1
|
Soumeh EA, Nielsen TS, Hedemann MS, Curtasu MV. Integrated faecal microbiota and blood metabolic changes following different dietary zinc oxide levels in weaned piglets. Sci Rep 2025; 15:18346. [PMID: 40419596 DOI: 10.1038/s41598-025-03103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Abstract
This study investigated faecal microbial composition and blood metabolome profile of piglets fed different levels of supplementary zinc oxide (ZnO) after weaning. A dose-response study was conducted with four experimental diets containing 153 (D153), 1022 (D1022), 1601 (D1601), and 2407 (D2407) ppm zinc (Zn) in the feed. At the end of the trial, blood and faeces samples were obtained for analyses. Multivariate analysis of the blood metabolomics dataset and Principal Coordinate Analysis (PCoA) of faecal microbiota data showed that pigs receiving D2407 had a different metabolic and microbial profile to the other groups, whereas no differences were observed in pigs fed with D153, D1022, and D1601. The highest dietary Zn inclusion was associated with significant increase in the abundance of Clostridium sensu stricto, Terrisporobacter, Dorea, and Prevotellaceae_NK3B31_group and a decrease in relative abundances of Methanobrevibacter, Treponema, Megasphaera, and UCG 002 genera. Pearson's correlation analysis showed positive correlations between the abundance of Christensenellaceae R7-group with amino acids metabolism and production of microbial metabolites. The results suggest that only 2407 ppm Zn altered gut microbiota and modulated blood metabolic profile, which may impact the health status of piglets through specific microbial metabolites.
Collapse
Affiliation(s)
- Elham Assadi Soumeh
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Gatton Campus, QLD, 4343, Australia.
| | - Tina Skau Nielsen
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, Blichers Allé 20, Tjele, DK-8830, Denmark
| | - Mette Skou Hedemann
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, Blichers Allé 20, Tjele, DK-8830, Denmark
| | - Mihai Victor Curtasu
- Department of Animal and Veterinary Sciences, Aarhus University AU-Viborg, Blichers Allé 20, Tjele, DK-8830, Denmark
| |
Collapse
|
2
|
Tancredi A, Matthijs T, Cox E, Van Immerseel F, Goossens E. From mother to piglet: the lasting influence of the maternal microbiome. Anim Microbiome 2025; 7:52. [PMID: 40420287 DOI: 10.1186/s42523-025-00420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 05/06/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Given their crucial roles in agriculture and biomedical research, promoting pig health is essential. A balanced gut microbiota is vital for immune development, metabolism and pathogen resistance, and requires optimal initial colonization by beneficial bacteria. This becomes particularly evident during early life stages, like suckling and weaning, where disruptions can lead to long-term health issues. Understanding the factors influencing microbiome development during these phases is fundamental for enhancing pig health. On these basis, rectal swab samples from eighteen sow-piglet pairs were collected at multiple time points from 7 days after birth to 10 days post-weaning, and analyzed through 16S rRNA gene sequencing. This study aims to understand the maternal influence on piglet microbiota development during the suckling-weaning period, exploring microbial diversity, composition and additional influencing factors such as age, piglet and weaning. RESULTS α diversity significantly increased with piglet age (p < 0.001) and stabilized upon weaning, with maternal influence and differences between individual piglet affecting variability before weaning. Post-weaning α diversity was influenced by the pen environment (contributing to 14.5-16% of the variability between piglets) rather than age. Both the sow (~ 9.6%) and age of the piglets (20-30%) had a significant impact on the microbial β diversity over the entire timeframe. Moreover, at 10 days post-weaning a significant influence of the cage mates on piglets microbial β diversity was observed (~ 24.6%). Source-tracking analysis revealed a significant maternal contribution to piglet microbiome at 7 days (31.68%), which decreased over time but remained at 13.33% post-weaning. Piglet microbiome exhibited consistency across time, with 22.55-61.23% of bacteria retained from previous stages. Cage mates contributed 53.54% to the microbiome at 10 days post-weaning. Additionally, 68.32% of piglets microbiome at 7 days was derived from sources not included in the study, decreasing to 37.6% by 10 days post-weaning. ASV-level analysis showed that the majority of maternally transmitted ASVs pre-weaning persisted until the last time point, with both beneficial bacteria and pathobionts being transmitted. CONCLUSIONS This study highlights the significant influence of maternal microbiota on piglet gut microbiome development, affecting both diversity and composition. Beneficial bacteria are transmitted from mothers to offspring and persist through early developmental stages, thereby emphasizing the long-lasting impact of maternal microbiome and the importance of early microbial colonization for piglet health.
Collapse
Affiliation(s)
- Alessandra Tancredi
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Thomas Matthijs
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
3
|
Yang Z, Lin Z, You Y, Zhang M, Gao N, Wang X, Peng J, Wei H. Gut Microbiota-Derived Hyocholic Acid Enhances Type 3 Immunity and Protects Against Salmonella enterica Serovar Typhimurium in Neonatal Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412071. [PMID: 39737849 PMCID: PMC11905087 DOI: 10.1002/advs.202412071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/18/2024] [Indexed: 01/01/2025]
Abstract
This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels. Furthermore, reducing oxygen levels in the intestine increased the abundance of Limosilactobacillus reuteri, a bacterium encoding BSH, and promoted intestinal type 3 immunity. However, inhibition of BSH blocked the L. reuteri-induced development of intestinal type 3 immunity. Mechanistically, HCA promoted the development of gamma-delta T cells and type 3 innate lymphoid cells by stabilizing the mRNA expression of RAR-related orphan receptor C via the farnesoid X receptor-WT1-associated protein-N6-methyl-adenosine axis. These results reveal that gut microbiota-derived HCA plays a crucial role in promoting the development of intestinal type 3 immunity in neonates. This discovery introduces potential therapeutic avenues for strengthening intestinal immunity in early life or treating bacterial infections by targeting microbial metabolites.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Zhiyuan Lin
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Yaojie You
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Mei Zhang
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Ning Gao
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xinru Wang
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Jian Peng
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- The Cooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
- Frontiers Science Center for Animal Breeding and Sustainable ProductionWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed ScienceCollege of Animal Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- The Cooperative Innovation Center for Sustainable Pig ProductionWuhan430070China
| |
Collapse
|
4
|
Yang L, Yao B, Zhang S, Yang Y, Pan H, Zeng X, Qiao S. Study on the difference of gut microbiota in DLY and Diqing Tibetan pigs induce by high fiber diet. J Anim Physiol Anim Nutr (Berl) 2025; 109:233-242. [PMID: 39180381 DOI: 10.1111/jpn.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 08/26/2024]
Abstract
In order to investigate the regularity of fecal microorganisms changes in Landrace × Large White × Duroc (DLY) and Diqing Tibetan pigs (TP) induced by dietary fiber, and further explore the buffering effect of different intestinal flora structures on dietary stress. DLY (n = 15) and TP (n = 15) were divided into two treatments. Then, diet with 20% neutral detergent fiber (NDF) was supplemented for 9 days. Our results showed that the feed conversion efficiency of TP was significantly higher (p < 0.05) than that of DLY. The fecal microorganisms shared by the two groups gradually increased with the feeding cycle. In addition, the dispersion of Shannon, Simpson, ACE and Chao of TP decreased. Also, we found that the fecal microorganisms of TP (R2 = 0.2089, p < 0.01) and DLY (R2 = 0.3982, p < 0.01) showed significant differences in different feeding cycles. With the prolongation of feeding cycle, the similarity of fecal microbial composition between DLY and TP increased. Our study strongly suggests that the complex environment and diet structure have shaped the unique gut microbiota of TP, which plays a vital role in the buffering effect of high-fiber diets.
Collapse
Affiliation(s)
- Lijie Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Sciences and Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Bingqian Yao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yuting Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Jiang C, Chen W, Yang Y, Li X, Jin M, Ghonaim AH, Li S, Ren M. Regulation of Isoleucine on Colonic Barrier Function in Rotavirus-Infected Weanling Piglets and Analysis of Gut Microbiota and Metabolomics. Microorganisms 2024; 12:2396. [PMID: 39770598 PMCID: PMC11676416 DOI: 10.3390/microorganisms12122396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Rotavirus (RV) is a significant contributor to diarrhea in both young children and animals, especially in piglets, resulting in considerable economic impacts on the global pig industry. Isoleucine (Ile), a branched-chain amino acid, is crucial for regulating nutrient metabolism and has been found to help mitigate diarrhea. This study aimed to assess the impact of isoleucine supplementation in feed on colonic barrier function, colonic microbiota, and metabolism in RV-infected weanling piglets. A total of thirty-two weaned piglets, aged 21 days, were randomly assigned to two dietary groups (each further divided into two subgroups, with eight replicates in each subgroup), receiving diets with either 0% or 1% isoleucine for a duration of 14 days. One group from each treatment was then challenged with RV, and the experimental period lasted for 19 days. The results showed that dietary Ile significantly increased the secretion of IL-4, IL-10, and sIgA in the colon of RV-infected weanling piglets (p < 0.05). In addition, Ile supplementation notably increased the expression of tight junction proteins, including Claudin-3, Occludin, and ZO-1 (p < 0.01), as well as the mucin protein MUC-1 in the colon of RV-infected weanling piglets (p < 0.05). Gut microbiota analysis revealed that dietary Ile increased the relative abundance of Prevotella and decreased the relative abundance of Rikenellaceae in the colons of RV-infected weanling piglets. Compared with the RV+CON, metabolic pathways in the RV+ILE group were significantly enriched in vitamin digestion and absorption, steroid biosynthesis, purine metabolism, pantothenate and CoA biosynthesis, cutin, suberine, and wax biosynthesis, as well as fatty acid biosynthesis, and unsaturated fatty acid biosynthesis. In conclusion, dietary Ile supplementation can improve immunity, colonic barrier function, colonic microbiota, and colonic metabolism of RV-infected weaned piglets. These findings provide valuable insights into the role of isoleucine in the prevention and control of RV.
Collapse
Affiliation(s)
- Changsheng Jiang
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Weiying Chen
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Yanan Yang
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Xiaojin Li
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Mengmeng Jin
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Ahmed H. Ghonaim
- National Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
- Desert Research Center, Cairo 11435, Egypt
| | - Shenghe Li
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| | - Man Ren
- Anhui Provincial Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China; (C.J.); (W.C.); (Y.Y.); (X.L.); (M.J.)
| |
Collapse
|
6
|
Zheng J, Zeng H, Zhang Q, Ma Y, Li Y, Lin J, Yang Q. Effects of intranasal administration with a symbiotic strain of Bacillus velezensis NSV2 on nasal cavity mucosal barrier in lambs. Vet Res Commun 2024; 49:21. [PMID: 39565462 DOI: 10.1007/s11259-024-10596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 10/03/2024] [Indexed: 11/21/2024]
Abstract
The nasal mucosa is composed of multiple layers of barrier structures and is the first line of defense against infection by respiratory pathogenic microorganisms. A large number of commensal microorganisms are present in the nasal mucosa that mediate and regulate nasal mucosal barrier function. The objective of this research was to investigate the effects of commensal microorganisms on the nasal mucosal barrier. The results revealed that the strain of Bacillus velezensis (B. velezensis) NSV2 from the nasal cavity has good probiotic abilities to resist Pasteurella multocida, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. Lambs were subsequently administered intranasally with B. velezensis NSV2 at 3, 12, 21, and 26 days old, respectively. For the microbial barrier, although B. velezensis NSV2 reduces the diversity of nasal microbiota, it significantly increased the relative abundance of beneficial bacteria in the nasal cavity, and reduced the abundance of potential pathogenic bacteria. For the mucus barrier, the number of goblet cells in the nasal mucosa significantly increased after B. velezensis NSV2 treatment. For the immune barrier, B. velezensis NSV2 also significantly increased the number of IgA+ B cells, CD3+ T cells and dendritic cells in the nasal mucosa, as well as the mRNA expression of interleukin (IL) 6, IL11, CCL2, and CCL20 (P < 0.05). The protein level of CCL20 also significantly raised in nasal washings (P < 0.05). Moreover, the heat-inactivated and culture products of B. velezensis NSV2 also drastically induced the expression of CCL20 in nasal mucosa explants (P < 0.05), but lower than that of the live bacteria. This study demonstrated that a symbiotic strain of B. velezensis NSV2 could improve the nasal mucosal barrier, and emphasized the important role of nasal symbiotic microbiota.
