1
|
Yang Z, Kulka M, Yang Q, Papafragkou E, Yu C, Wales SQ, Ngo D, Chen H. Whole-Genome Sequencing-Based Confirmatory Methods on RT-qPCR Results for the Detection of Foodborne Viruses in Frozen Berries. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:225-240. [PMID: 38687458 PMCID: PMC11186866 DOI: 10.1007/s12560-024-09591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/13/2024] [Indexed: 05/02/2024]
Abstract
Accurate detection, identification, and subsequent confirmation of pathogens causing foodborne illness are essential for the prevention and investigation of foodborne outbreaks. This is particularly true when the causative agent is an enteric virus that has a very low infectious dose and is likely to be present at or near the limit of detection. In this study, whole-genome sequencing (WGS) was combined with either of two non-targeted pre-amplification methods (SPIA and SISPA) to investigate their utility as a confirmatory method for RT-qPCR positive results of foods contaminated with enteric viruses. Frozen berries (raspberries, strawberries, and blackberries) were chosen as the food matrix of interest due to their association with numerous outbreaks of foodborne illness. The hepatitis A virus (HAV) and human norovirus (HuNoV) were used as the contaminating agents. The non-targeted WGS strategy employed in this study could detect and confirm HuNoV and HAV at genomic copy numbers in the single digit range, and in a few cases, identified viruses present in samples that had been found negative by RT-qPCR analyses. However, some RT-qPCR-positive samples could not be confirmed using the WGS method, and in cases with very high Ct values, only a few viral reads and short sequences were recovered from the samples. WGS techniques show great potential for confirmation and identification of virally contaminated food items. The approaches described here should be further optimized for routine application to confirm the viral contamination in berries.
Collapse
Affiliation(s)
- Zhihui Yang
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA.
| | - Michael Kulka
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Qianru Yang
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Efstathia Papafragkou
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Christine Yu
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Samantha Q Wales
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Diana Ngo
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Haifeng Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| |
Collapse
|
2
|
Zufan SE, Mercoulia K, Kwong JC, Judd LM, Howden BP, Seemann T, Stinear TP. High-performance enrichment-based genome sequencing to support the investigation of hepatitis A virus outbreaks. Microbiol Spectr 2024; 12:e0283423. [PMID: 38018979 PMCID: PMC10783085 DOI: 10.1128/spectrum.02834-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE This proof-of-concept study introduces a hybrid capture oligo panel for whole-genome sequencing of all six human pathogenic hepatitis A virus (HAV) subgenotypes, exhibiting a higher sensitivity than some conventional genotyping assays. The ability of hybrid capture to enrich multiple targets allows for a single, streamlined workflow, thus facilitating the potential harmonization of molecular surveillance of HAV with other enteric viruses. Even challenging sample matrices can be accommodated, making them suitable for broad implementation in clinical and public health laboratories. This innovative approach has significant implications for enhancing multijurisdictional outbreak investigations as well as our understanding of the global diversity and transmission dynamics of HAV.
Collapse
Affiliation(s)
- Sara E. Zufan
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Karolina Mercoulia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason C. Kwong
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise M. Judd
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Doherty Applied Microbial Genomics, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Torsten Seemann
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Timothy P. Stinear
- The Center for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Kozak RA, Rutherford C, Richard-Greenblatt M, Chau NYE, Cabrera A, Biondi M, Borlang J, Day J, Osiowy C, Ramachandran S, Mayer N, Glaser L, Smieja M. Development and Evaluation of a Molecular Hepatitis A Virus Assay for Serum and Stool Specimens. Viruses 2022; 14:v14010159. [PMID: 35062362 PMCID: PMC8777614 DOI: 10.3390/v14010159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 11/26/2022] Open
Abstract
Hepatitis A virus (HAV) is an emerging public health concern and there is an urgent need for ways to rapidly identify cases so that outbreaks can be managed effectively. Conventional testing for HAV relies on anti-HAV IgM seropositivity. However, studies estimate that 10–30% of patients may not be diagnosed by serology. Molecular assays that can directly detect viral nucleic acids have the potential to improve diagnosis, which is key to prevent the spread of infections. In this study, we developed a real-time PCR (RT-PCR) assay to detect HAV RNA for the identification of acute HAV infection. Primers were designed to target the conserved 5′-untranslated region (5′-UTR) of HAV, and the assay was optimized on both the Qiagen Rotor-Gene and the BD MAX. We successfully detected HAV from patient serum and stool samples with moderate differences in sensitivity and specificity depending on the platform used. Our results highlight the clinical utility of using a molecular assay to detect HAV from various specimen types that can be implemented in hospitals to assist with diagnostics, treatment and prevention.
