1
|
Ponsuksili S, Li S, Siengdee P, Hadlich F, Trakooljul N, Oster M, Reyer H, Wimmers K. DNA methylation in adipocyte differentiation of porcine mesenchymal stem cells and the impact of the donor metabolic type. Genomics 2025; 117:111050. [PMID: 40306557 DOI: 10.1016/j.ygeno.2025.111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/26/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
The impact of metabolic donor mesenchymal stem cells (MSCs) on DNA methylation, a critical epigenetic mechanism, significantly regulates adipogenesis. In this study, we investigated epigenetic changes during differentiation of synovial MSCs (SMSCs) from two pig breeds differing in metabolic performance (German Landrace (DL) and Angeln Saddleback (AS)). Stimulation of SMSCs to differentiate into adipocytes in vitro revealed several differentially methylated loci and regions, particularly on gene promoter regions, at day 7 and 14. AS breeds, known for higher fat deposition, exhibited more hypermethylation compared to DL. Furthermore, we utilized differentially methylated regions associated with the adipogenic process and breed, especially those in promoter regions, for predicting transcription factor motifs. This study provides insights into the DNA methylation landscape during adipogenesis in pigs of different metabolic types, revealing its role in regulating cell fate and donor memory retention in culture.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Shuaichen Li
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Puntita Siengdee
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany; Chulabhorn Graduate Institute, Program in Applied Biological Sciences, Chulabhorn Royal Academy, Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6b, 18059 Rostock, Germany
| |
Collapse
|
2
|
Ponsuksili S, Hadlich F, Li S, Trakooljul N, Reyer H, Oster M, Abitew YA, Sommerfeld V, Rodehutscord M, Wimmers K. DNA methylation dynamics in the small intestine of egg-selected laying hens along egg production stages. Physiol Genomics 2025; 57:125-139. [PMID: 39869094 DOI: 10.1152/physiolgenomics.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann Selected Leghorn-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics. Our sampling encompassed key developmental stages: the pullet stage (10 and 16 wk old), peak production (24 and 30 wk old), and later stage (60 wk old) (n = 99; 10 per group), allowing us to elucidate the temporal dynamics of epigenetic regulation. Our findings highlight a crucial window of epigenetic modulation during the prelaying period, characterized by stage-specific methylation alterations and the involvement of predicted transcription factor motifs within methylated regions. This observation was consistent with the expression patterns of DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B. In addition, a higher methylation level was observed in specific loci or regions in the LSL compared with the LB strain. Notably, we uncover strain-specific differences in methylation levels, particularly pronounced in genomic regions associated with intestinal integrity, inflammation, and energy homeostasis. Our research contributes to the multidisciplinary framework of epigenetics and egg-laying performance, offering valuable implications for poultry production and welfare.NEW & NOTEWORTHY Our study reveals key methylation changes in the jejunum mucosa of laying hens across developmental stages and between strains, with implications for gut health, immune function, and egg production. These findings highlight a crucial role of epigenetic regulation in optimizing performance.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Shuaichen Li
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Capra E, Lazzari B, Cozzi P, Turri F, Negrini R, Ajmone-Marsan P, Stella A. Defining bovine CpG epigenetic diversity by analyzing RRBS data from sperm of Montbéliarde and Holstein bulls. Front Cell Dev Biol 2025; 13:1532711. [PMID: 40052148 PMCID: PMC11882585 DOI: 10.3389/fcell.2025.1532711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Breed epigenetic diversity was recently detected in pig muscle and cattle blood, probably as a result of long-term selection for morphological adaptive and quantitative traits, persisting after embryo epigenetic reprogramming. Methods In our study, breed epigenetic diversity in the male germline from Holstein (H) and Montbéliarde (M) bulls was investigated using Reduced Representation Bisulfite Sequencing (RRBS) data publicly available at the NCBI database. Open-source Whole Genome Sequencing (WGS) data from H and M animals were used to estimate genetic diversity between the two breeds and, thus, correctly assess CpG positions with low frequencies or absence of SNPs. Results Sperm epigenetic diversity was studied in 356,635 SNP-free CpG positions, and a total of 6,074 differentially methylated cytosines (DMCs) were identified. The analysis of the DMCs pattern of distribution revealed that DMCs: i) are partially associated with genetic variation, ii) are consistent with epigenetic diversity previously observed in bovine blood, iii) present long-CpG stretches in specific genomic regions, and iv) are enriched in specific repeat elements, such as ERV-LTR transposable elements, ribosomal 5S rRNA, BTSAT4 Satellites and long interspersed nuclear elements (LINE). Discussion This study, based on publicly available data from two cattle breeds, contributes to the identification and definition of distinct epigenetic signatures in sperm, that may have potential implications for mammalian embryo development.
Collapse
Affiliation(s)
- Emanuele Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - Paolo Cozzi
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - Federica Turri
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - Riccardo Negrini
- Department of Animal Science, Food and Nutrition – DIANA, and Romea and Enrica Invernizzi Research Center on Sustainable Dairy Production - CREI, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Ajmone-Marsan
- Department of Animal Science, Food and Nutrition – DIANA, and Romea and Enrica Invernizzi Research Center on Sustainable Dairy Production - CREI, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| |
Collapse
|
4
|
Ma G, Tan X, Yan Y, Zhang T, Wang J, Chen X, Xu J. A genome-wide association study identified candidate regions and genes for commercial traits in a Landrace population. Front Genet 2025; 15:1505197. [PMID: 39834545 PMCID: PMC11743953 DOI: 10.3389/fgene.2024.1505197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Backfat thickness (BFT) and feed conversion ratio (FCR) are important commercial traits in the pig industry. With the increasing demand for human health and meat production, identifying functional genomic regions and genes associated with these commercial traits is critical for enhancing production efficiency. In this research, we conducted a genome-wide association study (GWAS) on a Landrace population comprising 4,295 individuals with chip data for BFT and FCR. Our analysis revealed a total of 118 genome-wide significant signals located on chromosomes SSC1, SSC2, SSC7, SSC12, and SSC13, respectively. Furthermore, we identified 10 potential regions associated with the two traits and annotated the genes within these regions. In addition, enrichment analysis was also performed. Notably, candidate genes such as SHANK2, KCNQ1, and ABL1 were found to be associated with BFT, whereas NAP1L4, LSP1, and PPFIA1 genes were related to the FCR. Our findings provide valuable insights into the genetic architecture of these two traits and offer guidance for future pig breeding efforts.