Collapse
Affiliation(s)
- Jian Zheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Hui Zeng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Qi Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yichao Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yuchen Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jian Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Qian Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
7
|
Dahlin L, Hansson I, Fall N, Sannö A, Jacobson M. Development and evaluation of a standardised sampling protocol to determine the effect of cleaning in the pig sty. Porcine Health Manag 2024; 10:45. [PMID: 39478619 PMCID: PMC11523895 DOI: 10.1186/s40813-024-00400-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND All-in, all-out with strict hygienic routines is necessary in modern pig production. Furthermore, a standardised, validated method is needed to quantitatively control the effect of these hygiene protocols. This study aimed to establish a reproducible and reliable sampling method to assess cleaning of the pig pen. METHODS Sterilised pig faeces were mixed with indicator bacteria (i.e. Enterococcus hirae, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and spread out in a controlled environment. The retrieval rate of three different sampling methods were evaluated; swabbing by (i) a cloth and (ii) a sponge, analysed by standardised bacterial culture and counting of colony-forming units, and (iii) a cotton swab analysed by adenosine triphosphate (ATP) bioluminescence. Two time-points were evaluated during the study; after drying overnight and after manual scraping of the surfaces. To determine sample-to-sample variability, sampling by the cloth and the cotton swab was carried out after manual scraping and further, after high-pressure washing with cold water. RESULTS Sampling by the cloth and the sponge showed few differences in in the number of CFU obtained before and after the manual scraping (retrieval rate), whereas the swabs, measuring ATP bioluminescence, showed a very high retrieval rate. Sample-to-sample variability was low for all three methods. CONCLUSIONS In conclusion, to sample pens for the presence of bacteria, the cloth was assessed as the preferable material, being cheap, easy, specific, and approachable, and with a low sample-to-sample variability. The ATP measurement could have potential for use when evaluating the cleaning of stables, however, threshold values for evaluating the cleaning of a pig sty needs to be developed.
Collapse
Affiliation(s)
- Lisa Dahlin
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden.
| | - Ingrid Hansson
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Nils Fall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Axel Sannö
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07, Uppsala, Sweden
| |
Collapse
|
8
|
Vlasblom AA, Duim B, Patel S, Luiken REC, Crespo-Piazuelo D, Eckenberger J, Huseyin CE, Lawlor PG, Elend C, Wagenaar JA, Claesson MJ, Zomer AL. The developing pig respiratory microbiome harbors strains antagonistic to common respiratory pathogens. mSystems 2024; 9:e0062624. [PMID: 39287382 PMCID: PMC11494925 DOI: 10.1128/msystems.00626-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In the global efforts to combat antimicrobial resistance and reduce antimicrobial use in pig production, there is a continuous search for methods to prevent and/or treat infections. Within this scope, we explored the relationship between the developing piglet nasal microbiome and (zoonotic) bacterial pathogens from birth until 10 weeks of life. The nasal microbiome of 54 pigs was longitudinally studied over 16 timepoints on 9 farms in 3 European countries (Germany, Ireland, and the Netherlands) using amplicon sequencing targeting the V3-V4 16S rRNA region as well as the tuf gene for its staphylococcal discrimination power. The piglets' age, the farm, and the litter affected the nasal microbiome, with piglets' age explaining 19% of the variation in microbial composition between samples. Stabilization of the microbiome occurred around 2 weeks post-weaning. Notably, while opportunistic pathogens were ubiquitously present, they did not cause disease. The piglet nasal microbiome often carried species associated with gut, skin, or vagina, which suggests that contact with the vaginal and fecal microbiomes shapes the piglet nasal microbiome. We identified bacterial co-abundance groups of species that were present in the nasal microbiomes in all three countries over time. Anti-correlation between these species and known bacterial pathogens identified species that might be exploited for pathogen reduction. Further experimental evidence is required to confirm these findings. Overall, this study advances our understanding of the piglet nasal microbiome, the factors influencing it, and its longitudinal development, providing insights into its role in health and disease. IMPORTANCE Our study on the nasal microbiota development in piglets across farms in three European countries found that the microbiomes developed similarly in all locations. Additionally, we observed that the colonization of porcine pathogens was either positively or negatively associated with the presence of other bacterial species. These findings enhance our knowledge of co-colonizing species in the nasal cavity and the identified microbial interactions that can be explored for the development of interventions to control pathogens in porcine husbandry.
Collapse
Affiliation(s)
- Abel A. Vlasblom
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Birgitta Duim
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Shriram Patel
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
- SeqBiome Ltd., Cork, Ireland
| | - Roosmarijn E. C. Luiken
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Daniel Crespo-Piazuelo
- Pig Development Department,Teagasc Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Julia Eckenberger
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Chloe E. Huseyin
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Peadar G. Lawlor
- Pig Development Department,Teagasc Animal & Grassland Research & Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | - Jaap A. Wagenaar
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Marcus J. Claesson
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aldert L. Zomer
- Faculty of Veterinary Medicine, Division of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective/WOAH Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| |
Collapse
|
9
|
Zhang S, Zhang H, Zhang C, Wang G, Shi C, Li Z, Gao F, Cui Y, Li M, Yang G. Composition and evolutionary characterization of the gut microbiota in pigs. Int Microbiol 2024; 27:993-1008. [PMID: 37982990 PMCID: PMC11300507 DOI: 10.1007/s10123-023-00449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The intestinal microbiota plays significant role in the physiology and functioning of host organisms. However, there is limited knowledge of the composition and evolution of microbiota-host relationships from wild ancestors to modern domesticated species. In this study, the 16S rRNA gene V3-V4 in the intestinal contents of different pig breeds was analyzed and was compared using high-throughput sequencing. This identified 18 323 amplicon sequence variants, of which the Firmicutes and Actinobacteria phyla and Bifidobacterium and Allobaculum genera were most prevalent in wild pigs (WP). In contrast, Proteobacteria and Firmicutes predominated in Chinese Shanxi Black pigs (CSB), while Firmicutes were the most prevalent phylum in Large White pigs (LW) and Iberian pigs (IB), followed by Bacteroidetes in IB and Proteobacteria in LW. At the genus level, Shigella and Lactobacillus were most prevalent in CSB and LW, while Actinobacillus and Sarcina predominated in IB. Differential gene expression together with phylogenetic and functional analyses indicated significant differences in the relative abundance of microbial taxa between different pig breeds. Although many microbial taxa were common to both wild and domestic pigs, significant diversification was observed in bacterial genes that potentially influence host phenotypic traits. Overall, these findings suggested that both the composition and functions of the microbiota were closely associated with domestication and the evolutionary changes in the host. The members of the microbial communities were vertically transmitted in pigs, with evidence of co-evolution of both the hosts and their intestinal microbial communities. These results enhance our understanding and appreciation of the complex interactions between intestinal microbes and hosts and highlight the importance of applying this knowledge in agricultural and microbiological research.
Collapse
Affiliation(s)
- Shuhong Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Huan Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cheng Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guan Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Chuanxing Shi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Fengyi Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Yanyan Cui
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, 476000, China.
| |
Collapse
|
10
|
Gong Z, Ye G, Xu S, He X. The characteristics of intestinal flora of Tibetan sheep in different regions at high altitude were revealed based on metagenomic technique. Heliyon 2024; 10:e34380. [PMID: 39816362 PMCID: PMC11734073 DOI: 10.1016/j.heliyon.2024.e34380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Tibetan sheep play a vital role in the livelihoods of herders and are an important part of the ecosystem of the Tibetan Plateau. In order to study the characteristics of the gut microorganisms of Tibetan sheep at high altitude, this study employed macrogenomic techniques to analyse the diversity and differences in the gut flora of Tibetan sheep in different regions of high altitude and high cold. The results demonstrated that at the phylum level, the dominant phylum in the ileo-cecum segment of Tibetan sheep in Qilian, Henan and Gonghe counties was identical, namely Euryarchaeota, Firmicutes and Ascomycota. At the level of the archaebacterial genus, the dominant bacteria of the ileocecal segment of Tibetan sheep in Qilian County, Henan County and Gonghe County were Methanobrevibacter. At the level of bacterial genus, the dominant bacteria of Tibetan sheep ileocecal in Qilian County and Henan County were Bacteroides, while in Gonghe County, the dominant bacteria were Bifidobacterium. At the level of fungal genus, there were notable differences in the abundance of Tibetan sheep ileocecal genus across different regions. However, the abundance of cecum genus exhibited a more consistent trend across regions. From the perspective of functional prediction, the metabolic pathways enriched in the intestinal segments of Tibetan sheep in different regions were found to be identical, with the relative abundance of each functional gene also being essentially uniform. This result will provide a foundation for further research on the mechanism of action of gut microbes in ruminants at high altitude and alpine regions.
Collapse
Affiliation(s)
- Zifeng Gong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| | - Guisheng Ye
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| | - Shuqin Xu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| | - Xi He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| |
Collapse
|
11
|
Larzul C, Estellé J, Borey M, Blanc F, Lemonnier G, Billon Y, Thiam MG, Quinquis B, Galleron N, Jardet D, Lecardonnel J, Plaza Oñate F, Rogel-Gaillard C. Driving gut microbiota enterotypes through host genetics. MICROBIOME 2024; 12:116. [PMID: 38943206 PMCID: PMC11214205 DOI: 10.1186/s40168-024-01827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 05/01/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.
Collapse
Grants
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- Enterotypig Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
- ANR-11-DPBS-0001 Agence Nationale de la Recherche
Collapse
Affiliation(s)
- Catherine Larzul
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, 31326, France.
| | - Jordi Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France.
| | - Marion Borey
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Fany Blanc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Gaëtan Lemonnier
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | | | - Benoît Quinquis
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, 78350, France
| | | | - Deborah Jardet
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | - Jérôme Lecardonnel
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, 78350, France
| | | | | |
Collapse
|
12
|
García Viñado I, Correa F, Trevisi P, Bee G, Ollagnier C. A non-invasive tool to collect small intestine content in post weaning pigs: validation study. Sci Rep 2024; 14:9964. [PMID: 38693207 PMCID: PMC11063154 DOI: 10.1038/s41598-024-59950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The Capsule for Sampling (CapSa) is an ingestible capsule that collects small intestine content while transiting through the natural digestive pathway. In this study, 14 Swiss Large White pigs weighing less than 12 kg (Category < 12 kg) and 12 weighing between 12 and 20 kg (Category [12-20 kg]) were given two CapSas and monitored for three days. The animals were euthanized for post-mortem sampling, allowing us to directly obtain gut microbiota samples from the gastrointestinal tract. This post-mortem approach enabled a direct comparison between the microbial content from the gut and the samples collected via the CapSas, and it also facilitated precise identification of the CapSas' sampling sites within the gastrointestinal tract. For the category under 12 kg, only 2.3% of the administered CapSas were recovered from the feces. In contrast, in the 12-20 kg category, 62.5% of the CapSas were successfully retrieved from the feces within 48 h. Of these recovered CapSas, 73.3%-equating to 11 capsules from eight pigs-had a pH > 5.5 and were therefore selected for microbiome analysis. Bacterial composition of the CapSas was compared with that of the three segments of the small intestine, the large intestine and feces of the corresponding pig. The results were tested using a PERMANOVA model (Adonis) including sample type as a factor, and then pairwise comparisons were made. The bacterial composition found in the CapSas differed from that of the large intestine and feces (P < 0.01), while it did not differ from the first segment of the small intestine (P > 0.10). This study provides evidence that the CapSa effectively samples the intestinal microbiota from the upper section of the small intestine in post-weaning pigs. Furthermore, it was found that the collection of CapSas could only be successfully achieved in pigs classified within the heavier weight category.
Collapse
Affiliation(s)
- Inés García Viñado
- Pig Research Unit, Agroscope, 1725, Posieux, Switzerland
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127, Bologna, Italy
| | - Giuseppe Bee
- Pig Research Unit, Agroscope, 1725, Posieux, Switzerland
| | | |
Collapse
|
13
|
Obregon-Gutierrez P, Bonillo-Lopez L, Correa-Fiz F, Sibila M, Segalés J, Kochanowski K, Aragon V. Gut-associated microbes are present and active in the pig nasal cavity. Sci Rep 2024; 14:8470. [PMID: 38605046 PMCID: PMC11009223 DOI: 10.1038/s41598-024-58681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The nasal microbiota is a key contributor to animal health, and characterizing the nasal microbiota composition is an important step towards elucidating the role of its different members. Efforts to characterize the nasal microbiota composition of domestic pigs and other farm animals frequently report the presence of bacteria that are typically found in the gut, including many anaerobes from the Bacteroidales and Clostridiales orders. However, the in vivo role of these gut-microbiota associated taxa is currently unclear. Here, we tackled this issue by examining the prevalence, origin, and activity of these taxa in the nasal microbiota of piglets. First, analysis of the nasal microbiota of farm piglets sampled in this study, as well as various publicly available data sets, revealed that gut-microbiota associated taxa indeed constitute a substantial fraction of the pig nasal microbiota that is highly variable across individual animals. Second, comparison of herd-matched nasal and rectal samples at amplicon sequencing variant (ASV) level showed that these taxa are largely shared in the nasal and rectal microbiota, suggesting a common origin driven presumably by the transfer of fecal matter. Third, surgical sampling of the inner nasal tract showed that gut-microbiota associated taxa are found throughout the nasal cavity, indicating that these taxa do not stem from contaminations introduced during sampling with conventional nasal swabs. Finally, analysis of cDNA from the 16S rRNA gene in these nasal samples indicated that gut-microbiota associated taxa are indeed active in the pig nasal cavity. This study shows that gut-microbiota associated taxa are not only present, but also active, in the nasal cavity of domestic pigs, and paves the way for future efforts to elucidate the function of these taxa within the nasal microbiota.