Collapse
Affiliation(s)
- Robert A. Kozak
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.A.K.); (N.Y.E.C.)
| | - Candace Rutherford
- St. Joseph’s Healthcare, Hamilton, ON L8N 4A6, Canada; (C.R.); (M.R.-G.)
| | - Melissa Richard-Greenblatt
- St. Joseph’s Healthcare, Hamilton, ON L8N 4A6, Canada; (C.R.); (M.R.-G.)
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.M.); (L.G.)
| | - N. Y. Elizabeth Chau
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (R.A.K.); (N.Y.E.C.)
| | - Ana Cabrera
- Pathology and Laboratory Medicine, London Health Sciences Centre, London, ON N6A 5W9, Canada;
| | - Mia Biondi
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON M6H 3M1, Canada;
| | - Jamie Borlang
- National Microbiology Laboratory, Winnipeg, MB R3E 3PG, Canada; (J.B.); (J.D.); (C.O.)
| | - Jaqueline Day
- National Microbiology Laboratory, Winnipeg, MB R3E 3PG, Canada; (J.B.); (J.D.); (C.O.)
| | - Carla Osiowy
- National Microbiology Laboratory, Winnipeg, MB R3E 3PG, Canada; (J.B.); (J.D.); (C.O.)
| | - Sumathi Ramachandran
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA;
| | - Nancy Mayer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.M.); (L.G.)
| | - Laurel Glaser
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.M.); (L.G.)
| | - Marek Smieja
- St. Joseph’s Healthcare, Hamilton, ON L8N 4A6, Canada; (C.R.); (M.R.-G.)
- Correspondence: ; Tel.: +1-905-521-6083
| |
Collapse
|
4
|
Genotyping and Molecular Diagnosis of Hepatitis A Virus in Human Clinical Samples Using Multiplex PCR-Based Next-Generation Sequencing. Microorganisms 2022; 10:microorganisms10010100. [PMID: 35056549 PMCID: PMC8779169 DOI: 10.3390/microorganisms10010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
Hepatitis A virus (HAV) is a serious threat to public health worldwide. We used multiplex polymerase chain reaction (PCR)-based next-generation sequencing (NGS) to derive information on viral genetic diversity and conduct precise phylogenetic analysis. Four HAV genome sequences were obtained using multiplex PCR-based NGS. HAV whole-genome sequence of one sample was obtained by conventional Sanger sequencing. The HAV strains demonstrated a geographic cluster with sub-genotype IA strains in the Republic of Korea. The phylogenetic pattern of HAV viral protein (VP) 3 region showed no phylogenetic conflict between the whole-genome and partial-genome sequences. The VP3 region in serum and stool samples showed sensitive detection of HAV with differences of quantification that did not exceed <10 copies/μL than the consensus VP4 region using quantitative PCR (qPCR). In conclusion, multiplex PCR-based NGS was implemented to define HAV genotypes using nearly whole-genome sequences obtained directly from hepatitis A patients. The VP3 region might be a potential candidate for tracking the genotypic origin of emerging HAV outbreaks. VP3-specific qPCR was developed for the molecular diagnosis of HAV infection. This study may be useful to predict for the disease management and subsequent development of hepatitis A infection at high risk of severe illness.
