis was conducted on 487 disease resistant QTLs from 31 studies in the last two decades. A consensus linkage map with genetic overall length of 3006.59 cM containing 8650 markers was constructed. A total of 28 Meta-QTLs (MQTLs) were discovered, among which nine MQTLs were identified as related to resistance to multiple diseases. Candidate genes were predicted based on public transcriptome data and enriched in pathways related to disease resistance. This study used a method based on the integration of Meta-QTL, known genes and transcriptomics to reveal major genomic regions and putative candidate genes for resistance to multiple diseases, providing a new basis for marker-assisted selection of high disease resistance in cotton breeding.
Collapse
Affiliation(s)
- Wen-Qi Huo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi-Qiang Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhong-Ying Ren
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jun-Jie Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Cheng-Xiang Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xing-Xing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao-Yu Pei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan-Gai Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun-Lun He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xin-Yang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Dai-Gang Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xiong-Feng Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| |
Collapse
|
12
|
Anwar Z, Ijaz A, Ditta A, Wang B, Liu F, Khan SMUD, Haidar S, Hassan HM, Khan MKR. Genomic Dynamics and Functional Insights under Salt Stress in Gossypium hirsutum L. Genes (Basel) 2023; 14:1103. [PMID: 37239463 PMCID: PMC10218025 DOI: 10.3390/genes14051103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The changing climate is intensifying salt stress globally. Salt stress is a menace to cotton crop quality and yield. The seedling, germination, and emergence phases are more prone to the effects of salt stress than other stages. Higher levels of salt can lead to delayed flowering, a reduced number of fruiting positions, shedding of fruits, decreased boll weight, and yellowing of fiber, all of which have an adverse effect on the yield and quality of the seed cotton. However, sensitivity toward salt stress is dependent on the salt type, cotton growth phase, and genotype. As the threat of salt stress continues to grow, it is crucial to gain a comprehensive understanding of the mechanisms underlying salt tolerance in plants and to identify potential avenues for enhancing the salt tolerance of cotton. The emergence of marker-assisted selection, in conjunction with next-generation sequencing technologies, has streamlined cotton breeding efforts. This review begins by providing an overview of the causes of salt stress in cotton, as well as the underlying theory of salt tolerance. Subsequently, it summarizes the breeding methods that utilize marker-assisted selection, genomic selection, and techniques for identifying elite salt-tolerant markers in wild species or mutated materials. Finally, novel cotton breeding possibilities based on the approaches stated above are presented and debated.
Collapse
Affiliation(s)
- Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong 226000, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China;
| | - Sana Muhy-Ud-Din Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Hafiz Mumtaz Hassan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 45650, Pakistan; (Z.A.); (A.I.); (A.D.); (S.M.-U.-D.K.); (S.H.); (H.M.H.)
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| |
Collapse
|
13
|
Schoonmaker AN, Hulse-Kemp AM, Youngblood RC, Rahmat Z, Atif Iqbal M, Rahman MU, Kochan KJ, Scheffler BE, Scheffler JA. Detecting Cotton Leaf Curl Virus Resistance Quantitative Trait Loci in Gossypium hirsutum and iCottonQTL a New R/Shiny App to Streamline Genetic Mapping. PLANTS (BASEL, SWITZERLAND) 2023; 12:1153. [PMID: 36904013 PMCID: PMC10005503 DOI: 10.3390/plants12051153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Cotton leaf curl virus (CLCuV) causes devastating losses to fiber production in Central Asia. Viral spread across Asia in the last decade is causing concern that the virus will spread further before resistant varieties can be bred. Current development depends on screening each generation under disease pressure in a country where the disease is endemic. We utilized quantitative trait loci (QTL) mapping in four crosses with different sources of resistance to identify single nucleotide polymorphism (SNP) markers associated with the resistance trait to allow development of varieties without the need for field screening every generation. To assist in the analysis of multiple populations, a new publicly available R/Shiny App was developed to streamline genetic mapping using SNP arrays and to also provide an easy method to convert and deposit genetic data into the CottonGen database. Results identified several QTL from each cross, indicating possible multiple modes of resistance. Multiple sources of resistance would provide several genetic routes to combat the virus as it evolves over time. Kompetitive allele specific PCR (KASP) markers were developed and validated for a subset of QTL, which can be used in further development of CLCuV-resistant cotton lines.
Collapse
Affiliation(s)
- Ashley N. Schoonmaker
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Amanda M. Hulse-Kemp
- Bioinformatics Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
- USDA Agricultural Research Service, Genomics and Bioinformatics Research Unit, Raleigh, NC 27695, USA
| | - Ramey C. Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| | - Zainab Rahmat
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences, (NIBGE-C, PIEAS), Faisalabad 38000, Punjab, Pakistan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Muhammad Atif Iqbal
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Mehboob-ur Rahman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Kelli J. Kochan
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Brian E. Scheffler
- USDA Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Jodi A. Scheffler
- USDA Agricultural Research Service, Crop Genetics Research Unit, Stoneville, MS 38776, USA
| |
Collapse
|
14
|
Yang Z, Gao C, Zhang Y, Yan Q, Hu W, Yang L, Wang Z, Li F. Recent progression and future perspectives in cotton genomic breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:548-569. [PMID: 36226594 DOI: 10.1111/jipb.13388] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Upland cotton is an important global cash crop for its long seed fibers and high edible oil and protein content. Progress in cotton genomics promotes the advancement of cotton genetics, evolutionary studies, functional genetics, and breeding, and has ushered cotton research and breeding into a new era. Here, we summarize high-impact genomics studies for cotton from the last 10 years. The diploid Gossypium arboreum and allotetraploid Gossypium hirsutum are the main focus of most genetic and genomic studies. We next review recent progress in cotton molecular biology and genetics, which builds on cotton genome sequencing efforts, population studies, and functional genomics, to provide insights into the mechanisms shaping abiotic and biotic stress tolerance, plant architecture, seed oil content, and fiber development. We also suggest the application of novel technologies and strategies to facilitate genome-based crop breeding. Explosive growth in the amount of novel genomic data, identified genes, gene modules, and pathways is now enabling researchers to utilize multidisciplinary genomics-enabled breeding strategies to cultivate "super cotton", synergistically improving multiple traits. These strategies must rise to meet urgent demands for a sustainable cotton industry.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chenxu Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yihao Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingdi Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
15
|
Chen H, Han Z, Ma Q, Dong C, Ning X, Li J, Lin H, Xu S, Li Y, Hu Y, Si Z, Song Q. Identification of elite fiber quality loci in upland cotton based on the genotyping-by-target-sequencing technology. FRONTIERS IN PLANT SCIENCE 2022; 13:1027806. [PMID: 36407612 PMCID: PMC9669494 DOI: 10.3389/fpls.2022.1027806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Genome-wide association studies (GWAS) of fiber quality traits of upland cotton were conducted to identify the single-nucleotide polymorphic (SNP) loci associated with cotton fiber quality, which lays the foundation for the mining of elite] cotton fiber gene resources and its application in molecular breeding. A total of 612 upland cotton accessions were genotyped using the ZJU Cotton Chip No. 1 40K chip array via the liquid-phase probe hybridization-based genotyping-by-target-sequencing (GBTS) technology. In the present study, five fiber quality traits, namely fiber length, fiber strength, micronaire, uniformity and elongation, showed different degrees of variation in different environments. The average coefficient of variation of fiber strength was the greatest, whereas the average coefficient of variation of uniformity was the least. Significant or extremely significant correlations existed among the five fiber quality traits, especially fiber length, strength, uniformity and elongation all being significantly negative correlated with micronaire. Population cluster analysis divided the 612 accessions into four groups: 73 assigned to group I, 226 to group II, 220 to group III and 93 to group IV. Genome-wide association studies of five fiber quality traits in five environments was performed and a total of 42 SNP loci associated with target traits was detected, distributed on 19 chromosomes, with eight loci associated with fiber length, five loci associated with fiber strength, four loci associated with micronaire, twelve loci associated with fiber uniformity and thirteen loci associated with fiber elongation. Of them, seven loci were detected in more than two environments. Nine SNP loci related to fiber length, fiber strength, uniformity and elongation were found on chromosome A07, seven loci related to fiber length, fiber strength, micronaire and elongation were detected on chromosome D01, and five loci associated with fiber length, uniformity and micronaire were detected on chromosome D11. The results from this study could provide more precise molecular markers and genetic resources for cotton breeding for better fiber quality in the future.
Collapse
Affiliation(s)
- Hong Chen
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Research Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi Ma
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Chengguang Dong
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Xinzhu Ning
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Jilian Li
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Hai Lin
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Shouzhen Xu
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Yiqian Li
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Research Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Research Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Research Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qingping Song
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| |
Collapse
|
16
|
Yasir M, Kanwal HH, Hussain Q, Riaz MW, Sajjad M, Rong J, Jiang Y. Status and prospects of genome-wide association studies in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1019347. [PMID: 36330239 PMCID: PMC9623101 DOI: 10.3389/fpls.2022.1019347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics. Many areas of crop research have incorporated GWAS in plants and considerable literature has been published in the recent decade. Here we will provide a comprehensive review of GWAS studies in cotton crop, which includes case studies on biotic resistance, abiotic tolerance, fiber yield and quality traits, current status, prospects, bottlenecks of GWAS and finally, thought-provoking question. This review will serve as a catalog of GWAS in cotton and suggest new frontiers of the cotton crop to be studied with this important tool.