Collapse
Affiliation(s)
- Guojian Ma
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xihong Tan
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Ying Yan
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Tianyang Zhang
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jianhua Wang
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Xiaoling Chen
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Jingya Xu
- Breeding Department, Wuhan COFCO Meat Co., Ltd., Wuhan, Hubei, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| |
Collapse
|
5
|
Li S, Siengdee P, Hadlich F, Trakooljul N, Oster M, Reyer H, Wimmers K, Ponsuksili S. Dynamics of DNA methylation during osteogenic differentiation of porcine synovial membrane mesenchymal stem cells from two metabolically distinct breeds. Epigenetics 2024; 19:2375011. [PMID: 38956836 PMCID: PMC11225923 DOI: 10.1080/15592294.2024.2375011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem cells (MSCs), with the ability to differentiate into osteoblasts, adipocytes, or chondrocytes, show evidence that the donor cell's metabolic type influences the osteogenic process. Limited knowledge exists on DNA methylation changes during osteogenic differentiation and the impact of diverse donor genetic backgrounds on MSC differentiation. In this study, synovial membrane mesenchymal stem cells (SMSCs) from two pig breeds (Angeln Saddleback, AS; German Landrace, DL) with distinct metabolic phenotypes were isolated, and the methylation pattern of SMSCs during osteogenic induction was investigated. Results showed that most differentially methylated regions (DMRs) were hypomethylated in osteogenic-induced SMSC group. These DMRs were enriched with genes of different osteogenic signalling pathways at different time points including Wnt, ECM, TGFB and BMP signalling pathways. AS pigs consistently exhibited a higher number of hypermethylated DMRs than DL pigs, particularly during the peak of osteogenesis (day 21). Predicting transcription factor motifs in regions of DMRs linked to osteogenic processes and donor breeds revealed influential motifs, including KLF1, NFATC3, ZNF148, ASCL1, FOXI1, and KLF5. These findings contribute to understanding the pattern of methylation changes promoting osteogenic differentiation, emphasizing the substantial role of donor the metabolic type and epigenetic memory of different donors on SMSC differentiation.
Collapse
Affiliation(s)
- Shuaichen Li
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Puntita Siengdee
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Lak-Si, Bangkok, Thailand
| | - Frieder Hadlich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Oster
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Henry Reyer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
6
|
Cao H, Fang C, Liu LL, Farnir F, Liu WJ. Identification of Susceptibility Genes Underlying Bovine Respiratory Disease in Xinjiang Brown Cattle Based on DNA Methylation. Int J Mol Sci 2024; 25:4928. [PMID: 38732144 PMCID: PMC11084705 DOI: 10.3390/ijms25094928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
DNA methylation is a form of epigenetic regulation, having pivotal parts in controlling cellular expansion and expression levels within genes. Although blood DNA methylation has been studied in humans and other species, its prominence in cattle is largely unknown. This study aimed to methodically probe the genomic methylation map of Xinjiang brown (XJB) cattle suffering from bovine respiratory disease (BRD), consequently widening cattle blood methylome ranges. Genome-wide DNA methylation profiling of the XJB blood was investigated through whole-genome bisulfite sequencing (WGBS). Many differentially methylated regions (DMRs) obtained by comparing the cases and controls groups were found within the CG, CHG, and CHH (where H is A, T, or C) sequences (16,765, 7502, and 2656, respectively), encompassing 4334 differentially methylated genes (DMGs). Furthermore, GO/KEGG analyses showed that some DMGs were involved within immune response pathways. Combining WGBS-Seq data and existing RNA-Seq data, we identified 71 significantly differentially methylated (DMGs) and expressed (DEGs) genes (p < 0.05). Next, complementary analyses identified nine DMGs (LTA, STAT3, IKBKG, IRAK1, NOD2, TLR2, TNFRSF1A, and IKBKB) that might be involved in the immune response of XJB cattle infected with respiratory diseases. Although further investigations are needed to confirm their exact implication in the involved immune processes, these genes could potentially be used for a marker-assisted selection of animals resistant to BRD. This study also provides new knowledge regarding epigenetic control for the bovine respiratory immune process.
Collapse
Affiliation(s)
- Hang Cao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (H.C.); (L.-L.L.)
| | - Chao Fang
- Faculte de Medecine Veterinaire, Universite de Liege, Quartier Vallee 2, Avenue de Cureghem 6 (B43), 4000 Liege, Belgium;
| | - Ling-Ling Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (H.C.); (L.-L.L.)
| | - Frederic Farnir
- Faculte de Medecine Veterinaire, Universite de Liege, Quartier Vallee 2, Avenue de Cureghem 6 (B43), 4000 Liege, Belgium;
| | - Wu-Jun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (H.C.); (L.-L.L.)
| |
Collapse
|
7
|
Tanaka M, Sugimoto K, Akasaka H, Yoshida S, Takahashi T, Fujimoto T, Xie K, Yasunobe Y, Yamamoto K, Hirabayashi T, Nakanishi R, Fujino H, Rakugi H. Effects of interleukin-15 on autophagy regulation in the skeletal muscle of mice. Am J Physiol Endocrinol Metab 2024; 326:E326-E340. [PMID: 38294696 DOI: 10.1152/ajpendo.00311.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
This study aimed to evaluate the role of skeletal muscle-derived interleukin (IL)-15 in the regulation of skeletal muscle autophagy using IL-15 knockout (KO) and transgenic (TG) mice. Male C57BL/6 wild-type (WT), IL-15 KO, and IL-15 TG mice were used in this study. Changes in muscle mass, forelimb grip strength, succinate dehydrogenase (SDH) activity, gene and protein expression levels of major regulators and indicators of autophagy, comprehensive gene expression, and DNA methylation in the gastrocnemius muscle were analyzed. Enrichment pathway analyses revealed that the pathology of IL-15 gene deficiency was related to the autophagosome pathway. Moreover, although IL-15 KO mice maintained gastrocnemius muscle mass, they exhibited a decrease in autophagy induction. IL-15 TG mice exhibited a decrease in gastrocnemius muscle mass and an increase in forelimb grip strength and SDH activity in skeletal muscle. In the gastrocnemius muscle, the ratio of phosphorylated adenosine monophosphate-activated protein kinase α (AMPKα) to total AMPKα and unc-51-like autophagy activating kinase 1 and Beclin1 protein expression were higher in the IL-15 TG group than in the WT group. IL-15 gene deficiency induces a decrease in autophagy induction. In contrast, IL-15 overexpression could improve muscle quality by activating autophagy induction while decreasing muscle mass. The regulation of IL-15 in autophagy in skeletal muscles may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.NEW & NOTEWORTHY IL-15 gene deficiency can decrease autophagy induction. However, although IL-15 overexpression induced a decrease in muscle mass, it led to an improvement in muscle quality. Based on these results, understanding the role of IL-15 in regulating autophagy pathways within skeletal muscle may lead to the development of therapies for the autophagy-induced regulation of skeletal muscle mass and cellular quality control.
