1
|
Nishi K, Gondaira S, Hirano Y, Ohashi M, Sato A, Matsuda K, Iwasaki T, Kanda T, Uemura R, Higuchi H. Biofilm characterisation of Mycoplasma bovis co-cultured with Trueperella pyogenes. Vet Res 2025; 56:22. [PMID: 39885598 PMCID: PMC11783866 DOI: 10.1186/s13567-025-01468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/12/2024] [Indexed: 02/01/2025] Open
Abstract
Mycoplasma pneumonia, caused by Mycoplasma bovis (Mycoplasmopsis bovis; M. bovis), is linked with severe inflammatory reactions in the lungs and can be challenging to treat with antibiotics. Biofilms play a significant role in bacterial persistence and contribute to the development of chronic lesions. A recent study has shown that polymicrobial interactions between species are an important factor in biofilm formation, yet the precise mechanism of biofilm formation in M. bovis remains unknown. By assuming multiple pathogen infections in the bovine respiratory disease complex (BRDC), this study examined the characterisation of the polymicrobial relationship between M. bovis and Trueperella pyogenes (T. pyogenes) during biofilm formation. Autopsies were performed on four Holstein calves (two chronic Mycoplasma pneumonia calves and two control calves). Bacterium-like aggregation structures (> 10 μm), which were assumed to be biofilms of M. bovis in vivo, were observed adhering to the cilia in calves with Mycoplasma pneumonia. M. bovis released an extracellular matrix to connect with neighbouring bacteria and form a mature biofilm on the plate. Biofilm formation in the co-culture of M. bovis and T. pyogenes (strain T1: 1 × 105 and 1 × 106 CFU/well) significantly increased (p < 0.05 and p < 0.01; 64.1% and 64.8% increase) compared to that in a single culture of these bacteria. Furthermore, some large aggregates (> 40 μm), composed of M. bovis and T. pyogenes, were observed. The morphological characteristics of this biofilm were similar to those observed in vivo compared to a single culture. In conclusion, the polymicrobial interaction between M. bovis and T. pyogenes induces biofilm formation, which is associated with increased resistance to antimicrobial agents, and this exacerbates the progression of chronic Mycoplasma pneumonia.
Collapse
Affiliation(s)
- Koji Nishi
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
- Monbetsu Veterinary Clinic, Hokkaido Agricultural Mutual Aid Association, Monbetsu, Hokkaido, Japan
| | - Satoshi Gondaira
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | - Yuki Hirano
- Animal Research Center, Agricultural Research Department, Hokkaido Research Organization, Shintoku, Hokkaido, Japan
| | - Masahide Ohashi
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Ayano Sato
- Large Animal Clinical Science, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kazuya Matsuda
- Department of Veterinary Pathology, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, 069-8501, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, College of Agriculture, Food and Environment Science, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Takuya Kanda
- Food Safety Laboratory, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Ryoko Uemura
- Animal Health, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Hidetoshi Higuchi
- Animal Health Unit, Department of Veterinary Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| |
Collapse
|
2
|
Hernández-Benítez JA, Santos-Ocampo BN, Rosas-Ramírez DG, Bautista-Hernández LA, Bautista-de Lucio VM, Pérez NO, Rodríguez-Tovar AV. The Effect of Temperature over the Growth and Biofilm Formation of the Thermotolerant Aspergillus flavus. J Fungi (Basel) 2025; 11:53. [PMID: 39852472 PMCID: PMC11766932 DOI: 10.3390/jof11010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Aspergillus flavus is a medically relevant fungus, particularly in tropical regions. Although its aflatoxin production and thermotolerance are well documented, its biofilm-forming ability has received less attention, despite being a key factor in the virulence of A. flavus as an opportunistic pathogen, which can significantly impact therapeutic outcomes. To investigate the influence of temperature on the growth and biofilm formation of an A. flavus isolate, we compared it on solid media with the reference strain A. flavus ATCC 22546 and documented morphological changes during conidial germination. We examined biofilm formation in both strains across different temperatures and evaluated the susceptibility of this A. flavus isolate to antifungal agents in both planktonic and biofilm form. Our results showed that the temperature can promote conidiation on solid media. Radial growth was highest at 28 °C, while the conidial count and density were favored at higher temperatures. Moreover, we determined that 37 °C was the optimal temperature for conidial germination and biofilm formation. We described four distinct phases in A. flavus biofilm development-initiation (0-12 h), consolidation (12-24 h), maturation (24-48 h), and dispersion (48-72 h)-with the notable presence of conidial heads at 42 °C. Carbohydrates and proteins constitute the primary components of the extracellular matrix. We observed an abundance of lipid droplets within the hyphae of the MMe18 strain biofilm. The mature biofilms demonstrated reduced susceptibility to amphotericin B and itraconazole, requiring higher inhibitory concentrations for both antifungals compared with their planktonic counterparts.
Collapse
Affiliation(s)
- José Alejandro Hernández-Benítez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico; (J.A.H.-B.); (B.N.S.-O.)
| | - Brenda Nallely Santos-Ocampo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico; (J.A.H.-B.); (B.N.S.-O.)
| | - Daniel Genaro Rosas-Ramírez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior s/n, Ciudad Universitaria, Alcaldía Coyoacán, Mexico City C.P. 04510, Mexico;
| | - Luis Antonio Bautista-Hernández
- Unidad de Investigación del Instituto de Oftalmología, Fundación de Asistencia Privada Conde de Valenciana I.A.P., Chimalpopoca 14, Col. Obrera, Alcaldía Cuahutémoc, Mexico City C.P. 06800, Mexico; (L.A.B.-H.); (V.M.B.-d.L.)
| | - Víctor Manuel Bautista-de Lucio
- Unidad de Investigación del Instituto de Oftalmología, Fundación de Asistencia Privada Conde de Valenciana I.A.P., Chimalpopoca 14, Col. Obrera, Alcaldía Cuahutémoc, Mexico City C.P. 06800, Mexico; (L.A.B.-H.); (V.M.B.-d.L.)
| | - Néstor Octavio Pérez
- Departamento de Investigación y Desarrollo, Probiomed, S.A. de C.V., Cruce de Carreteras Acatzingo-Zumahuacan s/n, Tenancingo C.P. 52400, State of Mexico, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. Carpio y Plan de Ayala s/n Col. Casco de Santo Tomás, Alcaldia Miguel Hidalgo, Mexico City C.P. 11340, Mexico; (J.A.H.-B.); (B.N.S.-O.)
| |
Collapse
|
3
|
Liu F, Zeng M, Zhou X, Huang F, Song Z. Aspergillus fumigatus escape mechanisms from its harsh survival environments. Appl Microbiol Biotechnol 2024; 108:53. [PMID: 38175242 DOI: 10.1007/s00253-023-12952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024]
Abstract
Aspergillus fumigatus is a ubiquitous pathogenic mold and causes several diseases, including mycotoxicosis, allergic reactions, and systemic diseases (invasive aspergillosis), with high mortality rates. In its ecological niche, the fungus has evolved and mastered many reply strategies to resist and survive against negative threats, including harsh environmental stress and deficiency of essential nutrients from natural environments, immunity responses and drug treatments in host, and competition from symbiotic microorganisms. Hence, treating A. fumigatus infection is a growing challenge. In this review, we summarized A. fumigatus reply strategies and escape mechanisms and clarified the main competitive or symbiotic relationships between A. fumigatus, viruses, bacteria, or fungi in host microecology. Additionally, we discussed the contemporary drug repertoire used to treat A. fumigatus and the latest evidence of potential resistance mechanisms. This review provides valuable knowledge which will stimulate further investigations and clinical applications for treating and preventing A. fumigatus infections. KEY POINTS: • Harsh living environment was a great challenge for A. fumigatus survival. • A. fumigatus has evolved multiple strategies to escape host immune responses. • A. fumigatus withstands antifungal drugs via intrinsic escape mechanisms.
Collapse
Affiliation(s)
- Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
- Department of Clinical Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, People's Republic of China
| | - Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
4
|
Garaci E, Pariano M, Nunzi E, Costantini C, Bellet MM, Antognelli C, Russo MA, Romani L. Bacteria and fungi of the lung: allies or enemies? Front Pharmacol 2024; 15:1497173. [PMID: 39584143 PMCID: PMC11584946 DOI: 10.3389/fphar.2024.1497173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Moving from the earlier periods in which the lungs were believed to represent sterile environments, our knowledge on the lung microbiota has dramatically increased, from the first descriptions of the microbial communities inhabiting the healthy lungs and the definition of the ecological rules that regulate its composition, to the identification of the changes that occur in pathological conditions. Despite the limitations of lung as a microbiome reservoir due to the low microbial biomass and abundance, defining its microbial composition and function in the upper and lower airways may help understanding the impact on local homeostasis and its disruption in lung diseases. In particular, the understanding of the metabolic and immune significance of microbes, their presence or lack thereof, in health and disease states could be valuable in development of novel druggable targets in disease treatments. Next-generation sequencing has identified intricate inter-microbe association networks that comprise true mutualistic or antagonistic direct or indirect relationships in the respiratory tract. In this review, the tripartite interaction of bacteria, fungi and the mammalian host is addressed to provide an integrated view of the microbial-host cross-talk in lung health and diseases from an immune and metabolic perspective.