Collapse
Affiliation(s)
- Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Hafiza Hamrah Kanwal
- School of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yurong Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
17
|
Chen Y, Gao Y, Chen P, Zhou J, Zhang C, Song Z, Huo X, Du Z, Gong J, Zhao C, Wang S, Zhang J, Wang F, Zhang J. Genome-wide association study reveals novel quantitative trait loci and candidate genes of lint percentage in upland cotton based on the CottonSNP80K array. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2279-2295. [PMID: 35570221 DOI: 10.1007/s00122-022-04111-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Thirty-four SNPs corresponding with 22 QTLs for lint percentage, including 13 novel QTLs, was detected via GWAS. Two candidate genes underlying this trait were also identified. Cotton (Gossypium spp.) is an important natural textile fiber and oilseed crop cultivated worldwide. Lint percentage (LP, %) is one of the important yield components, and increasing LP is a core goal of cotton breeding improvement. However, the genetic and molecular mechanisms underlying LP in upland cotton remain unclear. Here, we performed a genome-wide association study (GWAS) for LP based on 254 upland cotton accessions in four environments as well as the best linear unbiased predictors using the high-density CottonSNP80K array. In total, 41,413 high-quality single-nucleotide polymorphisms (SNPs) were screened, and 34 SNPs within 22 quantitative trait loci (QTLs) were significantly associated with LP. In total, 175 candidate genes were identified from two major genomic loci (GR1 and GR2), and 50 hub genes were identified through GO enrichment and weighted gene co-expression network analysis. Two candidate genes (Gh_D01G0162 and Gh_D07G0463), which may participate in early fiber development to affect the number of fiber protrusions and LP, were also identified. Their genetic variation and expression were verified by linkage disequilibrium blocks, haplotypes, and quantitative real-time polymerase chain reaction, respectively. The weighted gene interaction network analysis showed that the expression of Gh_D07G0463 was significantly correlated with that of Gh_D01G0162. These identified SNPs, QTLs and candidate genes provide important insights into the genetic and molecular mechanisms underlying variations in LP and serve as a foundation for LP improvement via marker-assisted breeding.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yang Gao
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Juan Zhou
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chuanyun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xuehan Huo
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Zhaohai Du
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chengjie Zhao
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shengli Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Institute of Industrial Crops, Ministry of Agriculture and Rural Affairs of China, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| |
Collapse
|
18
|
Guo X, Wang Y, Hou Y, Zhou Z, Sun R, Qin T, Wang K, Liu F, Wang Y, Huang Z, Xu Y, Cai X. Genome-Wide Dissection of the Genetic Basis for Drought Tolerance in Gossypium hirsutum L. Races. FRONTIERS IN PLANT SCIENCE 2022; 13:876095. [PMID: 35837453 PMCID: PMC9274165 DOI: 10.3389/fpls.2022.876095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Drought seriously threats the growth and development of Gossypium hirsutum L. To dissect the genetic basis for drought tolerance in the G. hirsutum L. germplasm, a population, consisting of 188 accessions of G. hirsutum races and a cultivar (TM-1), was genotyped using the Cotton80KSNP biochip, and 51,268 high-quality single-nucleotide polymorphisms (SNPs) were obtained. Based on the phenotypic data of eight drought relative traits from four environments, we carried out association mapping with five models using GAPIT software. In total, thirty-six SNPs were detected significantly associated at least in two environments or two models. Among these SNPs, 8 and 28 (including 24 SNPs in 5 peak regions) were distributed in the A and D subgenome, respectively; eight SNPs were found to be distributed within separate genes. An SNP, TM73079, located on chromosome D10, was simultaneously associated with leaf fresh weight, leaf wilted weight, and leaf dry weight. Another nine SNPs, TM47696, TM33865, TM40383, TM10267, TM59672, TM59675, TM59677, TM72359, and TM72361, on chromosomes A13, A10, A12, A5, D6, and D9, were localized within or near previously reported quantitative trait loci for drought tolerance. Moreover, 520 genes located 200 kb up- and down-stream of 36 SNPs were obtained and analyzed based on gene annotation and transcriptome sequencing. The results showed that three candidate genes, Gh_D08G2462, Gh_A03G0043, and Gh_A12G0369, may play important roles in drought tolerance. The current GWAS represents the first investigation into mapping QTL for drought tolerance in G. hirsutum races and provides important information for improving cotton cultivars.
Collapse
Affiliation(s)
- Xinlei Guo
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Wang
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Runrun Sun
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Tengfei Qin
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongwen Huang
- Henan Institute of Science and Technology, Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
19
|
Li C, Dong C, Zhao H, Wang J, Du L, Ai N. Identification of superior parents with high fiber quality using molecular markers and phenotypes based on a core collection of upland cotton ( Gossypium hirsutum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:30. [PMID: 37312963 PMCID: PMC10248707 DOI: 10.1007/s11032-022-01300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
The combination of molecular markers and phenotypes to select superior parents has become the goal of modern breeders. In this study, 491 upland cotton (Gossypium hirsutum L.) accessions were genotyped using the CottonSNP80K array and then a core collection (CC) was constructed. Superior parents with high fiber quality were identified using molecular markers and phenotypes based on the CC. The Nei diversity index, Shannon's diversity index, and polymorphism information content among chromosomes for 491 accessions ranged from 0.307 to 0.402, 0.467 to 0.587, and 0.246 to 0.316, with mean values of 0.365, 0.542, and 0.291, respectively. A CC containing 122 accessions was established and was categorized into eight clusters based on the K2P genetic distances. From the CC, 36 superior parents (including duplicates) were selected, which contained the elite alleles of markers and ranked in the top 10% of phenotypic values for each fiber quality trait. Among the 36 materials, eight were for fiber length, four were for fiber strength, nine were for fiber micronaire, five were for fiber uniformity, and ten were for fiber elongation. In particular, the nine materials, 348 (Xinluzhong34), 319 (Xinluzhong3), 325 (Xinluzhong9), 397 (L1-14), 205 (XianIII9704), 258 (9D208), 464 (DP201), 467 (DP150), and 465 (DP208), possessed the elite alleles of markers for at least two traits and could be given priority in breeding applications for a more synchronous improvement of fiber quality. The work provides an efficient method for superior parent selection and will facilitate the application of molecular design breeding to cotton fiber quality. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01300-0.
Collapse
Affiliation(s)
- Chengqi Li
- Life Science College, Yuncheng University, Yuncheng, 044000 China
| | - Chengguang Dong
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000 China
| | - Haihong Zhao
- Life Science College, Yuncheng University, Yuncheng, 044000 China
| | - Juan Wang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000 China
| | - Lei Du
- Life Science College, Yuncheng University, Yuncheng, 044000 China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi, 832000 China
| |
Collapse
|
20
|
Boopathi NM, Tiwari GJ, Jena SN, Nandhini K, Sri Subalakhshmi VKI, Shyamala P, Joshi B, Premalatha N, Rajeswari S. Identification of Stable and Multiple Environment Interaction QTLs and Candidate Genes for Fiber Productive Traits Under Irrigated and Water Stress Conditions Using Intraspecific RILs of Gossypium hirsutum var. MCU5 X TCH1218. FRONTIERS IN PLANT SCIENCE 2022; 13:851504. [PMID: 35519814 PMCID: PMC9062235 DOI: 10.3389/fpls.2022.851504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Cotton productivity under water-stressed conditions is controlled by multiple quantitative trait loci (QTL). Enhancement of these productivity traits under water deficit stress is crucial for the genetic improvement of upland cotton, Gossypium hirsutum. In the present study, we constructed a genetic map with 504 single nucleotide polymorphisms (SNPs) covering a total span length of 4,416 cM with an average inter-marker distance of 8.76 cM. A total of 181 intra-specific recombinant inbred lines (RILs) were derived from a cross between G. hirsutum var. MCU5 and TCH1218 were used. Although 2,457 polymorphic SNPs were detected between the parents using the CottonSNP50K assay, only 504 SNPs were found to be useful for the construction of the genetic map. In the SNP genotyping, a large number of SNPs showed either >20% missing data, duplication, or segregation distortion. However, the mapped SNPs of this study showed collinearity with the physical map of the reference genome (G. hirsutum var.TM-1), indicating that there was no chromosomal rearrangement within the studied mapping population. RILs were evaluated under multi-environments and seasons for which the phenotypic data were acquired. A total of 53 QTL controlling plant height (PH), number of sympodial branches, boll number (BN), and boll weight (BW) were dissected by QTL analysis under irrigated and water stress conditions. Additionally, it was found that nine QTL hot spots not only co-localized for more than one investigated trait but were also stable with major QTL, i.e., with > 10% of phenotypic variation. One QTL hotspot on chromosome 22 flanked by AX-182254626-AX-182264770 with a span length of 89.4 cM co-localized with seven major and stable QTL linked to a number of sympodial branches both under irrigated and water stress conditions. In addition, putative candidate genes associated with water stress in the QTL hotspots were identified. Besides, few QTL from the hotspots were previously reported across various genetic architects in cotton validating the potential applications of these identified QTL for cotton breeding and improvement. Thus, the major and stable QTL identified in the present study would improve the cotton productivity under water-limited environments through marker-assisted selection.
Collapse
Affiliation(s)
| | - Gopal Ji Tiwari
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - Satya Narayan Jena
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
| | - Kemparaj Nandhini
- Department of Cotton, CPBG, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Pilla Shyamala
- Department of Plant Biotechnology, CPMB&B, Tamil Nadu Agricultural University, Coimbatore, India
| | - Babita Joshi
- Plant Molecular Genetics Laboratory, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - S. Rajeswari
- Department of Cotton, CPBG, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
21
|
Zhao N, Wang W, Grover CE, Jiang K, Pan Z, Guo B, Zhu J, Su Y, Wang M, Nie H, Xiao L, Guo A, Yang J, Cheng C, Ning X, Li B, Xu H, Adjibolosoo D, Aierxi A, Li P, Geng J, Wendel JF, Kong J, Hua J. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:691-710. [PMID: 34800075 PMCID: PMC8989498 DOI: 10.1111/pbi.13747] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
Sea Island cotton (Gossypium barbadense) is the source of the world's finest fibre quality cotton, yet relatively little is understood about genetic variations among diverse germplasms, genes underlying important traits and the effects of pedigree selection. Here, we resequenced 336 G. barbadense accessions and identified 16 million SNPs. Phylogenetic and population structure analyses revealed two major gene pools and a third admixed subgroup derived from geographical dissemination and interbreeding. We conducted a genome-wide association study (GWAS) of 15 traits including fibre quality, yield, disease resistance, maturity and plant architecture. The highest number of associated loci was for fibre quality, followed by disease resistance and yield. Using gene expression analyses and VIGS transgenic experiments, we confirmed the roles of five candidate genes regulating four key traits, that is disease resistance, fibre length, fibre strength and lint percentage. Geographical and temporal considerations demonstrated selection for the superior fibre quality (fibre length and fibre strength), and high lint percentage in improving G. barbadense in China. Pedigree selection breeding increased Fusarium wilt disease resistance and separately improved fibre quality and yield. Our work provides a foundation for understanding genomic variation and selective breeding of Sea Island cotton.
