1
|
Mirieri CK, Uzel GD, Parker AG, Bouyer J, De Vooght L, Ros VID, van Oers MM, Abd-Alla AMM. Rearing of Glossina morsitans morsitans tsetse flies for the sterile insect technique: evaluating the impact of irradiation and transportation during early and late-stage pupal development on the quality of emerging adults. Parasite 2024; 31:73. [PMID: 39576025 PMCID: PMC11583636 DOI: 10.1051/parasite/2024068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/25/2024] Open
Abstract
Human African trypanosomiasis (HAT) and African animal trypanosomosis (AAT) are devastating diseases spread by tsetse flies (Glossina spp.), affecting humans and livestock, respectively. Current efforts to manage these diseases by eliminating the vector through the sterile insect technique (SIT) require transportation of irradiated late-stage tsetse pupae under chilling, which has been reported to reduce the biological quality of emerged flies. We therefore evaluated the impact of irradiation and transportation (including vibration and shock) on pupae at early-stage development (22 days of age) under ambient temperature and compared it to that on pupae at the late-stage development (29 days of age) under chilling, the current practice for tsetse in SIT programs. The quality of flies emerging from these transported pupae was assessed by their emergence rates, flight propensity, mating ability, insemination rates and survival rates (over ca. 100 days, and after specified shorter periods). Generally, flies emerging from the 22-day-old pupae had significantly (p < 0.05) higher values for the tested quality parameters, as compared to those emerging from 29-day-old pupae. Irradiation, transportation and the combination thereof significantly (p < 0.05) reduced all the tested quality parameters as compared with the untreated control within the 22-day-old pupae group. Further, vibration had a significant negative effect on the quality of flies, notwithstanding the age of the pupae. Irradiation and transportation of pupae at 22 days of age resulted in a higher proportion of flies of good biological quality as compared to those of 29 days of age, and hence may be considered for future SIT programs.
Collapse
Affiliation(s)
- Caroline K Mirieri
- Insect Pest Control Laboratory, Joint FAO, IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria - Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Güler Demirbas Uzel
- Insect Pest Control Laboratory, Joint FAO, IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO, IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint FAO, IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria - ASTRE, CIRAD, INRAE, Plate Forme CYROI, 2 rue Maxime Rivière, 97491 Sainte-Clotilde, La Réunion, France
| | - Linda De Vooght
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO, IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| |
Collapse
|
2
|
Mfopit YM, Bilgo E, Boma S, Somda MB, Gnambani JE, Konkobo M, Diabate A, Dayo GK, Mamman M, Kelm S, Balogun EO, Shuaibu MN, Kabir J. Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso. BMC Microbiol 2024; 24:373. [PMID: 39342132 PMCID: PMC11437622 DOI: 10.1186/s12866-024-03531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. RESULTS A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened by PCR for the presence of Sodalis glossinidius, Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiensis and 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%), respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachnoides was infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0%) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G. p. gambiensis, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported 1.9 times likelihood of trypanosome absence when Wolbachia was present. CONCLUSION This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.
Collapse
Affiliation(s)
- Youssouf Mouliom Mfopit
- Institute of Agricultural Research for Development (IRAD), Yaounde, Cameroon.
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria.
| | - Etienne Bilgo
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'Elimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP) / Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Soudah Boma
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Martin Bienvenu Somda
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Jacques Edounou Gnambani
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP) / Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Maurice Konkobo
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP) / Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabate
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'Elimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP) / Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Guiguigbaza-Kossigan Dayo
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Mohammed Mamman
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Soerge Kelm
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Mohammed Nasir Shuaibu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Junaidu Kabir
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
3
|
Mfopit YM, Bilgo E, Boma S, Somda MB, Gnambani JE, Konkobo M, Diabate A, Dayo GK, Mamman M, Kelm S, Balogun EO, Shuaibu MN, Kabir J. Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso. RESEARCH SQUARE 2024:rs.3.rs-4756528. [PMID: 39257987 PMCID: PMC11384793 DOI: 10.21203/rs.3.rs-4756528/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Background Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. Results A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened byPCR for the presence of Sodalis glossinidius, Spiroplasmasp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambienseand 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius(54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia(43.4%, 38.5%, 38.6%, 70.8%),respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachhnoideswas infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0 %) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G.p. gambiense, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported1.9 times likelihood of trypanosome absence when Wolbachia was present. Conclusion This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.
