1
|
Milenkov M, Proux C, Rasolofoarison TL, Rakotomalala FA, Rasoanandrasana S, Rahajamanana VL, Rafalimanana C, Ravaoarisaina Z, Ramahatafandry IT, Westeel E, Petitjean M, Berti V, Marin J, Mullaert J, Han L, Clermont O, Raskine L, Endtz H, Andremont A, Denamur E, Komurian-Pradel F, Samison LH, Armand-Lefevre L. Implementation of the WHO Tricycle protocol for surveillance of extended-spectrum β-lactamase producing Escherichia coli in humans, chickens, and the environment in Madagascar: a prospective genomic epidemiology study. THE LANCET. MICROBE 2024; 5:100850. [PMID: 38908389 DOI: 10.1016/s2666-5247(24)00065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major public health threat, affecting not only people but also animals and the environment. The One Health dimension of AMR is well known; however, data are lacking on the circulation of resistance-conferring genes, particularly in low-income countries. In 2017, WHO proposed a protocol called Tricycle, focusing on extended-spectrum β-lactamase (ESBL)-Escherichia coli surveillance in the three sectors (humans, animals, and the environment). We implemented Tricycle in Madagascar to assess ESBL-E coli prevalence and describe intrasector and intersector circulation of ESBL-E coli and plasmids. METHODS In this prospective study, we collected blood culture data from hospitalised patients with a suspected bloodstream infection processed from May 1, 2018, to April 30, 2019, and rectal swabs from healthy pregnant women from July 30, 2018, to April 27, 2019, both from three hospitals in Antananarivo, Madagascar; and caeca from farm chickens and surface waters from the Ikopa river, wastewater, and slaughterhouse effluents in the Antananarivo area, Madagascar, from April 9, 2018, to April 30, 2019. All samples were tested for ESBL-E coli. The genomes of all isolates were sequenced using a short-read method on NextSeq 500 and NovaSeq 6000 platforms (Illumina, San Diego, CA, USA) and those carrying plasmid replicons using an additional long-read method on a MinION platform (Oxford Nanopore Technologies, Oxford, UK). We characterised genomes of isolated strains (sequence type, resistance and virulence gene content, and plasmid replicons). We then compared isolates using the variant calling method (single-nucleotide polymorphism). FINDINGS Data from 1056 blood cultures were collected and 289 pregnant women, 246 chickens, and 28 surface waters were sampled. Of the blood cultures, 18 contained E coli, of which seven (39%) were ESBL. ESBL-E coli was present in samples from 86 (30%) of 289 pregnant women, 140 (57%) of 246 chickens, and 28 (100%) of 28 surface water samples. The wet season (November to April) was associated with higher rates of carriage in humans (odds ratio 3·08 [1·81-5·27]) and chickens (2·79 [1·65-4·81]). Sequencing of 277 non-duplicated isolates (82 from pregnant women, 118 from chickens, and 77 from environmental samples) showed high genetic diversity (90 sequence types identified) with sector-specific genomic features. Single nucleotide polymorphism (SNP) analysis revealed that 169 (61%) of 277 isolates grouped into 44 clusters (two or more isolates) of closely related isolates (<40 SNPs), of which 24 clusters contained isolates from two sectors and five contained isolates from all three sectors. ESBL genes were all blaCTX-M variants (215 [78%] of 277 being blaCTX-M-15) and were located on a plasmid in 113 (41%) of 277 isolates. These ESBL-carrying plasmids were mainly IncF (63 [55%] of 114; one strain carried two plasmids) and IncY (42 [37%] of 114). The F31/36:A4:B1 (n=13) and F-:A-:B53 (n=8) pMLST subtypes, and the IncY plasmids, which were all highly conserved, were observed in isolates of differing genetic backgrounds from all sectors and were transferable in vitro by conjugation. INTERPRETATION Despite sector-specific population structures, both ESBL-E coli strains and plasmids are circulating among humans, chickens, and the environment in Antananarivo, Madagascar. The Tricycle protocol can be implemented in a low-income country and represents a powerful tool for investigating dissemination of AMR from a One Health perspective. FUNDING Fondation Mérieux and INSERM, Université Paris Cité.
Collapse
Affiliation(s)
- Milen Milenkov
- Fondation Mérieux, Lyon, France; Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | - Caroline Proux
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Saida Rasoanandrasana
- Laboratoire de Bactériologie, CHU Joseph Raseta Befelatanana, RESAMAD Network, Antananarivo, Madagascar
| | | | - Christian Rafalimanana
- Laboratoire de Bactériologie, CHU Joseph Ravoahangy Andrianavalona, RESAMAD Network, Antananarivo, Madagascar
| | | | | | | | | | - Valentine Berti
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université Paris Cité, Paris, France
| | - Julie Marin
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Université Sorbonne Paris Nord, IAME, INSERM UMR 1137, Bobigny, France
| | - Jimmy Mullaert
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | - Lien Han
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Hubert Endtz
- Fondation Mérieux, Lyon, France; Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | | | - Erick Denamur
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, Paris, France
| | | | - Luc Hervé Samison
- Centre d'Infectiologie Charles Mérieux, University of Antananarivo, Antananarivo, Madagascar
| | - Laurence Armand-Lefevre
- Université Paris Cité, IAME, INSERM UMR 1137, Paris, France; Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université Paris Cité, Paris, France.
| |
Collapse
|
2
|
Lo S, Ba BS, Niang AA, N'diaye I, Diop M, De Magny GC. Investigation of potentially pathogenic Vibrionaceae in Saint-Louis city, Senegal. Pan Afr Med J 2024; 48:5. [PMID: 38946740 PMCID: PMC11214138 DOI: 10.11604/pamj.2024.48.5.34685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/19/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction as cholera, due to toxigenic bacteria Vibrio cholera (serogroups O1 and O139), is a major public health threat in Africa, the aim of this work was to investigate potentially pathogenic Vibrionaceae bacteria firstly from human stool samples, and secondly from various environmental water points of Saint-Louis city in Senegal. Methods a hospital-based study was conducted between 2013 and 2015. Stool samples were taken and cultured from daily incoming patients or hospitalized for acute diarrhea at Saint-Louis´ regional hospital. For environment, a monthly longitudinal sampling from January to October 2016 was carried out at 10 sites in the city. We used total DNA extracted from APW (alkaline peptone water) broth solutions and on suspect bacterial colonies to run PCR Multiplex targeting specific DNA fragments to detect Vibrio genus and specific species. In case of positivity, a simplex PCR was performed to test for cholera toxins Ctx, and V. parahaemolyticus TRH and TDH. Results for 43 patients screened, bacterial culture was positive in 6% of cases but no strain of V. cholerae or other Vibrio sp. was isolated. PCR on 90 APW solutions were positive for Vibrio sp.(n = 43), V. cholera(n = 27), V. mimicus(n = 16), V. parahaemolyticus(8), V. alginolyticus(n = 4), and V. vulnificus(n = 2). Unlike for those on suspected colonies which were positive for a majority of V. parahaemolyticus (n = 40) and V. cholerae non-O1 / O139 (n = 35). Six strains of V. parahaemolyticus carried TRH gene, 3 of which expressed simultaneously virulence TRH and TDH genes. For physicochemical parameters, all temperatures varied similarly according to a unimodal seasonality, as well as salinity. Conclusion despite the presence of natural populations of Vibrionaceae, even toxigenic ones, was noted in water environment, along with favorable habitat conditions that could play a role in transmission of Vibriosis in the Saint Louis population, we did not isolate any of them from patients screened at the hospital.
Collapse
Affiliation(s)
- Seynabou Lo
- UFR Sciences of Health, Gaston Berger University, Saint-Louis, Senegal
- Laboratory of Biology, Regional Hospital Center of Saint-Louis, Senegal
| | | | - Aissatou Ahmet Niang
- Laboratory of Bacteriology and Virology, FMPOS, UCAD, Dakar, Senegal
- Laboratory of Bacteriology and Virology, Fann National University Hospital Center, Dakar, Senegal
| | - Issa N'diaye
- Pole of Microbiology, Pasteur Institute, Dakar, Senegal
| | - Mamadou Diop
- UFR Sciences of Health, Gaston Berger University, Saint-Louis, Senegal
| | - Guillaume Constantin De Magny
- Pole of Microbiology, Pasteur Institute, Dakar, Senegal
- Montpellier Ecology and Evolution of Disease Network (MEEDiN), Montpellier, France
- MIVEGEC (Université de Montpellier, UMR CNRS 5290, IRD 224), Institut de Recherche pour le Développement Délégation Occitanie, Montpellier, France
| |
Collapse
|
3
|
Wolde D, Eguale T, Alemayehu H, Medhin G, Haile AF, Pirs M, Strašek Smrdel K, Avberšek J, Kušar D, Cerar Kišek T, Janko T, Steyer A, Starčič Erjavec M. Antimicrobial Susceptibility and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia. Antibiotics (Basel) 2024; 13:93. [PMID: 38247652 PMCID: PMC10812509 DOI: 10.3390/antibiotics13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Antimicrobial resistance of Escherichia coli is a growing problem in both developed and developing countries. This study aimed to investigate the phenotypic antimicrobial resistance of E. coli isolates (n = 260) isolated from the stool specimen of patients attending public health facilities in Addis Ababa and Hossana. This study also aimed to characterize phenotypically confirmed extended-spectrum beta-lactamase (ESBL)-producing E. coli isolates (n = 22) using whole-genome sequencing. Resistance to 18 different antimicrobials was assessed using the disc diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The highest resistance rate among the E. coli isolates was found for ampicillin (52.7%), followed by trimethoprim-sulfamethoxazole (29.6%). Of all isolates, 50 (19.2%) were multidrug-resistant and 22 (8.5%) were ESBL producers. ESBL genes were detected in 94.7% of the sequenced E. coli isolates, and multiple β-lactamase genes were detected in 57.9% of the isolates. The predominant ESBL gene identified was blaCTX-M-15 (78.9%). The blaTEM-1B gene was detected in combination with other ESBL genes in 57.9% of the isolates, while only one of the sequenced isolates contained the blaTEM-1B gene alone. The blaCTX-M-3 gene was detected in three isolates. The genes blaCTX-M-15 and blaTEM-1B as well as blaCTX-M-15 and blaTEM-169 were confirmed to coexist in 52.6% and 10.5% of the sequenced E. coli isolates, respectively. In addition, blaOXA-1 was identified together with blaCTX-M-15 and blaTEM-1B in one isolate, and in one isolate, blaTEM-169 together with blaCTX-M-15 and blaTEM-1B was found. The results obtained show that measures need to be taken to reduce the spread of drug resistance and ensure the long-term use of available antimicrobials.
Collapse
Affiliation(s)
- Deneke Wolde
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wachemo University, Hossana P.O. Box 667, Ethiopia;
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
| | - Haile Alemayehu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
| | - Girmay Medhin
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
| | - Aklilu Feleke Haile
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (T.E.); (H.A.); (G.M.); (A.F.H.)
| | - Mateja Pirs
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.P.); (K.S.S.)
| | - Katja Strašek Smrdel
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.P.); (K.S.S.)
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.); (D.K.)
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.A.); (D.K.)
| | - Tjaša Cerar Kišek
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Tea Janko
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Andrej Steyer
- National Laboratory of Health, Environment and Food, 2000 Maribor, Slovenia; (T.C.K.); (T.J.); (A.S.)
| | - Marjanca Starčič Erjavec
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Dikoumba AC, Onanga R, Mangouka LG, Boundenga L, Ngoungou EB, Godreuil S. Molecular epidemiology of antimicrobial resistance in central africa: A systematic review. Access Microbiol 2023; 5:acmi000556.v5. [PMID: 37691840 PMCID: PMC10484317 DOI: 10.1099/acmi.0.000556.v5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023] Open
Abstract
Background In Central Africa, it is difficult to tackle antibiotic resistance, because of a lack of data and information on bacterial resistance, due to the low number of studies carried out in the field. To fill this gap, we carried out a systematic review of the various studies, and devised a molecular epidemiology of antimicrobial resistance from humans, animals and the environmental samples. Method A systematic search of all publications from 2005 to 2020 on bacterial resistance in Central Africa (Gabon, Cameroon, Democratic Republic of Congo, Central African Republic, Chad, Republic of Congo, Equatorial Guinea, São Tomé and Príncipe, Angola) was performed on Pubmed, Google scholar and African Journals Online (AJOL). All circulating resistance genes, prevalence and genetic carriers of these resistances were collected. The study area was limited to the nine countries of Central Africa. Results A total of 517 studies were identified through a literature search, and 60 studies carried out in eight countries were included. Among all articles included, 43 articles were from humans. Our study revealed not only the circulation of beta-lactamase and carbapenemase genes, but also several other types of resistance genes. To finish, we noticed that some studies reported mobile genetic elements such as integrons, transposons, and plasmids. Conclusion The scarcity of data poses difficulties in the implementation of effective strategies against antibiotic resistance, which requires a health policy in a 'One Health' approach.
