1
|
Sakur SGJ, Williamson SL, Pavic A, Gao YK, Harris T, Kotiw M, Muir WI, Groves PJ. Developing a selective culturing approach for Campylobacter hepaticus. PLoS One 2024; 19:e0302861. [PMID: 38820282 PMCID: PMC11142446 DOI: 10.1371/journal.pone.0302861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/14/2024] [Indexed: 06/02/2024] Open
Abstract
Campylobacter hepaticus, the causative agent of Spotty Liver Disease (SLD) is an important disease in cage-free egg producing chickens causing mortality and production drops. C. hepaticus is a slow growing Campylobacter easily overgrown by fecal bacteria. It is currently only reliably isolatable from bile samples. A selective media for isolation from feces or environment would assist diagnosis and impact assessment. Growth of five Australian C. hepaticus isolates was studied using Horse blood agar (HBA), sheep blood agar (SBA), Bolton, Preston and Brain Heart Infusion (BHI) base media. Blood and/or bile were added to Bolton, Preston and BHI medias. C. jejuni was used as a positive control. Plates were incubated in duplicate under microaerophilic conditions at 42°C for 10 days and examined at days 3-5 and 7-10 of incubation. Each isolate was examined for sensitivity to 14 antimicrobials using HBA sensitivity plates. Growth was inhibited by BHI and by added bile, while blood improved growth. Further replicates using SBA, HBA, Bolton and Preston media showed best growth on Bolton agar with blood. All five C. hepaticus isolates were resistant to trimethoprim and vancomycin, while four were also resistant to rifampicin and bacitracin. Media based upon Bolton plus blood supplemented with vancomycin and trimethoprim might be used as the most appropriate media for selective growth of C. hepaticus. The addition of bile to media for C. hepaticus isolation and growth will inhibit growth and is not advised.
Collapse
Affiliation(s)
- Sheaaz G. J. Sakur
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
- Birling Laboratories, Bringelly, New South Wales, Australia
| | | | - Anthony Pavic
- Birling Laboratories, Bringelly, New South Wales, Australia
| | - Yuanshuo K. Gao
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Taha Harris
- Birling Laboratories, Bringelly, New South Wales, Australia
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Australia
| | - Wendy Isabelle Muir
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| | - Peter John Groves
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia
| |
Collapse
|
2
|
Zhao Q, Yao F, Li W, Liu S, Bi S. Identification of a dCache-type chemoreceptor in Campylobacter jejuni that specifically mediates chemotaxis towards methyl pyruvate. Front Microbiol 2024; 15:1400284. [PMID: 38784811 PMCID: PMC11111895 DOI: 10.3389/fmicb.2024.1400284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
The foodborne pathogenic bacterium Campylobacter jejuni utilizes chemotaxis to assist in the colonization of host niches. A key to revealing the relationship among chemotaxis and pathogenicity is the discovery of signaling molecules perceived by the chemoreceptors. The C. jejuni chemoreceptor Tlp11 is encoded by the highly infective C. jejuni strains. In the present study, we report that the dCache-type ligand-binding domain (LBD) of C. jejuni ATCC 33560 Tlp11 binds directly to novel ligands methyl pyruvate, toluene, and quinoline using the same pocket. Methyl pyruvate elicits a strong chemoattractant response, while toluene and quinoline function as the antagonists without triggering chemotaxis. The sensory LBD was used to control heterologous proteins by constructing chimeras, indicating that the signal induced by methyl pyruvate is transmitted across the membrane. In addition, bioinformatics and experiments revealed that the dCache domains with methyl pyruvate-binding sites and ability are widely distributed in the order Campylobacterales. This is the first report to identify the class of dCache chemoreceptors that bind to attractant methyl pyruvate and antagonists toluene and quinoline. Our research provides a foundation for understanding the chemotaxis and virulence of C. jejuni and lays a basis for the control of this foodborne pathogen.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fulian Yao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangyu Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
3
|
Bodie AR, Dittoe DK, Applegate SF, Stephens TP, Ricke SC. Adaptation of a Commercial Qualitative BAX ® Real-Time PCR Assay to Quantify Campylobacter spp. in Whole Bird Carcass Rinses. Foods 2023; 13:56. [PMID: 38201085 PMCID: PMC10778266 DOI: 10.3390/foods13010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Poultry is the primary reservoir of Campylobacter, a leading cause of gastroenteritis in the United States. Currently, the selective plating methodology using selective agars, Campy Cefex and Modified Charcoal Cefoperazone Deoxycholate agar, is preferentially used for the quantification of Campylobacter spp. among poultry products. Due to the specific nature of Campylobacter, this methodology is not sensitive, which can lead to skewed detection and quantification results. Therefore, Campylobacter detection and quantification methods are urgently needed. The objective was to develop a shortened enrichment-based quantification method for Campylobacter (CampyQuant™) in post-chill poultry rinsates using the BAX® System Real-Time PCR assay for Campylobacter. The specificity and sensitivity for the detection of C. jejuni, C. coli, and C. lari in pure culture were determined. The BAX® System Real-Time PCR assay consistently detected and identified each species 100% of the time with an enumeration range of 4.00 to 9.00 Log10 CFU/mL. Enrichment time parameters for low-level concentrations (0.00, 1.00, and 2.00 Log10 CFU/mL) of Campylobacter using the BAX® System Real-Time PCR assay were elucidated. It was determined that an enrichment time of 20 h was needed to detect at least 1.00 Log10 CFU/mL of Campylobacter spp. Using the BAX® System Real-Time PCR assay for Campylobacter. As a result, time of detection, detection limits, and enrichment parameters were used to develop the CampyQuant™ linear standard curve using the detected samples from the BAX® System Real-Time PCR assay to quantify the levels in post-chill poultry rinsates. A linear fit equation was generated for each Campylobacter species using the cycle threshold from the BAX® System Real-Time PCR assay to estimate a pre-enrichment of 1.00 to 4.00 Log10 CFU/mL of rinsates detected. The statistical analyses of each equation yielded an R2 of 0.93, 0.76, and 0.94 with a Log10 RMSE of 0.64, 1.09, and 0.81 from C. jejuni, C. coli, and C. lari, respectively. The study suggests that the BAX® System Real-Time PCR assay for Campylobacter is a more rapid, accurate, and efficient alternative method for Campylobacter enumeration.