Collapse
Affiliation(s)
- Nan Zhao
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Weiran Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Corrinne E. Grover
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIAUSA
| | - Kaiyun Jiang
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zhuanxia Pan
- Institute of Cotton ResearchShanxi Agricultural UniversityShanxiChina
| | - Baosheng Guo
- Cotton Research InstituteHebei Academy of Agriculture and Forestry SciencesHebeiChina
| | - Jiahui Zhu
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Ying Su
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Meng Wang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Hushuai Nie
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Li Xiao
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Anhui Guo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jing Yang
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Cheng Cheng
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xinmin Ning
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Bin Li
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Haijiang Xu
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Daniel Adjibolosoo
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Alifu Aierxi
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Pengbo Li
- Institute of Cotton ResearchShanxi Agricultural UniversityShanxiChina
| | - Junyi Geng
- Cotton Research InstituteHebei Academy of Agriculture and Forestry SciencesHebeiChina
| | - Jonathan F. Wendel
- Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesIAUSA
| | - Jie Kong
- Institute of Economic CropsXinjiang Academy of Agricultural SciencesXinjiangChina
| | - Jinping Hua
- Joint Laboratory for International Cooperation in Crop Molecular BreedingMinistry of Education/College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
22
|
Razzaq A, Zafar MM, Ali A, Hafeez A, Sharif F, Guan X, Deng X, Pengtao L, Shi Y, Haroon M, Gong W, Ren M, Yuan Y. The Pivotal Role of Major Chromosomes of Sub-Genomes A and D in Fiber Quality Traits of Cotton. Front Genet 2022; 12:642595. [PMID: 35401652 PMCID: PMC8988190 DOI: 10.3389/fgene.2021.642595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/25/2021] [Indexed: 02/02/2023] Open
Abstract
Lack of precise information about the candidate genes involved in a complex quantitative trait is a major obstacle in the cotton fiber quality improvement, and thus, overall genetic gain in conventional phenotypic selection is low. Recent molecular interventions and advancements in genome sequencing have led to the development of high-throughput molecular markers, quantitative trait locus (QTL) fine mapping, and single nucleotide polymorphisms (SNPs). These advanced tools have resolved the existing bottlenecks in trait-specific breeding. This review demonstrates the significance of chromosomes 3, 7, 9, 11, and 12 of sub-genomes A and D carrying candidate genes for fiber quality. However, chromosome 7 carrying SNPs for stable and potent QTLs related to fiber quality provides great insights for fiber quality-targeted research. This information can be validated by marker-assisted selection (MAS) and transgene in Arabidopsis and subsequently in cotton.
Collapse
Affiliation(s)
- Abdul Razzaq
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Muhammad Mubashar Zafar
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Arfan Ali
- FB Genetics Four Brothers Group, Lahore, Pakistan
| | - Abdul Hafeez
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Faiza Sharif
- University Institute of Physical Therapy, The University of Lahore, Lahore, Pakistan
| | | | - Xiaoying Deng
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Li Pengtao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Muhammad Haroon
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wankui Gong
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Maozhi Ren
- State Key Laboratory of Cotton Biology, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| | - Youlu Yuan
- Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- *Correspondence: Abdul Razzaq, ; Youlu Yuan , ; Maozhi Ren,
| |
Collapse
|
23
|
Zheng J, Zhang Z, Gong Z, Liang Y, Sang Z, Xu Y, Li X, Wang J. Genome-Wide Association Analysis of Salt-Tolerant Traits in Terrestrial Cotton at Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2021; 11:97. [PMID: 35009100 PMCID: PMC8747425 DOI: 10.3390/plants11010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/01/2023]
Abstract
Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Therefore, the selection and utilization of salt-tolerant germplasm resources and the excavation of salt resistance genes play important roles in improving cotton production in saline-alkali soils. In this study, we analysed the population structure and genetic diversity of a total 149 cotton plant materials including 137 elite Gossypium hirsutum cultivar accessions collected from China and 12 elite Gossypium hirsutum cultivar accessions collected from around the world. Illumina Cotton SNP 70 K was used to obtain genome-wide single-nucleotide polymorphism (SNP) data for 149 elite Gossypium hirsutum cultivar accessions, and 18,430 highly consistent SNP loci were obtained by filtering. It was assessed by using PCA principal component analysis so that the 149 elite Gossypium hirsutum cultivar accessions could be divided into two subgroups, including subgroup 1 with 78 materials and subgroup 2 with 71 materials. Using the obtained SNP and other marker genotype test results, under salt stress, the salt tolerance traits 3d Germination potential, 3d Radicle length drop rate, 7d Germination rate, 7d Radicle length drop rate, 7d Germination weight, 3d Radicle length, 7d Radicle length, Relative Germination potential, Relative Germination rate, 7d Radicle weight drop rate, Salt tolerance index 3d Germination potential index, 3d Radicle length index, 7d Radicle length index, 7d Radicle weight index and 7d Germination rate index were evaluated by GWAS (genome-wide association analysis). A total of 27 SNP markers closely related to the salt tolerance traits and 15 SNP markers closely related to the salt tolerance index were detected. At the SNP locus associated with phenotyping, Gh_D01G0943, Gh_D01G0945, Gh_A01G0906, Gh_A01G0908, Gh_D08G1308 and Gh_D08G1309 related to plant salt tolerance were detected, and they were found to be involved in intracellular transport, sucrose synthesis, osmotic pressure balance, transmembrane transport, N-glycosylation, auxin response and cell amplification. This study provides a theoretical basis for the selection and breeding of salt-tolerant upland cotton varieties.
Collapse
Affiliation(s)
- Juyun Zheng
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Zeliang Zhang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Zhaolong Gong
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Yajun Liang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Zhiwei Sang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology (China), Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR-CAAS), Anyang 455000, China;
| | - Xueyuan Li
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| | - Junduo Wang
- Economic Crops Research Institute, Xinjiang Academy of Agricultural Science (XAAS), Urumqi 830001, China; (J.Z.); (Z.Z.); (Z.G.); (Y.L.); (Z.S.)
| |
Collapse
|
24
|
Yu J, Jung S, Cheng CH, Lee T, Zheng P, Buble K, Crabb J, Humann J, Hough H, Jones D, Campbell JT, Udall J, Main D. CottonGen: The Community Database for Cotton Genomics, Genetics, and Breeding Research. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122805. [PMID: 34961276 PMCID: PMC8705096 DOI: 10.3390/plants10122805] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 05/12/2023]
Abstract
Over the last eight years, the volume of whole genome, gene expression, SNP genotyping, and phenotype data generated by the cotton research community has exponentially increased. The efficient utilization/re-utilization of these complex and large datasets for knowledge discovery, translation, and application in crop improvement requires them to be curated, integrated with other types of data, and made available for access and analysis through efficient online search tools. Initiated in 2012, CottonGen is an online community database providing access to integrated peer-reviewed cotton genomic, genetic, and breeding data, and analysis tools. Used by cotton researchers worldwide, and managed by experts with crop-specific knowledge, it continuous to be the logical choice to integrate new data and provide necessary interfaces for information retrieval. The repository in CottonGen contains colleague, gene, genome, genotype, germplasm, map, marker, metabolite, phenotype, publication, QTL, species, transcriptome, and trait data curated by the CottonGen team. The number of data entries housed in CottonGen has increased dramatically, for example, since 2014 there has been an 18-fold increase in genes/mRNAs, a 23-fold increase in whole genomes, and a 372-fold increase in genotype data. New tools include a genetic map viewer, a genome browser, a synteny viewer, a metabolite pathways browser, sequence retrieval, BLAST, and a breeding information management system (BIMS), as well as various search pages for new data types. CottonGen serves as the home to the International Cotton Genome Initiative, managing its elections and serving as a communication and coordination hub for the community. With its extensive curation and integration of data and online tools, CottonGen will continue to facilitate utilization of its critical resources to empower research for cotton crop improvement.
Collapse
Affiliation(s)
- Jing Yu
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Chun-Huai Cheng
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Taein Lee
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Katheryn Buble
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - James Crabb
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Jodi Humann
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Heidi Hough
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
| | - Don Jones
- Cotton Incorporated, Cary, NC 27513, USA;
| | - J. Todd Campbell
- The Agricultural Research Service of U.S. Department of Agriculture, Florence, SC 29501, USA;
| | - Josh Udall
- The Agricultural Research Service of U.S. Department of Agriculture, College Station, TX 77845, USA;
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164, USA; (J.Y.); (S.J.); (C.-H.C.); (T.L.); (P.Z.); (K.B.); (J.C.); (J.H.); (H.H.)
- Correspondence: ; Tel.: +1-509-335-2774
| |
Collapse
|
25
|
Kushanov FN, Turaev OS, Ernazarova DK, Gapparov BM, Oripova BB, Kudratova MK, Rafieva FU, Khalikov KK, Erjigitov DS, Khidirov MT, Kholova MD, Khusenov NN, Amanboyeva RS, Saha S, Yu JZ, Abdurakhmonov IY. Genetic Diversity, QTL Mapping, and Marker-Assisted Selection Technology in Cotton ( Gossypium spp.). FRONTIERS IN PLANT SCIENCE 2021; 12:779386. [PMID: 34975965 PMCID: PMC8716771 DOI: 10.3389/fpls.2021.779386] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023]
Abstract
Cotton genetic resources contain diverse economically important traits that can be used widely in breeding approaches to create of high-yielding elite cultivars with superior fiber quality and adapted to biotic and abiotic stresses. Nevertheless, the creation of new cultivars using conventional breeding methods is limited by the cost and proved to be time consuming process, also requires a space to make field observations and measurements. Decoding genomes of cotton species greatly facilitated generating large-scale high-throughput DNA markers and identification of QTLs that allows confirmation of candidate genes, and use them in marker-assisted selection (MAS)-based breeding programs. With the advances of quantitative trait loci (QTL) mapping and genome-wide-association study approaches, DNA markers associated with valuable traits significantly accelerate breeding processes by replacing the selection with a phenotype to the selection at the DNA or gene level. In this review, we discuss the evolution and genetic diversity of cotton Gossypium genus, molecular markers and their types, genetic mapping and QTL analysis, application, and perspectives of MAS-based approaches in cotton breeding.