Collapse
|
5
|
Efficient capturing and sensitive detection of hepatitis A virus from solid foods (green onion, strawberry, and mussel) using protamine-coated iron oxide (Fe 3O 4) magnetic nanoparticles and real-time RT-PCR. Food Microbiol 2021; 102:103921. [PMID: 34809947 DOI: 10.1016/j.fm.2021.103921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022]
Abstract
Hepatitis A virus (HAV) continues to be a public health concern and has caused large foodborne outbreaks and economic losses worldwide. Rapid detection of HAV in foods can help to confirm the source of outbreaks in a timely manner and prevent more people getting infected. In order to efficiently detect HAV at low levels of contamination in foods, rapid and easy-to-use techniques are required to separate and concentrate viral particles to a small volume. In the current study, HAV particles were eluted from green onion, strawberry, and mussel using glycine buffer (0.05 M glycine, 0.14 M NaCl, 0.2% (v/v) Tween 20, pH 9.0) and suspended viral particles were captured using protamine-coated magnetic nanoparticles (PMNPs). This process caused a selective concentration of the viral particles, which could be followed by quantitative real-time RT-PCR analysis. Results showed that pH, NaCl concentration, and PMNP amount used for the capturing had significant effects on the recovery efficiency of HAV (P < 0.05). The highest recovery rate was obtained at pH 9.0, 0.14 M NaCl, and 50 μL of PMNPs. The optimized PMNP capturing method enabled the rapid capture and concentration of HAV. A sensitive real-time RT-PCR test was developed with detection limits of 8.3 × 100 PFU/15 g, 8.3 × 101 PFU/50 g, and 8.3 × 100 PFU/5 g of HAV in green onion, strawberry, and mussel, respectively. In conclusion, the PMNP method is rapid and convenient in capturing HAV from complex solid food samples and can generate concentrated HAV sample solutions suitable for high-sensitivity real time RT-PCR detection of the virus.
Collapse
|
6
|
Ibrahim C, Hamdi R, Hammami S, Pothier P, Khelifi N, Hassen A. Inactivation of Hepatovirus A in wastewater by 254 nm ultraviolet-C irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46725-46737. [PMID: 33241495 DOI: 10.1007/s11356-020-11601-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Hepatovirus A is known as a waterborne and foodborne virus that can be transmitted from one person to another through contaminated water and raw food. Therefore, it is necessary to survey the circulation of this type of enteric virus in the wastewater to prevent prospective outbreaks. Wastewater samples collected from WWTP El Menzeh I and Charguia I have been the subject for physicochemical, bacteriological (MPN) and virological analyses. Hepatovirus A (HAV) detection was carried out using the standard reverse transcription-polymerase chain reaction (RT-PCR). Hepatovirus A was detected respectively in 62% (63/102) and 66% (92/140) of the collected wastewater samples at El Menzeh I and Charguia I WWTPs. The treated effluent by natural oxidizing lagoon procedure was characterized by a poor physical-chemical and virological qualities but with excellent bacteriological quality. Consequently, this effluent is not suitable to be recycled and reused in agriculture or even dismissed in the environment. The treated sewage by activated sludge and rotating biodisk procedures turned out to be of a very good physical-chemical quality but with a poor bacteriological and virological quality. After tertiary UV-C254 nm irradiation, the faecal indicator bacteria concentration was mostly reduced and removed. These findings confirmed the need for improvement and upgrade of the treatment processes used in these two studied sewage purification plants and the necessity of implementation and establishment of a proper national virological standard to control the circulation rates of enteric viruses in Tunisian municipal wastewater.
Collapse
Affiliation(s)
- Chourouk Ibrahim
- Centre of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), 8020, Techno Park of Borj-Cédria, Tunisia.