Collapse
Affiliation(s)
- Aaron R. Bodie
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| | - Dana K. Dittoe
- Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
| | | | - Tyler P. Stephens
- Hygiena, 2 Boulden Circle, New Castle, DE 19720, USA; (S.F.A.); (T.P.S.)
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
4
|
Rubio-Garcia A, Zomer AL, Guo R, Rossen JWA, van Zeijl JH, Wagenaar JA, Luiken REC. Characterising the gut microbiome of stranded harbour seals (Phoca vitulina) in rehabilitation. PLoS One 2023; 18:e0295072. [PMID: 38051704 DOI: 10.1371/journal.pone.0295072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Animal rehabilitation centres provide a unique opportunity to study the microbiome of wild animals because subjects will be handled for their treatment and can therefore be sampled longitudinally. However, rehabilitation may have unintended consequences on the animals' microbiome because of a less varied and suboptimal diet, possible medical treatment and exposure to a different environment and human handlers. Our study describes the gut microbiome of two large seal cohorts, 50 pups (0-30 days old at arrival) and 23 weaners (more than 60 days old at arrival) of stranded harbour seals admitted for rehabilitation at the Sealcentre Pieterburen in the Netherlands, and the effect of rehabilitation on it. Faecal samples were collected from all seals at arrival, two times during rehabilitation and before release. Only seals that did not receive antimicrobial treatment were included in the study. The average time in rehabilitation was 95 days for the pups and 63 days for the weaners. We observed that during rehabilitation, there was an increase in the relative abundance of some of the Campylobacterota spp and Actinobacteriota spp. The alpha diversity of the pups' microbiome increased significantly during their rehabilitation (p-value <0.05), while there were no significant changes in alpha diversity over time for weaners. We hypothesize that aging is the main reason for the observed changes in the pups' microbiome. At release, the sex of a seal pup was significantly associated with the microbiome's alpha (i.e., Shannon diversity was higher for male pups, p-value <0.001) and beta diversity (p-value 0.001). For weaners, variation in the microbiome composition (beta diversity) at release was partly explained by sex and age of the seal (p-values 0.002 and 0.003 respectively). We mainly observed variables known to change the gut microbiome composition (e.g., age and sex) and conclude that rehabilitation in itself had only minor effects on the gut microbiome of seal pups and seal weaners.
Collapse
Affiliation(s)
- Ana Rubio-Garcia
- Veterinary and Research Department, Sealcentre Pieterburen, Pieterburen, The Netherlands
- Division of Infectious Diseases and Immunology, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Aldert L Zomer
- Division of Infectious Diseases and Immunology, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Ruoshui Guo
- Division of Infectious Diseases and Immunology, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States of America
- Laboratory of Clinical Microbiology and Infectious Diseases & Isala Academy, Isala hospital, Zwolle, The Netherlands
| | - Jan H van Zeijl
- Department of Medical Microbiology Friesland and Noordoostpolder, Certe, Leeuwarden, The Netherlands
| | - Jaap A Wagenaar
- Division of Infectious Diseases and Immunology, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Roosmarijn E C Luiken
- Division of Infectious Diseases and Immunology, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
| |
Collapse
|
5
|
Said Y, Singh D, Sebu C, Poolman M. A novel algorithm to calculate elementary modes: Analysis of Campylobacter jejuni metabolism. Biosystems 2023; 234:105047. [PMID: 39491107 DOI: 10.1016/j.biosystems.2023.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
We describe a novel algorithm, 'LPEM', that given a steady-state flux vector from a (possibly genome-scale) metabolic model, decomposes that vector into a set of weighted elementary modes such that the sum of these elementary modes is equal to the original flux vector. We apply the algorithm to a genome scale metabolic model of the human pathogen Campylobacter jejuni. This organism is unusual in that it has an absolute growth requirement for oxygen, despite being able to operate the electron transport chain anaerobically. We conclude that (1) Microaerophilly in C. jejuni can be explained by the dependence of pyridoxine 5'-phosphate oxidase for the synthesis of pyridoxal 5'- phosphate (the biologically active form of vitamin B6), (2) The LPEM algorithm is capable of determining the elementary modes of a linear programming solution describing the simultaneous production of 51 biomass precursors, (3) Elementary modes for the production of individual biomass precursors are significantly more complex when all others are produced simultaneously than those for the same product in isolation and (4) The sum of elementary modes for the production of all precursors in isolation requires a greater number of reactions and overall total flux than the simultaneous production of all precursors.
Collapse
Affiliation(s)
- Yanica Said
- Cell Systems Modelling Group, Oxford Brookes University, Oxford, OX3 0BP, UK; Department of Mathematics, University of Malta, Msida, MSD 2080, Malta
| | - Dipali Singh
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Cristiana Sebu
- Department of Mathematics, University of Malta, Msida, MSD 2080, Malta
| | - Mark Poolman
- Cell Systems Modelling Group, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
6
|
Bodie AR, Rothrock MJ, Ricke SC. Comparison of optical density-based growth kinetics for pure culture Campylobacter jejuni, coli and lari grown in blood-free Bolton broth. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:671-678. [PMID: 37784245 DOI: 10.1080/03601234.2023.2264742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Campylobacter growth kinetic parameters can be used to refine the sensitivity and efficiency of microbial growth-based methods. Therefore, the aim of this study was to construct growth curves for C. jejuni, C. coli, and C. lari in pure culture and calculate growth kinetics for each Campylobacter species in the same environmental conditions. Campylobacter jejuni, C. coli and C. lari were grown over 48 h and inoculated into 15 mL Hungate tubes (N = 3 trials per species; 5 biological replicates per trial; 3 species; 1 strain per species). Absorbance measurements were taken in 45 min intervals over 24 h. Optical density readings were plotted versus time to calculate growth kinetic parameters. C. jejuni exhibited the longest lag phase (p < 0.001) at 15 h 20 min ± 30 min, versus C. coli at 11 h 15 min ± 17 min, and C. lari at 9 h 27 min ± 15 min. The exponential phase duration was no longer than 5 h for all species, and doubling times were all less than 1h 30 min. The variation in growth kinetics for the three species of Campylobacter illustrates the importance of determining individual Campylobacter spp. growth responses for optimizing detection based on low bacterial levels. This study provides kinetics and estimates to define enrichment times necessary for low concentration Campylobacter detection.