Collapse
Affiliation(s)
- Fakhriddin N. Kushanov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- Department of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ozod S. Turaev
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Dilrabo K. Ernazarova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- Department of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Bunyod M. Gapparov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Barno B. Oripova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
- Department of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Mukhlisa K. Kudratova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Feruza U. Rafieva
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Kuvandik K. Khalikov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Doston Sh. Erjigitov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Mukhammad T. Khidirov
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Madina D. Kholova
- Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Naim N. Khusenov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Roza S. Amanboyeva
- Department of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Sukumar Saha
- Crop Science Research Laboratory, USDA-ARS, Washington, DC, United States
| | - John Z. Yu
- Southern Plains Agricultural Research Center, USDA-ARS, Washington, DC, United States
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
26
|
Fan H, Wang T, Li Y, Liu H, Dong Y, Zhang R, Wang H, Shang L, Xing X. Development and validation of a 1 K sika deer (Cervus nippon) SNP Chip. BMC Genom Data 2021; 22:35. [PMID: 34535071 PMCID: PMC8447661 DOI: 10.1186/s12863-021-00994-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background China is the birthplace of the deer family and the country with the most abundant deer resources. However, at present, China’s deer industry faces the problem that pure sika deer and hybrid deer cannot be easily distinguished. Therefore, the development of a SNP identification chip is urgently required. Results In this study, 250 sika deer, 206 red deer, 23 first-generation hybrid deer (F1), 20 s-generation hybrid deer (F2), and 20 third-generation hybrid deer (F3) were resequenced. Using the chromosome-level sika deer genome as the reference sequence, mutation detection was performed on all individuals, and a total of 130,306,923 SNP loci were generated. After quality control filtering was performed, the remaining 31,140,900 loci were confirmed. From molecular-level and morphological analyses, the sika deer reference population and the red deer reference population were established. The Fst values of all SNPs in the two reference populations were calculated. According to customized algorithms and strict screening principles, 1000 red deer-specific SNP sites were finally selected for chip design, and 63 hybrid individuals were determined to contain red deer-specific SNP loci. The results showed that the gene content of red deer gradually decreased in subsequent hybrid generations, and this decrease roughly conformed to the law of statistical genetics. Reaction probes were designed according to the screening sites. All candidate sites met the requirements of the Illumina chip scoring system. The average score was 0.99, and the MAF was in the range of 0.3277 to 0.3621. Furthermore, 266 deer (125 sika deer, 39 red deer, 56 F1, 29 F2,17 F3) were randomly selected for 1 K SNP chip verification. The results showed that among the 1000 SNP sites, 995 probes were synthesized, 4 of which could not be typed, while 973 loci were polymorphic. PCA, random forest and ADMIXTURE results showed that the 1 K sika deer SNP chip was able to clearly distinguish sika deer, red deer, and hybrid deer and that this 1 K SNP chip technology may provide technical support for the protection and utilization of pure sika deer species resources. Conclusion We successfully developed a low-density identification chip that can quickly and accurately distinguish sika deer from their hybrid offspring, thereby providing technical support for the protection and utilization of pure sika deer germplasm resources. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00994-z.
Collapse
Affiliation(s)
- Huanhuan Fan
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Tianjiao Wang
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yang Li
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Huitao Liu
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Yimeng Dong
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Ranran Zhang
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Hongliang Wang
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Liyuan Shang
- Jilin Animal Husbandry and Veterinary Research Institute Changchun, Changchun, 130112, China
| | - Xiumei Xing
- Key Laboratory of Molecular Biology of Special Economic Animals, Institute of Special Products, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
27
|
Gu Q, Ke H, Liu C, Lv X, Sun Z, Liu Z, Rong W, Yang J, Zhang Y, Wu L, Zhang G, Wang X, Ma Z. A stable QTL qSalt-A04-1 contributes to salt tolerance in the cotton seed germination stage. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2399-2410. [PMID: 33928409 DOI: 10.1007/s00122-021-03831-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
A stable QTL qSalt-A04-1 for salt tolerance in the cotton seed germination stage, and two candidate genes, GhGASA1 and GhADC2, that play negative roles by modulating the GA and PA signalling pathways, respectively, were identified. The successful transition of a seed into a seedling is a prerequisite for plant propagation and crop yield. Germination is a vulnerable stage in a plant's life cycle that is strongly affected by environmental conditions, such as salinity. In this study, we identified a novel quantitative trait locus (QTL) qRGR-A04-1 associated with the relative germination rate (RGR) after salt stress treatment based on a high-density genetic map under phytotron and field conditions, with LOD values that ranged from 6.65 to 16.83 and 6.11-12.63% phenotypic variations in all five environmental tests. Two candidate genes with significantly differential expression between the two parents were finally identified through RNA-seq and qRT-PCR analyses. Further functional analyses showed that GhGASA1- and GhADC2-overexpression lines were more sensitive to salt stress than wild-type Arabidopsis based on the regulation of the transcript levels of gibberellic acid (GA)- and polyamine (PA)- related genes in GA and PA biosynthesis and the reduction in the accumulation of GA and PA, respectively, under salt stress. Virus-induced gene silencing analysis showed that TRV:GASA1 and TRV:ADC2 were more tolerant to salt stress than TRV:00 based on the increased expression of GA synthesis genes and decreased H2O2 content, respectively. Taken together, our results suggested that QTL qRGR-A04-1 and its two harboured genes, GhGASA1 and GhADC2, are promising candidates for salt tolerance improvement in cotton.
Collapse
Affiliation(s)
- Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Chenchen Liu
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xing Lv
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Wei Rong
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation/North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
28
|
Finding Needles in a Haystack: Using Geo-References to Enhance the Selection and Utilization of Landraces in Breeding for Climate-Resilient Cultivars of Upland Cotton ( Gossypium hirsutum L.). PLANTS 2021; 10:plants10071300. [PMID: 34206949 PMCID: PMC8309191 DOI: 10.3390/plants10071300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/25/2023]
Abstract
The genetic uniformity of cultivated cotton as a consequence of domestication and modern breeding makes it extremely vulnerable to abiotic challenges brought about by major climate shifts. To sustain productivity amidst worsening agro-environments, future breeding objectives need to seriously consider introducing new genetic variation from diverse resources into the current germplasm base of cotton. Landraces are genetically heterogeneous, population complexes that have been primarily selected for their adaptability to specific localized or regional environments. This makes them an invaluable genetic resource of novel allelic diversity that can be exploited to enhance the resilience of crops to marginal environments. The utilization of cotton landraces in breeding programs are constrained by the phenology of the plant and the lack of phenotypic information that can facilitate efficient selection of potential donor parents for breeding. In this review, the genetic value of cotton landraces and the major challenges in their utilization in breeding are discussed. Two strategies namely Focused Identification of Germplasm Strategy and Environmental Association Analysis that have been developed to effectively screen large germplasm collections for accessions with adaptive traits using geo-reference-based, mathematical modelling are highlighted. The potential applications of both approaches in mining available cotton landrace collections are also presented.
Collapse
|
29
|
Zhu G, Hou S, Song X, Wang X, Wang W, Chen Q, Guo W. Genome-wide association analysis reveals quantitative trait loci and candidate genes involved in yield components under multiple field environments in cotton (Gossypium hirsutum). BMC PLANT BIOLOGY 2021; 21:250. [PMID: 34059007 PMCID: PMC8167989 DOI: 10.1186/s12870-021-03009-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/05/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND Numerous quantitative trait loci (QTLs) and candidate genes associated with yield-related traits have been identified in cotton by genome-wide association study (GWAS) analysis. However, most of the phenotypic data were from a single or few environments, and the stable loci remained to be validated under multiple field environments. RESULTS Here, 242 upland cotton accessions collected from different origins were continuously investigated for phenotypic data of four main yield components, including boll weight (BW) and lint percentage (LP) under 13 field environments, and boll number per plant (BN) and seed index (SI) under 11 environments. Correlation analysis revealed a positive correlation between BN and LP, BW and SI, while SI had a negative correlation with LP and BN. Genetic analysis indicated that LP had the highest heritability estimates of 94.97%, followed by 92.08% for SI, 86.09% for BW, and 72.92% for BN, indicating LP and SI were more suitable traits for genetic improvement. Based on 56,010 high-quality single nucleotide polymorphisms (SNPs) and GWAS analysis, a total of 95 non-redundant QTLs were identified, including 12 of BN, 23 of BW, 45 of LP, and 33 of SI, respectively. Of them, 10 pairs of homologous QTLs were detected between A and D sub-genomes. We also found that 15 co-located QTLs with more than two traits and 12 high-confidence QTLs were detected under more than six environments, respectively. Further, two NET genes (GH_A08G0716 and GH_A08G0783), located in a novel QTL hotspot (qtl24, qtl25 and qlt26) were predominately expressed in early fiber development stages, exhibited significant correlation with LP and SI. The GH_A07G1389 in the stable qtl19 region encoded a tetratricopeptide repeat (TPR)-like superfamily protein and was a homologous gene involved in short fiber mutant ligon lintless-y (Liy), implying important roles in cotton yield. CONCLUSIONS The present study provides a foundation for understanding the regulatory mechanisms of yield components and may enhance yield improvement through molecular breeding in cotton.