Collapse
Affiliation(s)
- Minoru Tanaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Department of Rehabilitation Science, Osaka Health Science University, Osaka, Japan
| | - Ken Sugimoto
- Department of General and Geriatric Medicine, Kawasaki Medical School, Okayama, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shino Yoshida
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshimasa Takahashi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Fujimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keyu Xie
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yukiko Yasunobe
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takumi Hirabayashi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ryosuke Nakanishi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Osaka Rosai Hospital, Osaka, Japan
| |
Collapse
|
8
|
Ribeiro DM, Coelho D, Costa M, Carvalho DFP, Leclercq CC, Renaut J, Freire JPB, Almeida AM, Mestre Prates JA. Integrated transcriptomics and proteomics analysis reveals muscle metabolism effects of dietary Ulva lactuca and ulvan lyase supplementation in weaned piglets. Sci Rep 2024; 14:4589. [PMID: 38409238 DOI: 10.1038/s41598-024-55462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach. Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrient availability, leading to protein degradation through the proteasome (PSMD2), with resulting amino acids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulation may have contributed to increased oxidative stress, evident from elevated levels of antioxidant proteins like catalase, as a response to maintaining tissue homeostasis. The upregulation of the gene AQP7, associated with the osmotic stress response, further supports these findings. Consequently, an increase in chaperone activity, including HSP90, was required to repair damaged proteins. Our results suggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactuca alone, potentially due to side effects of cell wall degradation during digestion.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Diogo Coelho
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mónica Costa
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Céline C Leclercq
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - Jenny Renaut
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - André Martinho Almeida
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - José António Mestre Prates
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|
9
|
Ren Y, Chen X, Zheng X, Wang F, Sun R, Wei L, Zhang Y, Liu H, Lin Y, Hong L, Huang X, Chao Z. Diverse WGBS profiles of longissimus dorsi muscle in Hainan black goats and hybrid goats. BMC Genom Data 2023; 24:77. [PMID: 38097986 PMCID: PMC10720224 DOI: 10.1186/s12863-023-01182-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Goat products have played a crucial role in meeting the dietary demands of people since the Neolithic era, giving rise to a multitude of goat breeds globally with varying characteristics and meat qualities. The primary objective of this study is to pinpoint the pivotal genes and their functions responsible for regulating muscle fiber growth in the longissimus dorsi muscle (LDM) through DNA methylation modifications in Hainan black goats and hybrid goats. METHODS Whole-genome bisulfite sequencing (WGBS) was employed to scrutinize the impact of methylation on LDM growth. This was accomplished by comparing methylation differences, gene expression, and their associations with growth-related traits. RESULTS In this study, we identified a total of 3,269 genes from differentially methylated regions (DMR), and detected 189 differentially expressed genes (DEGs) through RNA-seq analysis. Hypo DMR genes were primarily enriched in KEGG terms associated with muscle development, such as MAPK and PI3K-Akt signaling pathways. We selected 11 hub genes from the network that intersected the gene sets within DMR and DEGs, and nine genes exhibited significant correlation with one or more of the three LDM growth traits, namely area, height, and weight of loin eye muscle. Particularly, PRKG1 demonstrated a negative correlation with all three traits. The top five most crucial genes played vital roles in muscle fiber growth: FOXO3 safeguarded the myofiber's immune environment, FOXO6 was involved in myotube development and differentiation, and PRKG1 facilitated vasodilatation to release more glucose. This, in turn, accelerated the transfer of glucose from blood vessels to myofibers, regulated by ADCY5 and AKT2, ultimately ensuring glycogen storage and energy provision in muscle fibers. CONCLUSION This study delved into the diverse methylation modifications affecting critical genes, which collectively contribute to the maintenance of glycogen storage around myofibers, ultimately supporting muscle fiber growth.
Collapse
Affiliation(s)
- Yuwei Ren
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Xing Chen
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, 430000, China
| | - Xinli Zheng
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Feng Wang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Ruiping Sun
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Limin Wei
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yan Zhang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Hailong Liu
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yanning Lin
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Lingling Hong
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Xiaoxian Huang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Zhe Chao
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China.
| |
Collapse
|
10
|
Capra E, Lazzari B, Milanesi M, Nogueira GP, Garcia JF, Utsunomiya YT, Ajmone-Marsan P, Stella A. Comparison between indicine and taurine cattle DNA methylation reveals epigenetic variation associated to differences in morphological adaptive traits. Epigenetics 2023; 18:2163363. [PMID: 36600398 PMCID: PMC9980582 DOI: 10.1080/15592294.2022.2163363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Indicine and taurine subspecies present distinct morphological traits as a consequence of environmental adaptation and artificial selection. Although the two subspecies have been characterized and compared at genome-wide level and at specific loci, their epigenetic diversity has not yet been explored. In this work, Reduced Representation Bisulphite Sequencing (RRBS) profiling of the taurine Angus (A) and indicine Nellore (N) cattle breeds was applied to identify methylation differences between the two subspecies. Genotyping by sequencing (GBS) of the same animals was performed to detect single nucleotide polymorphisms (SNPs) at cytosines in CpG dinucleotides and remove them from the differential methylation analysis. A total of 660,845 methylated cytosines were identified within the CpG context (CpGs) across the 10 animals sequenced (5 N and 5 A). A total of 25,765 of these were differentially methylated (DMCs). Most DMCs clustered in CpG stretches nearby genes involved in cellular and anatomical structure morphogenesis. Also, sequences flanking DMC were enriched in SNPs compared to all other CpGs, either methylated or unmethylated in the two subspecies. Our data suggest a contribution of epigenetics to the regulation and divergence of anatomical morphogenesis in the two subspecies relevant for cattle evolution and sub-species differentiation and adaptation.