Collapse
Affiliation(s)
- Pau Obregon-Gutierrez
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Laura Bonillo-Lopez
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Karl Kochanowski
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain.
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain.
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
14
|
Yuan F, Yang L, Hsiao SH, Herndon NL, Gaulke CA, Fang Y. A neonatal piglet model reveals interactions between nasal microbiota and influenza A virus pathogenesis. Virology 2024; 592:109996. [PMID: 38301448 DOI: 10.1016/j.virol.2024.109996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
While vaccination and therapeutics for prevention/treatment of influenza are available, new strategies are needed to combat influenza disease in susceptible populations, particularly young children and newborns. Host associated microbiota play an important role in modulating the virulence of numerous pathogens, including the influenza A virus. In this study, we examined microbiome-influenza interactions in a neonatal piglet model system. The nasal microbiome of newborn piglets was longitudinally sampled before and after intranasal infection with recombinant viruses expressing hemagglutinins (HAs) derived from distinct zoonotic H1 subtypes. We found that viruses expressing different parental HAs manifested unique patterns of pathogenicity, and varied impacts on microbial community diversity. Despite these virus specific differences, a consistent microbial signature of viral infection was detected. Our results indicate that influenza A virus infection associates with the restructuring of nasal microbiome and such shifts in microbial diversity may contribute to outcomes of viral infection in neonatal piglets.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA
| | - Lufan Yang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA
| | - Shih-Hsuan Hsiao
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Nicole L Herndon
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Christopher A Gaulke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA; Personalized Nutrition Initiative, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA; Cancer Center at Illinois, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA.
| | - Ying Fang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL, 61802, USA.
| |
Collapse
|
15
|
Xu J, Wang H, Xu R, Li Q, Li L, Su Y, Liu J, Zhu W. Daily fluctuation of Lactobacillus species and their antibiotic resistome in the colon of growing pigs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170821. [PMID: 38336077 DOI: 10.1016/j.scitotenv.2024.170821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
There are various types of bacteria inhabiting the intestine that help maintain the balance of the intestinal microbiota. Lactobacillus is one of the important beneficial bacteria and is widely used as a food starter and probiotic. In this study, we investigated the daily fluctuation of the colonic Lactobacillus species and their distribution of antibiotic resistance genes (ARGs) as well as antibiotic susceptibility in pigs. Metagenomic analysis revealed that genus Lactobacillus was one of the most dominant genera in the colon of growing pigs. Rhythmicity analysis revealed that 84 out of 285 Lactobacillus species exhibited rhythmic patterns. Lactobacillus johnsonii and Lactobacillus reuteri were the two most abundant lactobacilli with circadian oscillation, which increased during the day and decreased at night. The profile of the antibiotic resistome was modified over time within 24-h period. Elfamycin resistance genes were the most enriched class found in Lactobacillus. Furthermore, the seven strains of Lactobacillus isolated from the pig intestine mainly exhibited resistance to gentamicin, erythromycin, and lincomycin. The whole genome annotation of four Lactobacillus strains indicated the presence of multiple ARGs, including elfamycin resistance genes, however, the most abundant ARG was optrA in genome of four strains. These results indicate the presence of various Lactobacillus species harboring a large number of ARGs in the swine intestine. This implies that when using animal-derived lactobacilli, it is essential to assess antibiotic resistance to prevent further transmission between animals and the environment.
Collapse
Affiliation(s)
- Jianjian Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuke Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Ding S, Cheng Y, Azad MAK, Zhu Q, Huang P, Kong X. Development of small intestinal barrier function and underlying mechanism in Chinese indigenous and Duroc piglets during suckling and weaning periods. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:429-442. [PMID: 38406666 PMCID: PMC10885791 DOI: 10.1016/j.aninu.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 02/27/2024]
Abstract
This study explored the developmental changes in small intestinal barrier function and the potential regulatory roles of intestinal microbiota and metabolites in different breeds of piglets during suckling and weaning periods. Taoyuan black (TB), Xiangcun black (XB), and Duroc (DR) piglets (10 litters per breed; half male and half female) were selected for sampling to evaluate the intestinal barrier-related indexes and intestinal microbiota and metabolites at 1, 10, 21 (weaned), and 24 (3 d after weaning) d old. The results showed that weaning led to severe shedding of small intestinal microvilli and sparse microvilli arrangement. D-lactate level in the ileum of TB and XB piglets during suckling and weaning periods was lower (P < 0.01) than that of DR piglets, as well as the ileal diamine oxidase level at 1 d old. The expression level of mucin 1 was higher (P < 0.05) in the ileum of TB and XB piglets than that of DR piglets, and it was the highest in the ileum of TB piglets at 21 d old. The expression levels of mucin 2 and mucin 13 were higher (P < 0.10) in TB and XB piglets than those of DR piglets at 21 d old, whereas mucin 2 and mucin 13 in the ileum of TB and XB piglets were higher (P < 0.05) than those of DR piglets at 24 d old. TB and XB piglets had a lower relative abundance of Escherichia_Shigella at 21 and 24 d old, but they had higher Streptococcus at 1 and 24 d old than DR piglets (P < 0.01). Differential metabolites between the three breeds of piglets were mainly related to oxidative phosphorylation, steroid biosynthesis, and bile acid synthesis. Collectively, these findings suggest that different pig breeds present differences in the development of the small intestinal barrier function. Compared with DR piglets, TB and XB piglets had higher intestinal permeability during the suckling period and a stronger intestinal mechanical barrier after weaning. Moreover, intestinal microbiota and metabolites are the key factors for developing small intestinal barrier functions in different breeds of piglets.
Collapse
Affiliation(s)
- Sujuan Ding
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Cheng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Md Abul Kalam Azad
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Huang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Wang F, Sha Y, Liu X, He Y, Hu J, Wang J, Li S, Shao P, Chen X, Yang W, Chen Q, Gao M, Huang W. Study of the Interactions between Muscle Fatty Acid Composition, Meat Quality-Related Genes and the Ileum Microbiota in Tibetan Sheep at Different Ages. Foods 2024; 13:679. [PMID: 38472792 DOI: 10.3390/foods13050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The intestinal microbiota of ruminants is an important factor affecting animal production and health. Research on the association mechanism between the intestinal microbiota and meat quality of ruminants will play a positive role in understanding the formation mechanism of meat quality in ruminants and improving production efficiency. In this study, the fatty acid composition and content, expression of related genes, and structural characteristics of the ileum microbiota of ewes of Tibetan sheep at different ages (4 months, 1.5 years, 3.5 years, and 6 years) were detected and analyzed. The results revealed significant differences in fatty acid composition and content in the muscle of Tibetan sheep at different ages (p < 0.05); in addition, the content of MUFAs in the longissimus dorsi muscle and leg muscle was higher. Similarly, the expressions of muscle-related genes differed among the different age groups, and the expression of the LPL, SCD, and FABP4 genes was higher in the 1.5-year-old group. The ileum microbiota diversity was higher in the 1.5-year-old group, the Romboutsia abundance ratio was significantly higher in the 1.5-year-old group (p < 0.05), and there was a significant positive correlation with oleic acid (C18:1n9c) (p < 0.05). In conclusion, the content of beneficial fatty acids in the longissimus dorsi muscle and leg muscle of Tibetan sheep was higher at 1.5 years of age, and the best slaughter age was 1.5 years. This study provides a reference for in-depth research on the mechanism of the influence of the gut microbiota on meat quality and related regulation.
Collapse
Affiliation(s)
- Fanxiong Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Sha
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengyang Shao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaowei Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenxin Yang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianling Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Gao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei Huang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
18
|
Chiu O, Gomez DE, Obrego D, Dunfield K, MacNicol JL, Liversidge B, Verbrugghe A. Impact of fecal sample preservation and handling techniques on the canine fecal microbiota profile. PLoS One 2024; 19:e0292731. [PMID: 38285680 PMCID: PMC10824447 DOI: 10.1371/journal.pone.0292731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/27/2023] [Indexed: 01/31/2024] Open
Abstract
Canine fecal microbiota profiling provides insight into host health and disease. Standardization of methods for fecal sample storage for microbiomics is currently inconclusive, however. This study investigated the effects of homogenization, the preservative RNAlater, room temperature exposure duration, and short-term storage in the fridge prior to freezing on the canine fecal microbiota profile. Within 15 minutes after voiding, samples were left non-homogenized or homogenized and aliquoted, then kept at room temperature (20-22°C) for 0.5, 4, 8, or 24 hours. Homogenized aliquots then had RNAlater added or not. Following room temperature exposure, all aliquots were stored in the fridge (4°C) for 24 hours prior to storing in the freezer (-20°C), or stored directly in the freezer. DNA extraction, PCR amplification, then sequencing were completed on all samples. Alpha diversity (diversity, evenness, and richness), and beta diversity (community membership and structure), and relative abundances of bacterial genera were compared between treatments. Homogenization and RNAlater minimized changes in the microbial communities over time, although minor changes in relative abundances occurred. Non-homogenized samples had more inter-sample variability and greater changes in beta diversity than homogenized samples. Storage of canine fecal samples in the fridge for 24 h prior to storage in the freezer had little effect on the fecal microbiota profile. Our findings suggest that if immediate analysis of fecal samples is not possible, samples should at least be homogenized to preserve the existing microbiota profile.
Collapse
Affiliation(s)
- Olivia Chiu
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Dasiel Obrego
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kari Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer L. MacNicol
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brooklynn Liversidge
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
19
|
Bonillo-Lopez L, Obregon-Gutierrez P, Huerta E, Correa-Fiz F, Sibila M, Aragon V. Intensive antibiotic treatment of sows with parenteral crystalline ceftiofur and tulathromycin alters the composition of the nasal microbiota of their offspring. Vet Res 2023; 54:112. [PMID: 38001497 PMCID: PMC10675909 DOI: 10.1186/s13567-023-01237-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
The nasal microbiota plays an important role in animal health and the use of antibiotics is a major factor that influences its composition. Here, we studied the consequences of an intensive antibiotic treatment, applied to sows and/or their offspring, on the piglets' nasal microbiota. Four pregnant sows were treated with crystalline ceftiofur and tulathromycin (CTsows) while two other sows received only crystalline ceftiofur (Csows). Sow treatments were performed at D-4 (four days pre-farrowing), D3, D10 and D17 for ceftiofur and D-3, D4 and D11 for tulathromycin. Half of the piglets born to CTsows were treated at D1 with ceftiofur. Nasal swabs were taken from piglets at 22-24 days of age and bacterial load and nasal microbiota composition were defined by 16 s rRNA gene qPCR and amplicon sequencing. Antibiotic treatment of sows reduced their nasal bacterial load, as well as in their offspring, indicating a reduced bacterial transmission from the dams. In addition, nasal microbiota composition of the piglets exhibited signs of dysbiosis, showing unusual taxa. The addition of tulathromycin to the ceftiofur treatment seemed to enhance the deleterious effect on the microbiota diversity by diminishing some bacteria commonly found in the piglets' nasal cavity, such as Glaesserella, Streptococcus, Prevotella, Staphylococcus and several members of the Ruminococcaceae and Lachnospiraceae families. On the other hand, the additional treatment of piglets with ceftiofur resulted in no further effect beyond the treatment of the sows. Altogether, these results suggest that intensive antibiotic treatments of sows, especially the double antibiotic treatment, disrupt the nasal microbiota of their offspring and highlight the importance of sow-to-piglet microbiota transmission.
Collapse
Affiliation(s)
- Laura Bonillo-Lopez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Pau Obregon-Gutierrez
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Eva Huerta
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Florencia Correa-Fiz
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| | - Marina Sibila
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain.