Collapse
Affiliation(s)
- Annicet-Clotaire Dikoumba
- Département de biologie médicale, Hôpital d’Instruction des Armées Omar Bongo Ondimba, B.P 20404 Libreville, Gabon
- Unité de recherche et d’Analyses Médicales (URAM), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), B.P. 679 Franceville, Gabon
| | - Richard Onanga
- Unité de recherche et d’Analyses Médicales (URAM), Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), B.P. 679 Franceville, Gabon
| | - Laurette G. Mangouka
- Département de Médecine, Hôpital d’Instruction des Armées Omar Bongo Ondimba, B.P 20404 Libreville, Gabon
| | - Larson Boundenga
- Groupe Evolution et Transmission Inter-espèces des Pathogènes, Département de Parasitologie du Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Unité Maladies Émergentes Virales, Département de Virologie du Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Edgard-Brice Ngoungou
- Unité de Recherche en Epidémiologie des Maladies Chroniques et Santé Environnement (UREMCSE), Département d’Epidémiologie, Biostatistiques et Informatique Médicale (DEBIM), Faculté de Médecine, Université des Sciences de la Santé, BP 4009 Libreville, Gabon
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, 191 Avenue du Doyen Gaston Giraud, 34 295 Montpellier Cedex 5, France
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
5
|
Silva A, Silva V, Pereira JE, Maltez L, Igrejas G, Valentão P, Falco V, Poeta P. Antimicrobial Resistance and Clonal Lineages of Escherichia coli from Food-Producing Animals. Antibiotics (Basel) 2023; 12:1061. [PMID: 37370379 DOI: 10.3390/antibiotics12061061] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Escherichia coli are one of the most important pathogenic bacteria readily found in the livestock and widely studied as an indicator that carries drug-resistant genes between humans, animals, and the environment. The use of antimicrobials in the food chain, particularly in food-producing animals, is recognized as a significant contributor to the development and spread of antimicrobial resistance (AMR) and resistance genes can be transferred from the farm through the food-chain. The objective of this review is to highlight the background of the antimicrobials use in food-producing animals, more specifically, to study clonal lineages and the resistance profiles observed in E. coli, as well as in extended spectrum beta-lactamases (ESBL) producing E. coli, in a set of food-production animals with greater relevance in food consumption, such as pigs, poultry, cattle, fish farming and rabbits. Regarding the prevalence of ESBL-producing E. coli among farm animals, high-to-moderate prevalence was observed, and the highest resistance rates to tetracycline and ampicillin was detected in different farms in all geographic regions. Worldwide pandemic clones and high-risk zoonotic E. coli clones have been identified in most food-producing animals, and some of these clones are already disseminated in different niches, such as the environment and humans. A better understanding of the epidemiology of E. coli and ESBL-producing E. coli in livestock is urgently needed. Animal production is one of the major causes of the antibiotic resistance problem worldwide and a One Health approach is needed.
Collapse
Affiliation(s)
- Adriana Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - José Eduardo Pereira
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Luís Maltez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Virgílio Falco
- Chemistry Research Centre (CQ-VR), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Botts RT, Page DM, Bravo JA, Brown ML, Castilleja CC, Guzman VL, Hall S, Henderson JD, Kenney SM, Lensink ME, Paternoster MV, Pyle SL, Ustick L, Walters-Laird CJ, Top EM, Cummings DE. Polluted wetlands contain multidrug-resistance plasmids encoding CTX-M-type extended-spectrum β-lactamases. Plasmid 2023; 126:102682. [PMID: 37023995 PMCID: PMC10213127 DOI: 10.1016/j.plasmid.2023.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
While most detailed analyses of antibiotic resistance plasmids focus on those found in clinical isolates, less is known about the vast environmental reservoir of mobile genetic elements and the resistance and virulence factors they encode. We selectively isolated three strains of cefotaxime-resistant Escherichia coli from a wastewater-impacted coastal wetland. The cefotaxime-resistant phenotype was transmissible to a lab strain of E. coli after one hour, with frequencies as high as 10-3 transconjugants per recipient. Two of the plasmids also transferred cefotaxime resistance to Pseudomonas putida, but these were unable to back-transfer this resistance from P. putida to E. coli. In addition to the cephalosporins, E. coli transconjugants inherited resistance to at least seven distinct classes of antibiotics. Complete nucleotide sequences revealed large IncF-type plasmids with globally distributed replicon sequence types F31:A4:B1 and F18:B1:C4 carrying diverse antibiotic resistance and virulence genes. The plasmids encoded extended-spectrum β-lactamases blaCTX-M-15 or blaCTX-M-55, each associated with the insertion sequence ISEc9, although in different local arrangements. Despite similar resistance profiles, the plasmids shared only one resistance gene in common, the aminoglycoside acetyltransferase aac(3)-IIe. Plasmid accessory cargo also included virulence factors involved in iron acquisition and defense against host immunity. Despite their sequence similarities, several large-scale recombination events were detected, including rearrangements and inversions. In conclusion, selection with a single antibiotic, cefotaxime, yielded conjugative plasmids conferring multiple resistance and virulence factors. Clearly, efforts to limit the spread of antibiotic resistance and virulence among bacteria must include a greater understanding of mobile elements in the natural and human-impacted environments.
Collapse
Affiliation(s)
- Ryan T Botts
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Dawne M Page
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Joseph A Bravo
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Madelaine L Brown
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Claudia C Castilleja
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Victoria L Guzman
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Samantha Hall
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Jacob D Henderson
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Shelby M Kenney
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Mariele E Lensink
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Megan V Paternoster
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Sarah L Pyle
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Lucas Ustick
- Department of Mathematics, Information, and Computer Sciences, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America; Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Chara J Walters-Laird
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America
| | - Eva M Top
- Department of Biological Sciences, Institute for Interdisciplinary Data Sciences (IIDS), University of Idaho, 875 Perimeter Dr., Moscow, ID 83844, United States of America
| | - David E Cummings
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Dr., San Diego, CA 92106, United States of America.
| |
Collapse
|
7
|
Kibwana UO, Manyahi J, Sandnes HH, Blomberg B, Mshana SE, Langeland N, Roberts AP, Moyo SJ. Fluoroquinolone resistance among fecal extended spectrum βeta lactamases positive Enterobacterales isolates from children in Dar es Salaam, Tanzania. BMC Infect Dis 2023; 23:135. [PMID: 36882712 PMCID: PMC9993647 DOI: 10.1186/s12879-023-08086-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Fluoroquinolones have been, and continue to be, routinely used for treatment of many bacterial infections. In recent years, most parts of the world have reported an increasing trend of fluoroquinolone resistant (FQR) Gram-negative bacteria. METHODS A cross-sectional study was conducted between March 2017 and July 2018 among children admitted due to fever to referral hospitals in Dar es Salaam, Tanzania. Rectal swabs were used to screen for carriage of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE). ESBL-PE isolates were tested for quinolone resistance by disk diffusion method. Randomly selected fluroquinolone resistant isolates were characterized by using whole genome sequencing. RESULTS A total of 142 ESBL-PE archived isolates were tested for fluoroquinolone resistance. Overall phenotypic resistance to ciprofloxacin, levofloxacin and moxifloxacin was found in 68% (97/142). The highest resistance rate was seen among Citrobacter spp. (100%, 5/5), followed by Klebsiella. pneumoniae (76.1%; 35/46), Escherichia coli (65.6%; 42/64) and Enterobacter spp. (31.9%; 15/47). Whole genome sequencing (WGS) was performed on 42 fluoroquinolone resistant-ESBL producing isolates and revealed that 38/42; or 90.5%, of the isolates carried one or more plasmid mediated quinolone resistance (PMQR) genes. The most frequent PMQR genes were aac(6')-lb-cr (74%; 31/42), followed by qnrB1 (40%; 17/42), oqx, qnrB6 and qnS1. Chromosomal mutations in gyrA, parC and parE were detected among 19/42 isolates, and all were in E. coli. Most of the E. coli isolates (17/20) had high MIC values of > 32 µg/ml for fluoroquinolones. In these strains, multiple chromosomal mutations were detected, and all except three strains had additional PMQR genes. Sequence types, ST131 and ST617 predominated among E. coli isolates, while ST607 was more common out of 12 sequence types detected among the K. pneumoniae. Fluoroquinolone resistance genes were mostly associated with the IncF plasmids. CONCLUSION The ESBL-PE isolates showed high rates of phenotypic resistance towards fluoroquinolones likely mediated by both chromosomal mutations and PMQR genes. Chromosomal mutations with or without the presence of PMQR were associated with high MIC values in these bacteria strains. We also found a diversity of PMQR genes, sequence types, virulence genes, and plasmid located antimicrobial resistance (AMR) genes towards other antimicrobial agents.
Collapse
Affiliation(s)
- Upendo O Kibwana
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | | | - Bjørn Blomberg
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit On Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit On Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Adam P Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sabrina J Moyo
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Norwegian National Advisory Unit On Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway.,Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
8
|
Kremer A, Whitmer G, Diaz A, Sajwani A, Navarro A, Arshad M. ESBL Escherichia coli Isolates Have Enhanced Gut Colonization Capacity Compared to Non-ESBL Strains in Neonatal Mice. Microbiol Spectr 2022; 10:e0058222. [PMID: 36121240 PMCID: PMC9603109 DOI: 10.1128/spectrum.00582-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli can cause invasive infections in infants and immunocompromised children with high associated morbidity and mortality. The gut is a major reservoir of these strains in the community. Current dogma dictates that antimicrobial resistance is associated with a fitness cost. However, recent data show that some contemporary ESBL E. coli strains may be more "fit" compared to nonresistant E. coli strains. Here, we use whole-genome sequencing to first characterize 15 ESBL E. coli strains isolated from infants in a Pakistani community, a clinical extraintestinal pathogenic ESBL E. coli ST131 strain, and a non-ESBL commensal E. coli strain, and then use a novel animal model of early life gut colonization to assess the ability of these strains to colonize the infant mouse gut. We determined that CTX-M-15 was present in all the ESBL strains, as well as additional beta-lactamases and genes conferring resistance to multiple antibiotic classes. In the animal model, 11/16 ESBL E. coli strains had significantly higher burden of colonization at week four of life compared to commensal strains, even in the absence of selective antibiotic pressure, suggesting that these strains may have enhanced fitness despite being highly antimicrobial resistant. IMPORTANCE Antimicrobial resistance is a global public health emergency. Infants, especially preterm infants and those in the neonatal intensive care unit, immunocompromised hosts, and those with chronic illnesses are at highest risk of adverse outcomes from invasive infections with antimicrobial-resistant strains. It has long been thought that resistance is associated with a fitness cost, i.e., antimicrobial-resistant strains are not able to colonize the gut as well as nonresistant strains, and that antibiotic exposure is a key risk factor for persistent colonization with resistant strains. Here, we use a novel infant mouse model to add to the growing body of literature that some highly-resistant contemporary Escherichia coli strains can persist in the gut with a significant burden of colonization despite absence of antibiotic exposure.