Collapse
Affiliation(s)
- Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Sen Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Wei Wang
- Institute of Agricultural Sciences in Coastal Area of Jiangsu Province, Yancheng, 224002 China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
30
|
Song X, Zhu G, Hou S, Ren Y, Amjid MW, Li W, Guo W. Genome-Wide Association Analysis Reveals Loci and Candidate Genes Involved in Fiber Quality Traits Under Multiple Field Environments in Cotton ( Gossypium hirsutum). FRONTIERS IN PLANT SCIENCE 2021; 12:695503. [PMID: 34421946 PMCID: PMC8374309 DOI: 10.3389/fpls.2021.695503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 05/17/2023]
Abstract
Fiber length, fiber strength, and fiber micronaire are the main fiber quality parameters in cotton. Thus, mining the elite and stable loci/alleles related to fiber quality traits and elucidating the relationship between the two may accelerate genetic improvement of fiber quality in cotton. Here, genome-wide association analysis (GWAS) was performed for fiber quality parameters based on phenotypic data, and 56,010 high-quality single nucleotide polymorphisms (SNPs) using 242 upland cotton accessions under 12 field environments were obtained. Phenotypic analysis exhibited that fiber length (FL) had a positive correlation with fiber strength (FS) and had a negative correlation with fiber micronaire (Mic). Genetic analysis also indicated that FL, FS, and Mic had high heritability of more than 80%. A total of 67 stable quantitative trait loci (QTLs) were identified through GWAS analysis, including 31 for FL, 21 for FS, and 22 for Mic. Of them, three pairs homologous QTLs were detected between A and D subgenomes, and seven co-located QTLs with two fiber quality parameters were found. Compared with the reported QTLs, 34 co-located with previous studies, and 33 were newly revealed. Integrated with transcriptome analysis, we selected 256, 244, and 149 candidate genes for FL, FS, and Mic, respectively. Gene Ontology (GO) analysis showed that most of the genes located in QTLs interval of the three fiber quality traits were involved in sugar biosynthesis, sugar metabolism, microtubule, and cytoskeleton organization, which played crucial roles in fiber development. Through correlation analysis between haplotypes and phenotypes, three genes (GH_A05G1494, GH_D11G3097, and GH_A05G1082) predominately expressed in fiber development stages were indicated to be potentially responsible for FL, FS, and Mic, respectively. The GH_A05G1494 encoded a protein containing SGS-domain, which is related to tubulin-binding and ubiquitin-protein ligase binding. The GH_D11G3097 encoded 20S proteasome beta subunit G1, and was involved in the ubiquitin-dependent protein catabolic process. The GH_A05G1082 encoded RAN binding protein 1 with a molecular function of GTPase activator activity. These results provide new insights and candidate loci/genes for the improvement of fiber quality in cotton.
Collapse
|
31
|
Liu W, Song C, Ren Z, Zhang Z, Pei X, Liu Y, He K, Zhang F, Zhao J, Zhang J, Wang X, Yang D, Li W. Genome-wide association study reveals the genetic basis of fiber quality traits in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2020; 20:395. [PMID: 32854609 PMCID: PMC7450593 DOI: 10.1186/s12870-020-02611-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/18/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Fiber quality is an important economic trait of cotton, and its improvement is a major goal of cotton breeding. To better understand the genetic mechanisms responsible for fiber quality traits, we conducted a genome-wide association study to identify and mine fiber-quality-related quantitative trait loci (QTLs) and genes. RESULTS In total, 42 single nucleotide polymorphisms (SNPs) and 31 QTLs were identified as being significantly associated with five fiber quality traits. Twenty-five QTLs were identified in previous studies, and six novel QTLs were firstly identified in this study. In the QTL regions, 822 genes were identified and divided into four clusters based on their expression profiles. We also identified two pleiotropic SNPs. The SNP locus i52359Gb was associated with fiber elongation, strength, length and uniformity, while i11316Gh was associated with fiber strength and length. Moreover, these two SNPs were nonsynonymous and located in genes Gh_D09G2376 and Gh_D06G1908, respectively. RT-qPCR analysis revealed that these two genes were preferentially expressed at one or more stages of cotton fiber development, which was consistent with the RNA-seq data. Thus, Gh_D09G2376 and Gh_D06G1908 may be involved in fiber developmental processes. CONCLUSIONS The findings of this study provide insights into the genetic bases of fiber quality traits, and the identified QTLs or genes may be applicable in cotton breeding to improve fiber quality.
Collapse
Affiliation(s)
- Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chengxiang Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhiqiang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Li
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou, 450002, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
32
|
Li S, Zhang C, Lu M, Yang D, Qian Y, Yue Y, Zhang Z, Jin F, Wang M, Liu X, Liu W, Li X. QTL mapping and GWAS for field kernel water content and kernel dehydration rate before physiological maturity in maize. Sci Rep 2020; 10:13114. [PMID: 32753586 PMCID: PMC7403598 DOI: 10.1038/s41598-020-69890-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/20/2020] [Indexed: 11/09/2022] Open
Abstract
Kernel water content (KWC) and kernel dehydration rate (KDR) are two main factors affecting maize seed quality and have a decisive influence on the mechanical harvest. It is of great importance to map and mine candidate genes related to KWCs and KDRs before physiological maturity in maize. 120 double-haploid (DH) lines constructed from Si287 with low KWC and JiA512 with high KWC were used as the mapping population. KWCs were measured every 5 days from 10 to 40 days after pollination, and KDRs were calculated. A total of 1702 SNP markers were used to construct a linkage map, with a total length of 1,309.02 cM and an average map distance of 0.77 cM. 10 quantitative trait loci (QTLs) and 27 quantitative trait nucleotides (QTNs) were detected by genome-wide composite interval mapping (GCIM) and multi-locus random-SNP-effect mixed linear model (mrMLM), respectively. One and two QTL hotspot regions were found on Chromosome 3 and 7, respectively. Analysis of the Gene Ontology showed that 2 GO terms of biological processes (BP) were significantly enriched (P ≤ 0.05) and 6 candidate genes were obtained. This study provides theoretical support for marker-assisted breeding of mechanical harvest variety in maize.
Collapse
Affiliation(s)
- Shufang Li
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Kemaoxi Street 303, Gongzhuling, 136100, Jilin Province, China
| | - Chunxiao Zhang
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Kemaoxi Street 303, Gongzhuling, 136100, Jilin Province, China
| | - Ming Lu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Deguang Yang
- College of Agronomy, Northeast Agricultural University, Harbin, 150030, China
| | - Yiliang Qian
- Maize Research Center, Anhui Academy of Agricultural Science, Hefei, 230001, China
| | - Yaohai Yue
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Zhijun Zhang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Fengxue Jin
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Kemaoxi Street 303, Gongzhuling, 136100, Jilin Province, China
| | - Min Wang
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China
| | - Xueyan Liu
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Kemaoxi Street 303, Gongzhuling, 136100, Jilin Province, China
| | - Wenguo Liu
- Maize Research Institute, Jilin Academy of Agricultural Sciences, Gongzhuling, 136100, China.
| | - Xiaohui Li
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Kemaoxi Street 303, Gongzhuling, 136100, Jilin Province, China.
| |
Collapse
|
33
|
Perry A, Wachowiak W, Downing A, Talbot R, Cavers S. Development of a single nucleotide polymorphism array for population genomic studies in four European pine species. Mol Ecol Resour 2020; 20:1697-1705. [PMID: 32633888 DOI: 10.1111/1755-0998.13223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Pines are some of the most ecologically and economically important tree species in the world, and many have enormous natural distributions or have been extensively planted. However, a lack of rapid genotyping capability is hampering progress in understanding the molecular basis of genetic variation in these species. Here, we deliver an efficient tool for genotyping thousands of single nucleotide polymorphism (SNP) markers across the genome that can be applied to genetic studies in pines. Polymorphisms from resequenced candidate genes and transcriptome sequences of P. sylvestris, P. mugo, P. uncinata, P. uliginosa and P. radiata were used to design a 49,829 SNP array (Axiom_PineGAP, Thermo Fisher). Over a third (34.68%) of the unigenes identified from the P. sylvestris transcriptome were represented on the array, which was used to screen samples of four pine species. The conversion rate for the array on all samples was 42% (N = 20,795 SNPs) and was similar for SNPs sourced from resequenced candidate gene and transcriptome sequences. The broad representation of gene ontology terms by unigenes containing converted SNPs reflected their coverage across the full transcriptome. Over a quarter of successfully converted SNPs were polymorphic among all species, and the data were successful in discriminating among the species and some individual populations. The SNP array provides a valuable new tool to advance genetic studies in these species and demonstrates the effectiveness of the technology for rapid genotyping in species with large and complex genomes.
Collapse
Affiliation(s)
- Annika Perry
- UK Centre for Ecology & Hydrology Edinburgh, Penicuik, UK
| | - Witold Wachowiak
- Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Alison Downing
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Richard Talbot
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Stephen Cavers
- UK Centre for Ecology & Hydrology Edinburgh, Penicuik, UK
| |
Collapse
|
34
|
Su X, Zhu G, Song X, Xu H, Li W, Ning X, Chen Q, Guo W. Genome-wide association analysis reveals loci and candidate genes involved in fiber quality traits in sea island cotton (Gossypium barbadense). BMC PLANT BIOLOGY 2020; 20:289. [PMID: 32571222 PMCID: PMC7310526 DOI: 10.1186/s12870-020-02502-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/17/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Sea island cotton (Gossypium barbadense) has markedly superior high quality fibers, which plays an important role in the textile industry and acts as a donor for upland cotton (G. hirsutum) fiber quality improvement. The genetic characteristics analysis and the identification of key genes will be helpful to understand the mechanism of fiber development and breeding utilization in sea island cotton. RESULTS In this study, 279 sea island cotton accessions were collected from different origins for genotyping and phenotyping fiber quality traits. A set of 6303 high quality single nucleotide polymorphisms (SNPs) were obtained by high-density CottonSNP80K array. The population characteristics showed that the sea island cotton accessions had wide genetic diversity and were clustered into three groups, with Group1 closely related to Menoufi, an original sea island cotton landrace, and Group2 and Group3 related to widely introduced accessions from Egypt, USA and Former Soviet Union. Further, we used 249 accessions and evaluated five fiber quality traits under normal and salt environments over 2 years. Except for fiber uniformity (FU), fiber length (FL) and fiber elongation (FE) were significantly decreased in salt conditions, while fiber strength (FS) and fiber micronaire (MIC) were increased. Based on 6303 SNPs and genome-wide association study (GWAS) analysis, a total of 34 stable quantitative trait loci (QTLs) were identified for the five fiber quality traits with 25 detected simultaneously under normal and salt environments. Gene Ontology (GO) analysis indicated that candidate genes in the 25 overlapped QTLs were enriched mostly in "cellular and biological process". In addition, "xylem development" and "response to hormone" pathways were also found. Haplotype analyses found that GB_A03G0335 encoding an E3 ubiquitin-protein ligase in QTL TM6004 had SNP variation (A/C) in gene region, was significantly correlated with FL, FS, FU, and FE, implying a crucial role in fiber quality. CONCLUSIONS The present study provides a foundation for genetic diversity of sea island cotton accessions and will contribute to fiber quality improvement in breeding practice.