Collapse
Affiliation(s)
- Aaron R Bodie
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, USDA-ARS U.S. National Poultry Research Center, Athens, Georgia, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Duan J, Zhao Q, Wang Y, Chi Z, Li W, Wang X, Liu S, Bi S. The dCache Domain of the Chemoreceptor Tlp1 in Campylobacter jejuni Binds and Triggers Chemotaxis toward Formate. mBio 2023:e0356422. [PMID: 37052512 DOI: 10.1128/mbio.03564-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Chemotaxis is an important virulence factor in some enteric pathogens, and it is involved in the pathogenesis and colonization of the host. However, there is limited knowledge regarding the environmental signals that promote chemotactic behavior and the sensing of these signals by chemoreceptors. To date, there is no information on the ligand molecule that directly binds to and is sensed by Campylobacter jejuni Tlp1, which is a chemoreceptor with a dCache-type ligand-binding domain (LBD). dCache (double Calcium channels and chemotaxis receptor) is the largest group of sensory domains in bacteria, but the dCache-type chemoreceptor that directly binds to formate has not yet been discovered. In this study, formate was identified as a direct-binding ligand of C. jejuni Tlp1 with high sensing specificity. We used the strategy of constructing a functional hybrid receptor of C. jejuni Tlp1 and the Escherichia coli chemoreceptor Tar to screen for the potential ligand of Tlp1, with the binding of formate to Tlp1-LBD being verified using isothermal titration calorimetry. Molecular docking and experimental analyses indicated that formate binds to the membrane-proximal pocket of the dCache subdomain. Chemotaxis assays demonstrated that formate elicits robust attractant responses of the C. jejuni strain NCTC 11168, specifically via Tlp1. The chemoattraction effect of formate via Tlp1 promoted the growth of C. jejuni, especially when competing with Tlp1- or CheY-knockout strains. Our study reveals the molecular mechanisms by which C. jejuni mediates chemotaxis toward formate, and, to our knowledge, is the first report on the high-specificity binding of the dCache-type chemoreceptor to formate as well as the physiological role of chemotaxis toward formate. IMPORTANCE Chemotaxis is important for Campylobacter jejuni to colonize favorable niches in the gastrointestinal tract of its host. However, there is still a lack of knowledge about the ligand molecules for C. jejuni chemoreceptors. The dCache-type chemoreceptor, namely, Tlp1, is the most conserved chemoreceptor in C. jejuni strains; however, the direct-binding ligand(s) triggering chemotaxis has not yet been discovered. In the present study, we found that the ligand that binds directly to Tlp1-LBD with high specificity is formate. C. jejuni exhibits robust chemoattraction toward formate, primarily via Tlp1. Tlp1 is the first reported dCache-type chemoreceptor that specifically binds formate and triggers strong chemotaxis. We further demonstrated that the formate-mediated promotion of C. jejuni growth is correlated with Tlp1-mediated chemotaxis toward formate. Our work provides important insights into the mechanism and physiological function of chemotaxis toward formate and will facilitate further investigations into the involvement of microbial chemotaxis in pathogen-host interactions.
Collapse
Affiliation(s)
- Jingjing Duan
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| | - Qi Zhao
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| | - Yuxin Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wei Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, China
| | - Xue Wang
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
- State Key Laboratory of Microbial Resources, and Environmental Microbiology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangyu Bi
- State Key Laboratory of Microbial Biotechnology, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Rath A, Rautenschlein S, Rzeznitzeck J, Lalk M, Methling K, Rychlik I, Peh E, Kittler S, Waldmann KH, von Altrock A. Investigation on the colonisation of Campylobacter strains in the pig intestine depending on available metabolites. Comp Immunol Microbiol Infect Dis 2022; 88:101865. [PMID: 35914481 DOI: 10.1016/j.cimid.2022.101865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Campylobacter (C.) spp. represent one of the most important causes for food-borne bacterial pathogen in humans worldwide. The aim of this study was to investigate metabolic requirements of two Campylobacter strains of different species based on substrate utilisation (in vitro). Based on these results, a correlation between the colonisation and the available substrates in different intestinal sections was recorded using an animal model. Campylobacter coli (ST-5777) and C. jejuni (ST-122) were used to inoculate 16 pigs, respectively, and one group of 16 pigs was used as control. The strains differed significantly in substrate utilisation - C. coli was able to metabolise various substrates (acetate, asparagine, serine, fucose, and propionate), while C. jejuni only utilised serine. Metabolomic analysis of intestinal content from different gut sections showed the presence of all previously tested metabolites, except for fucose. A significantly larger amount of glucose was found in the jejunum of those pigs infected with C. coli, while neither strain utilised it in vitro. The analysis of the intestinal contents revealed a very low proportion of Campylobacterales in the total microbiome, suggesting that the small percentage of the inoculated Campylobacter strains in the gut microflora of the animals is too low to cause differences between the control and infected groups in the composition of the metabolome. Nevertheless, knowledge of specific nutritional requirements of the pathogens combined with proof of different metabolites in the intestinal segments may provide clues about the site of colonisation in the host and improve our understanding of this zoonotic germ.
Collapse
Affiliation(s)
- Alexandra Rath
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany.
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Janina Rzeznitzeck
- Clinic for Poultry, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Michael Lalk
- Institute for Pharmaceutical Biology, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute for Pharmaceutical Biology, University of Greifswald, Greifswald, Germany
| | - Ivan Rychlik
- Veterinary Research Institute, Brno, Czech Republic
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Karl-Heinz Waldmann
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - Alexandra von Altrock
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| |
Collapse
|
9
|
Stoakes E, Savva GM, Coates R, Tejera N, Poolman MG, Grant AJ, Wain J, Singh D. Substrate Utilisation and Energy Metabolism in Non-Growing Campylobacter jejuni M1cam. Microorganisms 2022; 10:1355. [PMID: 35889074 PMCID: PMC9318392 DOI: 10.3390/microorganisms10071355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Campylobacter jejuni, the major cause of bacterial foodborne illness, is also a fastidious organism that requires strict growth requirements in the laboratory. Our aim was to study substrate utilisation and energy metabolism in non-growing C. jejuni to investigate the ability of these bacteria to survive so effectively in the food chain. We integrated phenotypic microarrays and genome-scale metabolic modelling (GSM) to investigate the survival of C. jejuni on 95 substrates. We further investigated the underlying metabolic re-adjustment associated with varying energy demands on each substrate. We identified amino acids, organic acids and H2, as single substrates supporting survival without growth. We identified several different mechanisms, which were used alone or in combination, for ATP production: substrate-level phosphorylation via acetate kinase, the TCA cycle, and oxidative phosphorylation via the electron transport chain that utilised alternative electron donors and acceptors. The benefit of ATP production through each of these mechanisms was associated with the cost of enzyme investment, nutrient availability and/or O2 utilisation. C. jejuni can utilise a wide range of substrates as energy sources, including organic acids commonly used for marination or preservation of ingredients, which might contribute to the success of their survival in changing environments.