Collapse
Affiliation(s)
- Enrico Garaci
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Luigina Romani
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
5
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Dincer B, Ece A, Beydemir Ş. Novel beta-lactam substituted benzenesulfonamides: in vitro enzyme inhibition, cytotoxic activity and in silico interactions. J Biomol Struct Dyn 2024; 42:6359-6377. [PMID: 37540185 DOI: 10.1080/07391102.2023.2240889] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/01/2023] [Indexed: 08/05/2023]
Abstract
In this study, a library of twelve beta-lactam-substituted benzenesulfonamides (5a-l) was synthesized using the tail-approach method. The compounds were characterized using IR, 1H NMR, 13C NMR and elemental analysis techniques. These newly synthesized compounds were tested for their ability to inhibit the activity of two carbonic anhydrases (hCA) isoforms, I and II, and acetylcholinesterase (AChE) in vitro. The results showed that the synthesized compounds were potent inhibitors of hCA I, with KIs in the low nanomolar range (66.60-278.40 nM) than the reference drug acetazolamide (AAZ), which had a KI of 439.17 nM. The hCA II was potently inhibited by compounds 5a, 5d-g and 5l, with KIs of 69.56, 39.64, 79.63, 74.76, 78.93 and 74.94 nM, respectively (AAZ, KI of 98.28 nM). Notably, compound 5a selectively inhibited hCA II with a selectivity of > 4-fold over hCA I. In terms of inhibition of AChE, the synthesized compounds had KIs ranging from 30.95 to 154.50 nM, compared to the reference drug tacrine, which had a KI of 159.61 nM. Compounds 5f, 5h and 5l were also evaluated for their ability to inhibit the MCF-7 cancer cell line proliferation and were found to have promising anticancer activity, more potent than 5-fluorouracil and cisplatin. Molecular docking studies suggested that the sulfonamide moiety of these compounds fits snugly into the active sites of hCAs and interacts with the Zn2+ ion. Furthermore, molecular dynamics simulations were performed for 200 ns to assess the stability and dynamics of each enzyme-ligand complex. The acceptability of the compounds based on Lipinski's and Jorgensen's rules was also estimated from the ADME/T results. These results indicate that the synthesized molecules have the potential to be developed into effective and safe inhibitors of hCAs and AChE and could be lead agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, Sakarya, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Busra Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Abdulilah Ece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, İstanbul, Turkey
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
6
|
Mahadevaswamy UR, Mugunthan S, Seviour T, Kjelleberg S, Lim S. Evaluating a polymicrobial biofilm model for structural components by co-culturing Komagataeibacter hansenii produced bacterial cellulose with Pseudomonas aeruginosa PAO1. Biofilm 2024; 7:100176. [PMID: 38322579 PMCID: PMC10845243 DOI: 10.1016/j.bioflm.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
A polymicrobial biofilm model of Komagataeibacter hansenii and Pseudomonas aeruginosa was developed to understand whether a pre-existing matrix affects the ability of another species to build a biofilm. P. aeruginosa was inoculated onto the preformed K. hansenii biofilm consisting of a cellulose matrix. P. aeruginosa PAO1 colonized and infiltrated the K. hansenii bacterial cellulose biofilm (BC), as indicated by the presence of cells at 19 μm depth in the translucent hydrogel matrix. Bacterial cell density increased along the imaged depth of the biofilm (17-19 μm). On day 5, the average bacterial count across sections was 67 ± 4 % P. aeruginosa PAO1 and 33 ± 6 % K. hansenii. Biophysical characterization of the biofilm indicated that colonization by P. aeruginosa modified the biophysical properties of the BC matrix, which inlcuded increased density, heterogeneity, degradation temperature and thermal stability, and reduced crystallinity, swelling ability and moisture content. This further indicates colonization of the biofilm by P. aeruginosa. While eDNA fibres - a key viscoelastic component of P. aeruginosa biofilm - were present on the surface of the co-cultured biofilm on day 1, their abundance decreased over time, and by day 5, no eDNA was observed, either on the surface or within the matrix. P. aeruginosa-colonized biofilm devoid of eDNA retained its mechanical properties. The observations demonstrate that a pre-existing biofilm scaffold of K. hansenii inhibits P. aeruginosa PAO1 eDNA production and suggest that eDNA production is a response by P. aeruginosa to the viscoelastic properties of its environment.
Collapse
Affiliation(s)
- Usha Rani Mahadevaswamy
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Aarhus, 8000, Denmark
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore
| |
Collapse
|
7
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
9
|
Srinivasan S, Jnana A, Murali TS. Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions. MICROBIAL ECOLOGY 2024; 87:56. [PMID: 38587642 PMCID: PMC11001700 DOI: 10.1007/s00248-024-02370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Microbial interactions function as a fundamental unit in complex ecosystems. By characterizing the type of interaction (positive, negative, neutral) occurring in these dynamic systems, one can begin to unravel the role played by the microbial species. Towards this, various methods have been developed to decipher the function of the microbial communities. The current review focuses on the various qualitative and quantitative methods that currently exist to study microbial interactions. Qualitative methods such as co-culturing experiments are visualized using microscopy-based techniques and are combined with data obtained from multi-omics technologies (metagenomics, metabolomics, metatranscriptomics). Quantitative methods include the construction of networks and network inference, computational models, and development of synthetic microbial consortia. These methods provide a valuable clue on various roles played by interacting partners, as well as possible solutions to overcome pathogenic microbes that can cause life-threatening infections in susceptible hosts. Studying the microbial interactions will further our understanding of complex less-studied ecosystems and enable design of effective frameworks for treatment of infectious diseases.
Collapse
Affiliation(s)
- Shanchana Srinivasan
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Apoorva Jnana
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
10
|
König S, Schroeder J, Nietzsche S, Heinekamp T, Brakhage AA, Zell R, Löffler B, Ehrhardt C. The influenza A virus promotes fungal growth of Aspergillus fumigatus via direct interaction in vitro. Microbes Infect 2024; 26:105264. [PMID: 38008399 DOI: 10.1016/j.micinf.2023.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Seasonal influenza A virus (IAV) infections still pose a major burden for public health worldwide. Severe disease progression or even death is often related to superinfections of the virus and a secondary bacterial pathogen. However, fungi, especially Aspergillus fumigatus, are also frequently diagnosed during IAV infection. Although, clinical studies have reported the severity of influenza-associated pulmonary aspergillosis, the molecular mechanisms underlying this type of disease are poorly understood. Here, a new in vitro model is introduced that allows the investigation of complex pathogen-host and pathogen-pathogen interactions during coinfection of lung epithelial cells with IAV and A. fumigatus. Our data reveal a reduced IAV load and IAV-induced cytokine and chemokine expression in the presence of A. fumigatus. At the same time, IAV infection promotes the growth of A. fumigatus. Even in the absence of the human host cell, purified IAV particles are able to induce hyphal growth, due to a direct interaction of the virus particles with the fungal surface. Thus, our study gives first insights into the complex interplay between IAV, A. fumigatus and the host cell as well as the two pathogens alone.
Collapse
Affiliation(s)
- Sarah König
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Josefine Schroeder
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Ziegelmühlenweg 1, D-07743 Jena, Germany.
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Beutenbergstr. 11a, D-07745 Jena, Germany.
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz-Institute for Natural Product Research and Infection Biology - Hans-Knöll Institute, Beutenbergstr. 11a, D-07745 Jena, Germany.
| | - Roland Zell
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany.
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knöll-Str. 2, D-07745 Jena, Germany.
| |
Collapse
|
11
|
Chávez-Hernández M, Ortiz-Álvarez J, Morales-Jiménez J, Villa-Tanaca L, Hernández-Rodríguez C. Phenotypic and Genomic Characterization of Streptomyces pakalii sp. nov., a Novel Species with Anti-Biofilm and Anti-Quorum Sensing Activity in ESKAPE Bacteria. Microorganisms 2023; 11:2551. [PMID: 37894209 PMCID: PMC10608816 DOI: 10.3390/microorganisms11102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of infections caused by antimicrobial multi-resistant microorganisms has led to the search for new microorganisms capable of producing novel antibiotics. This work proposes Streptomyces pakalii sp. nov. as a new member of the Streptomycetaceae family. The strain ENCB-J15 was isolated from the jungle soil in Palenque National Park, Chiapas, Mexico. The strain formed pale brown, dry, tough, and buried colonies in the agar with no diffusible pigment in GAE (glucose-asparagine-yeast extract) medium. Scanning electron micrographs showed typical mycelium with long chains of smooth and oval-shaped spores (3-10 m). The strain grew in all of the International Streptomyces Project (ISP)'s media at 28-37 °C with a pH of 6-9 and 0-10% NaCl. S. pakalii ENCB-J15 assimilated diverse carbon as well as organic and inorganic nitrogen sources. The strain also exhibited significant inhibitory activity against the prodigiosin synthesis of Serratia marcescens and the inhibition of the formation and destruction of biofilms of ESKAPE strains of Acinetobacter baumannii and Klebsiella pneumoniae. The draft genome sequencing of ENCB-J15 revealed a 7.6 Mb genome with a high G + C content (71.6%), 6833 total genes, and 6746 genes encoding putative proteins. A total of 26 accessory clusters of proteins associated with carbon sources and amino acid catabolism, DNA modification, and the antibiotic biosynthetic process were annotated. The 16S rRNA gene phylogeny, core-proteome phylogenomic tree, and virtual genome fingerprints support that S. pakalii ENCB-J15 is a new species related to Streptomyces badius and Streptomyces globisporus. Similarly, its average nucleotide identity (ANI) (96.4%), average amino acid identity (AAI) (96.06%), and virtual DNA-DNA hybridization (67.3%) provide evidence to recognize it as a new species. Comparative genomics revealed that S. pakalli and its closest related species maintain a well-conserved genomic synteny. This work proposes Streptomyces pakalii sp. nov. as a novel species that expresses anti-biofilm and anti-quorum sensing activities.
Collapse
Affiliation(s)
- Michelle Chávez-Hernández
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| | - Jossue Ortiz-Álvarez
- Programa “Investigadoras e Investigadores por México”. Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT). Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México 03940, Mexico;
| | - Jesús Morales-Jiménez
- Departamento el Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico;
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| |
Collapse
|
12
|
Debourgogne A, Monpierre L, Sy KA, Valsecchi I, Decousser JW, Botterel F. Interactions between Bacteria and Aspergillus fumigatus in Airways: From the Mycobiome to Molecular Interactions. J Fungi (Basel) 2023; 9:900. [PMID: 37755008 PMCID: PMC10533028 DOI: 10.3390/jof9090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Interactions between different kingdoms of microorganisms in humans are common but not well described. A recent analysis of the mycobiome has described the presence of different fungi and their positive and/or negative interactions with bacteria and other fungi. In chronic respiratory diseases, these different microorganisms form mixed biofilms to live inside. The interactions between Gram-negative bacteria and filamentous fungi in these biofilms have attracted more attention recently. In this review, we analyse the microbiota of the respiratory tract of healthy individuals and patients with chronic respiratory disease. Additionally, we describe the regulatory mechanisms that rule the mixed biofilms of Aspergillus fumigatus and Gram-negative bacteria and the effects of this biofilm on clinical presentations.