Collapse
Affiliation(s)
- Aspen Kremer
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Grant Whitmer
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alondra Diaz
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Alima Sajwani
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Alexis Navarro
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehreen Arshad
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Genome Analysis of ESBL-Producing Escherichia coli Isolated from Pigs. Pathogens 2022; 11:pathogens11070776. [PMID: 35890020 PMCID: PMC9323374 DOI: 10.3390/pathogens11070776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
The resistome, virulome and mobilome of extended spectrum ß-lactamase (ESBL)-producing Escherichia coli (ESBL-Ec) isolated from pigs in Cameroon and South Africa were assessed using whole genome sequencing (WGS). Eleven clonally related phenotypic ESBL-Ec isolates were subjected to WGS. The prediction of antibiotic resistance genes, virulence factors (VFs) and plasmids was performed using ResFinder, VirulenceFinder and PlasmidFinder, respectively. Diverse sequence types (STs) were detected with ST2144 and ST88 being predominant and blaCTX-M-15 (55%) being the principal ESBL gene. All except two isolates harboured various aminoglycoside resistance genes, including aph(3″)-Ib (6/11, 55%) and aph(6)-1d (6/11, 55%), while the qnrS1 gene was identified in four of the isolates. The ESBL-Ec isolates showed a 93.6% score of being human pathogens. The fim, ehaB, ibeB/C were the leading virulence factors detected. All isolates harboured at least three extraintestinal pathogenic E. coli (ExPEC) VFs, with one isolate harbouring up to 18 ExPEC VFs. Five isolates (45.45%) harboured the plasmid incompatibility group IncF (FII, FIB, FIC, FIA). The study revealed that there is an urgent need to implement effective strategies to contain the dissemination of resistant and virulent ESBL-Ec through the food chain in Cameroon and South Africa.
Collapse
|
10
|
Sultan I, Siddiqui MT, Gogry FA, Haq QMR. Molecular characterization of resistance determinants and mobile genetic elements of ESBL producing multidrug-resistant bacteria from freshwater lakes in Kashmir, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154221. [PMID: 35245551 DOI: 10.1016/j.scitotenv.2022.154221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Antibiotic resistance conceded as a global concern is a phenomenon that emerged from the bacterial response to the extensive utilization of antimicrobials. The expansion of resistance determinants through horizontal transfer is linked with mobile genetic elements (MGEs) like transposons, insertion sequences, and integrons. Heavy metals also create consequential health hazards. Metal resistance gene in alliance with antibiotic resistance genes (ARGs) and MGEs is assisting bacteria to attain exalted quantity of resistance. METHODOLOGY The present work was carried out to study ARGs blaCTX-M, AmpC, qnrS, MGEs like ISecp1, TN3, TN21, and Int I by performing PCR and sequencing from Wular and Dal lakes of Kashmir; India. The genetic environment analysis of blaCTX-M-15 was carried out using PCR amplification, and sequencing approach followed by in-silico docking and mutational studies. Co-occurrence of ARGs and HMRGs was determined. Plasmid typing was done using PCR-based replicon typing (PBRT) and conjugation assay was also performed. RESULTS Out of 201 isolates attained from 16 locations, 33 were ESBLs producers. 30 ESBL displaying isolates were perceived positive for CTX-M gene, followed by AmpC (17), qnrS (13), ISecp1 (15), TN3 (11), TN21 (11), Int I (18), and SulI (14). The genetic environment of blaCTX-M-15 was observed as (ISEcp1-blaCTX-M-15-orf477), classical promoter-10 TACAAT and -35 TTGAA was found at the 3' region. The 3D structure of CTX-M-15 and ISEcp1 was generated and CTX-M-15-ISEcp1 (R299L) docking and mutation showed a reduction in hydrogen bonds. Co-occurrence of antibiotics and HMRGs (mer, sil, and ars) was found in 18, 14, and 8 isolates. PBRT analysis showed the presence of Inc. groups- B/O, F, I1, HI1, FIA, HI2, N, FIB, L/M. Molecular analysis of transconjugants showed the successful transfer of ARGs, MGEs, and HMRGs in the E. coli J53 AZR strain. CONCLUSION This study highlights the occurrence of ESBL producing bacteria in the aquatic environment of Kashmir India that can serve as a reservoir of ARGs. It also discussed the molecular mechanisms of MGEs which can help in containing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | | | | |
Collapse
|
11
|
Gruel G, Couvin D, Guyomard-Rabenirina S, Arlet G, Bambou JC, Pot M, Roy X, Talarmin A, Tressieres B, Ferdinand S, Breurec S. High Prevalence of bla CTXM-1/IncI1-Iγ/ST3 Plasmids in Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates Collected From Domestic Animals in Guadeloupe (French West Indies). Front Microbiol 2022; 13:882422. [PMID: 35651489 PMCID: PMC9149308 DOI: 10.3389/fmicb.2022.882422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) have been classified in the group of resistant bacteria of highest priority. We determined the prevalence of ESBL-E collected in feces from household and shelter pets in Guadeloupe (French West Indies). A single rectal swab was taken from 125 dogs and 60 cats between June and September 2019. The prevalence of fecal carriage of ESBL-E was 7.6% (14/185, 95% CI: 4.2-12.4), within the range observed worldwide. The only risk factor associated with a higher prevalence of ESBL-E rectal carriage was a stay in a shelter, suggesting that refuges could be hotspots for their acquisition. All but one (Klebsiella pneumoniae from a cat) were Escherichia coli. We noted the presence of a bla CTX-M-1/IncI1-Iγ/sequence type (ST3) plasmid in 11 ESBL-producing E. coli isolates belonging to ST328 (n = 6), ST155 (n = 4) and ST953 (n = 1). A bla CTX-M-15 gene was identified in the three remaining ESBL-E isolates. The bla CTX-M-1 and most of the antimicrobial resistance genes were present in a well-conserved large conjugative IncI1-Iγ/ST3 plasmid characterized by two accessory regions containing antibiotic resistance genes. The plasmid has been detected worldwide in E. coli isolates from humans and several animal species, such as food-producing animals, wild birds and pets, and from the environment. This study shows the potential role of pets as a reservoir of antimicrobial-resistant bacteria or genes for humans and underlines the importance of basic hygiene measures by owners of companion animals.
Collapse
Affiliation(s)
- Gaëlle Gruel
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - David Couvin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | | | | | - Matthieu Pot
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | | | - Antoine Talarmin
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Benoit Tressieres
- INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France
| | - Séverine Ferdinand
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France
| | - Sébastien Breurec
- Transmission, Reservoir and Diversity of Pathogens Unit, Pasteur Institute of Guadeloupe, Pointe-à-Pitre, France.,INSERM 1424, Center for Clinical Investigation, University Hospital Center of Guadeloupe, Pointe-à-Pitre, France.,Faculty of Medicine Hyacinthe Bastaraud, University of the Antilles, Pointe-à-Pitre, France
| |
Collapse
|
12
|
Godijk NG, Bootsma MCJ, Bonten MJM. Transmission routes of antibiotic resistant bacteria: a systematic review. BMC Infect Dis 2022; 22:482. [PMID: 35596134 PMCID: PMC9123679 DOI: 10.1186/s12879-022-07360-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Quantification of acquisition routes of antibiotic resistant bacteria (ARB) is pivotal for understanding transmission dynamics and designing cost-effective interventions. Different methods have been used to quantify the importance of transmission routes, such as relative risks, odds ratios (OR), genomic comparisons and basic reproduction numbers. We systematically reviewed reported estimates on acquisition routes’ contributions of ARB in humans, animals, water and the environment and assessed the methods used to quantify the importance of transmission routes. Methods PubMed and EMBASE were searched, resulting in 6054 articles published up until January 1st, 2019. Full text screening was performed on 525 articles and 277 are included. Results We extracted 718 estimates with S. aureus (n = 273), E. coli (n = 157) and Enterobacteriaceae (n = 99) being studied most frequently. Most estimates were derived from statistical methods (n = 560), mainly expressed as risks (n = 246) and ORs (n = 239), followed by genetic comparisons (n = 85), modelling (n = 62) and dosage of ARB ingested (n = 17). Transmission routes analysed most frequently were occupational exposure (n = 157), travelling (n = 110) and contacts with carriers (n = 83). Studies were mostly performed in the United States (n = 142), the Netherlands (n = 87) and Germany (n = 60). Comparison of methods was not possible as studies using different methods to estimate the same route were lacking. Due to study heterogeneity not all estimates by the same method could be pooled. Conclusion Despite an abundance of published data the relative importance of transmission routes of ARB has not been accurately quantified. Links between exposure and acquisition are often present, but the frequency of exposure is missing, which disables estimation of transmission routes’ importance. To create effective policies reducing ARB, estimates of transmission should be weighed by the frequency of exposure occurrence. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07360-z.
Collapse
Affiliation(s)
- Noortje G Godijk
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Martin C J Bootsma
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Mathematics, Faculty of Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc J M Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Furlan JPR, Dos Santos LDR, Ramos MS, Gallo IFL, Moretto JAS, Stehling EG. Occurrence of clinically relevant antimicrobial resistance genes, including mcr-3 and mcr-7.1, in soil and water from a recreation club. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:819-828. [PMID: 32735122 DOI: 10.1080/09603123.2020.1799953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
We researched clinically relevant antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in environmental samples from a recreation club in Brazil. A total of 172 amplicons (105 from soil and 67 from water) of 26 ARGs (20 among the soil and water samples; four only in soil samples; two only in water samples) were detected. Nine MGEs were detected, including plasmids and class 1 integron. The absolute abundance of the mcr-3 gene ranged from 1.12 × 102 to 1.81 × 103 copies/mL-1 in water samples. The rapid spread of mcr-like genes in several sources has generated a huge concern to public health. Accordingly, understanding of antimicrobial resistance, carry out surveillance studies may contribute to tackle antimicrobial resistance. As the environmental samples were collected from a popular recreation club in Brazil, this study points out to the risk and exposure to clinically relevant ARGs, especially to mcr-3 and mcr-7.1 genes.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Lucas David Rodrigues Dos Santos
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Micaela Santana Ramos
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Inara Fernanda Lage Gallo
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Jéssica Aparecida Silva Moretto
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| | - Eliana Guedes Stehling
- Departamento De Análises Clínicas, Toxicológicas E Bromatológicas, Faculdade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo (USP), Ribeirão Preto, Brasil
| |
Collapse
|
14
|
Gorreja F, Walker WA. The potential role of adherence factors in probiotic function in the gastrointestinal tract of adults and pediatrics: a narrative review of experimental and human studies. Gut Microbes 2022; 14:2149214. [PMID: 36469568 PMCID: PMC9728474 DOI: 10.1080/19490976.2022.2149214] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous studies point to the important role of probiotic bacteria in gastrointestinal health. Probiotics act through mechanisms affecting enteric pathogens, epithelial barrier function, immune signaling, and conditioning of indigenous microbiota. Once administered, probiotics reach the gastrointestinal tract and interact with the host through bacterial surface molecules, here called adhesion factors, which are either strain- or specie-specific. Probiotic adhesion, through structural adhesion factors, is a mechanism that facilitates persistence within the gastrointestinal tract and triggers the initial host responses. Thus, an understanding of specific probiotic adhesion mechanisms could predict how specific probiotic strains elicit benefits and the potential of adherence factors as a proxy to predict probiotic function. This review summarizes the present understanding of probiotic adherence in the gastrointestinal tract. It highlights the bacterial adhesion structure types, their molecular communication with the host and the consequent impact on intestinal diseases in both adult and pediatric populations. Finally, we discuss knockout/isolation studies as direct evidence for adhesion factors conferring anti-inflammatory and pathogen inhibition properties to a probiotic.What is known: Probiotics can be used to treat clinical conditions.Probiotics improve dysbiosis and symptoms.Clinical trials may not confirm in vitro and animal studies.What is new: Adhesion structures may be important for probiotic function.Need to systematically determine physical characteristics of probiotics before selecting for clinical trials.Probiotics may be genetically engineered to add to clinical efficacy.