Collapse
Affiliation(s)
- Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (E.S.); (R.C.); (A.J.G.)
| | - George M. Savva
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| | - Ruby Coates
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (E.S.); (R.C.); (A.J.G.)
| | - Noemi Tejera
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| | - Mark G. Poolman
- Cell System Modelling Group, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; (E.S.); (R.C.); (A.J.G.)
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| | - Dipali Singh
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (G.M.S.); (N.T.)
| |
Collapse
|
10
|
Chaidez C, Peraza-Garay FDJ, Medrano-Félix JA, Castro-Del Campo N, López-Cuevas O. Phenotypic traits of carbon source utilization in environmental Salmonella strains isolated from river water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1155-1163. [PMID: 33251827 DOI: 10.1080/09603123.2020.1849578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Salmonella in the environment have evolved genetically to maintain a stable cell metabolism. Nevertheless, a lack of common nutrients (such as glucose) causes these strains to metabolize alternative carbon sources. In this study, 21 strains of Salmonella Oranienburg isolated from subtropical river water were evaluated to compare their adaptation and preconditioning abilities for the consumption of environmental carbon sources (ECS). The results obtained in this study attributed important biological characteristics to the adaptation of the metabolism of Salmonella strains to diverse ECS; these characteristics include but are not limited to variations in plasticity and natural preconditioning in closely related microorganisms, such as environmental isolates belonging to the serotype Oranienburg.
Collapse
Affiliation(s)
- Cristóbal Chaidez
- The department is Environmental microbiology, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado, Culiacán, México
| | | | | | - Nohelia Castro-Del Campo
- The department is Environmental microbiology, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado, Culiacán, México
| | - Osvaldo López-Cuevas
- The department is Environmental microbiology, Laboratorio Nacional para la Investigación en Inocuidad Alimentaria (LANIIA, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado, Culiacán, México
| |
Collapse
|
11
|
Middendorf PS, Jacobs-Reitsma WF, Zomer AL, den Besten HMW, Abee T. Comparative Analysis of L-Fucose Utilization and Its Impact on Growth and Survival of Campylobacter Isolates. Front Microbiol 2022; 13:872207. [PMID: 35572645 PMCID: PMC9100392 DOI: 10.3389/fmicb.2022.872207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni and Campylobacter coli were previously considered asaccharolytic, but are now known to possess specific saccharide metabolization pathways, including L-fucose. To investigate the influence of the L-fucose utilization cluster on Campylobacter growth, survival and metabolism, we performed comparative genotyping and phenotyping of the C. jejuni reference isolate NCTC11168 (human isolate), C. jejuni Ca1352 (chicken meat isolate), C. jejuni Ca2426 (sheep manure isolate), and C. coli Ca0121 (pig manure isolate), that all possess the L-fucose utilization cluster. All isolates showed enhanced survival and prolonged spiral cell morphology in aging cultures up to day seven in L-fucose-enriched MEMα medium (MEMαF) compared to MEMα. HPLC analysis indicated L-fucose utilization linked to acetate, lactate, pyruvate and succinate production, confirming the activation of the L-fucose pathway in these isolates and its impact on general metabolism. Highest consumption of L-fucose by C. coli Ca0121 is conceivably linked to its enhanced growth performance up to day 7, reaching 9.3 log CFU/ml compared to approximately 8.3 log CFU/ml for the C. jejuni isolates. Genetic analysis of the respective L-fucose clusters revealed several differences, including a 1 bp deletion in the Cj0489 gene of C. jejuni NCTC11168, causing a frameshift in this isolate resulting in two separate genes, Cj0489 and Cj0490, while no apparent phenotype could be linked to the presumed frameshift in this isolate. Additionally, we found that the L-fucose cluster of C. coli Ca0121 was most distant from C. jejuni NCTC11168, but confirmation of links to L-fucose metabolism associated phenotypic traits in C. coli versus C. jejuni isolates requires further studies.
Collapse
Affiliation(s)
- Pjotr S. Middendorf
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
- WHO Collaborating Center for Campylobacter/OIE Reference Laboratory for Campylobacteriosis, Utrecht, Netherlands
| | - Heidy M. W. den Besten
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- Heidy M. W. den Besten,
| | - Tjakko Abee
- Food Microbiology, Wageningen University, Wageningen, Netherlands
- *Correspondence: Tjakko Abee,
| |
Collapse
|
12
|
Lanzl MI, van Mastrigt O, Zwietering MH, Abee T, den Besten HMW. Role of substrate availability in the growth of Campylobacter co-cultured with extended spectrum beta-lactamase-producing Escherichia coli in Bolton broth. Int J Food Microbiol 2021; 363:109518. [PMID: 34996645 DOI: 10.1016/j.ijfoodmicro.2021.109518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 01/03/2023]
Abstract
It is well-established that Extended-spectrum beta-lactamase-producing (ESBL-) Escherichia coli challenge reliable detection of campylobacters during enrichment in Bolton broth (BB) following ISO 10272-1:2017. The overgrowth of Campylobacter by ESBL-E. coli in the enrichment medium BB can lead to false-negative detection outcomes, but the cause for the growth suppression is yet unknown. A plausible reason could be the competition-induced lack of certain growth substrates. Therefore, this study aimed to investigate whether campylobacters and ESBL-E. coli compete for the same medium components and whether this is the cause for the observed growth repression. The availability of possible growth substrates in BB was determined and changes in their extracellular concentration were measured over time during mono-culture enrichment of C. jejuni, C. coli or ESBL-E. coli as well as in co-culture enrichments of campylobacters and ESBL-E. coli. Comparative analysis showed lactate and fumarate utilization by C. jejuni and C. coli exclusively, whereas ESBL-E. coli rapidly consumed asparagine, glutamine/arginine, lysine, threonine, tryptophan, pyruvate, glycerol, cellobiose, and glucose. Both campylobacters and ESBL-E. coli utilized aspartate, serine, formate, a-ketoglutarate and malate. Trends in compound utilization were similar for C. jejuni and C. coli and trends in compound utilization were rather comparable during enrichment of reference and freeze-stressed campylobacters. Since final cell densities of C. jejuni and C. coli in co-cultures were not enhanced by the addition of surplus l-serine and final cell densities were similar in fresh and spent medium, growth suppression seems not to be caused by a lack of substrates or production of inhibitory compounds. We hypothesized that oxygen availability was limiting growth in co-cultures. Higher oxygen availability increased the competitive fitness of C. jejuni 81-176 in co-culture with ESBL-E. coli in duplicate experiments, as cell concentrations in stationary phase were similar to those without competition. This could indicate the critical role of oxygen availability during the growth of Campylobacter and offers potential for further improvement of Campylobacter spp. enrichment efficacy.