Collapse
Affiliation(s)
- Anne Debourgogne
- UR 7300, Stress Immunité Pathogène, Université de Lorraine, 54000 Vandoeuvre les Nancy, France;
| | - Lorra Monpierre
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), 94000 Créteil, France;
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| | - Khadeeja Adam Sy
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
- Institut National de la Santé et de la Recherche Médicale (Inserm) U955, 94010 Créteil, France
| | - Isabel Valsecchi
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| | - Jean-Winoc Decousser
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
- Department of Infection Control, University Hospital Henri Mondor, Assistance Publique—Hôpitaux de Paris, 94000 Créteil, France
| | - Françoise Botterel
- Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement des Infections, CHU Henri Mondor, Assistance Publique des Hôpitaux de Paris (APHP), 94000 Créteil, France;
- UR DYNAMYC 7380, Faculté de Santé, Univ Paris-Est Créteil (UPEC), Ecole Nationale Vétérinaire d’Alfort (ENVA), USC Anses, 94700 Créteil, France; (K.A.S.); (I.V.); (J.-W.D.)
| |
Collapse
|
13
|
Cong L, Chen C, Mao S, Han Z, Zhu Z, Li Y. Intestinal bacteria-a powerful weapon for fungal infections treatment. Front Cell Infect Microbiol 2023; 13:1187831. [PMID: 37333850 PMCID: PMC10272564 DOI: 10.3389/fcimb.2023.1187831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
The morbidity and mortality of invasive fungal infections are rising gradually. In recent years, fungi have quietly evolved stronger defense capabilities and increased resistance to antibiotics, posing huge challenges to maintaining physical health. Therefore, developing new drugs and strategies to combat these invasive fungi is crucial. There are a large number of microorganisms in the intestinal tract of mammals, collectively referred to as intestinal microbiota. At the same time, these native microorganisms co-evolve with their hosts in symbiotic relationship. Recent researches have shown that some probiotics and intestinal symbiotic bacteria can inhibit the invasion and colonization of fungi. In this paper, we review the mechanism of some intestinal bacteria affecting the growth and invasion of fungi by targeting the virulence factors, quorum sensing system, secreting active metabolites or regulating the host anti-fungal immune response, so as to provide new strategies for resisting invasive fungal infection.
Collapse
Affiliation(s)
- Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zibing Han
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
14
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
15
|
Díaz-Navarro M, Irigoyen Von-Sierakowski Á, Palomo M, Escribano P, Guinea J, Burillo A, Galar A, Muñoz P, Guembe M. In vitro study to assess modulation of Candida biofilm by Escherichia coli from vaginal strains. Biofilm 2023; 5:100116. [PMID: 37125396 PMCID: PMC10130766 DOI: 10.1016/j.bioflm.2023.100116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
Background Vulvovaginal candidiasis (VVC) is caused by biofilm formation and epithelial invasion. In addition, Escherichia coli (EC) can establish a vaginal intracellular reservoir modulating Candida spp. biofilm production. We aimed to analyze the behavior of Candida albicans (CA) and EC biofilm both in single cultures and in co-cultures. Methods We prospectively collected CA and EC isolates from vaginal swabs over 6 months. We selected positive cultures with both CA and EC (cases) and a comparator group with either CA or EC (controls). We analyzed overall biomass production and metabolic activity in single cultures and in co-cultures based on staining assays, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) to assess biofilm occupation. We also analyzed clinical manifestations. Results We cultured 455 samples, 16 (3.5%) of which had CA and EC (cases); only CA or EC (controls) was detected, respectively, in 72 (15.8%) and 98 (21.5%). Biomass production and metabolic activity were significantly more pronounced in co-cultures in both groups. CLSM and SEM, on the other hand, showed the biofilm of each species to be significantly reduced when they were cultured together, with higher values in CA (percentage biofilm reduction: CA, 95.8% vs. EC, 36.2%, p < 0.001). There were no clinically significant differences between co-infected patients and patients infected only by C. albicans. Conclusion Ours is the first study assessing co-cultures of CA and EC in a large collection of samples. We observed that coinfection of CA and EC was unusual (3.5%) and promoted high biomass, whereas microscopy enabled us to detect a reduction in biofilm production when microorganisms were co-cultured. No differences in symptoms were observed.
Collapse
Affiliation(s)
- Marta Díaz-Navarro
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | - María Palomo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Pilar Escribano
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Jesús Guinea
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Almudena Burillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Alicia Galar
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- School of Medicine, Universidad Complutense de Madrid, Spain
| | - María Guembe
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Corresponding author. Dr. Esquerdo, 46. 28007, Madrid, Spain.
| |
Collapse
|
16
|
Ramachandra SS, Abdal-Hay A, Han P, Lee RSB, Ivanovski S. Fabrication and characterization of a 3D polymicrobial microcosm biofilm model using melt electrowritten scaffolds. BIOMATERIALS ADVANCES 2023; 145:213251. [PMID: 36580768 DOI: 10.1016/j.bioadv.2022.213251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/19/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The majority of current biofilm models or substrates are two-dimensional (2D) and support biofilm growth in the horizontal plane only. Three-dimensional (3D) substrates may support both horizontal and vertical biofilm growth. This study compared biofilm growth quantity and quality between highly porous 3D micrometric fibrous scaffolds and 2D film substrates fabricated from medical grade polycaprolactone (mPCL). Melt electrowriting (MEW), a high-resolution additive manufacturing technology, was employed to design orderly aligned fine (~12 μm) fibre-based 3D scaffolds, while 2D films were fabricated by a casting method. The 3D scaffolds with a controlled pore size of 100 and 250 μm and thickness of ~0.8 mm and 2D films were incubated in pooled saliva collected from six volunteers for 1, 2, 4, 7 and 10 days at 37 °C to facilitate polymicrobial biofilm formation. Crystal violet assay demonstrated greater biofilm biomass in 3D MEW scaffolds than in 2D films. Biofilm thickness in 3D scaffolds was significantly higher compared to the biofilm thickness in 2D films. Both biovolume and substratum coverage of the biofilms was higher in the 3D scaffolds compared to 2D films. Polymeric bridges, pores, and channels characteristic of biofilms could be demonstrated by scanning electron microscopy. 16S rRNA sequencing demonstrated that the polymicrobial biofilms in the 3D scaffolds were able to retain 60-70 % of the original inoculum microbiome after 4 days. The MEW-fabricated 3D fibrous scaffold is a promising substrate for supporting multidirectional biofilm growth and modelling of a polymicrobial microcosm.
Collapse
Affiliation(s)
- Srinivas Sulugodu Ramachandra
- School of Dentistry, Centre of Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia; Department of Preventive Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Abdalla Abdal-Hay
- School of Dentistry, Centre of Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia; Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena, Egypt; Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo - Fifth Settlement, Cairo, Egypt
| | - Pingping Han
- School of Dentistry, Centre of Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia
| | - Ryan S B Lee
- School of Dentistry, Centre of Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia
| | - Sašo Ivanovski
- School of Dentistry, Centre of Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), The University of Queensland, Brisbane, Australia.
| |
Collapse
|
17
|
Rayón-López G, Carapia-Minero N, Medina-Canales MG, García-Pérez BE, Reséndiz-Sánchez J, Pérez NO, Rodríguez-Tovar AV, Ramírez-Granillo A. Lipid-Like Biofilm from a Clinical Brain Isolate of Aspergillus terreus: Quantification, Structural Characterization and Stages of the Formation Cycle. Mycopathologia 2022; 188:35-49. [PMID: 36515766 DOI: 10.1007/s11046-022-00692-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022]
Abstract
Invasive infections caused by filamentous fungi have increased considerably due to the alteration of the host's immune response. Aspergillus terreus is considered an emerging pathogen and has shown resistance to amphotericin B treatment, resulting in high mortality. The development of fungal biofilm is a virulence factor, and it has been described in some cases of invasive aspergillosis. In addition, although the general composition of fungal biofilms is known, findings related to biofilms of a lipid nature are rarely reported. In this study, we present the identification of a clinical strain of A. terreus by microbiological and molecular tools, also its in vitro biofilm development capacity: (i) Biofilm formation was quantified by Crystal Violet and reduction of tetrazolium salts assays, and simultaneously the stages of biofilm development were described by Scanning Electron Microscopy in High Resolution (SEM-HR). (ii) Characterization of the organizational structure of the biofilm was performed by SEM-HR. The hyphal networks developed on the surface, the abundant air channels created between the ECM (extracellular matrix) and the hyphae fused in anastomosis were described. Also, the presence of microhyphae is reported. (iii) The chemical composition of the ECM was analyzed by SEM-HR and CLSM (Confocal Laser Scanning Microscopy). Proteins, carbohydrates, nucleic acids and a relevant presence of lipid components were identified. Some structures of apparent waxy appearance were highlighted by SEM-HR and backscatter-electron diffraction, for which CLSM was previously performed. To our knowledge, this work is the first description of a lipid-type biofilm in filamentous fungi, specifically of the species A. terreus from a clinical isolate.
Collapse
Affiliation(s)
- Gerardo Rayón-López
- Medical Mycology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Natalee Carapia-Minero
- Medical Mycology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | | | | | - Jesús Reséndiz-Sánchez
- Mycology Laboratory, Hospital Infantil de México "Dr. Federico Gómez", Mexico City, Mexico
| | - Néstor O Pérez
- Research and Development Department Probiomed SA de CV, Tenancingo Edo. de Mex., Mexico
| | - Aída Verónica Rodríguez-Tovar
- Medical Mycology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
- Laboratorio de Micología Médica, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala s/n, ENCB-Instituto Politécnico Nacional, 11340, México, CDMX, México.
| | - Adrián Ramírez-Granillo
- Medical Mycology Laboratory, Microbiology Department, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico.