Collapse
Affiliation(s)
- Frida Gorreja
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - W. Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Castro VS, Ortega Polo R, Figueiredo EEDS, Bumunange EW, McAllister T, King R, Conte-Junior CA, Stanford K. Inconsistent PCR detection of Shiga toxin-producing Escherichia coli: Insights from whole genome sequence analyses. PLoS One 2021; 16:e0257168. [PMID: 34478476 PMCID: PMC8415614 DOI: 10.1371/journal.pone.0257168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 01/10/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) have been linked to food-borne disease outbreaks. As PCR is routinely used to screen foods for STEC, it is important that factors leading to inconsistent detection of STEC by PCR are understood. This study used whole genome sequencing (WGS) to investigate causes of inconsistent PCR detection of stx1, stx2, and serogroup-specific genes. Fifty strains isolated from Alberta feedlot cattle from three different studies were selected with inconsistent or consistent detection of stx and serogroup by PCR. All isolates were initially classified as STEC by PCR. Sequencing was performed using Illumina MiSeq® with sample library by Nextera XT. Virtual PCRs were performed using Geneious and bacteriophage content was determined using PHASTER. Sequencing coverage ranged from 47 to 102x, averaging 74x, with sequences deposited in the NCBI database. Eleven strains were confirmed by WGS as STEC having complete stxA and stxB subunits. However, truncated stx fragments occurred in twenty-two other isolates, some having multiple stx fragments in the genome. Isolates with complete stx by WGS had consistent stx1 and stx2 detection by PCR, although one also having a stx2 fragment had inconsistent stx2 PCR. For all STEC and 18/39 non-STEC, serogroups determined by PCR agreed with those determined by WGS. An additional three WGS serotypes were inconclusive and two isolates were Citrobacter spp. Results demonstrate that stx fragments associated with stx-carrying bacteriophages in the E. coli genome may contribute to inconsistent detection of stx1 and stx2 by PCR. Fourteen isolates had integrated stx bacteriophage but lacked complete or fragmentary stx possibly due to partial bacteriophage excision after sub-cultivation or other unclear mechanisms. The majority of STEC isolates (7/11) did not have identifiable bacteriophage DNA in the contig(s) where stx was located, likely increasing the stability of stx in the bacterial genome and its detection by PCR.
Collapse
Affiliation(s)
- Vinicius Silva Castro
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Food and Nutrition, Federal University of Mato Grosso, Cuiaba, Brazil
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | | | | | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Canada
| | - Robin King
- Alberta Agriculture and Forestry, Edmonton, Canada
| | | | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
16
|
Minja CA, Shirima G, Mshana SE. Conjugative Plasmids Disseminating CTX-M-15 among Human, Animals and the Environment in Mwanza Tanzania: A Need to Intensify One Health Approach. Antibiotics (Basel) 2021; 10:antibiotics10070836. [PMID: 34356757 PMCID: PMC8300620 DOI: 10.3390/antibiotics10070836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Globally, blaCTX-M-15 beta-lactamases are the most popular extended spectrum beta-lactamase alleles that are widely distributed due its mobilisation by mobile genetic elements in several compartments. We aimed to determine the conjugation frequencies and replicon types associated with plasmids carrying blaCTX-M-15 gene from Extended Spectrum Beta-lactamase producing isolates in order to understand the dissemination of resistance genes in different compartments. Material and methods: A total of 51 archived isolates carrying blaCTX-M-15 beta-lactamases were used as donors in this study. Antibiotic susceptibility tests were performed as previously described for both donors and transconjugants. Conjugation experiment was performed by a modified protocol of the plate mating experiment, and plasmid replicon types were screened among donor and transconjugant isolates by multiplex Polymerase Chain Reaction in a set of three primer panels. Results: The conjugation efficiency of plasmids carrying blaCTX-M-15 was 88.2% (45/51) with conjugation frequencies in the order of 10−1 to 10−9 and a 100% transfer efficiency observed among E. coli of animal origin. Majority of donors (n = 21) and transconjugants (n = 14) plasmids were typed as either Inc FIA or Inc FIB. Resistance to non-beta-lactam antibiotics was transferrable in 34/45 (75.6%) of events. Ciprofloxacin, tetracycline and sulphamethoxazole-trimethoprim resistance was co-transferred in 29/34 (85.3%) such events. Gentamicin resistance was transferred in 17/34 (50%) of events. Conclusions: Majority of plasmids carrying blaCTX-M-15 were conjugatively transferred by IncF plasmids along with non-beta lactam resistance. There is a need for more research on plasmids to understand how plasmids especially multi replicon plasmids interact and the effect of such interaction on conjugation. One Health approach is to be intensified to address antimicrobial resistance which is a public health threat.
Collapse
Affiliation(s)
- Caroline A. Minja
- School of Life Sciences, Department of Global Health and Biomedical Sciences, Nelson Mandela African Institution of Science and Technology, Arusha 23306, Tanzania;
- Correspondence:
| | - Gabriel Shirima
- School of Life Sciences, Department of Global Health and Biomedical Sciences, Nelson Mandela African Institution of Science and Technology, Arusha 23306, Tanzania;
| | - Stephen E. Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza 33109, Tanzania;
| |
Collapse
|
17
|
Genetic Environments of Plasmid-Mediated blaCTXM-15 Beta-Lactamase Gene in Enterobacteriaceae from Africa. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12020026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The most widely distributed blaCTX-M gene on a global scale is blaCTX-M-15. The dissemination has been associated with clonal spread and different types of mobile genetic elements. The objective of this review was to describe the genetic environments of the blaCTX-M-15 gene detected from Enterobacteriaceae in published literature from Africa. A literature search for relevant articles was performed through PubMed, AJOL, and Google Scholar electronic databases; 43 articles from 17 African countries were included in the review based on the eligibility criteria. Insertion sequences were reported as part of the genetic environment of blaCTX-M-15 gene in 32 studies, integrons in 13 studies, and plasmids in 23 studies. In this review, five insertion sequences including ISEcp1, IS26, orf447, IS903, and IS3 have been detected which are associated with the genetic environment of blaCTX-M-15 in Africa. Seven different genetic patterns were seen in the blaCTX-M-15 genetic environment. Insertion sequence ISEcp1 was commonly located upstream of the end of the blaCTX-M-15 gene, while the insertion sequence orf477 was located downstream. In some studies, ISEcp1 was truncated upstream of blaCTX-M-15 by insertion sequences IS26 and IS3. The class 1 integron (Intl1) was most commonly reported to be associated with blaCTX-M-15 (13 studies), with Intl1/dfrA17–aadA5 being the most common gene cassette array. IncFIA-FIB-FII multi-replicons and IncHI2 replicon types were the most common plasmid replicon types that horizontally transferred the blaCTX-M-15 gene. Aminoglycoside-modifying enzymes, and plasmid-mediated quinolone resistance genes were commonly collocated with the blaCTX-M-15 gene on plasmids. This review revealed the predominant role of ISEcp1, Intl1 and IncF plasmids in the mobilization and continental dissemination of the blaCTX-M-15 gene in Africa.
Collapse
|
18
|
Prevalence of E. coli ST131 among Uropathogenic E. coli Isolates from Iraqi Patients in Wasit Province, Iraq. Int J Microbiol 2020; 2020:8840561. [PMID: 33133190 PMCID: PMC7593757 DOI: 10.1155/2020/8840561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 01/23/2023] Open
Abstract
The emergence of Escherichia coli sequence type 131 (E. coli ST131) clone represents a major challenge to public health globally, since this clone is reported as highly virulent and multidrug-resistant, thus making it successfully disseminated worldwide. In Iraq, there is no previous study dealing with this important clone, so this project was suggested to investigate its presence within uropathogenic E. coli (UPEC) from Iraqi patients in Wasit Province. A total of 112 UPEC isolates from cases of acute urinary tract infection (UTI) were analysed for phylogenetic groups by quadruplex PCR; then, these isolates were investigated for E. coli ST131 clone by both conventional and real-time PCR procedures. The antibiotic susceptibility test was performed by the disk diffusion method. The results revealed that, out of 112 UPEC isolates, 38 (33.9%) belonged to phylogroup B2. For conventional PCR, 92.1% (35/38) of B2 E. coli isolates were positive for E. coli ST131, of which 34 were O25b-ST131 strain and 1 was O16-ST131 strain. However, serogroups O25b and O16 represented 17.1% and 2.8%, respectively. By RT-PCR assay, 15.1% (17/112) and 44.7% (17/38) of total and B2 E. coli isolates were confirmed as being E. coli ST131, respectively. The highest resistance rates of E. coli ST131 isolates were against the β-lactams, while low resistance rates were against amikacin, nitrofurantoin, and gentamicin. Fortunately, all isolates were susceptible to carbapenems. Moreover, 52.9% (9 out of 17) of E. coli ST131 isolates were MDR. In conclusion, the presence of E. coli ST131 among UPEC isolates from Iraqi patients is confirmed with high resistance to most antimicrobials included in this study.
Collapse
|
19
|
Ouchar Mahamat O, Kempf M, Lounnas M, Tidjani A, Hide M, Benavides JA, Carrière C, Bañuls AL, Jean-Pierre H, Ouedraogo AS, Dumont Y, Godreuil S. Epidemiology and prevalence of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae in humans, animals and the environment in West and Central Africa. Int J Antimicrob Agents 2020; 57:106203. [PMID: 33075511 DOI: 10.1016/j.ijantimicag.2020.106203] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/17/2022]
Abstract
Extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) are widespread. Here we used the 'One Health' approach to determine knowledge gaps on ESBL-E and CPE in West and Central Africa. We searched all articles on ESBL-E and CPE in these African regions published in PubMed, African Journals Online and Google Scholar from 2000 onwards. Among the 1201 articles retrieved, we selected 165 studies (West Africa, 118; Central Africa, 47) with data from 22 of the 26 West and Central Africa countries. Regarding the settings, 136 articles focused only on humans (carriage and/or infection), 6 articles on humans and animals, 13 on animals, 1 on humans and the environment, 8 on the environment and 1 on humans, animals and environments. ESBL-E prevalence ranged from 11-72% in humans and 7-79% in aquatic environments (wastewater). In animals, ESBL-E prevalence hugely varied: 0% in cattle, 11-36% in chickens, 20% in rats, 21-71% in pigs and 32-75% in dogs. The blaCTX-M-15 gene was the predominant ESBL-encoding gene and was associated with plasmids of incompatibility groups F, H, K, Y, N, I1 and R. CPE were studied only in humans. Class B metallo-β-lactamases (NDM) and class D oxacillinases (OXA-48 and OXA-181) were the most common carbapenemases. Our results show major knowledge gaps, particularly on ESBL and CPE in animals and the environment, that might limit antimicrobial resistance management in these regions. The results also emphasise the urgent need to improve active surveillance programmes in each country and to support antimicrobial stewardship.
Collapse
Affiliation(s)
- Oumar Ouchar Mahamat
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Service de laboratoire, Hôpital de la Mère et de l'Enfant, N'Djaména, Chad.
| | - Marie Kempf
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France, and Laboratoire de Bactériologie-Hygiène, Institut de Biologie en Santé - PBH, CHU Angers, Angers, France
| | - Manon Lounnas
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | | - Mallorie Hide
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Julio A Benavides
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Christian Carrière
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Anne-Laure Bañuls
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| | - Hélène Jean-Pierre
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | | - Yann Dumont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| |
Collapse
|
20
|
Azam MA, Thathan J, Jupudi S. Pharmacophore modeling, atom based 3D-QSAR, molecular docking and molecular dynamics studies on Escherichia coli ParE inhibitors. Comput Biol Chem 2019; 84:107197. [PMID: 31901788 DOI: 10.1016/j.compbiolchem.2019.107197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 10/25/2022]
Abstract
ATP dependent ParE enzyme is as an attractive target for the development of antibacterial agents. Atom based 3D-QSAR model AADHR.187 was developed based on the thirty eight Escherichia coli ParE inhibitors. The generated model showed statistically significant coefficient of determinations for the training (R2 = 0.985) and test (R2 = 0.86) sets. The cross-validated correlation coefficient (q2) was 0.976. The utility of the generated model was validated by the enrichment study. The model was also validated with structurally diverse external test set of ten compounds. Contour plot analysis of the generated model unveiled the chemical features necessary for the E. coli ParE enzyme inhibition. Extra-precision docking result revealed that hydrogen bonding and ionic interactions play a major role in ParE protein-ligand binding. Binding free energy was computed for the data set inhibitors to validate the binding affinity. A 30-ns molecular dynamics simulation showed high stability and effective binding of inhibitor 34 within the active site of ParE enzyme. Using the best fitted model AADHR.187, pharmacophore-based high-throughput virtual screening was performed to identify virtual hits. Based on the above studies three new molecules are proposed as E. coli ParE inhibitors with high binding affinity and favourable ADME properties.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1).