Collapse
Affiliation(s)
- Xiujuan Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaohui Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Haijiang Xu
- Institute of Industrial Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091 China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| | - Xinzhu Ning
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000 China
| | - Quanjia Chen
- Engineering Research Center for Cotton (the Ministry of Education), Xinjiang Agricultural University, Urumqi, 830052 China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Engineering Research Center of Hybrid Cotton Development (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
35
|
Tong Z, Fang D, Chen X, Jiao F, Zhang Y, Li Y, Xiao B. Genome-wide association study of leaf chemistry traits in tobacco. BREEDING SCIENCE 2020; 70:253-264. [PMID: 32714047 PMCID: PMC7372018 DOI: 10.1270/jsbbs.19067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/27/2019] [Indexed: 06/11/2023]
Abstract
Leaf chemistry traits are some of the key factors influencing tobacco quality, which can be significantly reduced by lower chemical components in cured leaf. To improve tobacco quality through breeding, genetic diversity analysis, population structure analysis, and genome-wide association studies were performed in a panel of 347 tobacco germplasms and the markers associated with five leaf chemistry traits, including total sugar (TS), reducing sugar (RS), total nitrogen (TN), nicotine (NIC), and total potassium (TP) contents were identified. Four groups were classified at a genetic distance of 0.316 by genetic diversity analysis based on coefficient parameter NEI72 using a program NTSYS-pc2.10e, whereas four well-differentiated subpopulations were postulated in the 347 tobacco accessions. A total of 47 target trait-associated SNPs was detected in at least three environments as well as the best linear unbiased predictions (BLUPs) across all environments, among which two, two, four, six, and one highly suggestive associated SNPs were repeatedly detected in all environments and BLUPs for TS, RS, TN, NIC, and TP, respectively. On the basis of the phenotypic effects of the alleles corresponding to suggestive associated SNPs, five tobacco accessions harboring favorable alleles with elite phenotypic performance in leaf chemistry traits were identified. The results could facilitate quality tobacco breeding for higher leaf chemistry trait contents through molecular marker-assisted approaches.
Collapse
Affiliation(s)
- Zhijun Tong
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, People’s Republic of China
| | - Dunhuang Fang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, People’s Republic of China
| | - Xuejun Chen
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, People’s Republic of China
| | - Fangchan Jiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, People’s Republic of China
| | - Yihan Zhang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, People’s Republic of China
| | - Yongping Li
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, People’s Republic of China
| | - Bingguang Xiao
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, People’s Republic of China
| |
Collapse
|
36
|
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1791-1810. [PMID: 32040676 PMCID: PMC7214393 DOI: 10.1007/s00122-020-03560-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing placement of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of the trait architectures of agricultural significance will be crucial to accelerate crop improvement.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|
37
|
Wang F, Zhang J, Chen Y, Zhang C, Gong J, Song Z, Zhou J, Wang J, Zhao C, Jiao M, Liu A, Du Z, Yuan Y, Fan S, Zhang J. Identification of candidate genes for key fibre-related QTLs and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:707-720. [PMID: 31446669 PMCID: PMC7004909 DOI: 10.1111/pbi.13237] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/15/2019] [Indexed: 05/02/2023]
Abstract
Fine mapping QTLs and identifying candidate genes for cotton fibre-quality and yield traits would be beneficial to cotton breeding. Here, we constructed a high-density genetic map by specific-locus amplified fragment sequencing (SLAF-seq) to identify QTLs associated with fibre-quality and yield traits using 239 recombinant inbred lines (RILs), which was developed from LMY22 (a high-yield Gossypium hirsutumL. cultivar) × LY343 (a superior fibre-quality germplasm with G. barbadenseL. introgressions). The genetic map spanned 3426.57 cM, including 3556 SLAF-based SNPs and 199 SSR marker loci. A total of 104 QTLs, including 67 QTLs for fibre quality and 37 QTLs for yield traits, were identified with phenotypic data collected from 7 environments. Among these, 66 QTLs were co-located in 19 QTL clusters on 12 chromosomes, and 24 QTLs were detected in three or more environments and determined to be stable. We also investigated the genomic components of LY343 and their contributions to fibre-related traits by deep sequencing the whole genome of LY343, and we found that genomic components from G. hirsutum races (which entered LY343 via its G. barbadense parent) contributed more favourable alleles than those from G. barbadense. We further identified six putative candidate genes for stable QTLs, including Gh_A03G1147 (GhPEL6), Gh_D07G1598 (GhCSLC6) and Gh_D13G1921 (GhTBL5) for fibre-length QTLs and Gh_D03G0919 (GhCOBL4), Gh_D09G1659 (GhMYB4) and Gh_D09G1690 (GhMYB85) for lint-percentage QTLs. Our results provide comprehensive insight into the genetic basis of the formation of fibre-related traits and would be helpful for cloning fibre-development-related genes as well as for marker-assisted genetic improvement in cotton.
Collapse
Affiliation(s)
- Furong Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Chuanyun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Juwu Gong
- State Key Laboratory of Cotton BiologyKey Laboratory of Biological and Genetic Breeding of CottonMinistry of AgricultureInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Juan Zhou
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Jingjing Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Chengjie Zhao
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Mengjia Jiao
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Aiying Liu
- State Key Laboratory of Cotton BiologyKey Laboratory of Biological and Genetic Breeding of CottonMinistry of AgricultureInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zhaohai Du
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
| | - Youlu Yuan
- State Key Laboratory of Cotton BiologyKey Laboratory of Biological and Genetic Breeding of CottonMinistry of AgricultureInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Shoujin Fan
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Jun Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai PlainMinistry of AgricultureCotton Research Center of Shandong Academy of Agricultural SciencesJinanChina
- College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
38
|
Genetic Analysis of the Transition from Wild to Domesticated Cotton ( Gossypium hirsutum L.). G3-GENES GENOMES GENETICS 2020; 10:731-754. [PMID: 31843806 PMCID: PMC7003101 DOI: 10.1534/g3.119.400909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution and domestication of cotton is of great interest from both economic and evolutionary standpoints. Although many genetic and genomic resources have been generated for cotton, the genetic underpinnings of the transition from wild to domesticated cotton remain poorly known. Here we generated an intraspecific QTL mapping population specifically targeting domesticated cotton phenotypes. We used 466 F2 individuals derived from an intraspecific cross between the wild Gossypium hirsutum var. yucatanense (TX2094) and the elite cultivar G. hirsutum cv. Acala Maxxa, in two environments, to identify 120 QTL associated with phenotypic changes under domestication. While the number of QTL recovered in each subpopulation was similar, only 22 QTL were considered coincident (i.e., shared) between the two locations, eight of which shared peak markers. Although approximately half of QTL were located in the A-subgenome, many key fiber QTL were detected in the D-subgenome, which was derived from a species with unspinnable fiber. We found that many QTL are environment-specific, with few shared between the two environments, indicating that QTL associated with G. hirsutum domestication are genomically clustered but environmentally labile. Possible candidate genes were recovered and are discussed in the context of the phenotype. We conclude that the evolutionary forces that shape intraspecific divergence and domestication in cotton are complex, and that phenotypic transformations likely involved multiple interacting and environmentally responsive factors.