- Clinical Laboratory Technician Academy, Centro de Estudios Científicos y Tecnológicos No. 6 "Miguel Othón de Mendizábal", IPN, Mexico City, Mexico.
- Laboratorio de Micología Médica, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala s/n, ENCB-Instituto Politécnico Nacional, 11340, México, CDMX, México.
| |
Collapse
|
18
|
Urbaniak C, Morrison MD, Thissen JB, Karouia F, Smith DJ, Mehta S, Jaing C, Venkateswaran K. Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. MICROBIOME 2022; 10:100. [PMID: 35765106 PMCID: PMC9241228 DOI: 10.1186/s40168-022-01293-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/19/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND The International Space Station (ISS) is a unique and complex built environment with the ISS surface microbiome originating from crew and cargo or from life support recirculation in an almost entirely closed system. The Microbial Tracking 1 (MT-1) project was the first ISS environmental surface study to report on the metagenome profiles without using whole-genome amplification. The study surveyed the microbial communities from eight surfaces over a 14-month period. The Microbial Tracking 2 (MT-2) project aimed to continue the work of MT-1, sampling an additional four flights from the same locations, over another 14 months. METHODS Eight surfaces across the ISS were sampled with sterile wipes and processed upon return to Earth. DNA extracted from the processed samples (and controls) were treated with propidium monoazide (PMA) to detect intact/viable cells or left untreated and to detect the total DNA population (free DNA/compromised cells/intact cells/viable cells). DNA extracted from PMA-treated and untreated samples were analyzed using shotgun metagenomics. Samples were cultured for bacteria and fungi to supplement the above results. RESULTS Staphylococcus sp. and Malassezia sp. were the most represented bacterial and fungal species, respectively, on the ISS. Overall, the ISS surface microbiome was dominated by organisms associated with the human skin. Multi-dimensional scaling and differential abundance analysis showed significant temporal changes in the microbial population but no spatial differences. The ISS antimicrobial resistance gene profiles were however more stable over time, with no differences over the 5-year span of the MT-1 and MT-2 studies. Twenty-nine antimicrobial resistance genes were detected across all samples, with macrolide/lincosamide/streptogramin resistance being the most widespread. Metagenomic assembled genomes were reconstructed from the dataset, resulting in 82 MAGs. Functional assessment of the collective MAGs showed a propensity for amino acid utilization over carbohydrate metabolism. Co-occurrence analyses showed strong associations between bacterial and fungal genera. Culture analysis showed the microbial load to be on average 3.0 × 105 cfu/m2 CONCLUSIONS: Utilizing various metagenomics analyses and culture methods, we provided a comprehensive analysis of the ISS surface microbiome, showing microbial burden, bacterial and fungal species prevalence, changes in the microbiome, and resistome over time and space, as well as the functional capabilities and microbial interactions of this unique built microbiome. Data from this study may help to inform policies for future space missions to ensure an ISS surface microbiome that promotes astronaut health and spacecraft integrity. Video Abstract.
Collapse
Affiliation(s)
- Camilla Urbaniak
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Michael D Morrison
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - James B Thissen
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Fathi Karouia
- KBRwyle, NASA Ames Research Center, Moffett Field, Mountain View, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Blue Marble Space Institute of Science, Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - David J Smith
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, USA
| | - Satish Mehta
- JesTech, NASA-Johnson Space Center, Houston, TX, USA
| | - Crystal Jaing
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA.
| |
Collapse
|
19
|
Competitiveness during Dual-Species Biofilm Formation of Fusarium oxysporum and Candida albicans and a Novel Treatment Strategy. Pharmaceutics 2022; 14:pharmaceutics14061167. [PMID: 35745740 PMCID: PMC9227787 DOI: 10.3390/pharmaceutics14061167] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
During an infection, a single or multispecies biofilm can develop. Infections caused by non-dermatophyte molds, such as Fusarium spp. and yeasts, such as Candida spp., are particularly difficult to treat due to the formation of a mixed biofilm of the two species. Fusarium oxysporum is responsible for approximately 20% of human fusariosis, while Candida albicans is responsible for superficial mucosal and dermal infections and for disseminated bloodstream infections with a mortality rate above 40%. This study aims to investigate the interactions between C. albicans and F. oxysporum dual-species biofilm, considering variable formation conditions. Further, the ability of the WMR peptide, a modified version of myxinidin, to eradicate the mixed biofilm when used alone or in combination with fluconazole (FLC) was tested, and the efficacy of the combination of WMR and FLC at low doses was assessed, as well as its effect on the expression of some biofilm-related adhesin and hyphal regulatory genes. Finally, in order to confirm our findings in vivo and explore the synergistic effect of the two drugs, we utilized the Galleria mellonella infection model. We concluded that C. albicans negatively affects F. oxysporum growth in mixed biofilms. Combinatorial treatment by WMR and FLC significantly reduced the biomass and viability of both species in mature mixed biofilms, and these effects coincided with the reduced expression of biofilm-related genes in both fungi. Our results were confirmed in vivo since the synergistic antifungal activity of WMR and FLC increased the survival of infected larvae and reduced tissue invasion. These findings highlight the importance of drug combinations as an alternative treatment for C. albicans and F. oxysporum mixed biofilms.
Collapse
|
20
|
Effect of Voriconazole on Biofilm of Filamentous Species Isolated from Keratitis. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2022. [DOI: 10.5812/archcid-122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Biofilm formation is a vital feature of the pathogenesis in filamentous fungi. Objectives: Herein, we investigated in vitro antifungal pattern of biofilm of filamentous species keratitis isolates, and the effect of different concentrations of voriconazole on biofilm morphology changes using scanning electron microscopy. Methods: Here 25 ocular fungal isolates were included (Fusarium solani; (n = 15) and Aspergillus flavus; (n = 10). We determined the biofilm formation of isolates in terms of their susceptibilities to different antifungals on sessile cells. This procedure was performed according to CLSI-M38-3rd. Biofilm morphology changes revealed with scanning electron microscopy (SEM). Results: Twelve F. solani strains displayed the capacity to form biofilms from patients wearing contact lenses, while 8 A. flavus strains were recovered from cornea scrapings of trauma. Itraconazole, posaconazole and natamycin had the maximum activity against biofilms of all tested filamentous strains (MIC ranging from 0.031 - 0.25 µg/mL, 0.031 - 0.25 µg/mL and 2 - 4 µg/mL), respectively. Three F. solani and one A. flavus strains showed the high MIC values against voriconazole (MIC ≥ 1 µg/mL). Posaconazole revealed the lowest MIC values against biofilms of two strains (MIC ranging from 0.031 - 0.25 µg/mL); however, no significant difference was observed for itraconazole (P > 0.05). The efficacy of 16 µg/mL and 4 µg/mL of voriconazole was confirmed for biofilm of F. solani and A. flavus, respectively. The considerable changes in the morphologies of improved biofilms were seen by SEM. Conclusions: For the successful treatment of fungal biofilm infections, it was necessary to have knowledge of the mechanism of action, penetration rates, and therapeutic concentrations of drugs.
Collapse
|
21
|
Cervantes-Huamán B, Ripolles-Avila C, Mazaheri T, Rodríguez-Jerez J. Pathogenic mono-species biofilm formation on stainless steel surfaces: Quantitative, qualitative, and compositional study. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Subroto E, van Neer J, Valdes I, de Cock H. Growth of Aspergillus fumigatus in Biofilms in Comparison to Candida albicans. J Fungi (Basel) 2022; 8:48. [PMID: 35049988 PMCID: PMC8779434 DOI: 10.3390/jof8010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022] Open
Abstract
Biofilm formation during infections with the opportunistic pathogen Aspergillus fumigatus can be very problematic in clinical settings, since it provides the fungal cells with a protective environment. Resistance against drug treatments, immune recognition as well as adaptation to the host environment allows fungal survival in the host. The exact molecular mechanisms behind most processes in the formation of biofilms are unclear. In general, the formation of biofilms can be categorized roughly in a few stages; adhesion, conidial germination and development of hyphae, biofilm maturation and cell dispersion. Fungi in biofilms can adapt to the in-host environment. These adaptations can occur on a level of phenotypic plasticity via gene regulation. However, also more substantial genetic changes of the genome can result in increased resistance and adaptation in the host, enhancing the survival chances of fungi in biofilms. Most research has focused on the development of biofilms. However, to tackle developing microbial resistance and adaptation in biofilms, more insight in mechanisms behind genetic adaptations is required to predict which defense mechanisms can be expected. This can be helpful in the development of novel and more targeted antifungal treatments to combat fungal infections.