Collapse
Affiliation(s)
- M I Lanzl
- Food Microbiology, Wageningen University & Research, Netherlands
| | - O van Mastrigt
- Food Microbiology, Wageningen University & Research, Netherlands
| | - M H Zwietering
- Food Microbiology, Wageningen University & Research, Netherlands
| | - T Abee
- Food Microbiology, Wageningen University & Research, Netherlands
| | - H M W den Besten
- Food Microbiology, Wageningen University & Research, Netherlands.
| |
Collapse
|
13
|
Sirtuin-dependent reversible lysine acetylation controls the activity of acetyl-Coenzyme A synthetase in Campylobacter jejuni. J Bacteriol 2021; 203:e0033321. [PMID: 34309396 DOI: 10.1128/jb.00333-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranslational modifications are mechanisms for rapid control of protein function used by cells from all domains of life. Acetylation of the epsilon amino group (Nε) of an active-site lysine of the AMP-forming acetyl-CoA synthetase (Acs) enzyme is the paradigm for the posttranslational control of the activity of metabolic enzymes. In bacteria, the alluded active-site lysine of Acs enzymes can be modified by a number of different GCN5-type N-acetyltransferases (GNATs). Acs activity is lost as a result of acetylation, and restored by deacetylation. Using a heterologous host, we show that Campylobacter jejuni NCTC11168 synthesizes enzymes that control Acs function by reversible lysine acetylation (RLA). This work validates the function of gene products encoded by the cj1537c, cj1715, and cj1050c loci, namely the AMP-forming acetate:CoA ligase (CjAcs), a type IV GCN5-type lysine acetyltransferase (GNAT, hereafter CjLatA), and a NAD+-dependent (class III) sirtuin deacylase (CjCobB), respectively. To our knowledge, these are the first in vivo and in vitro data on C. jejuni enzymes that control the activity of CjAcs. IMPORTANCE This work is important because it provides the experimental evidence needed to support the assignment of function to three key enzymes, two of which control the reversible posttranslational modification of an active-site lysyl residue of the central metabolic enzyme acetyl-CoA synthetase (CjAcs). We can now generate Campylobacter jejuni mutant strains defective in these functions, so we can establish the conditions in which this mode of regulation of CjAcs is triggered in this bacterium. Such knowledge may provide new therapeutic strategies for the control of this pathogen.
Collapse
|
14
|
Liu M, Lyte M. Pyruvate is required for catecholamine-stimulated growth of different strains of Campylobacter jejuni. PeerJ 2020; 8:e10011. [PMID: 33062434 PMCID: PMC7528810 DOI: 10.7717/peerj.10011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/31/2020] [Indexed: 01/10/2023] Open
Abstract
Humans and food-producing animals are constantly exposed to and affected by stress. As a consequence of stress, the release of stress-related catecholamines, such as norepinephrine (NE) and dopamine (DA), from nerve terminals in the gastrointestinal tract potentiates both the growth and the virulence of pathogenic bacteria. This may lead to the enhancement of gastrointestinal infections in humans or food-producing animals. Compared with foodborne bacterial pathogens such as Escherichia coli and Salmonella spp., less is known about the effect of stress catecholamines on Campylobacter jejuni subsp. jejuni. The present study focuses on the effect(s) of stress catecholamines DA and NE in iron-restricted media and how they affect the growth of different C. jejuni strains NCTC 11168, 81-176, and ML2126. Results demonstrated that DA- and NE-enhanced growth of C. jejuni in iron-restricted media may involve different mechanisms that cannot be explained by current understanding which relies on catecholamine-mediated iron delivery. Specifically, we found that DA-enhanced growth requires pyruvate, whereas NE-enhanced growth does not. We further report significant strain-specific dependence of C. jejuni growth on various catecholamines in the presence or absence of pyruvate. These data provide novel insights into the effect(s) of stress catecholamines on the in vitro growth of C. jejuni in iron-restricted environments, such as the intestinal tract. They suggest a mechanism by which stress-related catecholamines affect the growth of C. jejuni in the intestinal tract of food-producing animals, which in turn may influence colonization and transmission to humans.
Collapse
Affiliation(s)
- Meicen Liu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
15
|
Ricke SC, Dittoe DK, Richardson KE. Formic Acid as an Antimicrobial for Poultry Production: A Review. Front Vet Sci 2020; 7:563. [PMID: 33088825 PMCID: PMC7494846 DOI: 10.3389/fvets.2020.00563] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Organic acids continue to receive considerable attention as feed additives for animal production. Most of the emphasis to date has focused on food safety aspects, particularly on lowering the incidence of foodborne pathogens in poultry and other livestock. Several organic acids are currently either being examined or are already being implemented in commercial settings. Among the several organic acids that have been studied extensively, is formic acid. Formic acid has been added to poultry diets as a means to limit Salmonella spp. and other foodborne pathogens both in the feed and potentially in the gastrointestinal tract once consumed. As more becomes known about the efficacy and impact formic acid has on both the host and foodborne pathogens, it is clear that the presence of formic acid can trigger certain pathways in Salmonella spp. This response may become more complex when formic acid enters the gastrointestinal tract and interacts not only with Salmonella spp. that has colonized the gastrointestinal tract but the indigenous microbial community as well. This review will cover current findings and prospects for further research on the poultry microbiome and feeds treated with formic acid.