Collapse
Affiliation(s)
- E Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - B Lazzari
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - M Milanesi
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil.,Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - G P Nogueira
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil
| | - J F Garcia
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil.,International Atomic Energy Agency, Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, Brazil
| | - Y T Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, Brazil
| | - P Ajmone-Marsan
- Department of Animal Science, Food and Nutrition - DIANA, and Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - A Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| |
Collapse
|
11
|
Desire S, Johnsson M, Ros-Freixedes R, Chen CY, Holl JW, Herring WO, Gorjanc G, Mellanby RJ, Hickey JM, Jungnickel MK. A genome-wide association study for loin depth and muscle pH in pigs from intensely selected purebred lines. Genet Sel Evol 2023; 55:42. [PMID: 37322449 DOI: 10.1186/s12711-023-00815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) aim at identifying genomic regions involved in phenotype expression, but identifying causative variants is difficult. Pig Combined Annotation Dependent Depletion (pCADD) scores provide a measure of the predicted consequences of genetic variants. Incorporating pCADD into the GWAS pipeline may help their identification. Our objective was to identify genomic regions associated with loin depth and muscle pH, and identify regions of interest for fine-mapping and further experimental work. Genotypes for ~ 40,000 single nucleotide morphisms (SNPs) were used to perform GWAS for these two traits, using de-regressed breeding values (dEBV) for 329,964 pigs from four commercial lines. Imputed sequence data was used to identify SNPs in strong ([Formula: see text] 0.80) linkage disequilibrium with lead GWAS SNPs with the highest pCADD scores. RESULTS Fifteen distinct regions were associated with loin depth and one with loin pH at genome-wide significance. Regions on chromosomes 1, 2, 5, 7, and 16, explained between 0.06 and 3.55% of the additive genetic variance and were strongly associated with loin depth. Only a small part of the additive genetic variance in muscle pH was attributed to SNPs. The results of our pCADD analysis suggests that high-scoring pCADD variants are enriched for missense mutations. Two close but distinct regions on SSC1 were associated with loin depth, and pCADD identified the previously identified missense variant within the MC4R gene for one of the lines. For loin pH, pCADD identified a synonymous variant in the RNF25 gene (SSC15) as the most likely candidate for the muscle pH association. The missense mutation in the PRKAG3 gene known to affect glycogen content was not prioritised by pCADD for loin pH. CONCLUSIONS For loin depth, we identified several strong candidate regions for further statistical fine-mapping that are supported in the literature, and two novel regions. For loin muscle pH, we identified one previously identified associated region. We found mixed evidence for the utility of pCADD as an extension of heuristic fine-mapping. The next step is to perform more sophisticated fine-mapping and expression quantitative trait loci (eQTL) analysis, and then interrogate candidate variants in vitro by perturbation-CRISPR assays.
Collapse
Affiliation(s)
- Suzanne Desire
- The Roslin Institute, The University of Edinburgh, Midlothian, UK.
| | - Martin Johnsson
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Roger Ros-Freixedes
- Departament de Ciència Animal, Universitat de Lleida-Agrotecnio-CERCA Center, Lleida, Spain
| | - Ching-Yi Chen
- The Pig Improvement Company, Genus Plc, Hendersonville, TN, USA
| | - Justin W Holl
- The Pig Improvement Company, Genus Plc, Hendersonville, TN, USA
| | | | - Gregor Gorjanc
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | - Richard J Mellanby
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - John M Hickey
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | | |
Collapse
|
12
|
Yue C, Wang J, Shen Y, Zhang J, Liu J, Xiao A, Liu Y, Eer H, Zhang QE. Whole-genome DNA methylation profiling reveals epigenetic signatures in developing muscle in Tan and Hu sheep and their offspring. Front Vet Sci 2023; 10:1186040. [PMID: 37388464 PMCID: PMC10301830 DOI: 10.3389/fvets.2023.1186040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction The Tan sheep is a popular local breed in China because of its tenderness and flavor. The Hu sheep breed is also famous for its high litter size, and its muscle growth rate is faster than that of Tan sheep. However, the epigenetic mechanism behind these muscle-related phenotypes is unknown. Methods In this study, the longissimus dorsi tissue from 18 6 month-old Tan sheep, Hu sheep, and Tan-Hu F2 generation (6 sheep per population) were collected. After genomic DNA extraction, whole-genome bisulfite sequencing (WGBS) and bioinformatics analysis were performed to construct genome-wide DNA methylome maps for the Tan sheep, Hu sheep and their Tan-Hu F2 generation. Results Distinct genome-wide DNA methylation patterns were observed between Tan sheep and Hu sheep. Moreover, DNA methylated regions were significantly increased in the skeletal muscle from Tan sheep vs. the F2 generation compared to the Hu sheep vs. F2 generation and the Tan sheep vs. Hu sheep. Compared with Hu sheep, the methylation levels of actin alpha 1 (ACTA1), myosin heavy chain 11 (MYH11), Wiskott-Aldrich syndrome protein (WAS), vav guanine nucleotide exchange factor 1 (VAV1), fibronectin 1 (FN1) and Rho-associated protein kinase 2 (ROCK2) genes were markedly distinct in the Tan sheep. Furthermore, Gene Ontology analysis indicated that these genes were involved in myotube differentiation, myotube cell development, smooth muscle cell differentiation and striated muscle cell differentiation. Conclusion The findings from this study, in addition to data from previous research, demonstrated that the ACTA1, MYH11, WAS, VAV1, FN1, and ROCK2 genes may exert regulatory effects on muscle development.