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Rawand Hamdi
- Centre of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), 8020, Techno Park of Borj-Cédria, Tunisia
- Faculty of Mathematical, Physical and Natural Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Salah Hammami
- National School of Veterinary Medicine at Sidi Thabet, 2020 Tunis, IRESA, University of Manouba, Manouba, Tunisia
| | - Pierre Pothier
- National Reference Centre for Enteric Viruses, Laboratory of Virology, University Hospital of Dijon, 21070, Dijon, France
| | - Nesserine Khelifi
- Centre of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), 8020, Techno Park of Borj-Cédria, Tunisia
| | - Abdennaceur Hassen
- Centre of Research and Water Technologies (CERTE), Laboratory of Treatment and Valorization of Water Rejects (LTVRH), 8020, Techno Park of Borj-Cédria, Tunisia
| |
Collapse
|
7
|
Link EK, Eddicks M, Nan L, Ritzmann M, Sutter G, Fux R. Discriminating the eight genotypes of the porcine circovirus type 2 with TaqMan-based real-time PCR. Virol J 2021; 18:70. [PMID: 33827614 PMCID: PMC8028161 DOI: 10.1186/s12985-021-01541-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/26/2021] [Indexed: 01/09/2023] Open
Abstract
Background The porcine circovirus type 2 (PCV2) is divided into eight genotypes including the previously described genotypes PCV2a to PCV2f and the two new genotypes PCV2g and PCV2h. PCV2 genotyping has become an important task in molecular epidemiology and to advance research on the prophylaxis and pathogenesis of PCV2 associated diseases. Standard genotyping of PCV2 is based on the sequencing of the viral genome or at least of the open reading frame 2. Although, the circovirus genome is small, classical sequencing is time consuming, expensive, less sensitive and less compatible with mass testing compared with modern real-time PCR assays. Here we report about a new PCV2 genotyping method using qPCR. Methods Based on the analysis of several hundred PCV2 full genome sequences, we identified PCV2 genotype specific sequences or single-nucleotide polymorphisms. We designed six TaqMan PCR assays that are specific for single genotypes PCV2a to PCV2f and two qPCRs targeting two genotypes simultaneously (PCV2g/PCV2d and PCV2h/PCV2c). To improve specific binding of oligonucleotide primers and TaqMan probes, we used locked nucleic acid technology. We evaluated amplification efficiency, diagnostic sensitivity and tested assay specificity for the respective genotypes. Results All eight PCV2 genotype specific qPCRs demonstrated appropriate amplification efficiencies between 91 and 97%. Testing samples from an epidemiological field study demonstrated a diagnostic sensitivity of the respective genotype specific qPCR that was comparable to a highly sensitive pan-PCV2 qPCR system. Genotype specificity of most qPCRs was excellent. Limited unspecific signals were obtained when a high viral load of PCV2b was tested with qPCRs targeting PCV2d or PCV2g. The same was true for the PCV2a specific qPCR when high copy numbers of PCV2d were tested. The qPCR targeting PCV2h/PCV2c showed some minor cross-reaction with PCV2d, PCV2f and PCV2g. Conclusion Genotyping of PCV2 is important for routine diagnosis as well as for epidemiological studies. The introduced genotyping qPCR system is ideal for mass testing and should be a valuable complement to PCV2 sequencing, especially in the case of simultaneous infections with multiple PCV2 genotypes, subclinically infected animals or research studies that require large sample numbers.
Collapse
Affiliation(s)
- Ellen Kathrin Link
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Veterinärstrasse 13, 80539, Munich, Germany
| | - Matthias Eddicks
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764, Oberschleissheim, Germany
| | - Liangliang Nan
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Veterinärstrasse 13, 80539, Munich, Germany
| | - Mathias Ritzmann
- Clinic for Swine at the Centre for Clinical Veterinary Medicine, LMU Munich, Sonnenstrasse 16, 85764, Oberschleissheim, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Veterinärstrasse 13, 80539, Munich, Germany
| | - Robert Fux
- Division of Virology, Department of Veterinary Sciences, LMU Munich, Veterinärstrasse 13, 80539, Munich, Germany.
| |
Collapse
|
8
|
Upfold NS, Luke GA, Knox C. Occurrence of Human Enteric Viruses in Water Sources and Shellfish: A Focus on Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:1-31. [PMID: 33501612 PMCID: PMC7837882 DOI: 10.1007/s12560-020-09456-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/16/2020] [Indexed: 05/02/2023]
Abstract
Enteric viruses are a diverse group of human pathogens which are primarily transmitted by the faecal-oral route and are a major cause of non-bacterial diarrhoeal disease in both developed and developing countries. Because they are shed in high numbers by infected individuals and can persist for a long time in the environment, they pose a serious threat to human health globally. Enteric viruses end up in the environment mainly through discharge or leakage of raw or inadequately treated sewage into water sources such as springs, rivers, dams, or marine estuaries. Human exposure then follows when contaminated water is used for drinking, cooking, or recreation and, importantly, when filter-feeding bivalve shellfish are consumed. The human health hazard posed by enteric viruses is particularly serious in Africa where rapid urbanisation in a relatively short period of time has led to the expansion of informal settlements with poor sanitation and failing or non-existent wastewater treatment infrastructure, and where rural communities with limited or no access to municipal water are dependent on nearby open water sources for their subsistence. The role of sewage-contaminated water and bivalve shellfish as vehicles for transmission of enteric viruses is well documented but, to our knowledge, has not been comprehensively reviewed in the African context. Here we provide an overview of enteric viruses and then review the growing body of research where these viruses have been detected in association with sewage-contaminated water or food in several African countries. These studies highlight the need for more research into the prevalence, molecular epidemiology and circulation of these viruses in Africa, as well as for development and application of innovative wastewater treatment approaches to reduce environmental pollution and its impact on human health on the continent.