| | - Janarthanan Thathan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1)
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty, 643001, Tamil Nadu, India(1)
| |
Collapse
|
21
|
Breurec S, Reynaud Y, Frank T, Farra A, Costilhes G, Weill FX, Le Hello S. Serotype distribution and antimicrobial resistance of human Salmonella enterica in Bangui, Central African Republic, from 2004 to 2013. PLoS Negl Trop Dis 2019; 13:e0007917. [PMID: 31790418 PMCID: PMC6907862 DOI: 10.1371/journal.pntd.0007917] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/12/2019] [Accepted: 11/11/2019] [Indexed: 01/30/2023] Open
Abstract
Background Limited epidemiological and antimicrobial resistance data are available on Salmonella enterica from sub-Saharan Africa. We determine the prevalence of resistance to antibiotics in isolates in the Central African Republic (CAR) between 2004 and 2013 and the genetic basis for resistance to third-generation cephalosporin (C3G). Methodology/Principal findings A total of 582 non-duplicate human clinical isolates were collected. The most common serotype was Typhimurium (n = 180, 31% of the isolates). A randomly selected subset of S. Typhimurium isolates were subtyped by clustered regularly interspaced short palindromic repeat polymorphism (CRISPOL) typing. All but one invasive isolate tested (66/68, 96%) were associated with sequence type 313. Overall, the rates of resistance were high to traditional first-line drugs (18–40%) but low to many other antimicrobials, including fluoroquinolones (one resistant isolate) and C3G (only one ESBL-producing isolate). The extended-spectrum beta-lactamase (ESBL)-producing isolate and three additional ESBL isolates from West Africa were studied by whole genome sequencing. The blaCTX-M-15 gene and the majority of antimicrobial resistance genes found in the ESBL isolate were present in a large conjugative IncHI2 plasmid highly similar (> 99% nucleotide identity) to ESBL-carrying plasmids found in Kenya (S. Typhimurium ST313) and also in West Africa (serotypes Grumpensis, Havana, Telelkebir and Typhimurium). Conclusions/Significance Although the prevalence of ESBL-producing Salmonella isolates was low in CAR, we found that a single IncHI2 plasmid-carrying blaCTX-M-15 was widespread among Salmonella serotypes from sub-Saharan Africa, which is of concern. Salmonella enterica infections are common causes of bloodstream infection in sub-Saharan Africa and associated with a high mortality rate. Levels of multidrug resistance have become alarmingly high. Then, third-generation cephalosporin (C3G) and fluoroquinolones have become standard for first-line empirical treatment. Recently, C3G-resistant Salmonella populations have emerged and spread over all continents. This resistance is mainly mediated by acquired extended-spectrum beta-lactamase (ESBL) genes carried by mobile genetic elements such as plasmids. We report here the prevalence of resistance to antibiotics in isolates in the Central African Republic (CAR) between 2004 and 2013 and the genetic basis for resistance to C3G. Overall, resistance rates to antimicrobials were low during the study period, for all classes other than conventional antimicrobials, confirming recommendations for first-line treatment based on C3G and fluoroquinolones. Only one ESBL-producing isolate was recovered. The ESBL gene and the majority of antimicrobial resistance genes found were present in a large plasmid highly similar to ESBL-carrying plasmids found in East and West Africa, highlighting its significant role in the spread of ESBL genes in Salmonella isolates in sub-Saharan Africa. These finding have implications for treatment of salmonellosis and support the growing necessity for increased microbiological surveillance based on networks of clinical laboratories in order to control dissemination of antibiotic resistance among Salmonella isolates.
Collapse
Affiliation(s)
- Sebastien Breurec
- Laboratoire de Bactériologie, Institut Pasteur, Bangui, Central African Republic
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, France
- Faculté de Médecine Hyacinthe Bastaraud, Université des Antilles, Pointe-à-Pitre, France
- Laboratoire de Microbiologie clinique et environnementale, Centre Hospitalier Universitaire de Pointe-à-Pitre/les Abymes, Pointe-à-Pitre, France
- * E-mail:
| | - Yann Reynaud
- Unité Transmission, Réservoir et Diversité des Pathogènes, Institut Pasteur de Guadeloupe, Les Abymes, France
| | - Thierry Frank
- Laboratoire de Bactériologie, Institut Pasteur, Bangui, Central African Republic
| | - Alain Farra
- Laboratoire de Bactériologie, Institut Pasteur, Bangui, Central African Republic
| | - Geoffrey Costilhes
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, World Health Organization Collaborative Centre for typing and antibiotic resistance of Salmonella, Institut Pasteur, Paris, France
| | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, World Health Organization Collaborative Centre for typing and antibiotic resistance of Salmonella, Institut Pasteur, Paris, France
| | - Simon Le Hello
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, World Health Organization Collaborative Centre for typing and antibiotic resistance of Salmonella, Institut Pasteur, Paris, France
| |
Collapse
|
22
|
Madec JY, Haenni M. Antimicrobial resistance plasmid reservoir in food and food-producing animals. Plasmid 2018; 99:72-81. [PMID: 30194944 DOI: 10.1016/j.plasmid.2018.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance (AMR) plasmids have been recognized as important vectors for efficient spread of AMR phenotypes. The food reservoir includes both food-producing animals and food products, and a huge diversity of AMR plasmids have been reported in this sector. Based on molecular typing methods and/or whole genome sequencing approaches, certain AMR genes/plasmids combinations were found more frequently in food compared to other settings. However, the food source of a definite AMR plasmid is highly complex to confirm due to cross-sectorial transfers and international spread of AMR plasmids. For risk assessment purposes related to human health, AMR plasmids found in food and bearing genes conferring resistances to critically important antibiotics in human medicine - such as to extended-spectrum cephalosporins, carbapenems or colistin - have been under specific scrutiny these last years. Those plasmids are often multidrug resistant and their dissemination can be driven by the selective pressure exerted by any of the antibiotics concerned. Also, AMR plasmids carry numerous other genes conferring vital properties to the bacterial cell and are recurrently subjected to evolutionary steps such as hybrid plasmids, making the epidemiology of AMR plasmids in food a moving picture.
Collapse
Affiliation(s)
- Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon - Université de Lyon, Lyon, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon - Université de Lyon, Lyon, France.
| |
Collapse
|
23
|
Mitgang EA, Hartley DM, Malchione MD, Koch M, Goodman JL. Review and mapping of carbapenem-resistant Enterobacteriaceae in Africa: Using diverse data to inform surveillance gaps. Int J Antimicrob Agents 2018; 52:372-384. [DOI: 10.1016/j.ijantimicag.2018.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/05/2023]
|
24
|
Basu S, Mukherjee M. Incidence and risk of co-transmission of plasmid-mediated quinolone resistance and extended-spectrum β-lactamase genes in fluoroquinolone-resistant uropathogenic Escherichia coli: a first study from Kolkata, India. J Glob Antimicrob Resist 2018; 14:217-223. [DOI: 10.1016/j.jgar.2018.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/15/2018] [Accepted: 03/24/2018] [Indexed: 10/17/2022] Open
|
25
|
Breurec S, Rafaï C, Onambele M, Frank T, Farra A, Legrand A, Weill FX. Serotype Distribution and Antimicrobial Resistance of Shigella Species in Bangui, Central African Republic, from 2002 to 2013. Am J Trop Med Hyg 2018; 99:283-286. [PMID: 29943713 DOI: 10.4269/ajtmh.17-0917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Shigella is a major cause of severe diarrhea in children less than the age of 5 years in sub-Saharan Africa. The aim of this study was to describe the (sub-)serotype distribution and antimicrobial susceptibility of Shigella serogroups from Centrafrican patients with diarrhea between 2002 and 2013. We collected 443 Shigella isolates in total. The most common serogroups were Shigella flexneri (N = 243, 54.9%), followed by Shigella sonnei (N = 90, 20.3%) and Shigella dysenteriae (N = 72, 16.3%). The high diversity of (sub-)serotypes of S. flexneri and S. dysenteriae may impede the development of an efficient vaccine. Rates of resistance were high for ampicillin, chloramphenicol, tetracycline, and cotrimoxazole but low for many other antimicrobials, confirming recommendations for the use of third-generation cephalosporins (only one organism resistant) and fluoroquinolones (no resistance). However, the detection of one extended-spectrum beta-lactamase-producing Shigella organism highlights the need for continued monitoring of antimicrobial drug susceptibility.
Collapse
Affiliation(s)
- Sebastien Breurec
- Laboratoire de Bactériologie, Institut Pasteur de Bangui, Bangui, Central African Republic.,Laboratoire de Microbiologie Clinique et Environnementale, Centre Hospitalier Universitaire de Pointe-à-Pitre/les Abymes, Pointe-à-Pitre, France.,Faculté de Médecine Hyacinthe Bastaraud, Université des Antilles, Pointe-à-Pitre, France
| | - Clotaire Rafaï
- Laboratoire de Bactériologie, Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Manuella Onambele
- Laboratoire de Bactériologie, Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Thierry Frank
- Laboratoire de Bactériologie, Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Alain Farra
- Laboratoire de Bactériologie, Institut Pasteur de Bangui, Bangui, Central African Republic
| | - Arnaud Legrand
- Délégation à la Recherche Clinique et à l'Innovation, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - François-Xavier Weill
- Unité des Bactéries Pathogènes Entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Institut Pasteur, Paris, France
| |
Collapse
|
26
|
Zhang YJ, Yang XQ, Zhang S, Humber RA, Xu J. Genomic analyses reveal low mitochondrial and high nuclear diversity in the cyclosporin-producing fungus Tolypocladium inflatum. Appl Microbiol Biotechnol 2017; 101:8517-8531. [PMID: 29034434 DOI: 10.1007/s00253-017-8574-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA is generally regarded to evolve faster than nuclear DNA in animals, whereas if this is also true in fungi remains unclear. Herein, we annotate the first complete mitochondrial genome (mitogenome) of the cyclosporin-producing fungus Tolypocladium inflatum and report the genome-wide sequence variations among five isolates originating from distantly separated localities. We found that T. inflatum has among the most compact of fungal mitogenomes; its 25 kb DNA molecule encodes all standard fungal mitochondrial genes and harbors only one intron. Transcriptional analyses validated the expression of most conserved genes. We found several uncommon repetitive elements and evidence of gene transfer from the mitochondrion to the nucleus. Phylogenetic analyses confirmed the placement of T. inflatum in the fungal order Hypocreales although there was uncertainty on its family-level affiliation. Comparative genomic analyses among the five isolates identified an overall lower level of intraspecific variation in mitogenomes than in nuclear genomes; however, both the nuclear and mitochondrial genomes revealed similar isolate relationships, not correlating with geographic sources of these isolates. Our study shed new insights into the evolution of the medicinally important ascomycete T. inflatum.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, China.
| | - Xiao-Qing Yang
- School of Life Sciences, Shanxi University, Taiyuan, 030006, China
- Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Shu Zhang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, China
| | - Richard A Humber
- USDA, ARS Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853-2901, USA
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
27
|
Eguale T, Birungi J, Asrat D, Njahira MN, Njuguna J, Gebreyes WA, Gunn JS, Djikeng A, Engidawork E. Genetic markers associated with resistance to beta-lactam and quinolone antimicrobials in non-typhoidal Salmonella isolates from humans and animals in central Ethiopia. Antimicrob Resist Infect Control 2017; 6:13. [PMID: 28105330 PMCID: PMC5240271 DOI: 10.1186/s13756-017-0171-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/05/2017] [Indexed: 11/21/2022] Open
Abstract
Background Beta-lactam and quinolone antimicrobials are commonly used for treatment of infections caused by non-typhoidal Salmonella (NTS) and other pathogens. Resistance to these classes of antimicrobials has increased significantly in the recent years. However, little is known on the genetic basis of resistance to these drugs in Salmonella isolates from Ethiopia. Methods Salmonella isolates with reduced susceptibility to beta-lactams (n = 43) were tested for genes encoding for beta-lactamase enzymes, and those resistant to quinolones (n = 29) for mutations in the quinolone resistance determining region (QRDR) as well as plasmid mediated quinolone resistance (PMQR) genes using PCR and sequencing. Results Beta-lactamase genes (bla) were detected in 34 (79.1%) of the isolates. The dominant bla gene was blaTEM, recovered from 33 (76.7%) of the isolates, majority being TEM-1 (24, 72.7%) followed by TEM-57, (10, 30.3%). The blaOXA-10 and blaCTX-M-15 were detected only in a single S. Concord human isolate. Double substitutions in gyrA (Ser83-Phe + Asp87-Gly) as well as parC (Thr57-Ser + Ser80-Ile) subunits of the quinolone resistance determining region (QRDR) were detected in all S. Kentucky isolates with high level resistance to both nalidixic acid and ciprofloxacin. Single amino acid substitutions, Ser83-Phe (n = 4) and Ser83-Tyr (n = 1) were also detected in the gyrA gene. An isolate of S. Miami susceptible to nalidixic acid but intermediately resistant to ciprofloxacin had Thr57-Ser and an additional novel mutation (Tyr83-Phe) in the parC gene. Plasmid mediated quinolone resistance (PMQR) genes investigated were not detected in any of the isolates. In some isolates with decreased susceptibility to ciprofloxacin and/or nalidixic acid, no mutations in QRDR or PMQR genes were detected. Over half of the quinolone resistant isolates in the current study 17 (58.6%) were also resistant to at least one of the beta-lactam antimicrobials. Conclusion Acquisition of blaTEM was the principal beta-lactamase resistance mechanism and mutations within QRDR of gyrA and parC were the primary mechanism for resistance to quinolones. Further study on extended spectrum beta-lactamase and quinolone resistance mechanisms in other gram negative pathogens is recommended.