Collapse
Affiliation(s)
- Caijuan Yue
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Jiakang Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yifei Shen
- Institute of Marxism, China University of Geosciences, Wuhan, Hubei, China
| | - Junli Zhang
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Jian Liu
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Aiping Xiao
- Animal Husbandry Extension Station, Yinchuan, Ningxia, China
| | - Yisha Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - Hehua Eer
- Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, China
| | - Qiao-e Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
13
|
Corbett RJ, Ford LM, Raney NE, Grabowski JM, Ernst CW. Pig fetal skeletal muscle development is associated with genome-wide DNA hypomethylation and corresponding alterations in transcript and microRNA expression. Genome 2023; 66:68-79. [PMID: 36876850 DOI: 10.1139/gen-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Fetal myogenesis represents a critical period of porcine skeletal muscle development and requires coordinated expression of thousands of genes. Epigenetic mechanisms, including DNA methylation, drive transcriptional regulation during development; however, these processes are understudied in developing porcine tissues. We performed bisulfite sequencing to assess DNA methylation in pig longissimus dorsi muscle at 41- and 70-days gestation (dg), as well as RNA- and small RNA-sequencing to identify coordinated changes in methylation and expression between myogenic stages. We identified 45 739 differentially methylated regions (DMRs) between stages, and the majority (N = 34 232) were hypomethylated at 70 versus 41 dg. Integration of methylation and transcriptomic data revealed strong associations between differential gene methylation and expression. Differential miRNA methylation was significantly negatively correlated with abundance, and dynamic expression of assayed miRNAs persisted postnatally. Motif analysis revealed significant enrichment of myogenic regulatory factor motifs among hypomethylated regions, suggesting that DNA hypomethylation may function to increase accessibility of muscle-specific transcription factors. We show that developmental DMRs are enriched for GWAS SNPs for muscle- and meat-related traits, demonstrating the potential for epigenetic processes to influence phenotypic diversity. Our results enhance understanding of DNA methylation dynamics of porcine myogenesis and reveal putative cis-regulatory elements governed by epigenetic processes.
Collapse
Affiliation(s)
- R J Corbett
- Genetics & Genome Sciences Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - L M Ford
- Genetics & Genome Sciences Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - N E Raney
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - J M Grabowski
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - C W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Perdomo-Sabogal A, Trakooljul N, Hadlich F, Murani E, Wimmers K, Ponsuksili S. DNA methylation landscapes from pig's limbic structures underline regulatory mechanisms relevant for brain plasticity. Sci Rep 2022; 12:16293. [PMID: 36175587 PMCID: PMC9522933 DOI: 10.1038/s41598-022-20682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic dynamics are essential for reconciling stress-induced responses in neuro-endocrine routes between the limbic brain and adrenal gland. CpG methylation associates with the initiation and end of regulatory mechanisms underlying responses critical for survival, and learning. Using Reduced Representation Bisulfite Sequencing, we identified methylation changes of functional relevance for mediating tissue-specific responses in the hippocampus, amygdala, hypothalamus, and adrenal gland in pigs. We identified 4186 differentially methylated CpGs across all tissues, remarkably, enriched for promoters of transcription factors (TFs) of the homeo domain and zinc finger classes. We also detected 5190 differentially methylated regions (DMRs, 748 Mb), with about half unique to a single pairwise. Two structures, the hypothalamus and the hippocampus, displayed 860 unique brain-DMRs, with many linked to regulation of chromatin, nervous development, neurogenesis, and cell-to-cell communication. TF binding motifs for TFAP2A and TFAP2C are enriched amount DMRs on promoters of other TFs, suggesting their role as master regulators, especially for pathways essential in long-term brain plasticity, memory, and stress responses. Our results reveal sets of TF that, together with CpG methylation, may serve as regulatory switches to modulate limbic brain plasticity and brain-specific molecular genetics in pigs.
Collapse
Affiliation(s)
- Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059, Rostock, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
15
|
Fan Y, Ren C, Deng K, Zhang Z, Li J, Deng M, Zhang Y, Wang F. The regulation of LncRNA GTL2 expression by DNA methylation during sheep skeletal muscle development. Genomics 2022; 114:110453. [PMID: 36030023 DOI: 10.1016/j.ygeno.2022.110453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
DNA methylation has crucial roles in regulating the expression of genes involved in skeletal muscle development. However, the DNA methylation pattern of lncRNA during sheep skeletal muscle development remains unclear. This study investigated previous WGBS and LncRNA data in skeletal muscle of sheep (fetus and adult). We then focused on LncRNA GTL2, which is differentially expressed in skeletal muscle and has multiple DMRs. We found that the expression level of GTL2 decreased with age. GTL2 DMRs methylation levels were significantly higher in adult muscle than in fetal muscle. After 5AZA treatment, GTL2 expression was significantly increased in a dose-dependent manner.The dCas9-DNMT3A-sgRNA significantly reduced the expression level of GTL2 in cells, but increased GTL2 DMR methylation levels. The above studies indicate that dCas9-DNMT3A can effectively increase the methylation level in the DMR region of GTL2, the expression level of GTL2 is regulated by DNA methylation during muscle development.
Collapse
Affiliation(s)
- Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Caifang Ren
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Juan Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
16
|
Fusto A, Cassandrini D, Fiorillo C, Codemo V, Astrea G, D’Amico A, Maggi L, Magri F, Pane M, Tasca G, Sabbatini D, Bello L, Battini R, Bernasconi P, Fattori F, Bertini ES, Comi G, Messina S, Mongini T, Moroni I, Panicucci C, Berardinelli A, Donati A, Nigro V, Pini A, Giannotta M, Dosi C, Ricci E, Mercuri E, Minervini G, Tosatto S, Santorelli F, Bruno C, Pegoraro E. Expanding the clinical-pathological and genetic spectrum of RYR1-related congenital myopathies with cores and minicores: an Italian population study. Acta Neuropathol Commun 2022; 10:54. [PMID: 35428369 PMCID: PMC9013059 DOI: 10.1186/s40478-022-01357-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022] Open
Abstract
Mutations in the RYR1 gene, encoding ryanodine receptor 1 (RyR1), are a well-known cause of Central Core Disease (CCD) and Multi-minicore Disease (MmD). We screened a cohort of 153 patients carrying an histopathological diagnosis of core myopathy (cores and minicores) for RYR1 mutation. At least one RYR1 mutation was identified in 69 of them and these patients were further studied. Clinical and histopathological features were collected. Clinical phenotype was highly heterogeneous ranging from asymptomatic or paucisymptomatic hyperCKemia to severe muscle weakness and skeletal deformity with loss of ambulation. Sixty-eight RYR1 mutations, generally missense, were identified, of which 16 were novel. The combined analysis of the clinical presentation, disease progression and the structural bioinformatic analyses of RYR1 allowed to associate some phenotypes to mutations in specific domains. In addition, this study highlighted the structural bioinformatics potential in the prediction of the pathogenicity of RYR1 mutations. Further improvement in the comprehension of genotype-phenotype relationship of core myopathies can be expected in the next future: the actual lack of the human RyR1 crystal structure paired with the presence of large intrinsically disordered regions in RyR1, and the frequent presence of more than one RYR1 mutation in core myopathy patients, require designing novel investigation strategies to completely address RyR1 mutation effect.