Collapse
Affiliation(s)
- Nicole S Upfold
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, Biomolecular Sciences Building, University of St Andrews, North Haugh, St Andrews, Scotland, KY16 9ST, UK
| | - Caroline Knox
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
9
|
Abstract
The study of hospital wastewater (HWW) microbiology is important to understand the pollution load, growth of particular pathogenic microbes, shift and drift in microbial community, development and spread of antibiotic resistance in microbes, and subsequent change in treatment efficiencies. This chapter investigates the potential microbes such as bacteria, viruses, fungi, and parasites present in HWW along with the diseases associated and methods of treatment used. Due to the indiscriminate release of antibiotics from hospitals, HWW serves as a hotspot for emergence of antibiotic-resistance genes (ARGs) and antibiotic-resistance bacteria. This chapter discusses the ARGs occurrence in HWW, their prevalence in the environment, the molecular tools used for identification, and different mechanisms of horizontal gene transfer. Thus better understanding of the microbiology of HWW could further help in development of advanced treatment technologies for effective removal of microbes and their bioproducts (toxins and infectious nucleic acid) from HWW and contaminated water.
Collapse
|
10
|
New Subgenotyping and Consensus Real-Time Reverse Transcription-PCR Assays for Hepatitis A Outbreak Surveillance. J Clin Microbiol 2019; 57:JCM.00500-19. [PMID: 31217273 DOI: 10.1128/jcm.00500-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
Laboratory surveillance plays an important role in the detection and control of hepatitis A outbreaks and requires the application of rapid and accurate molecular diagnostic tools for hepatitis A virus (HAV) RNA detection, subgenotype identification, and sequence-based genotyping. We describe the development and validation of a triplex real-time, reverse transcription-PCR (triplex rRT-PCR) assay for the identification and discrimination of HAV subgenotypes IA, IB, and IIIA and a singleplex rRT-PCR assay designed to detect all HAV genotypes infecting humans. Overall, the accuracy, sensitivity, and specificity of the new assays were >97% for serum and plasma specimens collected during unrelated outbreaks of HAV in California and Michigan compared to a nested RT-PCR genotyping assay and the ISO 15216-1 rRT-PCR method for HAV detection. The new assays will permit the rapid detection of HAV RNA and discrimination among subgenotypes IA, IB, and IIIA in serum and plasma specimens, which will strengthen public health surveillance efforts for HAV outbreak detection and response.
Collapse
|
11
|
|
12
|
Quiñones B, Lee BG, Martinsky TJ, Yambao JC, Haje PK, Schena M. Sensitive Genotyping of Foodborne-Associated Human Noroviruses and Hepatitis A Virus Using an Array-Based Platform. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2157. [PMID: 28930175 PMCID: PMC5621023 DOI: 10.3390/s17092157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022]
Abstract
Human noroviruses (NoV) are the leading cause of human gastroenteritis in populations of all ages and are linked to most of the foodborne outbreaks worldwide. Hepatitis A virus (HAV) is another important foodborne enteric virus and is considered the most common agent causing acute liver disease worldwide. In the present study, a focused, low-density DNA microarray was developed and validated for the simultaneous identification of foodborne-associated genotypes of NoV and HAV. By employing a novel algorithm, capture probes were designed to target variable genomic regions commonly used for typing these foodborne viruses. Validation results showed that probe signals, specific for the tested NoV or HAV genotypes, were on average 200-times or 38-times higher than those detected for non-targeted genotypes, respectively. To improve the analytical sensitivity of this method, a 12-mer oligonucleotide spacer sequence was added to the capture probes and resulted in a detection threshold of less than 10 cRNA transcripts. These findings have indicated that this array-based typing sensor has the accuracy and sensitivity for identifying NoV and HAV genotypic profiles predominantly linked to food poisoning. The implementation of this typing sensor would thus provide highly relevant and valuable information for use in surveillance and outbreak attribution.