Collapse
Affiliation(s)
- Steven C. Ricke
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Department of Food Science, Center of Food Safety, University of Arkansas, Fayetteville, AR, United States
| | | |
Collapse
|
16
|
Tejera N, Crossman L, Pearson B, Stoakes E, Nasher F, Djeghout B, Poolman M, Wain J, Singh D. Genome-Scale Metabolic Model Driven Design of a Defined Medium for Campylobacter jejuni M1cam. Front Microbiol 2020; 11:1072. [PMID: 32636809 PMCID: PMC7318876 DOI: 10.3389/fmicb.2020.01072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Campylobacter jejuni, the most frequent cause of food-borne bacterial gastroenteritis, is a fastidious organism when grown in the laboratory. Oxygen is required for growth, despite the presence of the metabolic mechanism for anaerobic respiration. Amino acid auxotrophies are variably reported and energy metabolism can occur through several electron donor/acceptor combinations. Overall, the picture is one of a flexible, but vulnerable metabolism. To understand Campylobacter metabolism, we have constructed a fully curated, metabolic model for the reference organism M1 (our variant is M1cam) and validated it through laboratory experiments. Our results show that M1cam is auxotrophic for methionine, niacinamide, and pantothenate. There are complete biosynthesis pathways for all amino acids except methionine and it can produce energy, but not biomass, in the absence of oxygen. M1cam will grow in DMEM/F-12 defined media but not in the previously published Campylobacter specific defined media tested. Using the model, we identified potential auxotrophies and substrates that may improve growth. With this information, we designed simple defined media containing inorganic salts, the auxotrophic substrates, L-methionine, niacinamide, and pantothenate, pyruvate and additional amino acids L-cysteine, L-serine, and L-glutamine for growth enhancement. Our defined media supports a 1.75-fold higher growth rate than Brucella broth after 48 h at 37°C and sustains the growth of other Campylobacter jejuni strains. This media can be used to design reproducible assays that can help in better understanding the adaptation, stress resistance, and the virulence mechanisms of this pathogen. We have shown that with a well-curated metabolic model it is possible to design a media to grow this fastidious organism. This has implications for the investigation of new Campylobacter species defined through metagenomics, such as C. infans.
Collapse
Affiliation(s)
- Noemi Tejera
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Lisa Crossman
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom.,SequenceAnalysis.co.uk, NRP Innovation Centre, Norwich, United Kingdom.,University of East Anglia, Norwich, United Kingdom
| | - Bruce Pearson
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Emily Stoakes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fauzy Nasher
- London School of Hygiene and Tropical Medicine, University of London, London, United Kingdom
| | - Bilal Djeghout
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Mark Poolman
- Cell Systems Modelling Group, Oxford Brookes University, Oxford, United Kingdom
| | - John Wain
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| | - Dipali Singh
- Microbes in Food Chain, Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
17
|
Yeo S, Park H, Seo E, Kim J, Kim BK, Choi IS, Huh CS. Anti-Inflammatory and Gut Microbiota Modulatory Effect of Lactobacillus rhamnosus Strain LDTM 7511 in a Dextran Sulfate Sodium-Induced Colitis Murine Model. Microorganisms 2020; 8:E845. [PMID: 32512895 PMCID: PMC7356973 DOI: 10.3390/microorganisms8060845] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of conditions involving chronic relapsing-remitting inflammation of the gastrointestinal tract with an unknown etiology. Although the cause-effect relationship between gut microbiota and IBD has not been clearly established, emerging evidence from experimental models supports the idea that gut microbes play a fundamental role in the pathogenesis of IBD. As microbiome-based therapeutics for IBD, the beneficial effects of probiotics have been found in animal colitis models and IBD patients. In this study, based on the dextran sulfate sodium (DSS)-induced colitis mouse model, we investigated Lactobacillus rhamnosus strain LDTM 7511 originating from Korean infant feces as a putative probiotic strain for IBD. The strain LDTM 7511 not only alleviated the release of inflammatory mediators, but also induced the transition of gut microbiota from dysbiotic conditions, exhibiting the opposite pattern in the abundance of DSS colitis-associated bacterial taxa to the DSS group. Our findings suggest that the strain LDTM 7511 has the potential to be used as a probiotic treatment for IBD patients in comparison to L. rhamnosus GG (ATCC 53103), which has been frequently used for IBD studies.
Collapse
Affiliation(s)
- Soyoung Yeo
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.); (E.S.); (J.K.)
| | - Hyunjoon Park
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
| | - Eunsol Seo
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.); (E.S.); (J.K.)
| | - Jihee Kim
- WCU Biomodulation Major, Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.Y.); (E.S.); (J.K.)
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan 15604, Korea; (B.K.K.); (I.S.C.)
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan 15604, Korea; (B.K.K.); (I.S.C.)
| | - In Suk Choi
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan 15604, Korea; (B.K.K.); (I.S.C.)
| | - Chul Sung Huh
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
18
|
Josenhans C, Müthing J, Elling L, Bartfeld S, Schmidt H. How bacterial pathogens of the gastrointestinal tract use the mucosal glyco-code to harness mucus and microbiota: New ways to study an ancient bag of tricks. Int J Med Microbiol 2020; 310:151392. [DOI: 10.1016/j.ijmm.2020.151392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
|
19
|
Beier RC, Byrd JA, Caldwell D, Andrews K, Crippen TL, Anderson RC, Nisbet DJ. Inhibition and Interactions of Campylobacter jejuni from Broiler Chicken Houses with Organic Acids. Microorganisms 2019; 7:E223. [PMID: 31366094 PMCID: PMC6722939 DOI: 10.3390/microorganisms7080223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/19/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is a bacterium that causes major diarrheal disease worldwide and is also one of the top five foodborne pathogens encountered in the United States. Poultry is a major source of C. jejuni, and a high-risk factor for contracting campylobacteriosis. Organic acids are used in the United States during food animal processing for removal of bacterial contamination from animal carcasses. Six organic acids were evaluated in inhibition studies of 96 C. jejuni strains obtained from shoe covers used in broiler chicken houses at different poultry farms in several states by determining the susceptibilities of the C. jejuni strains, along with the pH values at the molar minimum inhibitory concentrations (MICMs). The undissociated and dissociated organic acid concentrations were calculated at the MICMs with the Henderson-Hasselbalch equation. The results for the 96 C. jejuni strains were treated similarly for each different organic acid. Campylobacter jejuni inhibition did correlate with the dissociated organic acids, but did not correlate with pH or with the undissociated organic acids. When the concentrations of dissociated organic acids decreased, the C. jejuni strains were not disinfected. A carcass wash using organic acids should have the concentration of dissociated acid species carefully controlled. It is suggested to maintain a dissociated acid concentration for propionic, l-lactic, formic, citric, butyric, and acetic acids at 24, 40, 36, 21, 23, and 25 mM, respectively, and at these dissociated organic acid levels an acid wash would be expected to remove or inhibit 97% or more of the C. jejuni bacteria studied here. However, studies must be undertaken to confirm that the suggested concentrations of dissociated organic acids are adequate to remove C. jejuni bacteria in the field vs. the laboratory. Due to propionate, l-lactate, formate, butyrate, and acetate being utilized by C. jejuni, these organic acids may not be appropriate for use as a carcass wash to remove C. jejuni surface contamination. Of all tested organic acids, dissociated citric acid was the most efficient at inhibiting C. jejuni.