Collapse
Affiliation(s)
| | | | | | - Hans de Cock
- Molecular Microbiology Laboratory, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; (E.S.); (J.v.N.); (I.V.)
| |
Collapse
|
23
|
Wang S, Song Y, Wan Z, Chen W, Wang R, Li R. Characterisation of the nail microbiome in psoriatic and nonpsoriatic patients with onychomycosis. Mycoses 2021; 65:35-44. [PMID: 34549836 DOI: 10.1111/myc.13372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Onychomycosis (OM) is the most common infectious nail disease, and it occurs frequently in patients with psoriasis. Microbial community shifts have been suggested to play a role in psoriasis and fungal infection occurrence. OBJECTIVES To investigate and compare nail microbial community compositions in psoriatic and nonpsoriatic patients with OM. METHODS Toenail samples were collected from nonpsoriatic patients with OM, psoriatic patients with nail psoriasis (NP) and OM, patients with only NP and healthy controls. Bacterial and fungal community compositions were analysed by amplicon sequencing of the V3-V4 regions of the 16S rDNA gene and the ITS1 region, respectively. RESULTS Psoriatic OM patients had higher bacterial and fungal alpha diversities. Taxonomic analysis revealed a significantly lower relative abundance of Trichophyton rubrum (32.88% vs 82.18%, p < .001) and an increased trend of the abundance of Candida in psoriatic patients with OM than in nonpsoriatic patients. Nonpsoriatic patients with OM had a higher abundance of Staphylococcus than healthy controls (59.66% vs 45.76%, p < .05). Trichophyton, Alternaria and Malassezia could accurately differentiate psoriatic and nonpsoriatic patients with OM, with an area under the curve (AUC) of 0.86. The severity of OM was positively correlated with the relative abundance of Trichophyton rubrum. Further, Trichophyton was positively correlated with Staphylococcus and negatively correlated with Corynebacterium, Anaerococcus, Malassezia and Alternaria. CONCLUSIONS The nail microbiome in psoriatic patients with OM has distinct bacterial and fungal signatures, suggesting that different dysbiosis is associated with the pathogenesis of OM in psoriatic and nonpsoriatic patients.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Zhe Wan
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Wei Chen
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ruojun Wang
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis of Dermatoses, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China.,NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
24
|
Ramírez-Granillo A, Bautista-Hernández LA, Bautista-De Lucío VM, Magaña-Guerrero FS, Domínguez-López A, Córdova-Alcántara IM, Pérez NO, Martínez-Rivera MDLA, Rodríguez-Tovar AV. Microbial Warfare on Three Fronts: Mixed Biofilm of Aspergillus fumigatus and Staphylococcus aureus on Primary Cultures of Human Limbo-Corneal Fibroblasts. Front Cell Infect Microbiol 2021; 11:646054. [PMID: 34485167 PMCID: PMC8415486 DOI: 10.3389/fcimb.2021.646054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
Background Coinfections with fungi and bacteria in ocular pathologies are increasing at an alarming rate. Two of the main etiologic agents of infections on the corneal surface, such as Aspergillus fumigatus and Staphylococcus aureus, can form a biofilm. However, mixed fungal–bacterial biofilms are rarely reported in ocular infections. The implementation of cell cultures as a study model related to biofilm microbial keratitis will allow understanding the pathogenesis in the cornea. The cornea maintains a pathogen-free ocular surface in which human limbo-corneal fibroblast cells are part of its cell regeneration process. There are no reports of biofilm formation assays on limbo-corneal fibroblasts, as well as their behavior with a polymicrobial infection. Objective To determine the capacity of biofilm formation during this fungal–bacterial interaction on primary limbo-corneal fibroblast monolayers. Results The biofilm on the limbo-corneal fibroblast culture was analyzed by assessing biomass production and determining metabolic activity. Furthermore, the mixed biofilm effect on this cell culture was observed with several microscopy techniques. The single and mixed biofilm was higher on the limbo-corneal fibroblast monolayer than on abiotic surfaces. The A. fumigatus biofilm on the human limbo-corneal fibroblast culture showed a considerable decrease compared to the S. aureus biofilm on the limbo-corneal fibroblast monolayer. Moreover, the mixed biofilm had a lower density than that of the single biofilm. Antibiosis between A. fumigatus and S. aureus persisted during the challenge to limbo-corneal fibroblasts, but it seems that the fungus was more effectively inhibited. Conclusion This is the first report of mixed fungal–bacterial biofilm production and morphological characterization on the limbo-corneal fibroblast monolayer. Three antibiosis behaviors were observed between fungi, bacteria, and limbo-corneal fibroblasts. The mycophagy effect over A. fumigatus by S. aureus was exacerbated on the limbo-corneal fibroblast monolayer. During fungal–bacterial interactions, it appears that limbo-corneal fibroblasts showed some phagocytic activity, demonstrating tripartite relationships during coinfection.
Collapse
Affiliation(s)
- Adrián Ramírez-Granillo
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Luis Antonio Bautista-Hernández
- Ocular Microbiology and Proteomics Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Víctor Manuel Bautista-De Lucío
- Ocular Microbiology and Proteomics Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Fátima Sofía Magaña-Guerrero
- Cell Biology and Amniotic Membrane Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Alfredo Domínguez-López
- Cell Biology and Amniotic Membrane Laboratory, Research Unit, "Conde de Valenciana Private Assistance Foundation", Mexico City, Mexico
| | - Itzel Margarita Córdova-Alcántara
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Néstor O Pérez
- Research and Development Department Probiomed SA de CV, Tenancingo Edo de Mex, Mexico
| | - María de Los Angeles Martínez-Rivera
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Medical Mycology Laboratory, National School of Biological Sciences (ENCB)-Instituto Politécnico Nacional (IPN), Department of Microbiology, Mexico City, Mexico
| |
Collapse
|
25
|
Margalit A, Carolan JC, Kavanagh K. Bacterial Interactions with Aspergillus fumigatus in the Immunocompromised Lung. Microorganisms 2021; 9:microorganisms9020435. [PMID: 33669831 PMCID: PMC7923216 DOI: 10.3390/microorganisms9020435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The immunocompromised airways are susceptible to infections caused by a range of pathogens which increases the opportunity for polymicrobial interactions to occur. Pseudomonas aeruginosa and Staphylococcus aureus are the predominant causes of pulmonary infection for individuals with respiratory disorders such as cystic fibrosis (CF). The spore-forming fungus Aspergillus fumigatus, is most frequently isolated with P. aeruginosa, and co-infection results in poor outcomes for patients. It is therefore clinically important to understand how these pathogens interact with each other and how such interactions may contribute to disease progression so that appropriate therapeutic strategies may be developed. Despite its persistence in the airways throughout the life of a patient, A. fumigatus rarely becomes the dominant pathogen. In vitro interaction studies have revealed remarkable insights into the molecular mechanisms that drive agonistic and antagonistic interactions that occur between A. fumigatus and pulmonary bacterial pathogens such as P. aeruginosa. Crucially, these studies demonstrate that although bacteria may predominate in a competitive environment, A. fumigatus has the capacity to persist and contribute to disease.
Collapse
Affiliation(s)
| | | | - Kevin Kavanagh
- Correspondence: ; Tel.: +353-1-708-3859; Fax: +353-1-708-3845
| |
Collapse
|
26
|
Influence of relevant cystic fibrosis bacteria on Scedosporium apiospermum and Scedosporium boydii growth and viability. Braz J Microbiol 2021; 52:185-193. [PMID: 33442865 DOI: 10.1007/s42770-020-00415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022] Open
Abstract
Cystic fibrosis (CF) causes a variety of symptoms in different organs, but the majority of the morbidity and mortality of CF is related with pulmonary conditions. Primary infections are usually bacterial, and when treated with antibiotics, yeast infections appear or become more evident. Studies show that different microorganisms can co-inhabit the same environment and the interactions could be synergistic or antagonistic. Using techniques including viable and non-viable cell-to-cell interactions, mixed culture in liquid, and solid media sharing or not the supernatant, this study has evaluated interactions between the fungal species Scedosporium apiospermum and Scedosporium boydii with the bacterial species Staphylococcus aureus, Pseudomonas aeruginosa, and Burkholderia cepacia. Cell-to-cell interactions in liquid medium showed that P. aeruginosa and B. cepacia were able to reduce fungal viability but only in the presence of alive bacteria. Interactions without cell contact using a semi-permeable membrane showed that all bacteria were able to inhibit both fungal growths/viabilities. Cell-free supernatants from bacterial growth reduced fungal viability in planktonic fungal cells as well as in some conditions for preformed fungal biomass. According to the chemical analysis of the bacterial supernatants, the predominant component is protein. In this work, we verified that bacterial cells and their metabolites, present in the supernatants, can play anti-S. apiospermum and anti-S. boydii roles on fungal growth and viability.
Collapse
|
27
|
Afonso TB, Simões LC, Lima N. Occurrence of filamentous fungi in drinking water: their role on fungal-bacterial biofilm formation. Res Microbiol 2020; 172:103791. [PMID: 33197515 DOI: 10.1016/j.resmic.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
Water is indispensable to life and safe and accessible supply must be available to all. The presence of microorganisms is a threat to this commitment. Biofilms are the main reservoir of microorganisms inside water distribution systems and they are extremely ecologically diverse. Filamentous fungi and bacteria can coexist inside these systems forming inter-kingdom biofilms. This review has the goal of summarizing the most relevant and recent reports on the occurrence of filamentous fungi in water distribution systems along with the current knowledge and gaps about filamentous fungal biofilm formation. Special focus is given on fungal-bacterial interactions in water biofilms.
Collapse
Affiliation(s)
| | | | - Nelson Lima
- CEB, Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
28
|
Interactions between invasive fungi and symbiotic bacteria. World J Microbiol Biotechnol 2020; 36:137. [PMID: 32794072 DOI: 10.1007/s11274-020-02913-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Infection rates and mortality associated with the invasive fungi Candida, Aspergillus, and Cryptococcus are increasing rapidly in prevalence. Meanwhile, screening pressure brought about by traditional antifungal drugs has induced an increase in drug resistance of invasive fungi, which creates a great challenge for the preservation of physical health. Development of new drugs and novel strategies are therefore important to meet these growing challenges. Recent studies have confirmed that the dynamic balance of microorganisms in the body is correlated with the occurrence of infectious diseases. This discovery of interactions between bacteria and fungi provides innovative insight for the treatment of invasive fungal infections. However, different invasive fungi and symbiotic bacteria interact with each other through various ways and targets, leading to different effects on their growth, morphology, and virulence. And the mechanism and implication of these interactions remains largely unknown. The present review aims to summarize the research progress into the interaction between invasive fungi and symbiotic bacteria with a focus on the anti-fungal mechanisms of symbiotic bacteria, providing a new strategy against drug-resistant fungal infections.