Collapse
Affiliation(s)
| | | | - Soudah Boma
- Centre international de recherche-développement sur l'elevage en zone subhumide
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dera KSM, Dieng MM, Moyaba P, Ouedraogo GMS, Pagabeleguem S, Njokou F, Ngambia Freitas FS, de Beer CJ, Mach RL, Vreysen MJB, Abd-Alla AMM. Prevalence of Spiroplasma and interaction with wild Glossina tachinoides microbiota. Parasite 2023; 30:62. [PMID: 38117272 PMCID: PMC10732139 DOI: 10.1051/parasite/2023064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Tsetse flies (Diptera: Glossinidae) are vectors of the tropical neglected diseases sleeping sickness in humans and nagana in animals. The elimination of these diseases is linked to control of the vector. The sterile insect technique (SIT) is an environment-friendly method that has been shown to be effective when applied in an area-wide integrated pest management approach. However, as irradiated males conserve their vectorial competence, there is the potential risk of trypanosome transmission with their release in the field. Analyzing the interaction between the tsetse fly and its microbiota, and between different microbiota and the trypanosome, might provide important information to enhance the fly's resistance to trypanosome infection. This study on the prevalence of Spiroplasma in wild populations of seven tsetse species from East, West, Central and Southern Africa showed that Spiroplasma is present only in Glossina fuscipes fuscipes and Glossina tachinoides. In G. tachinoides, a significant deviation from independence in co-infection with Spiroplasma and Trypanosoma spp. was observed. Moreover, Spiroplasma infections seem to significantly reduce the density of the trypanosomes, suggesting that Spiroplasma might enhance tsetse fly's refractoriness to the trypanosome infections. This finding might be useful to reduce risks associated with the release of sterile males during SIT implementation in trypanosome endemic areas.
Collapse
Affiliation(s)
- Kiswend-Sida M Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
- Insectarium de Bobo Dioulasso – Campagne d’Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT) 01 BP 1087 Bobo Dioulasso 01 Burkina Faso
| | - Mouhamadou M Dieng
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
- Université Gaston Berger Saint Louis Senegal
| | - Percy Moyaba
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research (ARC-OVR) Pretoria South Africa
| | - Gisele MS Ouedraogo
- Insectarium de Bobo Dioulasso – Campagne d’Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT) 01 BP 1087 Bobo Dioulasso 01 Burkina Faso
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo Dioulasso – Campagne d’Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT) 01 BP 1087 Bobo Dioulasso 01 Burkina Faso
- University of Dedougou B.P. 176 Dédougou 01 Burkina Faso
| | - Flobert Njokou
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaounde I Po. Box 812 Yaoundé Cameroon
| | | | - Chantel J de Beer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
| | - Robert L Mach
- Institute of Chemical, Environmental, and Bioscience Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a 1060 Vienna Austria
| | - Marc JB Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
| | - Adly MM Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
| |
Collapse
|
5
|
Dieng MM, Augustinos AA, Demirbas-Uzel G, Doudoumis V, Parker AG, Tsiamis G, Mach RL, Bourtzis K, Abd-Alla AMM. Interactions between Glossina pallidipes salivary gland hypertrophy virus and tsetse endosymbionts in wild tsetse populations. Parasit Vectors 2022; 15:447. [PMID: 36447246 PMCID: PMC9707009 DOI: 10.1186/s13071-022-05536-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host. METHODS In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR. RESULTS The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 103.31 seem to be absent when Wolbachia infection is present at high density (> 107.36), suggesting a potential protective role of Wolbachia against GpSGHV. CONCLUSION The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.