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain.
| | - Virginia Aragon
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA). Campus de La Universitat Autònoma de Barcelona (UAB), 08193, BellaterraBarcelona, Catalonia, Spain
- IRTA, Programa de Sanitat Animal. Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Catalonia, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, 08193, Barcelona, Spain
| |
Collapse
|
20
|
Blanco-Fuertes M, Sibila M, Franzo G, Obregon-Gutierrez P, Illas F, Correa-Fiz F, Aragón V. Ceftiofur treatment of sows results in long-term alterations in the nasal microbiota of the offspring that can be ameliorated by inoculation of nasal colonizers. Anim Microbiome 2023; 5:53. [PMID: 37864263 PMCID: PMC10588210 DOI: 10.1186/s42523-023-00275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND The nasal microbiota of the piglet is a reservoir for opportunistic pathogens that can cause polyserositis, such as Glaesserella parasuis, Mycoplasma hyorhinis or Streptococcus suis. Antibiotic treatment is a strategy to control these diseases, but it has a detrimental effect on the microbiota. We followed the piglets of 60 sows from birth to 8 weeks of age, to study the effect of ceftiofur on the nasal microbiota and the colonization by pathogens when the treatment was administered to sows or their litters. We also aimed to revert the effect of the antibiotic on the nasal microbiota by the inoculation at birth of nasal colonizers selected from healthy piglets. Nasal swabs were collected at birth, and at 7, 15, 21 and 49 days of age, and were used for pathogen detection by PCR and bacterial culture, 16S rRNA amplicon sequencing and whole shotgun metagenomics. Weights, clinical signs and production parameters were also recorded during the study. RESULTS The composition of the nasal microbiota of piglets changed over time, with a clear increment of Clostridiales at the end of nursery. The administration of ceftiofur induced an unexpected temporary increase in alpha diversity at day 7 mainly due to colonization by environmental taxa. Ceftiofur had a longer impact on the nasal microbiota of piglets when administered to their sows before farrowing than directly to them. This effect was partially reverted by the inoculation of nasal colonizers to newborn piglets and was accompanied by a reduction in the number of animals showing clinical signs (mainly lameness). Both interventions altered the colonization pattern of different strains of the above pathogens. In addition, the prevalence of resistance genes increased over time in all the groups but was significantly higher at weaning when the antibiotic was administered to the sows. Also, ceftiofur treatment induced the selection of more beta-lactams resistance genes when it was administered directly to the piglets. CONCLUSIONS This study shed light on the effect of the ceftiofur treatment on the piglet nasal microbiota over time and demonstrated for the first time the possibility of modifying the piglets' nasal microbiota by inoculating natural colonizers of the upper respiratory tract.
Collapse
Affiliation(s)
- Miguel Blanco-Fuertes
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
- Ciber in Epidemiology and Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marina Sibila
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, PD, Italy
| | - Pau Obregon-Gutierrez
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Francesc Illas
- Selección Batallé, Avinguda dels Segadors, 17421, Riudarenes, Spain
| | - Florencia Correa-Fiz
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| | - Virginia Aragón
- Centre de Recerca en Sanitat Animal (CReSA), Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Barcelona, Spain.
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
21
|
Chen X, Guo Q, Li YY, Song TY, Ge JQ. Metagenomic analysis fecal microbiota of dysentery-like diarrhoea in a pig farm using next-generation sequencing. Front Vet Sci 2023; 10:1257573. [PMID: 37915946 PMCID: PMC10616309 DOI: 10.3389/fvets.2023.1257573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Porcine enteric diseases including swine dysentery involves a wide range of possible aetiologies and seriously damages the intestine of pigs of all ages. Metagenomic next-generation sequencing is commonly used in research for detecting and analyzing pathogens. In this study, the feces of pigs from a commercial swine farm with dysentery-like diarrhea was collected and used for microbiota analysis by next-generation sequencing. While Brachyspira spp. was not detected in diarrheal pig fecal samples, indicating that the disease was not swine dysentery. The quantity of microbial population was extremely lowered, and the bacterial composition was altered with a reduction in the relative abundance of the probiotics organisms, Firmicutes and Bacteroidetes, with an increase in pathogens like Fusobacterium and Proteobacteria, in which the specific bacteria were identified at species-level. Viral pathogens, porcine circovirus type 2, porcine lymphotropic herpesviruses 1, and porcine mastadenovirus A were also detected at pretty low levels. Carbohydrate-active enzymes (CAZy) analysis indicated that the constitute of Firmicutes and Bacteroidete were also changed. Further, the Kyoto Encyclopedia of Genes and Genomes (KEGG) alignment analysis indicated that the microbiota of diarrheal pigs had a lower ability in utilizing energy sources but were enriched in multi-drug resistance pathways. Comprehensive Antibiotic Resistance Database (CARD) and Virulence Factors of Pathogenic Bacteria (VFDB) analysis indicated that genes for elfamycin and sulfonamide resistance and the iron uptake system were enriched in diarrheal pigs. This revealed potential bacterial infection and can guide antibiotic selection for treating dysentery. Overall, our data suggested that alterations in both the population and functional attributes of microbiota in diarrheal pigs with decreased probiotic and increased pathogenic microorganisms. These results will help elucidate the mechanism of dysentery-like diarrhea and the development of approaches to control the disease.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Qing Guo
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ying-Ying Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Tie-Ying Song
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Jun-Qing Ge
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
22
|
Garrigues Q, Apper E, Rodiles A, Rovere N, Chastant S, Mila H. Composition and evolution of the gut microbiota of growing puppies is impacted by their birth weight. Sci Rep 2023; 13:14717. [PMID: 37679393 PMCID: PMC10484951 DOI: 10.1038/s41598-023-41422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Low birth weight puppies present an increased risk of neonatal mortality, morbidity, and some long-term health issues. Yet it has not been investigated if those alterations could be linked to the gut microbiota composition and evolution. 57 puppies were weighed at birth and rectal swabs were performed at 5 time points from birth to 28 days of age. Puppies were grouped into three groups based on their birth weight: low birth weight (LBW), normal birth weight (NBW) and high birth weight (HBW). 16S rRNA gene sequencing was used to highlight differences in the fecal microbiota. During the first three weeks, the relative abundance of facultative anaerobic bacteria such as E. coli, C. perfringens and Tyzzerella was higher in LBW feces, but they catch back with the other groups afterwards. HBW puppies showed higher abundances of Faecalibacterium and Bacteroides during the neonatal period, suggesting an earlier maturation of their microbiota. The results of this study suggest that birth weight impact the initial establishment of the gut microbiota in puppies. Innovative strategies would be desired to deal with altered gut microbiota in low birth weight puppies aiming to improve their survival and long term health.
Collapse
Affiliation(s)
- Quentin Garrigues
- NeoCare, Reproduction, ENVT, Université de Toulouse, 23 Chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France.
| | | | | | - Nicoletta Rovere
- Department of Health, Animal Science and Food Safety, VESPA, University of Veterinary, 20134, Milan, Italy
| | - Sylvie Chastant
- NeoCare, Reproduction, ENVT, Université de Toulouse, 23 Chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France
| | - Hanna Mila
- NeoCare, Reproduction, ENVT, Université de Toulouse, 23 Chemin des Capelles, BP 87614, 31 076, Toulouse Cedex 3, France
| |
Collapse
|
23
|
Gryaznova M, Smirnova Y, Burakova I, Morozova P, Nesterova E, Gladkikh M, Mikhaylov E, Syromyatnikov M. Characteristics of the Fecal Microbiome of Piglets with Diarrhea Identified Using Shotgun Metagenomics Sequencing. Animals (Basel) 2023; 13:2303. [PMID: 37508080 PMCID: PMC10376196 DOI: 10.3390/ani13142303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Diarrhea in piglets is one of the most common diseases leading to high mortality and, as a result, to economic losses. Shotgun metagenomic sequencing was performed on the DNBSEQ-G50, MGI system to study the role of the fecal microbiome in the development of diarrhea in newborn piglets. Analysis of the study data showed that the composition of the fecal microbiome at the level of bacteria and fungi did not differ in piglets with diarrhea from the healthy group. Bacteria belonging to the phyla Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria were the most abundant. However, a higher level of bacterial alpha diversity was observed in the group of piglets with diarrhea, which may be due to dysbacteriosis and inflammation. The study of the virome showed the difference between the two types of phages: Bacteroides B40-8 prevailed in diseased piglets, while Escherichia virus BP4 was found in greater numbers in healthy piglets. The results of our study suggest that the association between the fecal microbiome and susceptibility to diarrhea in suckling piglets may have been previously overestimated.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Ekaterina Nesterova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mariya Gladkikh
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Evgeny Mikhaylov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| |
Collapse
|
24
|
Rutjens S, Vereecke N, Sauer J, Croubels S, Devreese M. Cefquinome shows a higher impact on the pig gut microbiome and resistome compared to ceftiofur. Vet Res 2023; 54:45. [PMID: 37280708 DOI: 10.1186/s13567-023-01176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Cephalosporins are licensed for treatment of severe bacterial infections in different species. However, the effect of these antimicrobials on the fecal microbiome and potential spread of resistance-associated genes causes great concern. This highlights the need to understand the impact of cephalosporins on the porcine fecal microbiome and resistome. A combination of long-read 16S rRNA gene and shotgun metagenomic sequencing was applied to investigate the effect of conventional treatment with either ceftiofur (3 mg.kg-1 intramuscular, 3 consecutive days) or cefquinome (2 mg.kg-1 intramuscular, 5 consecutive days) on the porcine microbiome and resistome. Fecal samples were collected from 17 pigs (6 ceftiofur treated, 6 cefquinome treated, 5 control pigs) at four different timepoints. Treatment with ceftiofur resulted in an increase in Proteobacteria members on microbiome level, while on resistome level selection in TetQ containing Bacteroides, CfxA6 containing Prevotella and blaTEM-1 containing Escherichia coli was observed. Cefquinome treatment resulted in a decline in overall species richness (α-diversity) and increase in Proteobacteria members. On genus level, administration of cefquinome significantly affected more genera than ceftiofur (18 vs 8). On resistome level, cefquinome resulted in a significant increase of six antimicrobial resistance genes, with no clear correlation with certain genera. For both antimicrobials, the resistome levels returned back to the control levels 21 days post-treatment. Overall, our study provides novel insights on the effect of specific cephalosporins on the porcine gut microbiome and resistome after conventional intramuscular treatment. These results might contribute to better tailoring of the most ideal treatment strategy for some bacterial infections.
Collapse
Affiliation(s)
- Sofie Rutjens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Nick Vereecke
- PathoSense BV, 2500, Lier, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | | | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.
| |
Collapse
|
25
|
Fernández-Fernández R, Lozano C, Reuben RC, Ruiz-Ripa L, Zarazaga M, Torres C. Comprehensive Approaches for the Search and Characterization of Staphylococcins. Microorganisms 2023; 11:1329. [PMID: 37317303 PMCID: PMC10221470 DOI: 10.3390/microorganisms11051329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Novel and sustainable approaches are required to curb the increasing threat of antimicrobial resistance (AMR). Within the last decades, antimicrobial peptides, especially bacteriocins, have received increased attention and are being explored as suitable alternatives to antibiotics. Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria as a self-preservation method against competitors. Bacteriocins produced by Staphylococcus, also referred to as staphylococcins, have steadily shown great antimicrobial potential and are currently being considered promising candidates to mitigate the AMR menace. Moreover, several bacteriocin-producing Staphylococcus isolates of different species, especially coagulase-negative staphylococci (CoNS), have been described and are being targeted as a good alternative. This revision aims to help researchers in the search and characterization of staphylococcins, so we provide an up-to-date list of bacteriocin produced by Staphylococcus. Moreover, a universal nucleotide and amino acid-based phylogeny system of the well-characterized staphylococcins is proposed that could be of interest in the classification and search for these promising antimicrobials. Finally, we discuss the state of art of the staphylococcin applications and an overview of the emerging concerns.
Collapse
Affiliation(s)
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain
| | | | | | | | | |
Collapse
|
26
|
Hau SJ, Nielsen DW, Mou KT, Alt DP, Kellner S, Brockmeier SL. Resilience of swine nasal microbiota to influenza A virus challenge in a longitudinal study. Vet Res 2023; 54:38. [PMID: 37131235 PMCID: PMC10152739 DOI: 10.1186/s13567-023-01167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/24/2023] [Indexed: 05/04/2023] Open
Abstract
Influenza A virus (IAV) is an important contributing pathogen of porcine respiratory disease complex (PRDC) infections. Evidence in humans has shown that IAV can disturb the nasal microbiota and increase host susceptibility to bacterial secondary infections. Few, small-scale studies have examined the impact of IAV infection on the swine nasal microbiota. To better understand the effects of IAV infection on the nasal microbiota and its potential indirect impacts on the respiratory health of the host, a larger, longitudinal study was undertaken to characterize the diversity and community composition of the nasal microbiota of pigs challenged with an H3N2 IAV. The microbiome of challenged pigs was compared with non-challenged animals over a 6-week period using 16S rRNA gene sequencing and analysis workflows to characterize the microbiota. Minimal changes to microbial diversity and community structure were seen between the IAV infected and control animals the first 10 days post-IAV infection. However, on days 14 and 21, the microbial populations were significantly different between the two groups. Compared to the control, there were several genera showing significant increases in abundance in the IAV group during acute infection, such as Actinobacillus and Streptococcus. The results here highlight areas for future investigation, including the implications of these changes post-infection on host susceptibility to secondary bacterial respiratory infections.