Collapse
Affiliation(s)
- Ross C Beier
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA.
| | - J Allen Byrd
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - Denise Caldwell
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - Kathleen Andrews
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - Tawni L Crippen
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - Robin C Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| | - David J Nisbet
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, TX 77845-4988, USA
| |
Collapse
|
20
|
van der Hooft JJJ, Alghefari W, Watson E, Everest P, Morton FR, Burgess KEV, Smith DGE. Unexpected differential metabolic responses of Campylobacter jejuni to the abundant presence of glutamate and fucose. Metabolomics 2018; 14:144. [PMID: 30830405 PMCID: PMC6208705 DOI: 10.1007/s11306-018-1438-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Campylobacter jejuni is the leading cause of foodborne bacterial enteritis in humans, and yet little is known in regard to how genetic diversity and metabolic capabilities among isolates affect their metabolic phenotype and pathogenicity. OBJECTIVES For instance, the C. jejuni 11168 strain can utilize both L-fucose and L-glutamate as a carbon source, which provides the strain with a competitive advantage in some environments and in this study we set out to assess the metabolic response of C. jejuni 11168 to the presence of L-fucose and L-glutamate in the growth medium. METHODS To achieve this, untargeted hydrophilic liquid chromatography coupled to mass spectrometry was used to obtain metabolite profiles of supernatant extracts obtained at three different time points up to 24 h. RESULTS This study identified both the depletion and the production and subsequent release of a multitude of expected and unexpected metabolites during the growth of C. jejuni 11168 under three different conditions. A large set of standards allowed identification of a number of metabolites. Further mass spectrometry fragmentation analysis allowed the additional annotation of substrate-specific metabolites. The results show that C. jejuni 11168 upon L-fucose addition indeed produces degradation products of the fucose pathway. Furthermore, methionine was faster depleted from the medium, consistent with previously-observed methionine auxotrophy. CONCLUSIONS Moreover, a multitude of not previously annotated metabolites in C. jejuni were found to be increased specifically upon L-fucose addition. These metabolites may well play a role in the pathogenicity of this C. jejuni strain.
Collapse
Affiliation(s)
| | - Wejdan Alghefari
- King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia
- Institute of Biological Chemistry, Biophysics & Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Eleanor Watson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Paul Everest
- School of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK
| | - Fraser R Morton
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karl E V Burgess
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - David G E Smith
- Institute of Biological Chemistry, Biophysics & Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
21
|
Beier RC, Harvey RB, Hernandez CA, Hume ME, Andrews K, Droleskey RE, Davidson MK, Bodeis-Jones S, Young S, Duke SE, Anderson RC, Crippen TL, Poole TL, Nisbet DJ. Interactions of organic acids with Campylobacter coli from swine. PLoS One 2018; 13:e0202100. [PMID: 30096155 PMCID: PMC6086449 DOI: 10.1371/journal.pone.0202100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/28/2018] [Indexed: 11/20/2022] Open
Abstract
Campylobacter coli is a bacterial species that is a major cause of diarrheal disease worldwide, and Campylobacter spp. are among the top 5 foodborne pathogens in the United States. During food production organic acids (OAs) are often used to remove bacteria from animal carcasses. The interactions of six OAs with 111 C. coli strains obtained from swine and retail pork chops were studied by determining the molar minimum inhibitory concentrations (MICMs) of the C. coli strains, and the pH at the MICMs. The Henderson-Hasselbalch equation was used to calculate the concentrations of the undissociated and dissociated OAs at the MICMs of the C. coli strains. The results for the 111 different C. coli strains obtained from different locations were treated as a single group for each OA since many of the C. coli strains behaved similarly to each different OA. Inhibition of C. coli was not dependent on pH or on the undissociated OA species, but C. coli inhibition correlated with the dissociated OA species. Therefore, if the concentration of the dissociated OAs decreases from optimum, one may then expect that C. coli bacteria would escape disinfection. The concentration of the dissociated OA should be carefully controlled in a carcass wash. We suggest maintaining a concentration of the dissociated acetic, butyric, citric, formic, lactic and propionic acids at 29, 23, 11, 35, 22 and 25 mM, respectively, when using a carcass wash with these OAs to remove C. coli bacteria. However, due to C. coli utilization of acetate, formate, lactate and propionate, these four OAs may not be the best choice to use for a carcass wash to remove C. coli contamination. Of the six OAs, citric acid was the most efficient at inhibiting C. coli.