Collapse
|
39
|
Wang Y, Li G, Guo X, Sun R, Dong T, Yang Q, Wang Q, Li C. Dissecting the genetic architecture of seed-cotton and lint yields in Upland cotton using genome-wide association mapping. BREEDING SCIENCE 2019; 69:611-620. [PMID: 31988625 PMCID: PMC6977443 DOI: 10.1270/jsbbs.19057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/23/2019] [Indexed: 05/18/2023]
Abstract
Seed-cotton yield (SY) and lint yield (LY) are the most important yield traits of cotton. Thus, it is critical to dissect their genetic architecture. Upland cotton (Gossypium hirsutum) is widely grown worldwide. In this study, a genome-wide association mapping was performed based on the CottonSNP80K array to dissect the genetic architecture of SY and LY in Upland cotton. Twenty-three significant associations were detected within four environments, including 11 associated with SY and 12 associated with LY. Seven single nucleotide polymorphisms (SNPs), TM234, TM237, TM247, TM255, TM256, TM263, and TM264, were co-associated with the two traits, which may indicate pleiotropy or intergenic tight linkages. Five SNPs, TM13332, TM39771, TM57119, TM81653, and TM81660, were coincided with those of previous reports and could be used in marker-assisted selection. Combining functional annotations with expression analyses of the genes identified within 400 kb of the significantly associated SNPs, we hypothesize that the three genes, Gh_D05G1077 and Gh_D13G1571 for SY, and Gh_A11G0775 for LY, may have the potential to increase cotton yield. The results would provide useful information for understanding the genetic basis of yield traits in Upland cotton and for facilitating its high-yield breeding through molecular design.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Guirong Li
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Xinlei Guo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics,
Beijing 100081,
China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Tao Dong
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Qiuyue Yang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
| | - Chengqi Li
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology,
Xinxiang 453003,
China
- Corresponding author (e-mail: )
| |
Collapse
|
40
|
Zhang K, Kuraparthy V, Fang H, Zhu L, Sood S, Jones DC. High-density linkage map construction and QTL analyses for fiber quality, yield and morphological traits using CottonSNP63K array in upland cotton (Gossypium hirsutum L.). BMC Genomics 2019; 20:889. [PMID: 31771502 PMCID: PMC6878679 DOI: 10.1186/s12864-019-6214-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background Improving fiber quality and yield are the primary research objectives in cotton breeding for enhancing the economic viability and sustainability of Upland cotton production. Identifying the quantitative trait loci (QTL) for fiber quality and yield traits using the high-density SNP-based genetic maps allows for bridging genomics with cotton breeding through marker assisted and genomic selection. In this study, a recombinant inbred line (RIL) population, derived from cross between two parental accessions, which represent broad allele diversity in Upland cotton, was used to construct high-density SNP-based linkage maps and to map the QTLs controlling important cotton traits. Results Molecular genetic mapping using RIL population produced a genetic map of 3129 SNPs, mapped at a density of 1.41 cM. Genetic maps of the individual chromosomes showed good collinearity with the sequence based physical map. A total of 106 QTLs were identified which included 59 QTLs for six fiber quality traits, 38 QTLs for four yield traits and 9 QTLs for two morphological traits. Sub-genome wide, 57 QTLs were mapped in A sub-genome and 49 were mapped in D sub-genome. More than 75% of the QTLs with favorable alleles were contributed by the parental accession NC05AZ06. Forty-six mapped QTLs each explained more than 10% of the phenotypic variation. Further, we identified 21 QTL clusters where 12 QTL clusters were mapped in the A sub-genome and 9 were mapped in the D sub-genome. Candidate gene analyses of the 11 stable QTL harboring genomic regions identified 19 putative genes which had functional role in cotton fiber development. Conclusion We constructed a high-density genetic map of SNPs in Upland cotton. Collinearity between genetic and physical maps indicated no major structural changes in the genetic mapping populations. Most traits showed high broad-sense heritability. One hundred and six QTLs were identified for the fiber quality, yield and morphological traits. Majority of the QTLs with favorable alleles were contributed by improved parental accession. More than 70% of the mapped QTLs shared the similar map position with previously reported QTLs which suggest the genetic relatedness of Upland cotton germplasm. Identification of QTL clusters could explain the correlation among some fiber quality traits in cotton. Stable and major QTLs and QTL clusters of traits identified in the current study could be the targets for map-based cloning and marker assisted selection (MAS) in cotton breeding. The genomic region on D12 containing the major stable QTLs for micronaire, fiber strength and lint percentage could be potential targets for MAS and gene cloning of fiber quality traits in cotton.
Collapse
Affiliation(s)
- Kuang Zhang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vasu Kuraparthy
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Hui Fang
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Linglong Zhu
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA
| | - Shilpa Sood
- Crop & Soil Sciences Department, North Carolina State University, Raleigh, NC, 27695, USA.,4 Cityplace drive, The Climate Corporation (Bayer U.S. Crop Science), St. Louis, MO, 63141, USA
| | - Don C Jones
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| |
Collapse
|
41
|
A Genome-Wide Association Study Revealed Key SNPs/Genes Associated With Salinity Stress Tolerance In Upland Cotton. Genes (Basel) 2019; 10:genes10100829. [PMID: 31640174 PMCID: PMC6826536 DOI: 10.3390/genes10100829] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Millions of hectares of land are too saline to produce economically valuable crop yields. Salt tolerance in cotton is an imperative approach for improvement in response to ever-increasing soil salinization. Little is known about the genetic basis of salt tolerance in cotton at the seedling stage. To address this issue, a genome-wide association study (GWAS) was conducted on a core collection of a genetically diverse population of upland cotton (Gossypium hirsutum L.) comprising of 419 accessions, representing various geographic origins, including China, USA, Pakistan, the former Soviet Union, Chad, Australia, Brazil, Mexico, Sudan, and Uganda. Phenotypic evaluation of 7 traits under control (0 mM) and treatment (150 mM) NaCl conditions depicted the presence of broad natural variation in the studied population. The association study was carried out with the efficient mixed-model association eXpedited software package. A total of 17,264 single-nucleotide polymorphisms (SNPs) associated with different salinity stress tolerance related traits were found. Twenty-three candidate SNPs related to salinity stress-related traits were selected. Final key SNPs were selected based on the r2 value with nearby SNPs in a linkage disequilibrium (LD) block. Twenty putative candidate genes surrounding SNPs, A10_95330133 and D10_61258588, associated with leaf relative water content, RWC_150, and leaf fresh weight, FW_150, were identified, respectively. We further validated the expression patterns of twelve candidate genes with qRT-PCR, which revealed different expression levels in salt-tolerant and salt-sensitive genotypes. The results of our GWAS provide useful knowledge about the genetic control of salt tolerance at the seedling stage, which could assist in elucidating the genetic and molecular mechanisms of salinity stress tolerance in cotton plants.
Collapse
|
42
|
Yuan Y, Xing H, Zeng W, Xu J, Mao L, Wang L, Feng W, Tao J, Wang H, Zhang H, Wang Q, Zhang G, Song X, Sun XZ. Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L at the germination stage. BMC PLANT BIOLOGY 2019; 19:394. [PMID: 31510912 PMCID: PMC6737726 DOI: 10.1186/s12870-019-1989-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Salinity is a major abiotic stress seriously hindering crop yield. Development and utilization of tolerant varieties is the most economical way to address soil salinity. Upland cotton is a major fiber crop and pioneer plant on saline soil and thus its genetic architecture underlying salt tolerance should be extensively explored. RESULTS In this study, genome-wide association analysis and RNA sequencing were employed to detect salt-tolerant qualitative-trait loci (QTLs) and candidate genes in 196 upland cotton genotypes at the germination stage. Using comprehensive evaluation values of salt tolerance in four environments, we identified 33 significant single-nucleotide polymorphisms (SNPs), including 17 and 7 SNPs under at least two and four environments, respectively. The 17 stable SNPs were located within or near 98 candidate genes in 13 QTLs, including 35 genes that were functionally annotated to be involved in salt stress responses. RNA-seq analysis indicated that among the 98 candidate genes, 13 were stably differentially expressed. Furthermore, 12 of the 13 candidate genes were verified by qRT-PCR. RNA-seq analysis detected 6640, 3878, and 6462 differentially expressed genes at three sampling time points, of which 869 were shared. CONCLUSIONS These results, including the elite cotton accessions with accurate salt tolerance evaluation, the significant SNP markers, the candidate genes, and the salt-tolerant pathways, could improve our understanding of the molecular regulatory mechanisms under salt stress tolerance and genetic manipulation for cotton improvement.
Collapse
Affiliation(s)
- Yanchao Yuan
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
- College of Life Sciences, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Changcheng Road 700, Qingdao, China
| | - Huixian Xing
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Wenguan Zeng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Jialing Xu
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Lili Mao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Liyuan Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Wei Feng
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Jincai Tao
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Haoran Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Haijun Zhang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Qingkang Wang
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China
| | - Guihua Zhang
- Heze Academy of Agricultural Sciences, Heze, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| | - Xue-Zhen Sun
- State Key Laboratory of Crop Biology/Agronomy College, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
43
|
Feng GL, Zhai FY, Liu HL, Ai NJ. Identification of genomewide single-nucleotide polymorphisms associated with presummer, summer and autumn bolls in upland cotton. J Genet 2019; 98:72. [PMID: 31544781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Presummer, summer, and autumn bolls (PSB, SB and AB, respectively) in cotton are related to both maturity and yield. Therefore, studying their genetic basis is important for breeding purposes. In this study, we developed an association analysis panel consisting of 169 upland cotton accessions. The panel was phenotyped for PSB, SB and AB across four environments and genotyped using a Cotton SNP80K array. Single-nucleotide polymorphisms (SNPs) associated with these three traits were identified by a genomewide association study. A total of 53,848 high-quality SNPs were screened, and 91 significant trait-associated SNPs were detected. Of the 91 SNPs 33 were associated with PSB, 21 with SB and 37 with AB. Three SNPs for PSB (TM10410, TM13158 and TM21762) and five for AB (TM13730, TM13733, TM13834, TM29666 and TM43214) were repeatedly detected in two environments or by two methods. These eight SNPs exhibited high phenotypic variation of more than 10%, thus allowing their use formarker-assisted selection. The candidate genes for target traits were also identified. These findings provide a theoretical basis for the improvement of early maturity and yield in cotton breeding programmes.
Collapse
Affiliation(s)
- Guo-Li Feng
- Shihezi Agricultural Science Research Institute, Shihezi 832000, Xinjiang Province, People's Republic of China.
| | | | | | | |
Collapse
|
44
|
Arbelaez JD, Dwiyanti MS, Tandayu E, Llantada K, Jarana A, Ignacio JC, Platten JD, Cobb J, Rutkoski JE, Thomson MJ, Kretzschmar T. 1k-RiCA (1K-Rice Custom Amplicon) a novel genotyping amplicon-based SNP assay for genetics and breeding applications in rice. RICE (NEW YORK, N.Y.) 2019; 12:55. [PMID: 31350673 PMCID: PMC6660535 DOI: 10.1186/s12284-019-0311-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND While a multitude of genotyping platforms have been developed for rice, the majority of them have not been optimized for breeding where cost, turnaround time, throughput and ease of use, relative to density and informativeness are critical parameters of their utility. With that in mind we report the development of the 1K-Rice Custom Amplicon, or 1k-RiCA, a robust custom sequencing-based amplicon panel of ~ 1000-SNPs that are uniformly distributed across the rice genome, designed to be highly informative within indica rice breeding pools, and tailored for genomic prediction in elite indica rice breeding programs. RESULTS Empirical validation tests performed on the 1k-RiCA showed average marker call rates of 95% with marker repeatability and concordance rates of 99%. These technical properties were not affected when two common DNA extraction protocols were used. The average distance between SNPs in the 1k-RiCA was 1.5 cM, similar to the theoretical distance which would be expected between 1,000 uniformly distributed markers across the rice genome. The average minor allele frequencies on a panel of indica lines was 0.36 and polymorphic SNPs estimated on pairwise comparisons between indica by indica accessions and indica by japonica accessions were on average 430 and 450 respectively. The specific design parameters of the 1k-RiCA allow for a detailed view of genetic relationships and unambiguous molecular IDs within indica accessions and good cost vs. marker-density balance for genomic prediction applications in elite indica germplasm. Predictive abilities of Genomic Selection models for flowering time, grain yield, and plant height were on average 0.71, 0.36, and 0.65 respectively based on cross-validation analysis. Furthermore the inclusion of important trait markers associated with 11 different genes and QTL adds value to parental selection in crossing schemes and marker-assisted selection in forward breeding applications. CONCLUSIONS This study validated the marker quality and robustness of the 1k-RiCA genotypic platform for genotyping populations derived from indica rice subpopulation for genetic and breeding purposes including MAS and genomic selection. The 1k-RiCA has proven to be an alternative cost-effective genotyping system for breeding applications.