Collapse
Affiliation(s)
- Samantha J Hau
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
| | - Daniel W Nielsen
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
- ORAU/ORISE, Oak Ridge, TN, USA
| | - Kathy T Mou
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
- ORAU/ORISE, Oak Ridge, TN, USA
| | - David P Alt
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
| | - Steven Kellner
- USDA, ARS, National Animal Disease Center, Ames, IA, USA
| | | |
Collapse
|
27
|
Hradicka P, Adamkova P, Lenhardt L, Gancarcikova S, Iannaccone SF, Demeckova V. Addressing safety concerns of long-term probiotic use: In vivo evidence from a rat model. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
|
28
|
Bacterial topography of the upper and lower respiratory tract in pigs. Anim Microbiome 2023; 5:5. [PMID: 36647171 PMCID: PMC9843957 DOI: 10.1186/s42523-023-00226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/24/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Understanding the complex structures and interactions of the bacterial communities inhabiting the upper (URT) and lower (LRT) respiratory tract of pigs is at an early stage. The objective of this study was to characterize the bacterial topography of three URT (nostrils, choana, and tonsils) and LRT (proximal trachea, left caudal lobe and secondary bronchi) sites in pigs. Thirty-six post-mortem samples from six pigs were analysed by 16S rRNA gene quantification and sequencing, and the microbiota in nostrils and trachea was additionally profiled by shotgun sequencing. RESULTS The bacterial composition obtained by the two methods was congruent, although metagenomics recovered only a fraction of the diversity (32 metagenome-assembled genomes) due to the high proportion (85-98%) of host DNA. The highest abundance of 16S rRNA copies was observed in nostrils, followed by tonsils, trachea, bronchi, choana and lung. Bacterial richness and diversity were lower in the LRT compared to the URT. Overall, Firmicutes and Proteobacteria were identified as predominant taxa in all sample types. Glasserella (15.7%), Streptococcus (14.6%) and Clostridium (10.1%) were the most abundant genera but differences in microbiota composition were observed between the two tracts as well as between sampling sites within the same tract. Clear-cut differences were observed between nasal and tonsillar microbiomes (R-values 0.85-0.93), whereas bacterial communities inhabiting trachea and lung were similar (R-values 0.10-0.17). Moraxella and Streptococcus were more common in bronchial mucosal scraping than in lavage, probably because of mucosal adherence. The bacterial microbiota of the choana was less diverse than that of the nostrils and similar to the tracheal microbiota (R-value 0.24), suggesting that the posterior nasal cavity serves as the primary source of bacteria for the LRT. CONCLUSION We provide new knowledge on microbiota composition and species abundance in distinct ecological niches of the pig respiratory tract. Our results shed light on the distribution of opportunistic bacterial pathogens across the respiratory tract and support the hypothesis that bacteria present in the lungs originate from the posterior nasal cavity. Due to the high abundance of host DNA, high-resolution profiling of the pig respiratory microbiota by shotgun sequencing requires methods for host DNA depletion.
Collapse
|
29
|
Gaire TN, Scott HM, Noyes NR, Ericsson AC, Tokach MD, Menegat MB, Vinasco J, Roenne B, Ray T, Nagaraja TG, Volkova VV. Age influences the temporal dynamics of microbiome and antimicrobial resistance genes among fecal bacteria in a cohort of production pigs. Anim Microbiome 2023; 5:2. [PMID: 36624546 PMCID: PMC9830919 DOI: 10.1186/s42523-022-00222-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The pig gastrointestinal tract hosts a diverse microbiome, which can serve to select and maintain a reservoir of antimicrobial resistance genes (ARG). Studies suggest that the types and quantities of antimicrobial resistance (AMR) in fecal bacteria change as the animal host ages, yet the temporal dynamics of AMR within communities of bacteria in pigs during a full production cycle remains largely unstudied. RESULTS A longitudinal study was performed to evaluate the dynamics of fecal microbiome and AMR in a cohort of pigs during a production cycle; from birth to market age. Our data showed that piglet fecal microbial communities assemble rapidly after birth and become more diverse with age. Individual piglet fecal microbiomes progressed along similar trajectories with age-specific community types/enterotypes and showed a clear shift from E. coli/Shigella-, Fusobacteria-, Bacteroides-dominant enterotypes to Prevotella-, Megaspheara-, and Lactobacillus-dominated enterotypes with aging. Even when the fecal microbiome was the least diverse, the richness of ARGs, quantities of AMR gene copies, and counts of AMR fecal bacteria were highest in piglets at 2 days of age; subsequently, these declined over time, likely due to age-related competitive changes in the underlying microbiome. ARGs conferring resistance to metals and multi-compound/biocides were detected predominately at the earliest sampled ages. CONCLUSIONS The fecal microbiome and resistome-along with evaluated descriptors of phenotypic antimicrobial susceptibility of fecal bacteria-among a cohort of pigs, demonstrated opposing trajectories in diversity primarily driven by the aging of pigs.
Collapse
Affiliation(s)
- Tara N. Gaire
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - H. Morgan Scott
- grid.264756.40000 0004 4687 2082Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Noelle R. Noyes
- grid.17635.360000000419368657Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Aaron C. Ericsson
- grid.134936.a0000 0001 2162 3504Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Michael D. Tokach
- grid.36567.310000 0001 0737 1259Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506 USA
| | - Mariana B. Menegat
- grid.36567.310000 0001 0737 1259Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS 66506 USA
| | - Javier Vinasco
- grid.264756.40000 0004 4687 2082Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Boyd Roenne
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Tui Ray
- grid.17635.360000000419368657Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - T. G. Nagaraja
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Victoriya V. Volkova
- grid.36567.310000 0001 0737 1259Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
30
|
Saladrigas-García M, Durán M, D’Angelo M, Coma J, Pérez JF, Martín-Orúe SM. An insight into the commercial piglet's microbial gut colonization: from birth towards weaning. Anim Microbiome 2022; 4:68. [PMID: 36572944 PMCID: PMC9791761 DOI: 10.1186/s42523-022-00221-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The establishment of the gut microbiota can be influenced by several perinatal factors, including, most importantly, the maternal microbiota. Moreover, early-life environmental variation affects gut microbial colonization and the intestinal health of offspring throughout life. The present study aimed to explore the development of piglet gut microbiota from birth to weaning in the commercial practice and also to assess how different farm environments could condition this process. Although it is possible to find in the literature other studies with similar objectives this work probably represents one of the few studies that make a systematic evaluation of such differential factors under a real scenario. To achieve this objective, we performed two trials. In a first Trial, we selected 2 farms in which we performed an intensive sampling (5 samples /animal) to characterize the gut colonization pattern during the first days of life and to identify the time window with the greatest impact. Both farms differed in their health status and the use of antimicrobials in the piglets. In a second Trial, we selected 4 additional farms with variable rearing conditions and a distinctive use of antimicrobials in the sows with a simplified sampling pattern (2 samples/animal). Faecal samples were obtained with swabs and DNA was extracted by using the PSP® Spin Stool DNA Kit and sequencing of the 16S rRNA gene (V3-V4 region) performed by Illumina MiSeq Platform. RESULTS The present study contributes to a better understanding of microbiome development during the transition from birth to weaning in commercial conditions. Alpha diversity was strongly affected by age, with an increased richness of species through time. Beta diversity decreased after weaning, suggesting a convergent evolvement among individuals. We pinpointed the early intestinal colonizers belonging to Bacteroides, Escherichia-Shigella, Clostridium sensu stricto 1, and Fusobacterium genera. During lactation(d7-d21 of life), the higher relative abundances of Bacteroides and Lactobacillus genera were correlated with a milk-oriented microbiome. As the piglets aged and after weaning (d36 of life), increasing abundances of genera such as Prevotella, Butyricimonas, Christensenellaceae R-7 group, Dorea, Phascolarctobacterium, Rikenellaceae RC9 gut group, Subdoligranulum, and Ruminococcaceae UCG-002 were observed. These changes indicate the adaptation of the piglets to a cereal-based diet rich in oligosaccharides and starch. Our results also show that the farm can have a significant impact in such a process, evidencing the influence of different environments and rearing systems on the gut microbiota development of the young piglet. Differences between farms were more noticeable after weaning than during lactation with changes in alpha and beta biodiversity and specific taxa. The analysis of such differences suggests that piglets receiving intramuscular amoxicillin (days 2-5 of life) and being offered an acidifying rehydrating solution (Alpha farm in Trial 1) have a greater alpha diversity and more abundant Lactobacillus population. Moreover, the only farm that did not offer any rehydrating solution (Foxtrot farm in Trial 2) showed a lower alpha diversity (day 2 of life) and increased abundance of Enterobacteriaceae (both at 2 and 21 days). The use of in-feed antibiotics in the sows was also associated with structural changes in the piglets' gut ecosystem although without changes in richness or diversity. Significant shifts could be registered in different microbial groups, particularly lower abundances of Fusobacterium in those piglets from medicated sows. CONCLUSIONS In conclusion, during the first weeks of life, the pig microbiota showed a relevant succession of microbial groups towards a more homogeneous and stable ecosystem better adapted to the solid dry feed. In this relevant early-age process, the rearing conditions, the farm environment, and particularly the antimicrobial use in piglets and mothers determine changes that could have a relevant impact on gut microbiota maturation. More research is needed to elucidate the relative impact of these farm-induced early life-long changes in the growing pig.
Collapse
Affiliation(s)
- Mireia Saladrigas-García
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | - Matilde D’Angelo
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Coma
- Grupo Vall Companys, 25191 Lleida, Spain
| | - José Francisco Pérez
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Susana María Martín-Orúe
- grid.7080.f0000 0001 2296 0625Servicio de Nutrición Y Bienestar Animal. Departamento de Ciencia Animal Y de los Alimentos, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
31
|
Maternal Mycobiome, but Not Antibiotics, Alters Fungal Community Structure in Neonatal Piglets. Appl Environ Microbiol 2022; 88:e0159322. [PMID: 36448784 PMCID: PMC9765005 DOI: 10.1128/aem.01593-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Early-life antibiotic exposure is associated with diverse long-term adverse health outcomes. Despite the immunomodulatory effects of gastrointestinal fungi, the impact of antibiotics on the fungal community (mycobiome) has received little attention. The objectives of this study were to determine the impact of commonly prescribed infant antibiotic treatments on the microbial loads and structures of bacterial and fungal communities in the gastrointestinal tract. Thirty-two piglets were divided into four treatment groups: amoxicillin (A), amoxicillin-clavulanic acid (AC), gentamicin-ampicillin (GA), and flavored placebo (P). Antibiotics were administered orally starting on postnatal day (PND) 1 until PND 8, except for GA, which was given on PNDs 5 and 6 intramuscularly. Fecal swabs were collected from piglets on PNDs 3 and 8, and sow feces were collected 1 day after farrowing. The impacts of antibiotics on bacterial and fungal communities were assessed by sequencing the 16S rRNA and the internal transcribed spacer 2 (ITS2) rRNA genes, respectively, and quantitative PCR was performed to determine total bacterial and fungal loads. Antibiotics did not alter the α-diversity (P = 0.834) or β-diversity (P = 0.565) of fungal communities on PND 8. AC increased the ratio of total fungal/total bacterial loads on PND 8 (P = 0.027). There was strong clustering of piglets by litter on PND 8 (P < 0.001), which corresponded to significant differences in the sow mycobiome, especially the presence of Kazachstania slooffiae. In summary, we observed a strong litter effect and showed that the maternal mycobiome is essential for shaping the piglet mycobiome in early life. IMPORTANCE This work provides evidence that although the fungal community composition is not altered by antibiotics, the overall fungal load increases with the administration of amoxicillin-clavulanic acid. Additionally, we show that the maternal fungal community is important in establishing the fungal community in piglets.
Collapse
|
32
|
Almeida HMDS, Sonalio K, Mechler-Dreibi ML, Petri FAM, Storino GY, Maes D, de Oliveira LG. Experimental Infection with Mycoplasma hyopneumoniae Strain 232 in Swine Influences the Lower Respiratory Microbiota. Vet Sci 2022; 9:vetsci9120674. [PMID: 36548835 PMCID: PMC9788024 DOI: 10.3390/vetsci9120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma (M.) hyopneumoniae, the etiological agent of swine enzootic pneumonia, has been reported to increase the susceptibility to secondary infections and modulate the respiratory microbiota in infected pigs. However, no studies have assessed the influence of M. hyopneumoniae on the respiratory microbiota diversity under experimental conditions. Therefore, this study evaluated the impact of M. hyopneumoniae infection on the respiratory microbiota of experimentally infected swine over time. To accomplish this, 12 weaned pigs from a M. hyopneumoniae-free farm were divided into two groups: M. hyopneumoniae strain 232 infected (n = 8) and non-infected (n = 4). The first group received 10 mL of Friis medium containing 107 CCU/mL of M. hyopneumoniae while the control group received 10 mL of sterile Friis medium. Inoculation of both groups was performed intratracheally when the animals were 35 days old (d0). At 28 days post-inoculation (dpi) and 56 dpi, 4 infected animals plus 2 controls were humanely euthanized, and biopsy samples of nasal turbinates (NT) and bronchus-alveolar lavage fluid (BALF) samples were collected. The DNA was extracted from the individual samples, and each group had the samples pooled and submitted to next-generation sequencing. Taxonomic analysis, alpha and beta diversity indexes, weighted unifrac, and unweighted unifrac distances were calculated. A high relative frequency (99%) of M. hyopneumoniae in BALF samples from infected animals was observed with no significant variation between time points. The infection did not seem to alter the diversity and evenness of bacterial communities in NT, thus, M. hyopneumoniae relative frequency was low in NT pools from infected animals (28 dpi-0.83%; 56 dpi-0.89%). PCoA diagrams showed that BALF samples from infected pigs were grouped and far from the control samples, whereas NT from infected animals were not separated from the control. Under the present coditions, M. hyopneumoniae infection influenced the lower respiratory microbiota, which could contribute to the increased susceptibility of infected animals to respiratory infections.