Collapse
|
17
|
Malgwi IH, Halas V, Grünvald P, Schiavon S, Jócsák I. Genes Related to Fat Metabolism in Pigs and Intramuscular Fat Content of Pork: A Focus on Nutrigenetics and Nutrigenomics. Animals (Basel) 2022; 12:ani12020150. [PMID: 35049772 PMCID: PMC8772548 DOI: 10.3390/ani12020150] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The intramuscular fat (IMF) or marbling is an essential pork sensory quality that influences the preference of the consumers and premiums for pork. IMF is the streak of visible fat intermixed with the lean within a muscle fibre and determines sensorial qualities of pork such as flavour, tenderness and juiciness. Fat metabolism and IMF development are controlled by dietary nutrients, genes, and their metabolic pathways in the pig. Nutrigenetics explains how the genetic make-up of an individual pig influences the pig’s response to dietary nutrient intake. Differently, nutrigenomics is the analysis of how the entire genome of an individual pig is affected by dietary nutrient intake. The knowledge of nutrigenetics and nutrigenomics, when harmonized, is a powerful tool in estimating nutrient requirements for swine and programming dietary nutrient supply according to an individual pig’s genetic make-up. The current paper aimed to highlight the roles of nutrigenetics and nutrigenomics in elucidating the underlying mechanisms of fat metabolism and IMF deposition in pigs. This knowledge is essential in redefining nutritional intervention for swine production and the improvement of some economically important traits such as growth performance, backfat thickness, IMF accretion, disease resistance etc., in animals. Abstract Fat metabolism and intramuscular fat (IMF) are qualitative traits in pigs whose development are influenced by several genes and metabolic pathways. Nutrigenetics and nutrigenomics offer prospects in estimating nutrients required by a pig. Application of these emerging fields in nutritional science provides an opportunity for matching nutrients based on the genetic make-up of the pig for trait improvements. Today, integration of high throughput “omics” technologies into nutritional genomic research has revealed many quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs) for the mutation(s) of key genes directly or indirectly involved in fat metabolism and IMF deposition in pigs. Nutrient–gene interaction and the underlying molecular mechanisms involved in fatty acid synthesis and marbling in pigs is difficult to unravel. While existing knowledge on QTLs and SNPs of genes related to fat metabolism and IMF development is yet to be harmonized, the scientific explanations behind the nature of the existing correlation between the nutrients, the genes and the environment remain unclear, being inconclusive or lacking precision. This paper aimed to: (1) discuss nutrigenetics, nutrigenomics and epigenetic mechanisms controlling fat metabolism and IMF accretion in pigs; (2) highlight the potentials of these concepts in pig nutritional programming and research.
Collapse
Affiliation(s)
- Isaac Hyeladi Malgwi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
- Correspondence: ; Tel.: +39-33-17566768
| | - Veronika Halas
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Petra Grünvald
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
| | - Ildikó Jócsák
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary;
| |
Collapse
|
18
|
How Epigenetics Can Enhance Pig Welfare? Animals (Basel) 2021; 12:ani12010032. [PMID: 35011138 PMCID: PMC8749669 DOI: 10.3390/ani12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics works as an interface between the individual and its environment to provide phenotypic plasticity to increase individual adaptation capabilities. Recently, a wide variety of epi-genetic findings have indicated evidence for its application in the development of putative epi-biomarkers of stress in farm animals. The purpose of this study was to evaluate previously reported stress epi-biomarkers in swine and encourage researchers to investigate potential paths for the development of a robust molecular tool for animal welfare certification. In this literature review, we report on the scientific concerns in the swine production chain, the management carried out on the farms, and the potential implications of these practices for the animals' welfare and their epigenome. To assess reported epi-biomarkers, we identified, from previous studies, potentially stress-related genes surrounding epi-biomarkers. With those genes, we carried out a functional enrichment analysis of differentially methylated regions (DMRs) of the DNA of swine subjected to different stress-related conditions (e.g., heat stress, intrauterine insult, and sanitary challenges). We identified potential epi-biomarkers for target analysis, which could be added to the current guidelines and certification schemes to guarantee and certify animal welfare on farms. We believe that this technology may have the power to increase consumers' trust in animal welfare.