Collapse
Affiliation(s)
- Juan David Arbelaez
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | | | - Erwin Tandayu
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Krizzel Llantada
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Annalhea Jarana
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - John Carlos Ignacio
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - John Damien Platten
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Joshua Cobb
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Jessica Elaine Rutkoski
- International Rice Research Institute, DAPO Box 7777, 1301 Los Baños, Metro Manila Philippines
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Houston, TX 77843 USA
| | - Tobias Kretzschmar
- Southern Cross Plant Sciences, Southern Cross University, PO Box 157, Lismore, NSW 2480 Australia
| |
Collapse
|
45
|
Identification of genomewide single-nucleotide polymorphisms associated with presummer, summer and autumn bolls in upland cotton. J Genet 2019. [DOI: 10.1007/s12041-019-1118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Song C, Li W, Pei X, Liu Y, Ren Z, He K, Zhang F, Sun K, Zhou X, Ma X, Yang D. Dissection of the genetic variation and candidate genes of lint percentage by a genome-wide association study in upland cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1991-2002. [PMID: 30982110 DOI: 10.1007/s00122-019-03333-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/20/2019] [Indexed: 05/10/2023]
Abstract
A genome-wide associated study identified six novel QTLs for lint percentage. Two candidate genes underlying this trait were also detected. Increasing lint percentage (LP) is a core goal of cotton breeding. To better understand the genetic basis of LP, a genome-wide association study (GWAS) was conducted using 276 upland cotton accessions planted in multiple environments and genotyped with a CottonSNP63K array. After filtering, 10,660 high-quality single-nucleotide polymorphisms (SNPs) were retained. Population structure, principal component and neighbor-joining phylogenetic tree analyses divided the accessions into two subpopulations. These results along with linkage disequilibrium decay indicated accessions were not highly structured and exhibited weak relatedness. GWAS uncovered 23 polymorphic SNPs and 15 QTLs significantly associated with LP, with six new QTLs identified. Two candidate genes, Gh_D05G0313 and Gh_D05G1124, both contained one significant SNP, highly expressed during ovule and fiber development stages, implying that the two genes may act as the most promising regulators of LP. Furthermore, the phenotypic value of LP was found to be positively correlated with the number of favorable SNP alleles. These favorable alleles for LP identified in the study may be useful for improving lint yield.
Collapse
Affiliation(s)
- Chengxiang Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kuan Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaojian Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
47
|
Dilnur T, Peng Z, Pan Z, Palanga KK, Jia Y, Gong W, Du X. Association Analysis of Salt Tolerance in Asiatic cotton ( Gossypium arboretum) with SNP Markers. Int J Mol Sci 2019; 20:ijms20092168. [PMID: 31052464 PMCID: PMC6540053 DOI: 10.3390/ijms20092168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Salinity is not only a major environmental factor which limits plant growth and productivity, but it has also become a worldwide problem. However, little is known about the genetic basis underlying salt tolerance in cotton. This study was carried out to identify marker-trait association signals of seven salt-tolerance-related traits and one salt tolerance index using association analysis for 215 accessions of Asiatic cotton. According to a comprehensive index of salt tolerance (CIST), 215 accessions were mainly categorized into four groups, and 11 accessions with high salinity tolerance were selected for breeding. Genome-wide association studies (GWAS) revealed nine SNP rich regions significantly associated with relative fresh weight (RFW), relative stem length (RSL), relative water content (RWC) and CIST. The nine SNP rich regions analysis revealed 143 polymorphisms that distributed 40 candidate genes and significantly associated with salt tolerance. Notably, two SNP rich regions on chromosome 7 were found to be significantly associated with two salinity related traits, RFW and RSL, by the threshold of −log10P ≥ 6.0, and two candidate genes (Cotton_A_37775 and Cotton_A_35901) related to two key SNPs (Ca7_33607751 and Ca7_77004962) were possibly associated with salt tolerance in G. arboreum. These can provide fundamental information which will be useful for future molecular breeding of cotton, in order to release novel salt tolerant cultivars.
Collapse
Affiliation(s)
- Tussipkan Dilnur
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Koffi Kibalou Palanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Wenfang Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
48
|
Ijaz B, Zhao N, Kong J, Hua J. Fiber Quality Improvement in Upland Cotton ( Gossypium hirsutum L.): Quantitative Trait Loci Mapping and Marker Assisted Selection Application. FRONTIERS IN PLANT SCIENCE 2019; 10:1585. [PMID: 31921240 PMCID: PMC6917639 DOI: 10.3389/fpls.2019.01585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 05/17/2023]
Abstract
Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Fiber quality traits are controlled by multiple genes and are classified as complex quantitative traits, with a negative relationship with yield potential, so the genetic gain is low in traditional genetic improvement by phenotypic selection. The availability of Gossypium genomic sequences facilitates the development of high-throughput molecular markers, quantitative trait loci (QTL) fine mapping and gene identification, which helps us to validate candidate genes and to use marker assisted selection (MAS) on fiber quality in breeding programs. Based on developments of high density linkage maps, QTLs fine mapping, marker selection and omics, we have performed trait dissection on fiber quality traits in diverse populations of upland cotton. QTL mapping combined with multi-omics approaches such as, RNA sequencing datasets to identify differentially expressed genes have benefited the improvement of fiber quality. In this review, we discuss the application of molecular markers, QTL mapping and MAS for fiber quality improvement in upland cotton.
Collapse
Affiliation(s)
- Babar Ijaz
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua,
| |
Collapse
|
49
|
Zhang C, Li L, Liu Q, Gu L, Huang J, Wei H, Wang H, Yu S. Identification of Loci and Candidate Genes Responsible for Fiber Length in Upland Cotton ( Gossypium hirsutum L.) via Association Mapping and Linkage Analyses. FRONTIERS IN PLANT SCIENCE 2019; 10:53. [PMID: 30804954 PMCID: PMC6370998 DOI: 10.3389/fpls.2019.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/16/2019] [Indexed: 05/12/2023]
Abstract
Fiber length (FL) is an important fiber quality trait in cotton. Although many fiber quality quantitative trait loci (QTL) responsible for FL have been identified, most cannot be applied to breeding programs, mainly due to unstable environments or large confidence intervals. In this study, we combined a genome-wide association study (GWAS) and linkage mapping to identify and validate high-quality QTLs responsible for FL. For the GWAS, we developed 93,250 high-quality single-nucleotide polymorphism (SNP) markers based on 355 accessions, and the FL was measured in eight different environments. For the linkage mapping, we constructed an F 2 population from two extreme accessions. The high-density linkage maps spanned 3,848.29 cM, with an average marker interval of 1.41 cM. In total, 14 and 13 QTLs were identified in the association and linkage mapping analyses, respectively. Most importantly, a major QTL on chromosome D03 identified in both populations explained more than 10% of the phenotypic variation (PV). Furthermore, we found that a sucrose synthesis-related gene (Gh_D03G1338) was associated with FL in this QTL region. The RNA-seq data showed that Gh_D03G1338 was highly expressed during the fiber development stage, and the qRT-PCR analysis showed significant expression differences between the long fiber and short fiber varieties. These results suggest that Gh_D03G1338 may determine cotton fiber elongation by regulating the synthesis of sucrose. Favorable QTLs and candidate genes should be useful for increasing fiber quality in cotton breeding.
Collapse
Affiliation(s)
- Chi Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Libei Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qibao Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Shuxun Yu,
| |
Collapse
|
50
|
Zhu G, Li W, Wang G, Li L, Si Q, Cai C, Guo W. Genetic Basis of Fiber Improvement and Decreased Stress Tolerance in Cultivated Versus Semi-Domesticated Upland Cotton. FRONTIERS IN PLANT SCIENCE 2019; 10:1572. [PMID: 31850042 PMCID: PMC6895062 DOI: 10.3389/fpls.2019.01572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/11/2019] [Indexed: 05/15/2023]
Abstract
Crop domestication from wild ancestors has resulted in the wide adaptation coupled with improved yield and quality traits. However, the genetic basis of many domesticated characteristics remains to be explored. Upland cotton (Gossypium hirsutum) is the most important tetraploid cotton species, accounting for about 90% of world cotton commerce. Here, we reveal the effects of domestication on fiber and stress traits through comprehensive analyses of semi-domesticated races and cultivated cotton accessions. A total of 416 cotton accessions were genotyped, and a decrease in genetic diversity from races to landraces and modern cultivars was detected. Furthermore, 71 domestication selective sweeps (DSS) and 14 improvement selective sweeps (ISS) were identified, with the Dt sub-genome experiencing stronger selection than the At sub-genome during the both selection types. The more expressed genes and a delay in the expression peak of genes related to secondary cell wall (SCW) development in modern cultivars compared to semi-domesticated cotton races, may have contributed to long fibers in these plants. However, down-regulation of genes related to stress response was responsible for decreasing stress tolerance in modern cultivars. We further experimentally confirmed that silencing of PR1 and WRKY20, genes that showed higher expression in the semi-domesticated races, drastically compromised cotton resistance to V. dahliae. Our results reveal fiber improvement and decreased stress tolerance as a result of the domestication of modern upland cotton cultivars.
Collapse
|