Collapse
Affiliation(s)
- Tadesse Eguale
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Josephine Birungi
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P O Box 30709, Nairobi, Kenya
| | - Daniel Asrat
- Department of Microbiology, Immunology & Parasitology, School of Medicine, College of Health Sciences, Addis Ababa University, Churchill Avenue, P.O. Box 9086, Addis Ababa, Ethiopia
| | - Moses N Njahira
- ICIPE-African Insect Science for Food and Health, P.O. Box 30772-00100, Nairobi, Kenya
| | - Joyce Njuguna
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P O Box 30709, Nairobi, Kenya
| | - Wondwossen A Gebreyes
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Rd., Columbus, OH 43210 USA
| | - John S Gunn
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Biomedical Research Tower, 460 West 12th, Columbus, OH 432101214 USA
| | - Appolinaire Djikeng
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P O Box 30709, Nairobi, Kenya
| | - Ephrem Engidawork
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Churchill Avenue, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
28
|
Moremi N, Manda EV, Falgenhauer L, Ghosh H, Imirzalioglu C, Matee M, Chakraborty T, Mshana SE. Predominance of CTX-M-15 among ESBL Producers from Environment and Fish Gut from the Shores of Lake Victoria in Mwanza, Tanzania. Front Microbiol 2016; 7:1862. [PMID: 27990135 PMCID: PMC5130978 DOI: 10.3389/fmicb.2016.01862] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Extended-Spectrum Beta-Lactamase (ESBL)-producing bacteria are a common cause of healthcare and community-associated infections worldwide. The distribution of such isolates in the environment and their presence in fish as a result of sewage contamination is not well-studied. Here we examined fish and environmental samples from Mwanza city for the presence of ESBL-producing bacteria. From 196 fish sampled from local markets, 26 (13.3%) contained lactose-fermenting ESBL-producing bacteria, while 39/73 (53.4%) environmental samples from the same area were ESBL producers. Antibiotic resistance genes, multi locus sequence types (MLST) and plasmid replicon types in 24 selected isolates from both populations were identified with whole genome sequencing using Illumina MiSeq. Nine of eleven sequenced fish isolates had the blaCTX-M-15 gene whereas 12/13 from environment carried blaCTX-M-15. Antibiotic resistance genes encoding resistance to sulfonamides (sul1/sul2), tetracyclines [tet(A)/tet(B)] fluoroquinolones [e.g., aac(6′)-Ib-cr, qnrS1], aminoglycosides [e.g., aac(3)-lld, strB, strA,] and trimethoprim (e.g., dfrA14) were detected. E. coli sequence type ST-38 (2) and ST-5173 (2) were detected in isolates both from the environment and fish. IncY plasmids carrying blaCTX-M-15, qnrS1, strA, and strB were detected in five environmental E. coli isolates and in one E. coli isolate from fish. Our data indicate spillage of resistant environmental isolates into Lake Victoria through the sewage system. Persistence of blaCTX-M-15 in the Mwanza city environment is complex, and involves both clonal spread of resistant strains as well as dissemination by commonly occurring IncY plasmids circulating in isolates present in humans, the environment as well as in the food chain.
Collapse
Affiliation(s)
- Nyambura Moremi
- Department of Microbiology and Immunology, Weill Bugando School of Medicine Mwanza, Tanzania
| | - Elizabeth V Manda
- Department of Microbiology and Immunology, Weill Bugando School of Medicine Mwanza, Tanzania
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig UniversityGiessen, Germany; German Center for Infection Research, Partner site Giessen-Marburg-Langen, Campus GiessenGiessen, Germany
| | - Hiren Ghosh
- Institute of Medical Microbiology, Justus Liebig UniversityGiessen, Germany; German Center for Infection Research, Partner site Giessen-Marburg-Langen, Campus GiessenGiessen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig UniversityGiessen, Germany; German Center for Infection Research, Partner site Giessen-Marburg-Langen, Campus GiessenGiessen, Germany
| | - Mecky Matee
- Department of Microbiology/Immunology, Muhimbili University of Health and Allied Sciences Dar es Salaam, Tanzania
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig UniversityGiessen, Germany; German Center for Infection Research, Partner site Giessen-Marburg-Langen, Campus GiessenGiessen, Germany
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine Mwanza, Tanzania
| |
Collapse
|
29
|
Breurec S, Bouchiat C, Sire JM, Moquet O, Bercion R, Cisse MF, Glaser P, Ndiaye O, Ka S, Salord H, Seck A, Sy HS, Michel R, Garin B. High third-generation cephalosporin resistant Enterobacteriaceae prevalence rate among neonatal infections in Dakar, Senegal. BMC Infect Dis 2016; 16:587. [PMID: 27765017 PMCID: PMC5072384 DOI: 10.1186/s12879-016-1935-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 10/15/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Neonatal infection constitutes one of Senegal's most important public health problems, with a mortality rate of 41 deaths per 1,000 live births. METHODS Between January 2007 and March 2008, 242 neonates with suspected infection were recruited at three neonatal intensive care units in three major tertiary care centers in Dakar, the capital of Senegal. Neonatal infections were confirmed by positive bacterial blood or cerebrospinal fluid culture. The microbiological pattern of neonatal infections and the antibiotic susceptibility of the isolates were characterized. In addition, the genetic basis for antibiotic resistance and the genetic background of third-generation cephalosporin-resistant (3GC-R) Enterobacteriaceae were studied. RESULTS A bacteriological infection was confirmed in 36.4 % (88/242) of neonates: 22.7 % (30/132) during the early-onset and 52.7 % (58/110) during the late-onset periods (p > 0.20). Group B streptococci accounted for 6.8 % of the 88 collected bacterial isolates, while most of them were Enterobacteriaceae (n = 69, 78.4 %). Of these, 55/69 (79.7 %) were 3GC-R. The bla CTX-M-15 allele, the bla SHV and the bla TEM were highly prevalent (63.5, 65.4 and 53.8 %, respectively), usually associated with qnr genes (65.4 %). Clonally related strains of 3GC-R Klebsiella pneumoniae and 3GC-R Enterobacter cloacae, the two most commonly recovered 3GC-R Enterobacteriaceae (48/55), were detected at the three hospitals, underlining the role of cross-transmission in their spread. The overall case fatality rate was 18.6 %. CONCLUSIONS Measures should be taken to prevent nosocomial infections and the selection of resistant bacteria.
Collapse
Affiliation(s)
- Sebastien Breurec
- Institut Pasteur, Laboratoire de Bactériologie, 36 Avenue Pasteur, BP220, Dakar, Senegal. .,Centre Hospitalier Universitaire de Pointe-à-Pitre/les Abymes, Laboratoire de Microbiologie clinique et environnementale, BP465, 97159, Pointe-à-Pitre, Guadeloupe, France. .,Faculté de Médecine, Université des Antilles, Campus de Fouillole, BP 145, 97154, Pointe-à-Pitre, Guadeloupe, France.
| | - Coralie Bouchiat
- Institut Pasteur, Laboratoire de Bactériologie, 36 Avenue Pasteur, BP220, Dakar, Senegal
| | - Jean-Marie Sire
- Institut Pasteur, Laboratoire de Bactériologie, 36 Avenue Pasteur, BP220, Dakar, Senegal
| | - Olivier Moquet
- Institut Pasteur, Laboratoire de Bactériologie, 36 Avenue Pasteur, BP220, Dakar, Senegal
| | - Raymond Bercion
- Institut Pasteur, Laboratoire de Bactériologie, 36 Avenue Pasteur, BP220, Dakar, Senegal
| | - Moussa Fafa Cisse
- Hôpital des Enfants Albert Royer, Laboratoire de Bactériologie, Avenue Cheikh Anta Diop, Dakar, Senegal
| | - Philippe Glaser
- Institut Pasteur, Unité de Biologie des Bactéries pathogènes à Gram-positif, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Ousmane Ndiaye
- Département de Pédiatrie, Centre Hospitalier Abass Ndao, BP 15872, Dakar, Senegal
| | - Sidy Ka
- Département de Pédiatrie, Hôpital Principal, 1 avenue Nelson Mandela, BP3006, Dakar, Senegal
| | - Helene Salord
- Hôpital de la Croix-Rousse, Laboratoire de Bactériologie, 103 Grande rue de la Croix-Rousse, 69317, Lyon, France
| | - Abdoulaye Seck
- Institut Pasteur, Laboratoire de Bactériologie, 36 Avenue Pasteur, BP220, Dakar, Senegal
| | - Haby Signate Sy
- Département de Pédiatrie, Hôpital des Enfants Albert Royer, Avenue Cheikh Anta Diop, Dakar, Senegal
| | - Remy Michel
- Institut Pasteur de Dakar, Unité d'Epidémiologie, 36 Avenue Pasteur, BP220, Dakar, Senegal
| | - Benoit Garin
- Institut Pasteur, Laboratoire de Bactériologie, 36 Avenue Pasteur, BP220, Dakar, Senegal
| |
Collapse
|
30
|
Dupouy V, Doublet B, Arpaillange N, Praud K, Bibbal D, Brugère H, Oswald E, Cloeckaert A, Toutain PL, Bousquet-Mélou A. Dominant plasmids carrying extended-spectrum β-lactamases bla CTX-M genes in genetically diverse Escherichia coli from slaughterhouse and urban wastewaters. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:789-797. [PMID: 27402421 DOI: 10.1111/1758-2229.12440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Wastewater treatment plants (WWTP) receiving effluents from food-producing animals and humans may contribute to the spread of extended-spectrum β-lactamases (ESBL)-carrying plasmids. This study was designed to investigate extended-spectrum cephalosporin resistant Escherichia coli strains, CTX-M distributions and the genetic lineage of blaCTX-M -carrying plasmids from urban and slaughterhouse wastewaters. The level of extended-spectrum cephalosporin-resistant E. coli in slaughterhouse wastewater entering the WWTP was negligible compared with that of urban wastewater. The blaCTX-M-1 gene was predominant in slaughterhouse wastewater whereas diverse blaCTX-M genes were encountered in urban wastewater and WWTP outlet. Characterization of the main CTX-M-producing E. coli isolates by antibiotic resistance phenotyping, genotyping and typing of plasmids carrying blaCTX-M genes revealed that blaCTX-M-1 and blaCTX-M-15 genes were harboured by the predominant blaCTX-M-1 IncI1/ST3 and blaCTX-M-15 F31:A4:B1 plasmids, which were recovered from unrelated E. coli genotypes in both slaughterhouse and urban wastewaters. This study highlighted the spread of predominant blaCTX-M-1 and blaCTX-M-15 plasmid lineages in diverse E. coli genotypes from humans and food-producing animals, their mixing in WWTP and final release into the aquatic environment. This could have a serious negative impact on public health and requires further evaluation.