Collapse
|
19
|
Ibeagha-Awemu EM, Yu Y. Consequence of epigenetic processes on animal health and productivity: is additional level of regulation of relevance? Anim Front 2021; 11:7-18. [PMID: 34934525 PMCID: PMC8683131 DOI: 10.1093/af/vfab057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Ying Yu
- Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Chen S, Liu S, Mi S, Li W, Zhang S, Ding X, Yu Y. Comparative Analyses of Sperm DNA Methylomes Among Three Commercial Pig Breeds Reveal Vital Hypomethylated Regions Associated With Spermatogenesis and Embryonic Development. Front Genet 2021; 12:740036. [PMID: 34691153 PMCID: PMC8527042 DOI: 10.3389/fgene.2021.740036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Identifying epigenetic changes is essential for an in-depth understanding of phenotypic diversity and pigs as the human medical model for anatomizing complex diseases. Abnormal sperm DNA methylation can lead to male infertility, fetal development failure, and affect the phenotypic traits of offspring. However, the whole genome epigenome map in pig sperm is lacking to date. In this study, we profiled methylation levels of cytosine in three commercial pig breeds, Landrace, Duroc, and Large White using whole-genome bisulfite sequencing (WGBS). The results showed that the correlation of methylation levels between Landrace and Large White pigs was higher. We found that 1,040-1,666 breed-specific hypomethylated regions (HMRs) were associated with embryonic developmental and economically complex traits for each breed. By integrating reduced representation bisulfite sequencing (RRBS) public data of pig testis, 1743 conservated HMRs between sperm and testis were defined, which may play a role in spermatogenesis. In addition, we found that the DNA methylation patterns of human and pig sperm showed high similarity by integrating public data from WGBS and chromatin immunoprecipitation sequencing (ChIP-seq) in other mammals, such as human and mouse. We identified 2,733 conserved HMRs between human and pig involved in organ development and brain-related traits, such as NLGN1 (neuroligin 1) containing a conserved-HMR between human and pig. Our results revealed the similarities and diversity of sperm methylation patterns among three commercial pig breeds and between human and pig. These findings are beneficial for elucidating the mechanism of male fertility, and the changes in commercial traits that undergo strong selection.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Genome-wide DNA methylation profiles provide insight into epigenetic regulation of red and white muscle development in Chinese perch Siniperca chuatsi. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110647. [PMID: 34271193 DOI: 10.1016/j.cbpb.2021.110647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/04/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Fish skeletal muscles are composed of spatially well-separated fiber types, namely, red and white muscles with different physiological functions and metabolism. To compare the DNA methylation profiles of the two types of muscle tissues and identify potential candidate genes for the muscle growth and development under epigenetic regulation, genome-wide DNA methylation of the red and white muscle in Chinese perch Siniperca chuatsi were comparatively analyzed using bisulfate sequencing methods. An average of 0.9 billion 150-bp paired-end reads were obtained, of which 86% were uniquely mapped to the genome. Methylation mostly occurred at CG sites at a ratio of 94.43% in the red muscle and 93.16% in the white muscle. The mean methylation levels at C-sites were 5.95% in red muscle and 5.83% in white muscle, whereas the mean methylation levels of CG, CHG, and CHH were 73.23%, 0.62%, and 0.67% in red muscle, and 71.01%, 0.62%, and 0.67% in white muscle, respectively. A total of 4192 differentially methylated genes (DMGs) were identified significantly enriched in cell signaling pathways related to skeletal muscle differentiation and growth. Various muscle-related genes, including myosin gene isoforms and regulatory factors, are differentially methylated in the promoter region between the red and white muscles. Further analysis of the transcriptional expression of these genes showed that the muscle regulatory factors (myf5, myog, pax3, pax7, and twitst2) and myosin genes (myh10, myh16, myo18a, myo7a, myo9a, and myl3) were differentially expressed between the two kinds of muscles, consistent with the DNA methylation analysis results. ELISA assays confirmed that the level of 5mC in red muscle was significantly higher than in white muscle (P < 0.05). The RT-qPCR assays revealed that the expression levels of the three DNA methylation transferase (dnmt) subtypes, dnmt1, dnmt3ab, and dnmt3bb1, were significantly higher in red muscle than in white muscle. The higher DNA methylation levels in the red muscle may result from higher DNA methylation transferase expression in the red muscles. Thus, this study might provide a theoretical foundation to better understand epigenetic regulation in the growth and development of red and white muscles in animals, at least in Chinese perch fish.
Collapse
|
22
|
Wang K, Wu P, Wang S, Ji X, Chen D, Xiao W, Gu Y, Zeng Y, Xu X, Tang G. Differential DNA methylation analysis reveals key genes in Chinese Qingyu and Landrace pigs. Genome 2021; 65:1-8. [PMID: 34242523 DOI: 10.1139/gen-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Chinese Qingyu pig is a typical domestic fatty pig breed and an invaluable indigenous genetic resource in China. Compared with the Landrace pig, the Qingyu pig has unique meat characteristics, including muscle development, intramuscular fat, and other meat quality traits. At present, few studies have explored epigenetic differences due to DNA methylation between the Qingyu pig and the Landrace pig. In this study, 30 Qingyu pigs and 31 Landrace pigs were subjected to reduced representation bisulfite sequencing (RRBS). Genome-wide differential DNA methylation analysis was conducted. Six genomic regions, including regions on Sus scrofa chromosome (SSC) 1: 266.09-274.23 Mb, SSC5: 0.88-10.68 Mb, SSC8: 41.23-48.51 Mb, SSC12: 45.43-54.38 Mb, SSC13: 202.15-207.95 Mb, and SSC14: 126.43-139.85 Mb, were regarded as key regions that may be associated with phenotypic differences between the Qingyu pig and the Landrace pig. Furthermore, according to further analysis, five differentially methylated genes (ADCY1, FUBP3, GRIN2B, KIT, and PIK3R6) were identified as key candidate genes that might be associated with meat characteristics. Our findings provide new insights into the differences in DNA methylation between the Qingyu pig and the Landrace pig. These results enrich the epigenetic research of the Chinese Qingyu pig.
Collapse
Affiliation(s)
- Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yiren Gu
- Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Yangshuang Zeng
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China
| | - Xu Xu
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
23
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
24
|
Li Y, Wei Z, Huang S, Yang B. mRNA expression and DNA methylation analysis of the inhibitory mechanism of H 2O 2 on the proliferation of A549 cells. Oncol Lett 2020; 20:288. [PMID: 33014166 PMCID: PMC7520746 DOI: 10.3892/ol.2020.12151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/18/2020] [Indexed: 01/29/2023] Open
Abstract
Reactive oxygen species, particularly hydrogen peroxide (H2O2), can induce proliferation inhibition and death of A549 cells via oxidative stress. Oxidative stress has effect on DNA methylation. Oxidative stress and DNA methylation feature a common denominator: The one carbon cycle. To explore the inhibitory mechanism of H2O2 on the proliferation of lung cancer cells, the present study analysed the mRNA expression and methylation profiles in A549 cells treated with H2O2 for 24 h, as adenocarcinoma is the most common pathological type of lung cancer. The DNA methylation profile was constructed using reduced representation bisulphite sequencing, which identified 29,755 differentially methylated sites (15,365 upregulated and 14,390 downregulated), and 1,575 differentially methylated regions located in the gene promoters were identified using the methylKit. Analysis of the assocaition between gene expression and methylation levels revealed that several genes were downregulated and hypermethylated, including cyclin-dependent kinase inhibitor 3, denticleless E3 ubiquitin protein ligase homolog, centromere protein (CENP)F, kinesin family member (KIF)20A, CENPA, KIF11, PCNA clamp-associated factor and GINS complex subunit 2, which may be involved in the inhibitory process of H2O2 on the proliferation of A549 cells.