Collapse
Affiliation(s)
- Beatriz Quiñones
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Unit, Albany, CA 94710, USA.
| | - Bertram G Lee
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Unit, Albany, CA 94710, USA.
| | | | - Jaszemyn C Yambao
- U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Produce Safety and Microbiology Unit, Albany, CA 94710, USA.
| | - Paul K Haje
- Arrayit Corporation, Sunnyvale, CA 94085, USA.
| | - Mark Schena
- Arrayit Corporation, Sunnyvale, CA 94085, USA.
| |
Collapse
|
13
|
Tewari D, Mocan A, Parvanov ED, Sah AN, Nabavi SM, Huminiecki L, Ma ZF, Lee YY, Horbańczuk JO, Atanasov AG. Ethnopharmacological Approaches for Therapy of Jaundice: Part I. Front Pharmacol 2017; 8:518. [PMID: 28860989 PMCID: PMC5559545 DOI: 10.3389/fphar.2017.00518 10.3389/2ffphar.2017.00518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/24/2017] [Indexed: 09/02/2023] Open
Abstract
Jaundice is a very common symptom especially in the developing countries. It is associated with several hepatic diseases which are still major causes of death. There are many different approaches to jaundice treatment and the growing number of ethnomedicinal studies shows the plant pharmacology as very promising direction. Many medicinal plants are used for the treatment of jaundice, however a comprehensive review on this subject has not been published. The use of medicinal plants in drug discovery is highly emphasized (based on their traditional and safe uses in different folk medicine systems from ancient times). Many sophisticated analytical techniques are emerging in the pharmaceutical field to validate and discover new biologically active chemical entities derived from plants. Here, we aim to classify and categorize medicinal plants relevant for the treatment of jaundice according to their origin, geographical location, and usage. Our search included various databases like Pubmed, ScienceDirect, Google Scholar. Keywords and phrases used for these searches included: "jaundice," "hyperbilirubinemia," "serum glutamate," "bilirubin," "Ayurveda." The first part of the review focuses on the variety of medicinal plant used for the treatment of jaundice (a total of 207 medicinal plants). In the second part, possible mechanisms of action of biologically active secondary metabolites of plants from five families for jaundice treatment are discussed.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun UniversityNainital, India
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and PharmacyCluj-Napoca, Romania
- ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-NapocaCluj-Napoca, Romania
| | - Emil D. Parvanov
- Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czechia
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun UniversityNainital, India
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| | - Zheng Feei Ma
- School of Medical Sciences, Universiti Sains MalaysiaKota Bharu, Malaysia
- Department of Public Health, Xi'an Jiaotong-Liverpool UniversitySuzhou, China
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains MalaysiaKota Bharu, Malaysia
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
- Department of Pharmacognosy, University of ViennaVienna, Austria
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| |
Collapse
|
14
|
Tewari D, Mocan A, Parvanov ED, Sah AN, Nabavi SM, Huminiecki L, Ma ZF, Lee YY, Horbańczuk JO, Atanasov AG. Ethnopharmacological Approaches for Therapy of Jaundice: Part I. Front Pharmacol 2017; 8:518. [PMID: 28860989 PMCID: PMC5559545 DOI: 10.3389/fphar.2017.00518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Jaundice is a very common symptom especially in the developing countries. It is associated with several hepatic diseases which are still major causes of death. There are many different approaches to jaundice treatment and the growing number of ethnomedicinal studies shows the plant pharmacology as very promising direction. Many medicinal plants are used for the treatment of jaundice, however a comprehensive review on this subject has not been published. The use of medicinal plants in drug discovery is highly emphasized (based on their traditional and safe uses in different folk medicine systems from ancient times). Many sophisticated analytical techniques are emerging in the pharmaceutical field to validate and discover new biologically active chemical entities derived from plants. Here, we aim to classify and categorize medicinal plants relevant for the treatment of jaundice according to their origin, geographical location, and usage. Our search included various databases like Pubmed, ScienceDirect, Google Scholar. Keywords and phrases used for these searches included: "jaundice," "hyperbilirubinemia," "serum glutamate," "bilirubin," "Ayurveda." The first part of the review focuses on the variety of medicinal plant used for the treatment of jaundice (a total of 207 medicinal plants). In the second part, possible mechanisms of action of biologically active secondary metabolites of plants from five families for jaundice treatment are discussed.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun UniversityNainital, India