Collapse
Affiliation(s)
- Véronique Dupouy
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Benoît Doublet
- UMR1282 Infectiologie et Santé Publique, INRA, Nouzilly, F-37380, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, Tours, F-37000, France
| | | | - Karine Praud
- UMR1282 Infectiologie et Santé Publique, INRA, Nouzilly, F-37380, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, Tours, F-37000, France
| | - Delphine Bibbal
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Hubert Brugère
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
- CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Axel Cloeckaert
- UMR1282 Infectiologie et Santé Publique, INRA, Nouzilly, F-37380, France
- UMR1282 Infectiologie et Santé Publique, Université François Rabelais de Tours, Tours, F-37000, France
| | | | | |
Collapse
|
31
|
Haq IU, Calixto RODR, Yang P, Dos Santos GMP, Barreto-Bergter E, van Elsas JD. Chemotaxis and adherence to fungal surfaces are key components of the behavioral response of Burkholderia terrae BS001 to two selected soil fungi. FEMS Microbiol Ecol 2016; 92:fiw164. [PMID: 27495244 DOI: 10.1093/femsec/fiw164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 01/27/2023] Open
Abstract
Burkholderia terrae BS001 has previously been proposed to be a 'generalist' associate of soil fungi, but its strategies of interaction have been largely ignored. Here, we studied the chemotactic behavior of B. terrae BS001 towards Lyophyllum sp. strain Karsten and Trichoderma asperellum 302 and the role of fungal surface molecules in their physical interaction with the bacteria. To assess the involvement of the type 3 secretion system (T3SS), wild-type strain BS001 and T3SS mutant strain BS001-ΔsctD were used in the experiments. First, the two fungi showed divergent behavior when confronted with B. terrae BS001 on soil extract agar medium. Lyophyllum sp. strain Karsten revealed slow growth towards the bacterium, whereas T. asperellum 302 grew avidly over it. Both on soil extract and M9 agar, B. terrae BS001 and BS001-ΔsctD moved chemotactically towards the hyphae of both fungi, with a stronger response to Lyophyllum sp. strain Karsten than to T. asperellum 302. The presence of a progressively increasing glycerol level in the M9 agar enhanced the level of movement. Different oxalic acid concentrations exerted varied effects, with a significantly raised chemotactic response at lower, and a subdued response at higher concentrations. Testing of the adherence of B. terrae BS001 and BS001-ΔsctD to Lyophyllum sp. strain Karsten and to cell envelope-extracted ceramide monohexosides (CMHs) revealed that CMHs in both conidia and hyphae could bind strain BS001 cells. As BS001-ΔsctD adhered significantly less to the CMHs than BS001, the T3SS was presumed to have a role in the interaction. In contrast, such avid adherence was not detected with T. asperellum 302. Thus, B. terrae BS001 shows a behavior characterized by swimming towards Lyophyllum sp. strain Karsten and T. asperellum 302 and attachment to the CMH moiety in the cell envelope, in particular of the former.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Microbial Ecology, Groningen Institute of Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG, University of Groningen, The Netherlands
| | - Renata Oliveira da Rocha Calixto
- Microbial Ecology, Groningen Institute of Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG, University of Groningen, The Netherlands Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, UFRJ, 21941-902, Rio de Janeiro, Brazil
| | - Pu Yang
- Microbial Ecology, Groningen Institute of Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG, University of Groningen, The Netherlands
| | - Giulia Maria Pires Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, UFRJ, 21941-902, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, UFRJ, 21941-902, Rio de Janeiro, Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute of Evolutionary Life Sciences (GELIFES), Nijenborgh 7, 9747 AG, University of Groningen, The Netherlands
| |
Collapse
|
32
|
Farra A, Frank T, Tondeur L, Bata P, Gody JC, Onambele M, Rafaï C, Vray M, Breurec S. High rate of faecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in healthy children in Bangui, Central African Republic. Clin Microbiol Infect 2016; 22:891.e1-891.e4. [PMID: 27404368 DOI: 10.1016/j.cmi.2016.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 11/18/2022]
Abstract
The aim of this study was to estimate the prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) in faeces of healthy children aged 0-59 months in Bangui (Central African Republic). Stool samples of 134 children, recruited for a matched case-control study, were cultured on a commercial ESBL-selective chromogenic medium (CHROMagar ESBL, France). The phenotypic resistance patterns of isolated strains were investigated, as well as the genetic basis for antibiotic resistance. The factors associated with increased risk for ESBL-E carriage were also studied. The prevalence of ESBL-E carriage was 59% (79/134), one of the highest reported worldwide. The only factor found to be associated with carriage was living in a highest-income family (p=0.03). In all, 83 ESBL-E were recovered as simultaneous carriage of two strains was detected in four children. blaCTX-M-15 was found in all strains except two, frequently associated with qnr (54/81, 66%) and aac(6')-Ib-cr (35/81, 43%) genes. Escherichia coli, the most commonly recovered species (51/83, 61%), was assigned mainly to the pandemic B2-O25b-ST131 group (39/51, 76%). Resistance transfer, which was studied in 20 randomly selected ESBL-E strains, was successful in 13 (13/20, 65%) isolates. In eight of these isolates (8/13, 62%), blaCTX-M-15 genes were found in incompatibility group FIb conjugative plasmids. We found one of the highest prevalence rates of faecal carriage of ESBL-E reported worldwide, highlighting the need to improve control of the distribution of antibiotics in limited-resource countries.
Collapse
Affiliation(s)
- A Farra
- Institut Pasteur, Unit of Bacteriology, Bangui, Central African Republic
| | - T Frank
- Institut Pasteur, Unit of Bacteriology, Bangui, Central African Republic
| | - L Tondeur
- Institut Pasteur, Emerging Disease Epidemiology Unit, Paris, France
| | - P Bata
- Bangui Pediatric Complex, Bangui, Central African Republic
| | - J C Gody
- Bangui Pediatric Complex, Bangui, Central African Republic
| | - M Onambele
- Institut Pasteur, Unit of Bacteriology, Bangui, Central African Republic
| | - C Rafaï
- Institut Pasteur, Unit of Bacteriology, Bangui, Central African Republic
| | - M Vray
- Institut Pasteur, Emerging Disease Epidemiology Unit, Paris, France; Institut Pasteur, Infectious Disease Epidemiology Unit, Dakar, Senegal
| | - S Breurec
- Institut Pasteur, Unit of Bacteriology, Bangui, Central African Republic; Institut Pasteur, Unit of Health and Environment, Pointe-à-Pitre, France; University of Antilles, Faculty of Medicine Hyacinthe Bastaraud, Pointe-à-Pitre, France; University Hospital of Pointe-à-Pitre/Les Abymes, Unit of Clinical Microbiology, Pointe-à-Pitre, France.
| |
Collapse
|
33
|
Chang CY, Lin HJ, Chang LL, Ma L, Siu LK, Tung YC, Lu PL. Characterization of Extended-Spectrum β-Lactamase-Carrying Plasmids in Clinical Isolates of Klebsiella pneumoniae from Taiwan. Microb Drug Resist 2016; 23:98-106. [PMID: 27148814 DOI: 10.1089/mdr.2015.0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed the replicon types, sizes, and restriction fragment length polymorphism (RFLP) typing of plasmids carrying extended-spectrum β-lactamase (ESBL) genes in Klebsiella pneumoniae isolates from Taiwan. Fifty-one Escherichia coli transconjugant strains with plasmids from ESBL-producing K. pneumoniae from the Taiwan Surveillance of Antimicrobial Resistance III Program in 2002 were included. All the 51 plasmids carried a blaCTX-M gene, the majority of which were blaCTX-M-3 (28/51 [54.9%]). Plasmids ranged in size from 126 to 241 kb by S1 nuclease digestion and subsequent pulsed-field gel electrophoresis, and the most common plasmid size (37.3%) was 161-170 kb. The most common replicon type of plasmids was incompatibility group (Inc)A/C (60.8%). The IncA/C plasmids all carried blaCTX-M (blaCTX-M-3, -14, -15), and some also carried blaSHV (blaSHV-5, -12) genes. All 51 plasmids could be typed with PstI, and 27 (52.9%) belonged to 10 clusters. Thirty-eight of the 51 plasmids were typable with BamHI, and 21 plasmids (55.3%) fell into 7 clusters. Plasmids in the same cluster belonged to the same incompatibility group, with the exception of cluster C6. In conclusion, IncA/C plasmids are the main plasmid type responsible for the dissemination of ESBL genes of K. pneumoniae from Taiwan. RFLP with PstI possessed better discriminatory power than that with BamHI and PCR-based replicon typing for ESBL-carrying plasmids in K. pneumoniae in this study. Greater than 50% of plasmids fell into clusters, and >60% of cluster-classified plasmids were present in clonally unrelated isolates, indicating that horizontal transfer of plasmids plays an important role in the spread of ESBL genes.
Collapse
Affiliation(s)
- Chung-Yu Chang
- 1 Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan .,2 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan
| | - Heng-Jia Lin
- 1 Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan .,2 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan
| | - Lin-Li Chang
- 1 Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan .,2 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan
| | - Ling Ma
- 3 National Institutes of Infectious Diseases and Vaccinology, National Health Research Institutes , Miaoli, Taiwan
| | - L Kristopher Siu
- 3 National Institutes of Infectious Diseases and Vaccinology, National Health Research Institutes , Miaoli, Taiwan
| | - Yi-Ching Tung
- 4 Department of Public Health and Environmental Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan
| | - Po-Liang Lu
- 2 Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University , Kaohsiung, Taiwan .,5 Department of Internal Medicine, Kaohsiung Medical University Hospital , Kaohsiung, Taiwan .,6 Department of Laboratory Medicine, Kaohsiung Medical University Hospital , Kaohsiung, Taiwan
| |
Collapse
|
34
|
Mshana SE, Falgenhauer L, Mirambo MM, Mushi MF, Moremi N, Julius R, Seni J, Imirzalioglu C, Matee M, Chakraborty T. Predictors of blaCTX-M-15 in varieties of Escherichia coli genotypes from humans in community settings in Mwanza, Tanzania. BMC Infect Dis 2016; 16:187. [PMID: 27129719 PMCID: PMC4850702 DOI: 10.1186/s12879-016-1527-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae commonly cause infections worldwide. Bla CTX-M-15 has been commonly detected in hospital isolates in Mwanza, Tanzania. Little is known regarding the faecal carriage of ESBL isolates and bla CTX-M-15 allele among humans in the community in developing countries. METHODS A cross-sectional study involving 334 humans from the community settings in Mwanza City was conducted between June and September 2014. Stool specimens were collected and processed to detect ESBL producing enterobacteriaceae. ESBL isolates were confirmed using disc approximation method, commercial ESBL plates and VITEK-2 system. A polymerase chain reaction and sequencing based allele typing for CTX-M ESBL genes was performed to 42 confirmed ESBL isolates followed by whole genome sequence of 25 randomly selected isolates to detect phylogenetic groups, sequence types plasmid replicon types. RESULTS Of 334 humans investigated, 55 (16.5 %) were found to carry ESBL-producing bacteria. Age, history of antibiotic use and history of admission were independent factors found to predict ESBL-carriage. The carriage rate of ESBL-producing Escherichia coli was significantly higher than that of Klebsiella pneumoniae (15.1 % vs. 3.8 %, p = 0.026). Of 42 ESBL isolates, 37 (88.1 %) were found to carry the bla CTX-M-15 allele. Other transferrable resistance genes were aac(6')Ib-cr, aac(3)-IIa, aac(3)-IId, aadA1, aadA5, strA, strB and qnrS1. Eight multi-locus sequence types (ST) were detected in 25 E. coli isolates subjected to genome sequencing. ST-131 was detected in 6 (24 %), ST-38 in 5 (20 %) and 5 (20 %) clonal complex - 10(ST-617, ST-44) of isolates. The pathogenic phylogenetic groups D and B2 were detected in 8/25 (32 %) and 6/25 (24 %) of isolates respectively. BlaCTX-M-15 was found to be located in multiple IncY and IncF plasmids while in 13/25(52 %) of cases it was chromosomally located. CONCLUSION The overlap of multi-drug resistant bacteria and diversity of the genotypes carrying CTX-M-15 in the community and hospitals requires an overall approach that addresses social behaviour and activity, rationalization of the antibiotic stewardship policy and a deeper understanding of the ecological factors that lead to persistence and spread of such alleles.
Collapse
Affiliation(s)
- Stephen E Mshana
- Department of Microbiology/Immunology Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, BOX 1464, Mwanza, Tanzania.