Collapse
Affiliation(s)
- Yepeng Li
- Department of Oncology, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Zhongheng Wei
- Department of Oncology, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Shiqing Huang
- Department of Oncology, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| | - Bo Yang
- Key Laboratory of Guangxi College and Universities, Biomedical Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi Zhuang Autonomous Region 533000, P.R. China
| |
Collapse
|
25
|
Fan Y, Liang Y, Deng K, Zhang Z, Zhang G, Zhang Y, Wang F. Analysis of DNA methylation profiles during sheep skeletal muscle development using whole-genome bisulfite sequencing. BMC Genomics 2020; 21:327. [PMID: 32349667 PMCID: PMC7191724 DOI: 10.1186/s12864-020-6751-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND DNA methylation is an epigenetic regulatory form that plays an important role in regulating the gene expression and the tissues development.. However, DNA methylation regulators involved in sheep muscle development remain unclear. To explore the functional importance of genome-scale DNA methylation during sheep muscle growth, this study systematically investigated the genome-wide DNA methylation profiles at key stages of Hu sheep developmental (fetus and adult) using deep whole-genome bisulfite sequencing (WGBS). RESULTS Our study found that the expression levels of DNA methyltransferase (DNMT)-related genes were lower in fetal muscle than in the muscle of adults. The methylation levels in the CG context were higher than those in the CHG and CHH contexts, and methylation levels were highest in introns, followed by exons and downstream regions. Subsequently, we identified 48,491, 17, and 135 differentially methylated regions (DMRs) in the CG, CHG, and CHH sequence contexts and 11,522 differentially methylated genes (DMGs). The results of bisulfite sequencing PCR (BSP) correlated well with the WGBS-Seq data. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation analysis revealed that some DMGs were involved in regulating skeletal muscle development and fatty acid metabolism. By combining the WGBS-Seq and previous RNA-Seq data, a total of 159 overlap genes were obtained between differentially expressed genes (DEGs) and DMGs (FPKM > 10 and fold change > 4). Finally, we found that 9 DMGs were likely to be involved in muscle growth and metabolism of Hu sheep. CONCLUSIONS We systemically studied the global DNA methylation patterns of fetal and adult muscle development in Hu sheep, which provided new insights into a better understanding of the epigenetic regulation of sheep muscle development.
Collapse
Affiliation(s)
- Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaxu Liang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
26
|
Tsereniuk OM, Bobrytska OM, Miroshnikova OS, Danchuk OV. DNA-type results of Landrace sows for RYR1-gene and its association with productivity. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Recently the assessment of QTL genes has been a relevant focus of research. Among other genes, the RYR1 is one of the most important. Research on this gene for Landrace sows of Ukrainian selection has been insufficient. This fact confirms the need for our work. A total of 63 Landrace sows from different families were evaluated by reproductive qualities for two generations. A comprehensive assessment of the sows’ reproductive ability was performed using the SIRQS-index. Determination of polymorphism in the RYR1 gene in pigs was performed by using DNA-typing of animals. Genetic potential was calculated between two generations “mother-daughter”. By assessment of polymorphism of the RYR1 gene, it was found that 6.3% of the Landrace sows were the carriers for the mutant allele of the RYR1 gene. No animals with the RYR1nn genotype were detected. Accordingly, animals with the RYR1NN genotype accounted for 93.6%. The frequency of the N allele of the RYR1 gene was 0.97, the n frequency of the RYR1 gene allele was 0.03. Sows with RYR1NN genotype had a higher level of reproductive ability compared to the RYR1Nn genotype. RYR1NN genotype also had a higher level of genetic potential. The greatest progress was established between generations of Landrace sows which were carriers for the mutant allele. The highest values of this progress were by the NBA, the lowest – by the NW. On the contrary, there was regression between populations for part of the population (Landrace sows of Ukrainian selection of RYR1Nn genotype) by the all estimated indicators of reproductive ability. Sows that were free of the mutant allele of the RYR-1 gene had high SIRQS index. The phenotypic consolidation coefficients by the NBA were lower for sows free of the mutant allele than for its carrier. The advantage of sows free of the mutant allele of the RYR-1 gene over its carrier sows was established in almost all assessed indicators of reproductive ability. No significant differences in the level of consolidation of reproductive ability between sows with different allelic variants of the RYR-1 gene were established. The higher productive level of sows with RYR1NN genotype is reflected in the indicators of economic efficiency of production. It allows higher levels of profitability to be obtained and net profit to be increased by 1093 UAH compared to sows with RYR1Nn genotype. The further monitoring of the studied gene and the gradual elimination of carriers of the mutant allele is a promising direction in breeding work.
Collapse
|
27
|
Study on Hematological and Biochemical Characters of Cloned Duroc Pigs and Their Progeny. Animals (Basel) 2019; 9:ani9110912. [PMID: 31684083 PMCID: PMC6912288 DOI: 10.3390/ani9110912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cloning is the most promising technique for passing the excellent phenotypes of the best individuals in the population. Here we studied the effects of cloning on Duroc pig, which is the most popular sire used in pig production due to its good growth and meat quality. Understanding the changes of cloned Duroc pigs and their progenies is of great importance for animal breeding and public acceptance. The results of this study suggested that there were no difference in blood parameters between the cloned Duroc and the conventionally bred Duroc and their progenies. Abstract To increase public understanding in cloned animals produced by somatic cell nuclear transfer technology, our previous study investigated the carcass trait and meat quality of the clones (paper accepted), and this study we further evaluate differences by investigating the blood parameters in cloned pigs and their progeny. We collected blood samples from the clones and conventionally bred non-clones and their progeny, and investigated their hematological and blood biochemical characters. Our results supported the hypothesis that there was no significant difference between clones and non-clones, or their progeny. Taken together, the data demonstrated that the clones or their progeny were similar with their controls in terms of blood parameters, although there were still other kinds of disorders, such as abnormal DNA methylation or histone modifications that needs further investigation. The data in this study agreed that cloning technique could be used to preserve and enlarge the genetics of the superior boars in pig breeding industry, especially in facing of the deadly threat of African Swine fever happened in China.
Collapse
|