Collapse
Affiliation(s)
- Ross C. Beier
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Roger B. Harvey
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Charles A. Hernandez
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Michael E. Hume
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Kathleen Andrews
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Robert E. Droleskey
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Maureen K. Davidson
- United States Food and Drug Administration, Office of Research, Center for Veterinary Medicine, Laurel, Maryland, United States of America
| | - Sonia Bodeis-Jones
- United States Food and Drug Administration, Office of Research, Center for Veterinary Medicine, Laurel, Maryland, United States of America
| | - Shenia Young
- United States Food and Drug Administration, Office of Research, Center for Veterinary Medicine, Laurel, Maryland, United States of America
| | - Sara E. Duke
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Robin C. Anderson
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Tawni L. Crippen
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - Toni L. Poole
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| | - David J. Nisbet
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, Food and Feed Safety Research Unit, College Station, Texas, United States of America
| |
Collapse
|
22
|
Dolan SK, Wijaya A, Geddis SM, Spring DR, Silva-Rocha R, Welch M. Loving the poison: the methylcitrate cycle and bacterial pathogenesis. Microbiology (Reading) 2018; 164:251-259. [DOI: 10.1099/mic.0.000604] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
| | - Andre Wijaya
- Department of Biochemistry, University of Cambridge, UK
| | | | | | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
23
|
Elgamoudi BA, Ketley JM, Korolik V. New approach to distinguishing chemoattractants, chemorepellents and catabolised chemoeffectors for Campylobacter jejuni. J Microbiol Methods 2018; 146:83-91. [PMID: 29428740 DOI: 10.1016/j.mimet.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 10/18/2022]
Abstract
Chemotactic behaviour is an important part of the lifestyle of motile bacteria and enables cells to respond to various environmental stimuli. The Hard Agar Plug (HAP) method is used to study the chemotactic behaviour of bacteria, including the fastidious microaerophile Campylobacter jejuni, an intestinal pathogen of humans. However, the traditional HAP assay is not quantitative, is unsuitable for chemotaxis observation over short time periods and for the investigation of repellent taxis, and is prone to false-positive and -negative results. Here we report an accurate, rapid, and quantitative HAP-based chemotaxis assay, tHAP, for the investigation of bacterial chemotactic responses. The critical component of the new assay is the addition of triphenyltetrazolium chloride (TTC). Enzymatic reduction of TTC to TFP-Red (1, 3, 5-Triphenylformazan) enables colourimetric detection of actively metabolising bacterial cells. Quantitative assessment of chemotaxis is achieved by colourimetric measurement or viability count over a period of 10 min to 3 h. Using the tHAP assay, we observed the dose-responsive chemotactic motility of C. jejuni cells along different concentrations of attractants aspartate and serine. Importantly, we have also designed a competitive tHAP assay to differentiate between repellents and attractants and to identify chemoeffectors that do not activate metabolism. IMPORTANCE The modified tHAP assay described here enables the exploration of the chemoresponse of Campylobacter jejuni towards chemorepellents, and catabolizable and non-catabolizable chemoattractants.
Collapse
Affiliation(s)
- Bassam A Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia; Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Julian M Ketley
- Department of Genetics, University of Leicester, Leicester, United Kingdom.
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Australia.
| |
Collapse
|
24
|
O’Kane PM, Connerton IF. Characterisation of Aerotolerant Forms of a Robust Chicken Colonizing Campylobacter coli. Front Microbiol 2017; 8:513. [PMID: 28396658 PMCID: PMC5366326 DOI: 10.3389/fmicb.2017.00513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022] Open
Abstract
Campylobacter contaminated poultry meat is a major source of human foodborne illness. Campylobacter coli strain OR12 is a robust colonizer of chickens that was previously shown to outcompete and displace other Campylobacter strains from the chicken's gastrointestinal tract. This strain is capable of aerobic growth on blood agar. Serial aerobic passage increased this aerotolerance as assessed by quantitative assays for growth and survival on solid media. Aerotolerance was also associated with increased peroxide stress resistance. Aerobic passage did not alter cellular morphology or motility or hinder the microaerobic growth rate. Colonization of broiler chickens by aerotolerant C. coli OR12 was significantly lower than the wild-type strain at 3 days after challenge but not by 7 days, suggesting adaptation had occurred. Bacteria recovered from chickens had retained their aerotolerance, indicating this trait is stable. Whole genome sequencing enabled comparison with the wild-type sequence. Twenty-three point mutations were present, none of which were in genes known to affect oxidative stress resistance. Insertions or deletions caused frame shifts in several genes including, phosphoglycerate kinase and the b subunit of pyruvate carboxylase that suggest modification of central and carbohydrate metabolism in response to aerobic growth. Other genes affected include those encoding putative carbonic anhydrase, motility accessory factor, filamentous haemagglutinin, and aminoacyl dipeptidase proteins. Aerotolerance has the potential to affect environmental success and survival. Increased environmental survival outside of the host intestinal tract may allow opportunities for transmission between hosts. Resistance to oxidative stress may equate to increased virulence by virtue of reduced susceptibility to oxidative free radicals produced by host immune responses. Finally, resistance to ambient atmospheric oxygen may allow increased survival on chicken skin, and therefore constitutes an increased risk to public health.
Collapse
Affiliation(s)
| | - Ian F. Connerton
- Division of Food Sciences, School of Biosciences, University of NottinghamSutton Bonington, UK
| |
Collapse
|
25
|
Mund NLA, Masanta WO, Goldschmidt AM, Lugert R, Groß U, Zautner AE. Association of Campylobacter Jejuni ssp. Jejuni Chemotaxis Receptor Genes with Multilocus Sequence Types and Source of Isolation. Eur J Microbiol Immunol (Bp) 2016; 6:162-177. [PMID: 27766165 PMCID: PMC5063009 DOI: 10.1556/1886.2015.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/19/2016] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni's flagellar locomotion is controlled by eleven chemoreceptors. Assessment of the distribution of the relevant chemoreceptor genes in the C. jejuni genomes deposited in the National Center for Biotechnology Information (NCBI) database led to the identification of two previously unknown tlp genes and a tlp5 pseudogene. These two chemoreceptor genes share the same locus in the C. jejuni genome with tlp4 and tlp11, but the gene region encoding the periplasmic ligand binding domain differs significantly from other chemoreceptor genes. Hence, they were named tlp12 and tlp13. Consequently, it was of interest to study their distribution in C. jejuni subpopulations of different clonality, and their cooccurrence with the eleven previously reported chemoreceptor genes. Therefore, the presence of all tlp genes was detected by polymerase chain reaction (PCR) in 292 multilocus sequence typing (MLST)-typed C. jejuni isolates from different hosts. The findings show interesting trends: Tlp4, tlp11, tlp12, and tlp13 appeared to be mutually exclusive and cooccur in a minor subset of isolates. Tlp4 was found to be present in only 33.56% of all tested isolates and was significantly less often detected in turkey isolates. Tlp11 was tested positive in only 17.8% of the isolates, while tlp12 was detected in 29.5% of all isolates, and tlp13 was found to be present in 38.7%.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas E. Zautner
- Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| |
Collapse
|