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and PharmacyCluj-Napoca, Romania
- ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-NapocaCluj-Napoca, Romania
| | - Emil D. Parvanov
- Division BIOCEV, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czechia
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun UniversityNainital, India
| | - Seyed M. Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| | - Zheng Feei Ma
- School of Medical Sciences, Universiti Sains MalaysiaKota Bharu, Malaysia
- Department of Public Health, Xi'an Jiaotong-Liverpool UniversitySuzhou, China
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains MalaysiaKota Bharu, Malaysia
| | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiec, Poland
- Department of Pharmacognosy, University of ViennaVienna, Austria
- Department of Vascular Biology and Thrombosis Research, Centre for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| |
Collapse
|
15
|
Xie Y, Qiu N, Wang G. Toward a better guard of coastal water safety-Microbial distribution in coastal water and their facile detection. MARINE POLLUTION BULLETIN 2017; 118:5-16. [PMID: 28215556 DOI: 10.1016/j.marpolbul.2017.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/19/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Prosperous development in marine-based tourism has raised increasing concerns over the sanitary quality of coastal waters with potential microbial contamination. The World Health Organization has set stringent standards over a list of pathogenic microorganisms posing potential threats to people with frequent coastal water exposure and has asked for efficient detection procedures for pathogen facile identification. Inspection of survey events regarding the occurrence of marine pathogens in recreational beaches in recent years has reinforced the need for the development of a rapid identification procedure. In this review, we examine the possibility of recruiting uniform molecular assays to identify different marine pathogens and the feasibility of appropriate biomarkers, including enterochelin biosynthetic genes, for general toxicity assays. The focus is not only on bacterial pathogens but also on other groups of infectious pathogens. The ultimate goal is the development of a handy method to more efficiently and rapidly detect marine pathogens.
Collapse
Affiliation(s)
- Yunxuan Xie
- Tianjin University Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China
| | - Ning Qiu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Guangyi Wang
- Tianjin University Center for Marine Environmental Ecology, School of Environmental Science & Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
16
|
Adefisoye MA, Nwodo UU, Green E, Okoh AI. Quantitative PCR Detection and Characterisation of Human Adenovirus, Rotavirus and Hepatitis A Virus in Discharged Effluents of Two Wastewater Treatment Facilities in the Eastern Cape, South Africa. FOOD AND ENVIRONMENTAL VIROLOGY 2016; 8:262-274. [PMID: 27236707 PMCID: PMC5093187 DOI: 10.1007/s12560-016-9246-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/18/2016] [Indexed: 05/18/2023]
Abstract
The occurrence of enteric viruses in reclaimed wastewater, their removal by efficient treatment processes and the public health hazards associated with their release into the environments are of great significance in environmental microbiology. In this study, TaqMan-based real-time polymerase chain reaction (qPCR) was used to assess the prevalence of human adenovirus (HAdV), rotavirus (RV) and hepatitis A virus (HAV) in the final effluents of two wastewater treatment plants in the Eastern Cape Province, South Africa, over a twelve-month sampling period. The correlation between the concentrations of viruses in the effluents samples and faecal coliform (FC) densities were assessed as to validate the use of FC as microbiological indicator in water quality assessment. HAdV was detected in 62.5 % (30/48) of the samples with concentrations ranging between 8.4 × 101 and 1.0 × 105 genome copies/L while HAV and RV were only detected at concentrations below the set detection limits. FCs densities ranged from 1 to 2.7 × 104 CFU/100 ml. Adenovirus species HAdV-B (serotype 2) and HAdV-F (serotype 41) were detected in 86.7 % (26/30) and 6.7 % (2/30) of the HAdV-positive samples, respectively. No consistent seasonal trend was observed in HAdV concentrations, however, increased concentrations of HAdV were generally observed in the winter months. Also, there was no correlation between the occurrence of HAdV and FC at both the treatment plants. The persistent occurrence of HAdV in the discharged treated effluents points to the potential public health risk through the release of HAdV into the receiving watersheds, and the possibility of their transmission to human population.