Collapse
|
29
|
Iwahashi J, Kamei K, Watanabe H. Disruption of Aspergillus fumigatus biofilm by Streptococcus pneumoniae: Mycelial fragmentation by hydrogen peroxide. J Infect Chemother 2020; 26:831-837. [PMID: 32414689 DOI: 10.1016/j.jiac.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Biofilm is a complex structure consisting of microorganisms such as bacteria, fungi and an extracellular matrix (ECM). Biofilms are involved in most microbial infections and show persistent resistance to antibiotic treatment and immune response. Both Aspergillus fumigatus and Streptococcus pneumoniae are colonizers that can form biofilms in the respiratory tract. These pathogens have been simultaneously isolated from the same patient, but their interaction is poorly understood. We observed morphological changes in single- and mixed-species biofilms prepared for confocal laser scanning microscopy and scanning electron microscopy (SEM). Pneumococci suppressed the development of a fungal biofilm, and it even disrupted a preformed fungal biofilm. When a preformed fungal biofilm was treated with pneumococci, the mycelial network was fragmented, and only bacteria could develop. SEM revealed that the fragmented mycelium was further disrupted into fine filaments as treatment time progressed, and that the ECM of the preformed fungal biofilm had disappeared. The pneumococcal culture supernatant contained mycelial fragmentation activity that was heat-sensitive. The culture supernatant of a mutant pneumococcal strain deficient in pneumolysin (Δply) also exhibited the mycelial fragmentation activity. Enolase and lactate oxidase, which are involved in glycolysis and hydrogen peroxide production, were identified in the culture supernatant of the Δply mutant. Neither the wild type nor the mutant strain could fragment the mycelium in the presence of catalase. These data suggest that hydrogen peroxide could fragment the mycelium and would terminate the co-existence of A. fumigatus and S. pneumoniae in biofilm.
Collapse
Affiliation(s)
- Jun Iwahashi
- Department of Infection Control and Prevention, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka 830-0011, Japan.
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8673, Japan
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka 830-0011, Japan
| |
Collapse
|
30
|
Los A, Ziuzina D, Boehm D, Cullen PJ, Bourke P. Inactivation Efficacies and Mechanisms of Gas Plasma and Plasma-Activated Water against Aspergillus flavus Spores and Biofilms: a Comparative Study. Appl Environ Microbiol 2020; 86:e02619-19. [PMID: 32086309 PMCID: PMC7170485 DOI: 10.1128/aem.02619-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/12/2020] [Indexed: 01/24/2023] Open
Abstract
Atmospheric cold plasma (ACP) treatment is an emerging food technology for product safety and quality retention, shelf-life extension, and sustainable processing. The activated chemical species of ACP can act rapidly against microorganisms without leaving chemical residues on food surfaces. The main objectives of this study were to investigate the efficiency and mechanisms of inactivation of fungal spores and biofilms by ACP and to understand the effects of the gas-mediated and liquid-mediated modes of application against important fungal contaminants. Aspergillus flavus was selected as the model microorganism. A. flavus spores were exposed to either gas plasma (GP) or plasma-activated water (PAW), whereas gas plasma alone was used to treat A. flavus biofilms. This study demonstrated that both GP and PAW treatments independently resulted in significant decreases of A. flavus metabolic activity and spore counts, with maximal reductions of 2.2 and 0.6 log10 units for GP and PAW, respectively. The characterization of the reactive oxygen and nitrogen species in PAW and spore suspensions indicated that the concentration of secondary reactive species was an important factor influencing the antimicrobial activity of the treatment. The biofilm study showed that GP had detrimental effects on biofilm structure; however, the initial inoculum concentration prior to biofilm formation can be a crucial factor influencing the fungicidal effects of ACP.IMPORTANCE The production of mycotoxin-free food remains a challenge in both human and animal food chains. A. flavus, a mycotoxin-producing contaminant of economically important crops, was selected as the model microorganism to investigate the efficiency and mechanisms of ACP technology against fungal contaminants of food. Our study directly compares the antifungal properties of gas plasma (GP) and plasma-activated water (PAW) against fungi as well as reporting the effects of ACP treatment on biofilms produced by A. flavus.
Collapse
Affiliation(s)
- Agata Los
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Dana Ziuzina
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Daniela Boehm
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Patrick J Cullen
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | - Paula Bourke
- Plasma Research Group, School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
- Plasma Research Group, School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
31
|
Microscopic characterization of biofilm in mixed keratitis in a novel murine model. Microb Pathog 2020; 140:103953. [DOI: 10.1016/j.micpath.2019.103953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 12/17/2022]
|
32
|
Kumari A, Singh R. Medically important interactions of staphylococci with pathogenic fungi. Future Microbiol 2020; 14:1159-1170. [PMID: 31512519 DOI: 10.2217/fmb-2019-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Staphylococci are common inhabitants at several human body sites and are also implicated in infections either as primary or opportunistic pathogens. These bacteria can thus both contribute to the host defense being a part of the commensalistic microbiota or synergize with the other microbes during the infection process. Among fungi, staphylococci interact synergistically with Candida spp. and Aspergillus fumigatus, and antagonistically with Cryptococcus neoformans and Trichosporon asahii. These interactions are highly dynamic and are orchestrated by a multitude of microbial and host factors. During such cross-talks, staphylococci can modulate the virulence, immune response or drug resistance of the coexisting microbe(s), thereby influencing the infection course, disease severity, treatment strategy and the clinical outcome.
Collapse
Affiliation(s)
- Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
33
|
Matos RS, Gonçalves ECM, Pinto EP, Lopes GAC, Ferreira NS, Resende CX. Nanoscale morphology, structure and fractal study of kefir microbial films grown in natura. POLIMEROS 2020. [DOI: 10.1590/0104-1428.04020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Robert S. Matos
- Universidade Federal de Sergipe, Brasil; Universidade Federal do Amapá, Brasil
| | | | | | - Gerson A. C. Lopes
- Universidade Federal de Sergipe, Brasil; Universidade do Estado do Amapá, Brasil
| | | | | |
Collapse
|
34
|
Negative interaction of Staphylococcus aureus on Fusarium falciforme growth ocular isolates in an in vitro mixed biofilm. Microb Pathog 2019; 135:103644. [DOI: 10.1016/j.micpath.2019.103644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 01/27/2023]
|
35
|
Guesmi S, Chouchane H, Neifar M, Hosni F, Cherif A, Sghaier H. Radiation-inducible radioprotective exopolysaccharides of Bacillus siamensis CV5 from irradiated roots of Cistanche violacea to decrease free radical damage produced by ionizing radiation. Int J Radiat Biol 2019; 95:1552-1563. [DOI: 10.1080/09553002.2019.1649501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Sihem Guesmi
- National Agronomy Institute (INAT), Avenue Charles Nicolle, Mahrajène, Tunisia
- Laboratory “Energy and Matter for Development of Nuclear Sciences” (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, Sidi Thabet, Tunisia
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Mohamed Neifar
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Faouzi Hosni
- Laboratory “Energy and Matter for Development of Nuclear Sciences” (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, Sidi Thabet, Tunisia
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Haïtham Sghaier
- Laboratory “Energy and Matter for Development of Nuclear Sciences” (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, Sidi Thabet, Tunisia
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, Ariana, Tunisia
| |
Collapse
|
36
|
Kuo MT, Chen JL, Hsu SL, Chen A, You HL. An Omics Approach to Diagnosing or Investigating Fungal Keratitis. Int J Mol Sci 2019; 20:3631. [PMID: 31349542 PMCID: PMC6695605 DOI: 10.3390/ijms20153631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023] Open
Abstract
Fungal keratitis (FK) is one of the most severe corneal infectious diseases. FK often leads to poor visual prognosis and thus requires accurate diagnosis. Conventional approaches, including clinical diagnoses, smears, and cultures, often fail to provide reliable diagnostic value. Omics approaches, such as those using genomic, metagenomic, and tear proteomic data sources, provide promising features for improving the diagnosis and monitoring the progression of FK. Genomic approaches are based mainly on detecting amplicons of ribosomal RNA genes, and internal transcribed spacers are gradually gaining popularity in clinical practices. A metagenomic approach based on 16S rRNA genes may help monitor the dynamic change of conjunctival microbiota associated with an FK event, whereas that based on shot-gun and 18S rRNA target enrichment sequencing could have the potential to diagnose FK using clinical samples. A tear proteomic approach may provide comprehensive information about ocular surface defense and injury during FK. Representative up- and down-regulated proteins during FK could also be used as biomarkers to determine the clinical course and develop a treatment strategy in different stages of FK. Consequently, a personalized tear proteomic approach will soon play a key role in FK management.
Collapse
Affiliation(s)
- Ming-Tse Kuo
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Jiunn-Liang Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Shiuh-Liang Hsu
- Department of Ophthalmology, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Alexander Chen
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| |
Collapse
|
37
|
Interactions between Aspergillus fumigatus and Pulmonary Bacteria: Current State of the Field, New Data, and Future Perspective. J Fungi (Basel) 2019; 5:jof5020048. [PMID: 31212791 PMCID: PMC6617096 DOI: 10.3390/jof5020048] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa are central fungal and bacterial members of the pulmonary microbiota. The interactions between A. fumigatus and P. aeruginosa have only just begun to be explored. A balance between inhibitory and stimulatory effects on fungal growth was observed in mixed A. fumigatus-P. aeruginosa cultures. Negative interactions have been seen for homoserine-lactones, pyoverdine and pyochelin resulting from iron starvation and intracellular inhibitory reactive oxidant production. In contrast, several types of positive interactions were recognized. Dirhamnolipids resulted in the production of a thick fungal cell wall, allowing the fungus to resist stress. Phenazines and pyochelin favor iron uptake for the fungus. A. fumigatus is able to use bacterial volatiles to promote its growth. The immune response is also differentially regulated by co-infections.