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus-Liebig University, Schubertstrasse 81, 35392, Giessen, Germany.,Germany and German Center for Infection Research DZIF, Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Mariam M Mirambo
- Department of Microbiology/Immunology Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, BOX 1464, Mwanza, Tanzania
| | - Martha F Mushi
- Department of Microbiology/Immunology Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, BOX 1464, Mwanza, Tanzania
| | - Nyambura Moremi
- Department of Microbiology/Immunology Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, BOX 1464, Mwanza, Tanzania
| | - Rechel Julius
- Department of Microbiology/Immunology Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, BOX 1464, Mwanza, Tanzania
| | - Jeremiah Seni
- Department of Microbiology/Immunology Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, BOX 1464, Mwanza, Tanzania
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus-Liebig University, Schubertstrasse 81, 35392, Giessen, Germany.,Germany and German Center for Infection Research DZIF, Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| | - Mecky Matee
- Department of Microbiology/Immunology, Muhimbili University of Health and Allied Sciences, BOX 65001, Dar es Salaam, Tanzania
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, Schubertstrasse 81, 35392, Giessen, Germany.,Germany and German Center for Infection Research DZIF, Partner site Giessen-Marburg-Langen, Campus Giessen, Giessen, Germany
| |
Collapse
|
35
|
Chattaway MA, Aboderin AO, Fashae K, Okoro CK, Opintan JA, Okeke IN. Fluoroquinolone-Resistant Enteric Bacteria in Sub-Saharan Africa: Clones, Implications and Research Needs. Front Microbiol 2016; 7:558. [PMID: 27148238 PMCID: PMC4841292 DOI: 10.3389/fmicb.2016.00558] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/04/2016] [Indexed: 11/13/2022] Open
Abstract
Fluoroquinolones came into widespread use in African countries in the early 2000s, after patents for the first generation of these drugs expired. By that time, quinolone antibacterial agents had been used intensively worldwide and resistant lineages of many bacterial species had evolved. We sought to understand which Gram negative enteric pandemic lineages have been reported from Africa, as well as the nature and transmission of any indigenous resistant clones. A systematic review of articles indexed in the Medline and AJOL literature databases was conducted. We report on the findings of 43 eligible studies documenting local or pandemic fluoroquinolone-resistant enteric clones in sub-Sahara African countries. Most reports are of invasive non-typhoidal Salmonella and Escherichia coli lineages and there have been three reports of cholera outbreaks caused by fluoroquinolone-resistant Vibrio cholerae O1. Fluoroquinolone-resistant clones have also been reported from commensals and animal isolates but there are few data for non-Enterobacteriaceae and almost none for difficult-to-culture Campylobacter spp. Fluoroquinolone-resistant lineages identified in African countries were universally resistant to multiple other classes of antibacterial agents. Although as many as 972 non-duplicate articles refer to fluoroquinolone resistance in enteric bacteria from Africa, most do not report on subtypes and therefore information on the epidemiology of fluoroquinolone-resistant clones is available from only a handful of countries in the subcontinent. When resistance is reported, resistance mechanisms and lineage information is rarely investigated. Insufficient attention has been given to molecular and sequence-based methods necessary for identifying and tracking resistant clones in Africa and more research is needed in this area.
Collapse
Affiliation(s)
- Marie A Chattaway
- Gastrointestinal Bacteria Reference Unit, Public Health England London, UK
| | - Aaron O Aboderin
- Department of Medical Microbiology and Parasitology, College of Health Sciences, Obafemi Awolowo University Ile-Ife, Nigeria
| | - Kayode Fashae
- Department of Microbiology, University of Ibadan Ibadan, Nigeria
| | | | - Japheth A Opintan
- Department of Medical Microbiology, School of Biomedical and Allied Health Sciences, University of Ghana Accra, Ghana
| | - Iruka N Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan Ibadan, Nigeria
| |
Collapse
|
36
|
Ribeiro TG, Novais Â, Peixe L, Machado E. Atypical epidemiology of CTX-M-15 among Enterobacteriaceae from a high diversity of non-clinical niches in Angola: Table 1. J Antimicrob Chemother 2016; 71:1169-73. [DOI: 10.1093/jac/dkv489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/18/2015] [Indexed: 11/14/2022] Open
|
37
|
Seni J, Falgenhauer L, Simeo N, Mirambo MM, Imirzalioglu C, Matee M, Rweyemamu M, Chakraborty T, Mshana SE. Multiple ESBL-Producing Escherichia coli Sequence Types Carrying Quinolone and Aminoglycoside Resistance Genes Circulating in Companion and Domestic Farm Animals in Mwanza, Tanzania, Harbor Commonly Occurring Plasmids. Front Microbiol 2016; 7:142. [PMID: 26904015 PMCID: PMC4749707 DOI: 10.3389/fmicb.2016.00142] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/25/2016] [Indexed: 12/27/2022] Open
Abstract
The increased presence of extended-spectrum beta-lactamase (ESBL)-producing bacteria in humans, animals, and their surrounding environments is of global concern. Currently there is limited information on ESBL presence in rural farming communities worldwide. We performed a cross-sectional study in Mwanza, Tanzania, involving 600 companion and domestic farm animals between August/September 2014. Rectal swab/cloaca specimens were processed to identify ESBL-producing Enterobacteriaceae. We detected 130 (21.7%) animals carrying ESBL-producing bacteria, the highest carriage being among dogs and pigs [39.2% (51/130) and 33.1% (43/130), respectively]. The majority of isolates were Escherichia coli [93.3% (125/134)] and exotic breed type [OR (95%CI) = 2.372 (1.460–3.854), p-value < 0.001] was found to be a predictor of ESBL carriage among animals. Whole-genome sequences of 25 ESBL-producing E. coli were analyzed for phylogenetic relationships using multi-locus sequence typing (MLST) and core genome comparisons. Fourteen different sequence types were detected of which ST617 (7/25), ST2852 (3/25), ST1303 (3/25) were the most abundant. All isolates harbored the blaCTX-M-15 allele, 22/25 carried strA and strB, 12/25 aac(6′)-lb-cr, and 11/25 qnrS1. Antibiotic resistance was associated with IncF, IncY, as well as non-typable plasmids. Eleven isolates carried pPGRT46-related plasmids, previously reported from isolates in Nigeria. Five isolates had plasmids exhibiting 85–99% homology to pCA28, previously detected in isolates from the US. Our findings indicate a pan-species distribution of ESBL-producing E. coli clonal groups in farming communities and provide evidence for plasmids harboring antibiotic resistances of regional and international impact.
Collapse
Affiliation(s)
- Jeremiah Seni
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences Mwanza, Tanzania
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus-Liebig UniversityGiessen, Germany; German Center for Infection Research, DZIF Partner Site Giessen-Marburg-LangenGiessen, Germany
| | - Nabina Simeo
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences Mwanza, Tanzania
| | - Mariam M Mirambo
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences Mwanza, Tanzania
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus-Liebig UniversityGiessen, Germany; German Center for Infection Research, DZIF Partner Site Giessen-Marburg-LangenGiessen, Germany
| | - Mecky Matee
- Department of Microbiology/Immunology, Muhimbili University of Health and Allied Sciences Dar es Salaam, Tanzania
| | - Mark Rweyemamu
- Southern African Centre for Infectious Disease Surveillance, Sokoine University of Agriculture Morogoro, Tanzania
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig UniversityGiessen, Germany; German Center for Infection Research, DZIF Partner Site Giessen-Marburg-LangenGiessen, Germany
| | - Stephen E Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences Mwanza, Tanzania
| |
Collapse
|
38
|
Etiology and Epidemiology of Diarrhea in Hospitalized Children from Low Income Country: A Matched Case-Control Study in Central African Republic. PLoS Negl Trop Dis 2016; 10:e0004283. [PMID: 26731629 PMCID: PMC4701495 DOI: 10.1371/journal.pntd.0004283] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/16/2015] [Indexed: 11/19/2022] Open
Abstract
Background In Sub-Saharan Africa, infectious diarrhea is a major cause of morbidity and mortality. A case-control study was conducted to identify the etiology of diarrhea and to describe its main epidemiologic risk factors among hospitalized children under five years old in Bangui, Central African Republic. Methods All consecutive children under five years old hospitalized for diarrhea in the Pediatric Complex of Bangui for whom a parent’s written consent was provided were included. Controls matched by age, sex and neighborhood of residence of each case were included. For both cases and controls, demographic, socio-economic and anthropometric data were recorded. Stool samples were collected to identify enteropathogens at enrollment. Clinical examination data and blood samples were collected only for cases. Results A total of 333 cases and 333 controls was recruited between December 2011 and November 2013. The mean age of cases was 12.9 months, and 56% were male. The mean delay between the onset of first symptoms and hospital admission was 3.7 days. Blood was detected in 5% of stool samples from cases. Cases were significantly more severely or moderately malnourished than controls. One of the sought-for pathogens was identified in 78% and 40% of cases and controls, respectively. Most attributable cases of hospitalized diarrhea were due to rotavirus, with an attributable fraction of 39%. Four other pathogens were associated with hospitalized diarrhea: Shigella/EIEC, Cryptosporidium parvum/hominis, astrovirus and norovirus with attributable fraction of 9%, 10%, 7% and 7% respectively. Giardia intestinalis was found in more controls than cases, with a protective fraction of 6%. Conclusions Rotavirus, norovirus, astrovirus, Shigella/EIEC, Cryptosporidium parvum/hominis were found to be positively associated with severe diarrhea: while Giardia intestinalis was found negatively associated. Most attributable episodes of severe diarrhea were associated with rotavirus, highlighting the urgent need to introduce the rotavirus vaccine within the CAR’s Expanded Program on Immunization. The development of new medicines, vaccines and rapid diagnostic tests that can be conducted at the bedside should be high priority for low-resource countries. Infectious diarrhea is a major cause of illness and death among children under five years from low-income country. In order to identify infectious agents associated with diarrhea, we conducted a case-control study in the Pediatric Complex of Bangui, the sole public pediatric hospital from Central African Republic (CAR). A total of 333 hospitalized children with diarrhea and 333 controls were included, controls being pair matched to the cases according to age, sex and neighborhood. At least one of the sought-for pathogens was identified in 80% of hospitalized children, and approximately one in ten cases presented mixed bacterial/viral co-infections. Five pathogens were positively associated with hospitalized diarrhea, namely rotavirus, norovirus, astrovirus, Shigella/EIEC and Cryptosporidium hominis/parvum. Giardia intestinalis was negatively associated with hospitalized diarrhea. A seasonality effect—viruses during the dry season, bacteria and parasites during the rainy season—but also an age effect, were observed, which may guide clinicians in the management of diarrhea. As rotavirus was the leading cause of severe diarrhea, the introduction of the rotavirus vaccine in CAR will certainly provide considerable direct health benefits in terms of reduced illness and deaths. New medicines, vaccines and rapid diagnostic tests that can be conducted bedside should be urgently developed for low-resource countries.
Collapse
|
39
|
Agyekum A, Fajardo-Lubián A, Ansong D, Partridge SR, Agbenyega T, Iredell JR. blaCTX-M-15 carried by IncF-type plasmids is the dominant ESBL gene in Escherichia coli and Klebsiella pneumoniae at a hospital in Ghana. Diagn Microbiol Infect Dis 2015; 84:328-33. [PMID: 26830052 DOI: 10.1016/j.diagmicrobio.2015.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases (ESBLs) are among the most multidrug-resistant pathogens in hospitals and are spreading worldwide. Horizontal gene transfer and spread of high-risk clones are involved in ESBL dissemination. Investigation of the resistance phenotypes of 101 consecutive clinical E. coli (n=58) and K. pneumoniae (n=43) isolated at the Komfo Anokye Teaching Hospital in Ghana over 3 months revealed 63 (62%) with an ESBL phenotype. All 63 had a blaCTX-M gene, and sequence analysis showed that 62 of these were blaCTX-M-15. blaCTX-M-15 was linked to ISEcp1 and orf477Δ in all isolates, and most isolates also carried blaTEM, aac(3)-II, aacA4cr, and/or blaOXA-30 genes on IncF plasmids. XbaI/pulsed-field electrophoresis showed heterogeneity among isolates of both species, suggesting that blaCTX-M-15 dissemination is caused by horizontal gene transfer rather than clonal spread of these species in Ghana.
Collapse
Affiliation(s)
- Alex Agyekum
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia; Malaria Research Centre, Agogo Presbyterian Hospital, Komfo Anokye Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alicia Fajardo-Lubián
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Daniel Ansong
- Malaria Research Centre, Agogo Presbyterian Hospital, Komfo Anokye Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Tsiri Agbenyega
- Malaria Research Centre, Agogo Presbyterian Hospital, Komfo Anokye Teaching Hospital, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|