Collapse
Affiliation(s)
- Martins Ajibade Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Uchechukwu U Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Ezekiel Green
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony Ifeanyin Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
17
|
Kokki I, Smith D, Simmonds P, Ramalingam S, Wellington L, Willocks L, Johannessen I, Harvala H. Hepatitis E virus is the leading cause of acute viral hepatitis in Lothian, Scotland. New Microbes New Infect 2015; 10:6-12. [PMID: 26904201 PMCID: PMC4726789 DOI: 10.1016/j.nmni.2015.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 12/12/2022] Open
Abstract
Acute viral hepatitis affects all ages worldwide. Hepatitis E virus (HEV) is increasingly recognized as a major cause of acute hepatitis in Europe. Because knowledge of its characteristics is limited, we conducted a retrospective study to outline demographic and clinical features of acute HEV in comparison to hepatitis A, B and C in Lothian over 28 months (January 2012 to April 2014). A total of 3204 blood samples from patients with suspected acute hepatitis were screened for hepatitis A, B and C virus; 913 of these samples were also screened for HEV. Demographic and clinical information on patients with positive samples was gathered from electronic patient records. Confirmed HEV samples were genotyped. Of 82 patients with confirmed viral hepatitis, 48 (59%) had acute HEV. These patients were older than those infected by hepatitis A, B or C viruses, were more often male and typically presented with jaundice, nausea, vomiting and/or malaise. Most HEV cases (70%) had eaten pork or game meat in the few months before infection, and 14 HEV patients (29%) had a recent history of foreign travel. The majority of samples were HEV genotype 3 (27/30, 90%); three were genotype 1. Acute HEV infection is currently the predominant cause of acute viral hepatitis in Lothian and presents clinically in older men. Most of these infections are autochthonous, and further studies confirming the sources of infection (i.e. food or blood transfusion) are required.
Collapse
Affiliation(s)
- I Kokki
- Specialist Virology Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - D Smith
- CIIE, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - P Simmonds
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - S Ramalingam
- Specialist Virology Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - L Wellington
- Public Health and Health Policy and NHS Lothian, Edinburgh, UK
| | - L Willocks
- Public Health and Health Policy and NHS Lothian, Edinburgh, UK
| | - I Johannessen
- Specialist Virology Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - H Harvala
- Specialist Virology Laboratory, Royal Infirmary of Edinburgh, Edinburgh, UK; Public Health Agency of Sweden, Solna, Sweden; European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| |
Collapse
|
18
|
Hepatitis A virus genotype distribution during a decade of universal vaccination of preadolescents. Int J Mol Sci 2015; 16:6842-54. [PMID: 25815599 PMCID: PMC4424991 DOI: 10.3390/ijms16046842] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
A universal vaccination program among preadolescents was implemented in Catalonia, Spain, during the period of 1999-2013 and its effectiveness has been clearly demonstrated by an overall significant attack rate reduction. However, reductions were not constant over time, and increases were again observed in 2002-2009 due to the occurrence of huge outbreaks. In the following years, in the absence of large outbreaks, the attack rate decreased again to very low levels. However, an increase of symptomatic cases in the <5 age group has recently been observed. This is an unexpected observation since children younger than 6 are mostly asymptomatic. Such a long vaccination campaign offers the opportunity to analyze not only the effectiveness of vaccination, but also the influence of the circulating genotypes on the incidence of hepatitis A among the different age groups. This study has revealed the emergence of genotype IC during a foodborne outbreak, the short-lived circulation of vaccine-escape variants isolated during an outbreak among the men-having-sex-with-men group, and the association of genotype IIIA with the increase of symptomatic cases among the very young. From a public health perspective, two conclusions may be drawn: vaccination is better at an early age, and the vaccination schedule must be complete and include all recommended vaccine doses.
Collapse
|