Collapse
Affiliation(s)
| | - Karina Sonalio
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Marina Lopes Mechler-Dreibi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
| | - Fernando Antônio Moreira Petri
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
| | - Gabriel Yuri Storino
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
| | - Dominiek Maes
- Unit of Porcine Health Management, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Luís Guilherme de Oliveira
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal 14884-900, São Paul, Brazil
- Correspondence:
| |
Collapse
|
33
|
Hirata M, Matsuoka M, Hashimoto T, Oura T, Ohnuki Y, Yoshida C, Minemura A, Miura D, Oka K, Takahashi M, Morimatsu F. Supplemental Clostridium butyricum MIYAIRI 588 Affects Intestinal Bacterial Composition of Finishing Pigs. Microbes Environ 2022; 37. [PMID: 36155363 PMCID: PMC9530721 DOI: 10.1264/jsme2.me22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animal gastrointestinal tracts are populated by highly diverse and complex microbiotas. The gut microbiota influences the bioavailability of dietary components and is closely associated with physiological processes in the host. Clostridium butyricum reportedly improves growth performance and affects the gut microbiota and immune functions in post-weaning piglets. However, the effects of C. butyricum on finishing pigs remain unclear. Therefore, we herein investigated the effects of C. butyricum MIYAIRI 588 (CBM588) on the gut microbiota of finishing pigs. 16S rRNA gene sequencing was performed using fecal samples and ileal, cecal, and colonic contents collected after slaughtering. The α-diversity of the small intestinal microbiota was lower than that of the large intestinal microbiota, whereas β-diversity showed different patterns depending on sample collection sites. The administration of CBM588 did not significantly affect the α- or β-diversity of the microbiotas of fecal and intestinal content samples regardless of the collection site. However, a linear discriminant ana-lysis Effect Size revealed that the relative abundance of Lactobacillaceae at the family level, Bifidobacterium at the order level, and Lactobacillus ruminis and Bifidobacterium pseudolongum at the species level were higher in the fecal samples and cecal and colonic contents of the treatment group than in those of the control group. Therefore, the administration of CBM588 to finishing pigs affected the composition of the gut microbiota and increased the abundance of bacteria that are beneficial to the host. These results provide important insights into the effects of probiotic administration on relatively stable gut microbial ecosystems.
Collapse
Affiliation(s)
- Maki Hirata
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| | - Miki Matsuoka
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Takamichi Oura
- Faculty of Bioscience and Bioindustry, Tokushima University
| | - Yo Ohnuki
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Chika Yoshida
- Bio-Innovation Research Center, Tokushima University.,R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Daiki Miura
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | - Kentaro Oka
- R&D Division, Miyarisan Pharmaceutical Co., Ltd
| | | | - Fumiki Morimatsu
- Bio-Innovation Research Center, Tokushima University.,Faculty of Bioscience and Bioindustry, Tokushima University
| |
Collapse
|
34
|
Impact of Raised without Antibiotics Measures on Antimicrobial Resistance and Prevalence of Pathogens in Sow Barns. Antibiotics (Basel) 2022; 11:antibiotics11091221. [PMID: 36139998 PMCID: PMC9495050 DOI: 10.3390/antibiotics11091221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The growing concern over the emergence of antimicrobial resistance (AMR) in animal production as a result of extensive and inappropriate antibiotic use has prompted many swine farmers to raise their animals without antibiotics (RWA). In this study, the impact of implementing an RWA production approach in sow barns on actual on-farm antibiotic use, the emergence of AMR, and the abundance of pathogens was investigated. Over a 13-month period, fecal and nasopharynx samples were collected at 3-month intervals from sows raised in RWA barns and sows in conventional barns using antibiotics in accordance with the new regulations (non-RWA). Whole genome sequencing (WGS) was used to determine the prevalence of AMR and the presence of pathogens in those samples. Records of all drug use from the 13-month longitudinal study indicated a significant reduction in antimicrobial usage in sows from RWA barns compared to conventional non-RWA barns. Antifolates were commonly administered to non-RWA sows, whereas β-lactams were widely used to treat sows in RWA barns. Metagenomic analyses demonstrated an increased abundance of pathogenic Actinobacteria, Firmicutes, and Proteobacteria in the nasopharynx microbiome of RWA sows relative to non-RWA sows. However, WGS analyses revealed that the nasal microbiome of sows raised under RWA production exhibited a significant increase in the frequency of resistance genes coding for β-lactams, MDR, and tetracycline.
Collapse
|
35
|
Feehan B, Ran Q, Dorman V, Rumback K, Pogranichniy S, Ward K, Goodband R, Niederwerder MC, Summers KL, Lee STM. Stability and volatility shape the gut bacteriome and Kazachstania slooffiae dynamics in preweaning, nursery and adult pigs. Sci Rep 2022; 12:15080. [PMID: 36064754 PMCID: PMC9445069 DOI: 10.1038/s41598-022-19093-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
The gut microbiome plays important roles in the maintenance of health and pathogenesis of diseases in the growing host. In order to fully comprehend the interplay of the gut microbiome and host, a foundational understanding of longitudinal microbiome, including bacteria and fungi, development is necessary. In this study, we evaluated enteric microbiome and host dynamics throughout the lifetime of commercial swine. We collected a total of 234 fecal samples from ten pigs across 31 time points in three developmental stages (5 preweaning, 15 nursery, and 11 growth adult). We then performed 16S rRNA gene amplicon sequencing for bacterial profiles and qPCR for the fungus Kazachstania slooffiae. We identified distinct bacteriome clustering according to the host developmental stage, with the preweaning stage exhibiting low bacterial diversity and high volatility amongst samples. We further identified clusters of bacteria that were considered core, increasing, decreasing or stage-associated throughout the host lifetime. Kazachstania slooffiae was absent in the preweaning stage but peaked during the nursery stage of the host. We determined that all host growth stages contained negative correlations between K. slooffiae and bacterial genera, with only the growth adult stage containing positive correlates. Our stage-associated bacteriome results suggested the neonate contained a volatile gut microbiome. Upon weaning, the microbiome became relatively established with comparatively fewer perturbations in microbiome composition. Differential analysis indicated bacteria might play distinct stage-associated roles in metabolism and pathogenesis. The lack of positive correlates and shared K. slooffiae-bacteria interactions between stages warranted future research into the interactions amongst these kingdoms for host health. This research is foundational for understanding how bacteria and fungi develop singularly, as well as within a complex ecosystem in the host's gut environment.
Collapse
Affiliation(s)
- Brandi Feehan
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Qinghong Ran
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Victoria Dorman
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kourtney Rumback
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Sophia Pogranichniy
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaitlyn Ward
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, 66506, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Swine Health Information Center, Ames, IA, 50010, USA
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Center, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Sonny T M Lee
- Division of Biology, College of Arts and Sciences, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
36
|
Gaire TN, Odland C, Zhang B, Ray T, Doster E, Nerem J, Dee S, Davies P, Noyes N. The impacts of viral infection and subsequent antimicrobials on the microbiome-resistome of growing pigs. MICROBIOME 2022; 10:118. [PMID: 35922873 PMCID: PMC9351240 DOI: 10.1186/s40168-022-01312-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Antimicrobials are used in food-producing animals for purposes of preventing, controlling, and/or treating infections. In swine, a major driver of antimicrobial use is porcine reproductive and respiratory syndrome (PRRS), which is caused by a virus that predisposes infected animals to secondary bacterial infections. Numerous antimicrobial protocols are used to treat PRRS, but we have little insight into how these treatment schemes impact antimicrobial resistance (AMR) dynamics within the fecal microbiome of commercial swine. The aim of this study was to determine whether different PRRS-relevant antimicrobial treatment protocols were associated with differences in the fecal microbiome and resistome of growing pigs. To accomplish this, we used a metagenomics approach to characterize and compare the longitudinal wean-to-market resistome and microbiome of pigs challenged with PRRS virus and then exposed to different antimicrobial treatments, and a group of control pigs not challenged with PRRS virus and having minimal antimicrobial exposure. Genomic DNA was extracted from pen-level composite fecal samples from each treatment group and subjected to metagenomic sequencing and microbiome-resistome bioinformatic and statistical analysis. Microbiome-resistome profiles were compared over time and between treatment groups. RESULTS Fecal microbiome and resistome compositions both changed significantly over time, with a dramatic and stereotypic shift between weaning and 9 days post-weaning (dpw). Antimicrobial resistance gene (ARG) richness and diversity were significantly higher at earlier time points, while microbiome richness and diversity were significantly lower. The post-weaning shift was characterized by transition from a Bacteroides-dominated enterotype to Lactobacillus- and Streptococcus-dominated enterotypes. Both the microbiome and resistome stabilized by 44 dpw, at which point the trajectory of microbiome-resistome maturation began to diverge slightly between the treatment groups, potentially due to physical clustering of the pigs. Challenge with PRRS virus seemed to correspond to the re-appearance of many very rare and low-abundance ARGs within the feces of challenged pigs. Despite very different antimicrobial exposures after challenge with PRRS virus, resistome composition remained largely similar between the treatment groups. Differences in ARG abundance between the groups were mostly driven by temporal changes in abundance that occurred prior to antimicrobial exposures, with the exception of ermG, which increased in the feces of treated pigs, and was significantly more abundant in the feces of these pigs compared to the pigs that did not receive post-PRRS antimicrobials. CONCLUSIONS The fecal microbiome-resistome of growing pigs exhibited a stereotypic trajectory driven largely by weaning and physiologic aging of the pigs. Events such as viral illness, antimicrobial exposures, and physical grouping of the pigs exerted significant yet relatively minor influence over this trajectory. Therefore, the AMR profile of market-age pigs is the culmination of the life history of the individual pigs and the populations to which they belong. Disease status alone may be a significant driver of AMR in market-age pigs, and understanding the interaction between disease processes and antimicrobial exposures on the swine microbiome-resistome is crucial to developing effective, robust, and reproducible interventions to control AMR. Video Abstract.
Collapse
Affiliation(s)
- Tara N Gaire
- Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Carissa Odland
- Pipestone Veterinary Services, Pipestone, Minnesota, USA
| | - Bingzhou Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tui Ray
- Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Enrique Doster
- Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Joel Nerem
- Pipestone Applied Research, Pipestone, Minnesota, USA
| | - Scott Dee
- Pipestone Applied Research, Pipestone, Minnesota, USA
| | - Peter Davies
- Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Noelle Noyes
- Department of Veterinary Population Medicine (VPM), College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA.
| |
Collapse
|
37
|
Comparative Analysis of the Upper Respiratory Bacterial Communities of Pigs with or without Respiratory Clinical Signs: From Weaning to Finishing Phase. BIOLOGY 2022; 11:biology11081111. [PMID: 35892967 PMCID: PMC9330314 DOI: 10.3390/biology11081111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary In this work, we performed a prospective study to compare bacterial communities in the nasal and laryngeal cavities of pigs with or without clinical signs of respiratory disease which were followed in a longitudinal fashion, at three critical phases of production, from weaning to the finishing phase. The findings reported here provide evidence that the composition of the upper respiratory tract bacterial microbiota differs significantly when comparing pigs with or without respiratory clinical signs after weaning; these differences were maintained in the nursery phase but were not observed at the finishing phase. Our results contribute to the knowledge of the porcine microbiota at different stages of production, providing new insights into the role of bacteria in the early stages of respiratory diseases. Abstract A prospective study was conducted to identify bacterial communities in the nasal and laryngeal cavities of pigs with or without clinical signs of respiratory disease in a longitudinal fashion, from weaning to the finishing phase. Nasal and laryngeal swabs were collected from asymptomatic pigs (n = 30), as well as from pigs with clinical signs of respiratory disease (n = 30) at the end of the weaning (T1—33 days) phase, end of the nursery phase (T2—71 days), and finishing (T3—173 days). Total DNA was extracted from each sample, and the V4 hypervariable region of the 16S rRNA gene was amplified and sequenced with the Illumina MiSeq platform. Principal coordinates analysis indicated no significant differences between the nasal and laryngeal bacterial communities. Nevertheless, the microbiota composition in the upper respiratory tract (URT) was clearly distinct between animals, with or without signs of respiratory disease, particularly at post-weaning and the end of nursery. In pigs with clinical signs of respiratory disease, Actinobacillus, Streptococcus Porphyromonas, Veillonella, and an unclassified genus of Pasteurellaceae were more abundant than in pigs with no signs. Metabolic prediction identified 28 differentially abundant pathways, mainly related to carbohydrate, energy, amino acid, anaerobic, and nucleotide metabolism in symptomatic pigs (especially in T2). These findings provide evidence that the composition of the URT bacterial microbiota differs significantly when comparing pigs with or without respiratory clinical signs after weaning, and this difference is maintained in the nursery phase; such differences, however, were not evident at the finishing phase.