Collapse
|
38
|
Córdova-Alcántara IM, Venegas-Cortés DL, Martínez-Rivera MÁ, Pérez NO, Rodriguez-Tovar AV. Biofilm characterization of Fusarium solani keratitis isolate: increased resistance to antifungals and UV light. J Microbiol 2019; 57:485-497. [DOI: 10.1007/s12275-019-8637-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/27/2022]
|
39
|
Calvillo-Medina RP, Reyes-Grajeda JP, Barba-Escoto L, Bautista-Hernandez LA, Campos-Guillén J, Jones GH, Bautista-de Lucio VM. Proteome analysis of biofilm produced by a Fusarium falciforme keratitis infectious agent. Microb Pathog 2019; 130:232-241. [DOI: 10.1016/j.micpath.2019.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 03/01/2019] [Indexed: 11/16/2022]
|
40
|
Melloul E, Roisin L, Durieux MF, Woerther PL, Jenot D, Risco V, Guillot J, Dannaoui E, Decousser JW, Botterel F. Interactions of Aspergillus fumigatus and Stenotrophomonas maltophilia in an in vitro Mixed Biofilm Model: Does the Strain Matter? Front Microbiol 2018; 9:2850. [PMID: 30542331 PMCID: PMC6277776 DOI: 10.3389/fmicb.2018.02850] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/06/2018] [Indexed: 12/23/2022] Open
Abstract
Introduction:Aspergillus fumigatus (Af) and Stenotrophomonas maltophilia (Sm) are pathogenic microorganisms, which coexist in the respiratory tract of cystic fibrosis (CF) patients. We recently developed an in vitro model of mixed biofilm associating Af ATCC 13073-GFP (Af13073) and Sm ATCC 13637 (Sm13637) and described an antibiosis effect. The present study aim was to assess the antibiosis of Sm on Af using different strains and to analyze the potential synergistic virulence of these strains in an in vivo Galleria mellonella model. Methods: The effect of Sm13637 was evaluated on eight Af strains and the effect of nine Sm strains was evaluated on Af13073. The strains originated from clinical cases (human and animal) and from environment. Fungal and bacterial inocula were simultaneously inoculated to initiate mixed biofilm formation. Fungal growth inhibition was analyzed by qPCR and CLSM and the fungal cell wall modifications by TEM analysis. The virulence of different Sm strains was assessed in association with Af in G. mellonella larvae. Results: All strains of Af and Sm were able to produce single and mixed biofilms. The antibiosis effect of Sm13637 was similar whatever the Af strain tested. On the other hand, the antibiosis effect of Sm strains was bacterial-fitness and strain dependent. One strain (1/9) originated from animal clinical case was never able to induce an antibiosis, even with high bacterial concentration. In the G. mellonella model, co-inoculation with Sm13637 and Af13073 showed synergism since the mortality was 50%, i.e., more than the summed virulence of both. Conclusion: Human clinical strains of Sm yielded in higher antibiosis effect on Af and in a thinner mixed biofilm, probably due to an adaptive effect of these strains. Further research covering Af increased wall thickness in the presence of Sm strains, and its correlation with modified antifungal susceptibility is encouraged in patients with chronic respiratory infections by these 2 microorganisms.
Collapse
Affiliation(s)
- Elise Melloul
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France
| | - Lolita Roisin
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France
| | - Marie-Fleur Durieux
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Service de Parasitologie-Mycologie, Limoges, France
| | - Paul-Louis Woerther
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Bactériologie-Hygiéne, Département de Microbiologie, Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor, Créteil, France
| | - Delphine Jenot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Veronica Risco
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jacques Guillot
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Eric Dannaoui
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine, Université Paris-Descartes, Paris, France
| | - Jean-Winoc Decousser
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Bactériologie-Hygiéne, Département de Microbiologie, Assistance Publique - Hôpitaux de Paris, Hôpital Henri Mondor, Créteil, France
| | - Françoise Botterel
- EA 7380 Dynamyc, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil, Créteil, France.,Unité de Parasitologie-Mycologie, Département de Microbiologie, Groupe Hospitalier Henri Mondor - Albert Chenevier, Assistance Publique - Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
41
|
Calvillo-Medina RP, Martínez-Neria M, Mena-Portales J, Barba-Escoto L, Raymundo T, Campos-Guillén J, Jones GH, Reyes-Grajeda JP, González-Y-Merchand JA, Bautista-de Lucio VM. Identification and biofilm development by a new fungal keratitis aetiologic agent. Mycoses 2018; 62:62-72. [PMID: 30187586 DOI: 10.1111/myc.12849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND In recent years, human keratitis caused by fungal plant pathogens has become more common. Biofilm is a structure that confers adaptations and virulence to fungi in keratitis. Neoscytalidium spp. are phytopathogenic and recently have been recognised as a human pathogen, using biofilm formation as a virulence factor. OBJECTIVES The aim of this study was isolation, identification (at the species level) and characterisation of a new fungal keratitis agent. PATIENTS/METHODS The fungus was isolated from a 67-year-old male patient with a corneal ulcer. Biofilm formation and structure were evaluated by colorimetric methods and microscopy. To identify the fungus, morphological characteristics were examined and a phylogenetic analysis was performed. RESULTS AND CONCLUSIONS We report the identification of a fungus, a member of the genus Neoscytalidium which is associated with human keratitis. Phylogenetic analysis and morphological observations on conidiogenous cells, which occur only in arthric chains in aerial mycelium and the coelomycetous synasexual morph is absent, identified a new species, Neoscytalidium oculus sp. nov. The fungus formed biofilm at a concentration of 1 × 106 conidia/mL, during 96 hours of incubation at 37°C, and also manifested haemolysis and melanin production. This is the first report in Latin America of a new species of Neoscytalidium from a clinical isolate has been identified.
Collapse
Affiliation(s)
- Rosa Paulina Calvillo-Medina
- Departamento de Microbiología y Proteómica, Instituto de Oftalmología "Fundación Conde de Valenciana", Mexico City, México.,Laboratorio de Microbiología Molecular, Universidad Autónoma de Querétaro, Santiago de Querétaro, México.,Consorcio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Mexico City, México.,Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México
| | - Magda Martínez-Neria
- Departamento de Oftalmología, Hospital General "Dr. Manuel Gea González", Mexico City, México
| | | | - Luis Barba-Escoto
- Sustainable Intensification Program México Edo. de México, International Maize and Wheat Improvement Center (CIMMYT), Mexico City, México
| | - Tania Raymundo
- Laboratorio de Micología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, México
| | - Juan Campos-Guillén
- Laboratorio de Microbiología Molecular, Universidad Autónoma de Querétaro, Santiago de Querétaro, México
| | - George H Jones
- Department of Biology, Emory University, Atlanta, Georgia
| | - Juan Pablo Reyes-Grajeda
- Consorcio de Estructura de Proteínas, Instituto Nacional de Medicina Genómica, Mexico City, México
| | | | | |
Collapse
|
42
|
Lai GC, Tan TG, Pavelka N. The mammalian mycobiome: A complex system in a dynamic relationship with the host. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2018; 11:e1438. [PMID: 30255552 PMCID: PMC6586165 DOI: 10.1002/wsbm.1438] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022]
Abstract
Mammalian barrier surfaces are densely populated by symbiont fungi in much the same way the former are colonized by symbiont bacteria. The fungal microbiota, otherwise known as the mycobiota, is increasingly recognized as a critical player in the maintenance of health and homeostasis of the host. Here we discuss the impact of the mycobiota on host physiology and disease, the factors influencing mycobiota composition, and the current technologies used for identifying symbiont fungal species. Understanding the tripartite interactions among the host, mycobiota, and other members of the microbiota, will help to guide the development of novel prevention and therapeutic strategies for a variety of human diseases. This article is categorized under:
Physiology > Mammalian Physiology in Health and Disease Laboratory Methods and Technologies > Genetic/Genomic Methods Models of Systems Properties and Processes > Organismal Models
Collapse
|
43
|
Camarillo-Márquez O, Córdova-Alcántara IM, Hernández-Rodríguez CH, García-Pérez BE, Martínez-Rivera MA, Rodríguez-Tovar AV. Antagonistic Interaction of Staphylococcus aureus Toward Candida glabrata During in vitro Biofilm Formation Is Caused by an Apoptotic Mechanism. Front Microbiol 2018; 9:2031. [PMID: 30214437 PMCID: PMC6125415 DOI: 10.3389/fmicb.2018.02031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Background: Infections caused by Candida species and Staphylococcus aureus are associated with biofilm formation. C. albicans–S. aureus interactions are synergistic due to the significant increase in mixed biofilms and improved resistance to vancomycin of S. aureus. C. glabrata and S. aureus both are nosocomial pathogens that cause opportunistic infections in similar host niches. However, there is scarce information concerning the interaction between these last microorganisms. Results: The relationship between C. glabrata and S. aureus was evaluated by estimating the viability of both microorganisms in co-culture of planktonic cells and in single and mixed biofilms. An antagonistic behavior of S. aureus and their cell-free bacterial supernatant (CFBS) toward C. glabrata, both in planktonic form and in biofilms, was demonstrated. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM) images showed yeast cells surrounded by bacteria, alterations in intracytoplasmic membranes, and non-viable blastoconidia with intact cell walls. Concomitantly, S. aureus cells remained viable and unaltered. The antagonistic activity of S. aureus toward C. glabrata was not due to cell-to-cell contact but the presence of CFBS, which causes a significant decrement in yeast viability and the formation of numerous lipid droplets (LDs), reactive oxygen species (ROS) accumulation, as well as nuclear alterations, and DNA fragmentation indicating the induction of an apoptotic mechanism. Conclusion: Our results demonstrate that the S. aureus CFBS causes cell death in C. glabrata by an apoptotic mechanism.
Collapse
Affiliation(s)
- Omar Camarillo-Márquez
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itzel M Córdova-Alcántara
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cesar H Hernández-Rodríguez
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Blanca E García-Pérez
- Laboratorio de Microbiología General, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María A Martínez-Rivera
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Aida V Rodríguez-Tovar
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
44
|
Boukahil I, Czuprynski CJ. Mutual antagonism between Mannheimia haemolytica and Pasteurella multocida when forming a biofilm on bovine bronchial epithelial cells in vitro. Vet Microbiol 2018. [PMID: 29519520 DOI: 10.1016/j.vetmic.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mannheimia haemolytica and Pasteurella multocida are two bacterial species implicated in the bovine respiratory disease complex (BRDC) that is costly to the beef and dairy cattle industries. Both bacterial species are thought to occupy a similar niche as commensals in the upper respiratory tract. Many bacteria are thought to exist as biofilms in their hosts, perhaps in close proximity with other bacterial species. We previously showed that M. haemolytica forms biofilm on bovine respiratory epithelial cells in vitro. We are interested in the possibility that M. haemolytica and P. multocida co-exist as biofilms in the upper respiratory tract of cattle. In this study, we begin to explore this possibility by assessing the ability of M. haemolytica and P. multocida to form a biofilm on bovine respiratory epithelial cells in vitro. We found that M. haemolytica and P. multocida are separately able to form biofilms on bovine respiratory epithelial cells, but mutually inhibit one another when incubated together as a biofilm. Both the biofilm matrix (crystal violet stain) and bacterial numbers (CFU and PCR) were reduced when M. haemolytica and P. multocida were incubated together on fixed epithelial cells. This inhibition does not appear to result from a soluble factor, as neither conditioned medium nor separation of the two species by a transwell filter membrane reproduced the effect. We infer that when located in close proximity on the epithelial surface, M. haemolytica and P. multocida mutually regulate one another.