Collapse
|
38
|
Dynamic Distribution of Gut Microbiota in Pigs at Different Growth Stages: Composition and Contribution. Microbiol Spectr 2022; 10:e0068821. [PMID: 35583332 PMCID: PMC9241710 DOI: 10.1128/spectrum.00688-21] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fully understanding the dynamic distribution of the gut microbiota in pigs is essential, as gut microorganisms play a fundamental role in physiological processes, immunity, and the metabolism of nutrients by the host. Here, we first summarize the characteristics and the dynamic shifts in the gut microbial community of pigs at different ages based on the results of 63 peer-review publications. Then a meta-analysis based on the sequences from 16 studies with accession numbers in the GenBank database is conducted to verify the characteristics of the gut microbiota in healthy pigs. A dynamic shift is confirmed in the gut microbiota of pigs at different ages and growth phases. In general, Bacteroides, Escherichia, Clostridium, Lactobacillus, Fusobacterium, and Prevotella are dominant in piglets before weaning, then Prevotella and Aneriacter shift to be the predominant genera with Fusobacterium, Lactobacillus, and Miscellaneous as comparative minors in postweaned pigs. A number of 19 bacterial genera, including Bacteroides, Prevotella, and Lactobacillus can be found in more than 90% of pigs and three enterotypes can be identified in all pigs at different ages, suggesting there is a “core” microbiota in the gut of healthy pigs, which can be a potential target for nutrition or health regulation. The “core” members benefit the growth and gut health of the host. These findings help to define an “optimal” gut microbial profile for assessing, or improving, the performance and health status of pigs at different growth stages. IMPORTANCE The ban on feed antibiotics by more and more countries, and the expected ban on ZnO in feed supplementation from 2022 in the EU, urge researchers and pig producers to search for new alternatives. One possible alternative is to use the so-called “next-generation probiotics (NGPs)” derived from gastrointestinal tract. In this paper, we reveal that a total of 19 “core” bacterial genera including Bacteroides, Prevotella, and Lactobacillus etc., can be found in more than 90% of healthy pigs across different ages. These identified genera may probably be the potential candidates of NGPs or the potential target of microflora regulation. Adding substrates preferred by these target microbes will help to increase the abundance of specific symbiotic species and benefit the gut health of pigs. Further research targeting these “core” microbes and the dynamic distribution of microbiota, as well as the related function is of great importance in swine production.
Collapse
|
39
|
Blanco-Fuertes M, Correa-Fiz F, López-Serrano S, Sibila M, Aragon V. Sow vaccination against virulent Glaesserella parasuis shapes the nasal microbiota of their offspring. Sci Rep 2022; 12:3357. [PMID: 35233006 PMCID: PMC8888576 DOI: 10.1038/s41598-022-07382-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Glaesserella parasuis is the etiological agent of Glässer's disease, a common pathology in the pork industry with higher prevalence in the postweaning period. Vaccination is one of the strategies to control this disease. Here, we investigated the effect that sow vaccination against virulent strains of G. parasuis had in the nasal microbiota of their offspring. Nasal swabs from fifteen days-old piglets from vaccinated (vs-P, n = 11) and unvaccinated sows (cs-P, n = 11) were obtained and DNA was extracted for 16S amplicon sequencing. Microbiota composition was different, with lower diversity in vs-P, and a strong clustering of the groups in beta diversity analysis. Among the 1509 sequences associated to either study group, all the sequences classified as G. parasuis (10 ASVs) had lower relative abundance in the vs-P group. A list of 32 inferred metabolic pathways were statistically different between groups. A distinctive structure of the two microbial networks was detected, with modules in the cs-P not conserved in the vs-P network. In conclusion, vaccination of the sows had a large effect in the microbiota composition of their offspring that went beyond the effect on the targeted pathogen. The mechanisms underneath these changes may include alteration of the microbiota network due to the elimination of the targeted pathogen and/or immunological changes.
Collapse
Affiliation(s)
- Miguel Blanco-Fuertes
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Florencia Correa-Fiz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| | - Sergi López-Serrano
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.
| |
Collapse
|
40
|
Gryaznova MV, Dvoretskaya YD, Syromyatnikov MY, Shabunin SV, Parshin PA, Mikhaylov EV, Strelnikov NA, Popov VN. Changes in the Microbiome Profile in Different Parts of the Intestine in Piglets with Diarrhea. Animals (Basel) 2022; 12:ani12030320. [PMID: 35158643 PMCID: PMC8833389 DOI: 10.3390/ani12030320] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The most common genera in the piglet microbiome were Lactobacillus, Escherichia-Shigella, Enterococcus, Bacteroides, and Fusobacterium. Bacteria of the Lactobacillus genus dominated in healthy piglets. An increased number of Escherichia-Shigella and Enterococcus was detected in diarrheal pigs. This indicates an important role of these bacteria in the pathogenesis of diarrhea. A decreased number of Bacteroides was detected in diarrheal pigs. According to the assessment of the microbiome composition in different sections of the intestine, bacteria of the Lactobacillus genus were the most common in the ileum, while Fusobacterium and Bacteroides were more common in the rectum. Our results show that the gut microbiome may make a significant contribution to the pathogenesis of diarrhea. Abstract Determining the taxonomic composition of microbial consortia of the piglet intestine is of great importance for pig production. However, knowledge on the variety of the intestinal microbiome in newborn piglets is limited. Piglet diarrhea is a serious gastrointestinal disease with a high morbidity and mortality that causes great economic damage to the pig industry. In this study, we investigated the microbiome of various sections of the piglet intestine and compared the microbiome composition of healthy and diarrheal piglets using high-throughput sequencing of the 16S rRNA gene. The results showed that bacteria of the Lactobacillus genus were the most common in the ileum, while Fusobacterium and Bacteroides dominated in the rectum. Comparing the microbiome composition of healthy and diarrheal piglets revealed a reduced number of Lactobacillus bacteria as a hallmark of diarrhea, as did an increased content of representatives of the Escherichia-Shigella genus and a reduced number of Bacteroides, which indicates the contribution of these bacteria to the development of diarrhea in piglets. The relative abundance of Enterococcus bacteria was higher in the diarrhea group. Although some bacteria of this genus are commensals, a small number of species may be associated with the development of diarrhea in piglets. Therefore, our results indicate that the gut microbiome may be an important factor in the development of diarrhea in piglets.
Collapse
Affiliation(s)
- Mariya V. Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Yuliya D. Dvoretskaya
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mikhail Y. Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
- Correspondence: ; Tel.: +7-473-220-0876
| | - Sergey V. Shabunin
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Pavel A. Parshin
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Evgeniy V. Mikhaylov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Nikolay A. Strelnikov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Vasily N. Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
41
|
Niazy M, Hill S, Nadeem K, Ricker N, Farzan A. Compositional analysis of the tonsil microbiota in relationship to Streptococcus suis disease in nursery pigs in Ontario. Anim Microbiome 2022; 4:10. [PMID: 35063043 PMCID: PMC8780311 DOI: 10.1186/s42523-022-00162-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The tonsil of the soft palate in pigs is the colonization site of both commensal and pathogenic microbial agents. Streptococcus suis infections are a significant economic problem in the swine industry. The development of S. suis disease remains poorly understood. The purpose of this study was to identify whether the tonsillar microbiota profile in nursery pigs is altered with S. suis disease. Here, the dynamics of the tonsillar microbiota from 20 healthy pigs and 43 diseased pigs with S. suis clinical signs was characterized. RESULTS Based on the presence or absence of S. suis in the systemic sites, diseased pigs were classified into confirmed (n = 20) or probable (n = 23) group, respectively. Microbiota composition was assessed using the V3-V4 hypervariable region of the 16S rRNA, and results were analyzed to identify the diversity of the tonsillar microbiota. The taxonomic composition of the tonsil microbiota proved to be highly diverse between individuals, and the results showed statistically significant microbial community structure among the diagnosis groups. The confirmed group had the lowest observed species richness while the probable group had higher phylogenetics diversity level compared to the healthy group. Un-weighted Unifrac also demonstrated that the probable group had a higher beta diversity than both the healthy and the confirmed group. A Dirichlet-multinomial mixture (DMM) model-based clustering method partitioned the tonsil microbiota into two distinct community types that did not correspond with disease status. However, there was an association between Streptococcus suis serotype 2 and DMM community type 1 (p = 0.03). ANCOM-BC identified 24 Streptococcus amplicon sequence variants (ASVs) that were differentially abundant between the DMM community types. CONCLUSIONS This study provides a comprehensive analysis of the structure and membership of the tonsil microbiota in nursery pigs and uncovers differences and similarities across varying S. suis disease status. While the overall abundance of Streptococcus was not different among the diagnosis groups, the unique profile of DMM community type 1 and the observed correlation with S. suis serotype 2 could provide insight into potential tonsillar microbiota involvement in S. suis disease.
Collapse
Affiliation(s)
- Maysa Niazy
- Bioinformatics Program, College of Biological Science, University of Guelph, Guelph, ON, Canada
| | - Sarah Hill
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Khurram Nadeem
- Department of Mathematics and Statistics, College of Engineering and Physical Science, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Abdolvahab Farzan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
42
|
Lee A, Le Bon M, Connerton IF, Mellits KH. OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6576765. [PMID: 35511201 PMCID: PMC9113333 DOI: 10.1093/femsec/fiac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/24/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Adam Lee
- Corresponding author: Division of Microbiology, Brewing and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom. Tel: 07845 963223; E-mail:
| | - Melanie Le Bon
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Ian F Connerton
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| | - Kenneth H Mellits
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
43
|
Understanding host-microbiota interactions in the commercial piglet around weaning. Sci Rep 2021; 11:23488. [PMID: 34873196 PMCID: PMC8648723 DOI: 10.1038/s41598-021-02754-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Weaning is a critical period in the life of pigs with repercussions on their health and welfare and on the economy of the swine industry. This study aimed to assess the effect of the commercial early weaning on gut microbiota, intestinal gene expression and serum metabolomic response via an integrated-omic approach combining 16S rRNA gene sequencing, the OpenArray gene expression technology and 1H-NMR spectroscopy. Fourteen piglets from different litters were sampled for blood, jejunum tissue and caecal content two days before (− 2d), and three days after (+ 3d) weaning. A clearly differential ordination of caecal microbiota was observed. Higher abundances of Roseburia, Ruminococcus, Coprococcus, Dorea and Lachnospira genera in weaned piglets compared to prior to weaning showed the quick microbial changes of the piglets’ gut microbiota. Downregulation of OCLN, CLDN4, MUC2, MUC13, SLC15A1 and SLC13A1 genes, also evidenced the negative impact of weaning on gut barrier and digestive functions. Metabolomic approach pinpointed significant decreases in choline, LDL, triglycerides, fatty acids, alanine and isoleucine and increases in 3-hydroxybutyrate after weaning. Moreover, the correlation between microbiota and metabolome datasets revealed the existence of metabolic clusters interrelated to different bacterial clusters. Our results demonstrate the impact of weaning stress on the piglet and give insights regarding the associations between gut microbiota and the animal gene activity and metabolic response.
Collapse
|
44
|
Crespo-Piazuelo D, Lawlor PG, Ranjitkar S, Cormican P, Villodre C, Bouwhuis MA, Marsh A, Crispie F, Rattigan R, Gardiner GE. Intestinal microbiota modulation and improved growth in pigs with post-weaning antibiotic and ZnO supplementation but only subtle microbiota effects with Bacillus altitudinis. Sci Rep 2021; 11:23304. [PMID: 34857778 PMCID: PMC8639915 DOI: 10.1038/s41598-021-01826-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 09/30/2021] [Indexed: 11/25/2022] Open
Abstract
The objective was to evaluate the effect of dietary Bacillus altitudinis spore supplementation during day (D)0–28 post-weaning (PW) and/or D29–56 PW compared with antibiotic and zinc oxide (AB + ZnO) supplementation on pig growth and gut microbiota. Eighty piglets were selected at weaning and randomly assigned to one of five dietary treatments: (1) negative control (Con/Con); (2) probiotic spores from D29–56 PW (Con/Pro); (3) probiotic spores from D0–28 PW (Pro/Con); (4) probiotic spores from D0–56 PW (Pro/Pro) and (5) AB + ZnO from D0–28 PW. Overall, compared with the AB + ZnO group, the Pro/Con group had lower body weight, average daily gain and feed intake and the Pro/Pro group tended to have lower daily gain and feed intake. However, none of these parameters differed between any of the probiotic-treated groups and the Con/Con group. Overall, AB + ZnO-supplemented pigs had higher Bacteroidaceae and Prevotellaceae and lower Lactobacillaceae and Spirochaetaceae abundance compared to the Con/Con group, which may help to explain improvements in growth between D15–28 PW. The butyrate-producing genera Agathobacter, Faecalibacterium and Roseburia were more abundant in the Pro/Con group compared with the Con/Con group on D35 PW. Thus, whilst supplementation with B. altitudinis did not enhance pig growth performance, it did have a subtle, albeit potentially beneficial, impact on the intestinal microbiota.
Collapse
Affiliation(s)
- Daniel Crespo-Piazuelo
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Samir Ranjitkar
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul Cormican
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Carmen Villodre
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Meike A Bouwhuis
- Teagasc, Pig Development Department, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Alan Marsh
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Fiona Crispie
- Teagasc, Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Ruth Rattigan
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland
| | - Gillian E Gardiner
- Eco-Innovation Research Centre, Department of Science, Waterford Institute of Technology, Waterford, Ireland.
| |
Collapse
|
45
|
Dynamic distribution of nasal microbial community in yaks (Bos grunniens) at different ages. Trop Anim Health Prod 2021; 53:555. [PMID: 34853935 DOI: 10.1007/s11250-021-02996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/11/2021] [Indexed: 12/09/2022]
Abstract
The significance of microbial community structure has been extensively recognized due to its key roles in metabolism, immunity, and health maintenance. Importantly, increasing evidence indicated that the dynamic distribution of microbial community structure can be used for evaluating the health condition of host. Yaks (Bos grunniens), mainly inhabiting in high-altitude hypoxic environment, are characterized by excellent adaptability and strong resistance. Currently, it has been determined that yaks possessed the complicated gastrointestinal microbial ecosystem, whereas not much is known about the nasal microbial community structure of yaks. Therefore, this study was performed to compare and analyze the differences in nasal microbiota of yaks with different ages by high-throughput sequencing. In this study, a total of 487,168 and 486,498 high-quality sequences were achieved from YYG (1-month-old yaks) and AYG (1-year-old yaks), respectively. Additionally, 5,340 operational taxonomic units (OTUs) were identified and 657 OTUs were in common among all samples. Proteobacteria and Firmicutes were the two most predominant phyla in all samples. Moreover, Actinobacteria and Bacteroidetes were the tertiary dominant phyla in YYG and AYG, respectively. At the level of genus, Moraxella, Faucicola, and Mannheimia were the most preponderant bacterial genera in the young and adult yaks. As compared to the AYG, the proportions of Actinobacillus, Parabacteroides, and Haemophilus in the YYG were significantly increased, whereas the Rhizobacter was decreased. In conclusion, this study firstly compared and investigated the distribution of nasal microbiota in yaks with different ages. Results demonstrated that age was an important factor affecting the nasal microbiota. Moreover, the current study will provide a theoretical basis for the further study on the microbial community structure of yaks.
Collapse
|
46
|
Exploration of the Potential for Efficient Fiber Degradation by Intestinal Microorganisms in Diqing Tibetan Pigs. FERMENTATION 2021. [DOI: 10.3390/fermentation7040275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In order to study the potential for efficient fiber degradation by intestinal microorganisms in Diqing Tibetan pigs, we first investigated the dietary structure of Diqing Tibetan pigs in their original habitat, then 60 healthy adult Diqing Tibetan pigs were randomly divided into 2 groups with 6 replicates each and 5 pigs in each replicate. The content of neutral detergent fiber in treatment 1 and 2 were adjusted to 20% and 40%, respectively. The total tract digestibility of nutrients and the degradation efficiency of fecal microorganisms to different types of fiber were determined. Results showed that the composition and nutritional level of Diqing Tibetan pig original diet differed greatly in different seasons. The content of crude fiber in the original diet was as high as 12.3% and the neutral detergent fiber was 32.5% in April, while the content of crude fiber was 4.9% and the neutral detergent fiber was 13.3% in October. With the increase of dietary fiber level, the total tract apparent digestibility of dry matter, crude fiber, crude protein, acid detergent fiber, neutral detergent fiber, ether extract, and organic matter decreased significantly (p < 0.05), and the contents of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and isovaleric acid in the feces were also significantly (p < 0.05) reduced. The ability of Diqing Tibetan pig fecal microorganisms to degrade neutral detergent fiber was significantly higher (p < 0.05) than “Duroc × Landrace × Yorkshire” pig. In addition, there was no significant difference (p > 0.05) in the degradation efficiency of the same type of fiber between NDF-20 and NDF-40 groups. Our results strongly suggested that Diqing Tibetan pigs have the potential to efficiently utilize fiber, and their unique intestinal microbial composition is the main reason for their efficient utilization of dietary fiber.
Collapse
|
47
|
Neonatal Piglets Are Protected from Clostridioides difficile Infection by Age-Dependent Increase in Intestinal Microbial Diversity. Microbiol Spectr 2021; 9:e0124321. [PMID: 34550001 PMCID: PMC8557904 DOI: 10.1128/spectrum.01243-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
While Clostridioides difficile is recognized as an important human pathogen, it is also a significant cause of gastroenteritis and associated diarrhea in neonatal pigs. Since clinical disease is rarely diagnosed in piglets older than 1 week of age, it is hypothesized that natural resistance is associated with the increased complexity of the intestinal microbiota as the animals age. To test this, piglets were challenged with C. difficile (ribotype 078/toxinotype V) at times ranging from 2 to 14 days of age, and the severity of disease and microbial diversity of the cecal microbiota were assessed. Half of the piglets that were challenged with C. difficile at 2 and 4 days of age developed clinical signs of disease. The incidence of disease decreased rapidly as the piglets aged, to a point where none of the animals challenged after 10 days of age showed clinical signs. The cecal microbial community compositions of the piglets also clustered by age, with those of animals 2 to 4 days old showing closer relationships to one another than to those of older piglets (8 to 14 days). This clustering occurred across litters from 4 different sows, providing further evidence that the resistance to C. difficile disease in piglets greater than 1 week old is directly related to the diversity and complexity of the intestinal microbiota. IMPORTANCE C. difficile is an important bacterial pathogen that is the most common cause of infections associated with health care in the United States. It also causes significant morbidity and mortality in neonatal pigs, and currently there are no preventative treatments available to livestock producers. This study determined the age-related susceptibility of piglets to C. difficile over the first 2 weeks of life, along with documenting the natural age-related changes that occurred in the intestinal microbiota over the same time period in a controlled environment. We observed that the populations of intestinal bacteria within individual animals of the same age, regardless of litter, showed the highest degree of similarity. Identifying bacterial species associated with the acquisition of natural resistance observed in older pigs could lead to the development of new strategies to prevent and or treat disease caused by C. difficile infection.
Collapse
|
48
|
Choudhury R, Middelkoop A, Boekhorst J, Gerrits WJJ, Kemp B, Bolhuis JE, Kleerebezem M. Early life feeding accelerates gut microbiome maturation and suppresses acute post-weaning stress in piglets. Environ Microbiol 2021; 23:7201-7213. [PMID: 34655283 PMCID: PMC9291500 DOI: 10.1111/1462-2920.15791] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Early life microbiome perturbations can have important effects on host development, physiology and behaviour. In this longitudinal study, we evaluated the impact of early feeding on gut microbiome colonization in neonatal piglets. Early‐fed (EF) piglets had access to a customized fibrous diet from 2 days after birth until weaning in addition to mother's milk, whereas control piglets suckled mother's milk only. Rectal swabs were collected at multiple time points until 6 weeks of age to investigate microbiota development using 16S rRNA gene profiling. The dynamic pre‐weaning microbiota colonization was followed by a relatively stable post‐weaning microbiota, represented by Prevotella, Roseburia, Faecalibacterium, Ruminococcus, Megasphaera, Catenibacterium and Subdoligranulum. EF piglets showed an accelerated microbiota maturation, characterized by increased microbial diversity, pre‐weaning emergence of post‐weaning‐associated microbes and a more rapid decline of typical pre‐weaning microbes. Furthermore, the individual eating behaviour scores of piglets quantitatively correlated with their accelerated microbiome. Importantly, EF piglets displayed a smoother relative weight gain and tended to reach a higher relative weight gain, in addition to reduced diarrhoea scores in the first week post‐weaning. Overall, these findings demonstrate the beneficial impact of early feeding on microbiota development as well as pig health and performance during the weaning transition.
Collapse
Affiliation(s)
- R Choudhury
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - A Middelkoop
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - J Boekhorst
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - W J J Gerrits
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - J E Bolhuis
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - M Kleerebezem
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University & Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
49
|
Arruda AG, Deblais L, Hale VL, Madden C, Pairis-Garcia M, Srivastava V, Kathayat D, Kumar A, Rajashekara G. A cross-sectional study of the nasal and fecal microbiota of sows from different health status within six commercial swine farms. PeerJ 2021; 9:e12120. [PMID: 34616608 PMCID: PMC8451438 DOI: 10.7717/peerj.12120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 08/16/2021] [Indexed: 01/04/2023] Open
Abstract
Background Cull sows are a unique population on swine farms, often representing poor producing or compromised animals, and even though recent studies have reported that the microbiome is associated with susceptibility to diseases, the microbiome of the cull sow population has not been explored. The main objective of this study was to investigate whether there were differences in fecal and upper respiratory tract microbiota composition for groups of sows of different health status (healthy, cull, and compromised/ clinical sows) and from different farms (1 to 6). Methods Six swine farms were visited once. Thirty individual fecal samples and nasal swabs were obtained at each farm and pooled by five across health status and farm. Samples underwent 16S rRNA gene amplicon sequencing and nasal and fecal microbiota were analyzed using QIIME2 v.2021.4. Results Overall, the diversity of the nasal microbiota was lower than the fecal microbiota (p < 0.01). No significant differences were found in fecal or nasal alpha diversity by sow's health status or by farm. There were significant differences in nasal microbial composition by farm and health status (PERMANOVA, p < 0.05), and in fecal microbiota by farm (PERMANOVA, p < 0.05), but not by health status. Lastly, at the L7 level, there was one differentially abundant taxa across farms for each nasal and fecal pooled samples. Discussion This study provided baseline information for nasal and fecal microbiota of sows under field conditions, and results suggest that farm of origin can affect microbial diversity and composition. Furthermore, sow's health status may have an impact on the nasal microbiota composition.
Collapse
Affiliation(s)
- Andreia G Arruda
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Loic Deblais
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Vanessa L Hale
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Christopher Madden
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Monique Pairis-Garcia
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, United States of America
| | - Vishal Srivastava
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Dipak Kathayat
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Anand Kumar
- Biosecurity and Public Health Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Gireesh Rajashekara
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
50
|
Chrun T, Leng J, La Ragione RM, Graham SP, Tchilian E. Changes in the Nasal Microbiota of Pigs Following Single or Co-Infection with Porcine Reproductive and Respiratory Syndrome and Swine Influenza A Viruses. Pathogens 2021; 10:1225. [PMID: 34684174 PMCID: PMC8540314 DOI: 10.3390/pathogens10101225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023] Open
Abstract
Host-microbiota interactions are important in shaping immune responses that have the potential to influence the outcome of pathogen infection. However, most studies have focused on the gut microbiota and its possible association with disease outcome, while the role of the nasal microbiota and respiratory pathogen infection has been less well studied. Here we examined changes in the composition of the nasal microbiota of pigs following experimental infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), swine influenza A H3N2 virus (H3N2) or both viruses. DNA extracted from nasal swabs were subjected to 16S rRNA sequencing to study the composition of the nasal microbiota. Bacterial richness fluctuated in all groups, with a slight reduction in pigs singly infected with PRRSV-2 and H3N2 during the first 5 days of infection compared to uninfected controls. In contrast, nasal bacterial richness remained relatively stable after PRRSV-2/H3N2 co-infection. PRRSV-2 and H3N2, alone or in combination differentially altered the abundance and distribution of bacterial families. Single and co-infection with PRRSV-2 or H3N2 was associated with the expansion of the Neisseriaceae family. A positive correlation between H3N2 viral load and the relative abundance of the Neisseriaceae was observed. However, further mechanistic studies are required to understand the significance of the changes in specific bacterial families following these viral infections.
Collapse
Affiliation(s)
- Tiphany Chrun
- The Pirbright Institute, Woking GU24 0NF, UK; (S.P.G.); (E.T.)
| | - Joy Leng
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK;
| | | | - Simon P. Graham
- The Pirbright Institute, Woking GU24 0NF, UK; (S.P.G.); (E.T.)
| | - Elma Tchilian
- The Pirbright Institute, Woking GU24 0NF, UK; (S.P.G.); (E.T.)
| |
Collapse
|