Collapse
Affiliation(s)
- Ismail Boukahil
- Department of Pathobiological Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | - Charles J Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin-Madison, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
45
|
Fujimoto M, Lovett B, Angoshtari R, Nirenberg P, Loch TP, Scribner KT, Marsh TL. Antagonistic Interactions and Biofilm Forming Capabilities Among Bacterial Strains Isolated from the Egg Surfaces of Lake Sturgeon (Acipenser fulvescens). MICROBIAL ECOLOGY 2018; 75:22-37. [PMID: 28674774 DOI: 10.1007/s00248-017-1013-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/08/2017] [Indexed: 05/25/2023]
Abstract
Characterization of interactions within a host-associated microbiome can help elucidate the mechanisms of microbial community formation on hosts and can be used to identify potential probiotics that protect hosts from pathogens. Microbes employ various modes of antagonism when interacting with other members of the community. The formation of biofilm by some strains can be a defense against antimicrobial compounds produced by other taxa. We characterized the magnitude of antagonistic interactions and biofilm formation of 25 phylogenetically diverse taxa that are representative of isolates obtained from egg surfaces of the threatened fish species lake sturgeon (Acipenser fulvescens) at two ecologically relevant temperature regimes. Eight isolates exhibited aggression to at least one other isolate. Pseudomonas sp. C22 was found to be the most aggressive strain, while Flavobacterium spp. were found to be one of the least aggressive and the most susceptible genera. Temperature affected the prevalence and intensity of antagonism. The aggressive strains identified also inhibited growth of known fish pathogens. Biofilm formations were observed for nine isolates and were dependent on temperature and growth medium. The most aggressive of the isolates disrupted biofilm formation of two well-characterized isolates but enhanced biofilm formation of a fish pathogen. Our results revealed the complex nature of interactions among members of an egg associated microbial community yet underscored the potential of specific microbial populations as host probiotics.
Collapse
Affiliation(s)
- M Fujimoto
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - B Lovett
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - R Angoshtari
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - P Nirenberg
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - T P Loch
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - K T Scribner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
- Department of Zoology, Michigan State University, East Lansing, MI, 48824, USA
| | - T L Marsh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
46
|
Bagchi D, Dutta S, Singh P, Chaudhuri S, Pal SK. Essential Dynamics of an Effective Phototherapeutic Drug in a Nanoscopic Delivery Vehicle: Psoralen in Ethosomes for Biofilm Treatment. ACS OMEGA 2017; 2:1850-1857. [PMID: 30023647 PMCID: PMC6044814 DOI: 10.1021/acsomega.7b00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/28/2017] [Indexed: 05/18/2023]
Abstract
Appropriate localization of a drug and its structure/functional integrity in a delivery agent essentially dictates the efficacy of the vehicle and the medicinal activity of the drug. In the case of a phototherapeutic drug, its photoinduced dynamics becomes an added parameter. Here, we have explored the photoinduced dynamical events of a model phototherapeutic drug psoralen (PSO) in a potential delivery vehicle called an ethosome. Dynamic light scattering confirms the structural integrity of the ethosome vehicle after the encapsulation of PSO. Steady state and picosecond resolved polarization gated spectroscopy, including the well-known strategy of solvation and Förster resonance energy transfer, reveal the localization of the drug in the vehicle and the environment in the proximity of PSO. We have also investigated the efficacy of drug delivery to various individual bacteria (Gram-negative: Escherichia coli; Gram-positive: Staphylococcus aureus) and bacterial biofilms. Our optical and electron microscopic studies reveal a significant reduction in bacterial survival (∼70%) and the destruction of bacterial adherence following a change in the morphology of the biofilms after phototherapy. Our studies are expected to find relevance in the formulation of drug delivery agents in several skin diseases and biofilm formation in artificial implants.
Collapse
Affiliation(s)
| | | | | | | | - Samir Kumar Pal
- E-mail: . Telephone: +91 033 2335 5706-08. Fax: +91 033
2335 3477
| |
Collapse
|
47
|
Characteristics of Aspergillus fumigatus in Association with Stenotrophomonas maltophilia in an In Vitro Model of Mixed Biofilm. PLoS One 2016; 11:e0166325. [PMID: 27870863 PMCID: PMC5117647 DOI: 10.1371/journal.pone.0166325] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/26/2016] [Indexed: 11/21/2022] Open
Abstract
Background Biofilms are communal structures of microorganisms that have long been associated with a variety of persistent infections poorly responding to conventional antibiotic or antifungal therapy. Aspergillus fumigatus fungus and Stenotrophomonas maltophilia bacteria are examples of the microorganisms that can coexist to form a biofilm especially in the respiratory tract of immunocompromised patients or cystic fibrosis patients. The aim of the present study was to develop and assess an in vitro model of a mixed biofilm associating S. maltophilia and A. fumigatus by using analytical and quantitative approaches. Materials and Methods An A. fumigatus strain (ATCC 13073) expressing a Green Fluorescent Protein (GFP) and an S. maltophilia strain (ATCC 13637) were used. Fungal and bacterial inocula (105 conidia/mL and 106 cells/mL, respectively) were simultaneously deposited to initiate the development of an in vitro mixed biofilm on polystyrene supports at 37°C for 24 h. The structure of the biofilm was analysed via qualitative microscopic techniques like scanning electron and transmission electron microscopy, and fluorescence microscopy, and by quantitative techniques including qPCR and crystal violet staining. Results Analytic methods revealed typical structures of biofilm with production of an extracellular matrix (ECM) enclosing fungal hyphae and bacteria. Quantitative methods showed a decrease of A. fumigatus growth and ECM production in the mixed biofilm with antibiosis effect of the bacteria on the fungi seen as abortive hyphae, limited hyphal growth, fewer conidia, and thicker fungal cell walls. Conclusion For the first time, a mixed A. fumigatus—S. maltophilia biofilm was validated by various analytical and quantitative approaches and the bacterial antibiosis effect on the fungus was demonstrated. The mixed biofilm model is an interesting experimentation field to evaluate efficiency of antimicrobial agents and to analyse the interactions between the biofilm and the airways epithelium.
Collapse
|
48
|
González-Ramírez AI, Ramírez-Granillo A, Medina-Canales MG, Rodríguez-Tovar AV, Martínez-Rivera MA. Analysis and description of the stages of Aspergillus fumigatus biofilm formation using scanning electron microscopy. BMC Microbiol 2016; 16:243. [PMID: 27756222 PMCID: PMC5069814 DOI: 10.1186/s12866-016-0859-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 10/07/2016] [Indexed: 11/17/2022] Open
Abstract
Background Biofilms are a highly structured consortia of microorganisms that adhere to a substrate and are encased within an extracellular matrix (ECM) that is produced by the organisms themselves. Aspergillus fumigatus is a biotechnological fungus that has a medical and phytopathogenic significance, and its biofilm occurs in both natural and artificial environments; therefore, studies on the stages observed in biofilm formation are of great significance due to the limited knowledge that exists on this specific topic and because there are multiple applications that are being carried out. Results Growth curves were obtained from the soil and clinical isolates of the A. fumigatus biofilm formation. The optimal conditions for both of the isolates were inocula of 1 × 106 conidia/mL, incubated at 28 °C during 24 h; these showed stages similar to those described in classic microbial growth: the lag, exponential, and stationary phases. However, the biofilms formed at 37 °C were uneven. The A. fumigatus biofilm was similar regardless of the isolation source, but differences were presented according to the incubation temperature. The biofilm stages included the following: 1) adhesion to the plate surface (4 h), cell co-aggregation and exopolymeric substance (EPS) production; 2) conidial germination into hyphae (8-12 h), development, hyphal elongation, and expansion with channel formation (16-20 h); and 3) biofilm maturation as follows: mycelia development, hyphal layering networks, and channels formation, and high structural arrangement of the mycelia that included hyphal anastomosis and an extensive production of ECM (24 h); the ECM covered, surrounded and strengthened the mycelial arrangements, particular at 37 °C. In the clinical isolate, irregular fungal structures, such as microhyphae that are short and slender hyphae, occurred; 4) In cell dispersion, the soil isolate exhibited higher conidia than the clinical isolate, which had the capacity to germinate and generate new mycelia growth (24 h). In addition, we present images on the biofilm’s structural arrangement and chemical composition using fluorochromes to detect metabolic activity (FUNI) and mark molecules, such as chitin, DNA, mannose, glucose and proteins. Conclusions To our knowledge, this is the first time that, in vitro, scanning electronic microscopy (SEM) images of the stages of A. fumigatus biofilm formation have been presented with a particular emphasis on the high hyphal organization and in diverse ECM to observe biofilm maturation.
Collapse
Affiliation(s)
- Alejandra Itzel González-Ramírez
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Adrián Ramírez-Granillo
- Unidad de Microscopía ENCB, Instituto Politécnico Nacional (IPN), 11340, Mexico City, Mexico
| | - María Gabriela Medina-Canales
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Aída Verónica Rodríguez-Tovar
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340, Mexico City, Mexico.
| | - María Angeles Martínez-Rivera
- Laboratorio de Micología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Carpio y Plan de Ayala s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, 11340, Mexico City, Mexico. .,Prolongación de Carpio y Plan de Ayala s/n, C.P. 11340, Ciudad de México, Mexico.
| |
Collapse
|