Collapse
Affiliation(s)
- Mouhamadou M. Dieng
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Antonios A. Augustinos
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Department of Plant Protection, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization-Demeter, 26442 Patras, Greece
| | - Güler Demirbas-Uzel
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Vangelis Doudoumis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Andrew G. Parker
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria ,Present Address: Roppersbergweg 15, 2381 Laab im Walde, Austria
| | - George Tsiamis
- grid.11047.330000 0004 0576 5395Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi Str., 30100 Agrinio, Greece
| | - Robert L. Mach
- grid.5329.d0000 0001 2348 4034Institute of Chemical, Environmental, and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Kostas Bourtzis
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| | - Adly M. M. Abd-Alla
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Wagrammer Straße 5, 100, 1400 Vienna, Austria
| |
Collapse
|
6
|
Vreysen MJB, Abd-Alla AMM, Bourtzis K, Bouyer J, Caceres C, de Beer C, Oliveira Carvalho D, Maiga H, Mamai W, Nikolouli K, Yamada H, Pereira R. The Insect Pest Control Laboratory of the Joint FAO/IAEA Programme: Ten Years (2010-2020) of Research and Development, Achievements and Challenges in Support of the Sterile Insect Technique. INSECTS 2021; 12:346. [PMID: 33924539 PMCID: PMC8070182 DOI: 10.3390/insects12040346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
The Joint FAO/IAEA Centre (formerly called Division) of Nuclear Techniques in Food and Agriculture was established in 1964 and its accompanying laboratories in 1961. One of its subprograms deals with insect pest control, and has the mandate to develop and implement the sterile insect technique (SIT) for selected key insect pests, with the goal of reducing the use of insecticides, reducing animal and crop losses, protecting the environment, facilitating international trade in agricultural commodities and improving human health. Since its inception, the Insect Pest Control Laboratory (IPCL) (formerly named Entomology Unit) has been implementing research in relation to the development of the SIT package for insect pests of crops, livestock and human health. This paper provides a review of research carried out between 2010 and 2020 at the IPCL. Research on plant pests has focused on the development of genetic sexing strains, characterizing and assessing the performance of these strains (e.g., Ceratitis capitata), elucidation of the taxonomic status of several members of the Bactrocera dorsalis and Anastrepha fraterculus complexes, the use of microbiota as probiotics, genomics, supplements to improve the performance of the reared insects, and the development of the SIT package for fruit fly species such as Bactrocera oleae and Drosophila suzukii. Research on livestock pests has focused on colony maintenance and establishment, tsetse symbionts and pathogens, sex separation, morphology, sterile male quality, radiation biology, mating behavior and transportation and release systems. Research with human disease vectors has focused on the development of genetic sexing strains (Anopheles arabiensis, Aedes aegypti and Aedes albopictus), the development of a more cost-effective larvae and adult rearing system, assessing various aspects of radiation biology, characterizing symbionts and pathogens, studying mating behavior and the development of quality control procedures, and handling and release methods. During the review period, 13 coordinated research projects (CRPs) were completed and six are still being implemented. At the end of each CRP, the results were published in a special issue of a peer-reviewed journal. The review concludes with an overview of future challenges, such as the need to adhere to a phased conditional approach for the implementation of operational SIT programs, the need to make the SIT more cost effective, to respond with demand driven research to solve the problems faced by the operational SIT programs and the use of the SIT to address a multitude of exotic species that are being introduced, due to globalization, and established in areas where they could not survive before, due to climate change.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hanano Yamada
- Insect Pest Control Subprogramme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, A-1400 Vienna, Austria; (M.J.B.V.); (A.M.M.A.-A.); (K.B.); (J.B.); (C.C.); (C.d.B.); (D.O.C.); (H.M.); (W.M.); (K.N.); (R.P.)
| | | |
Collapse
|
7
|
Inflammation following trypanosome infection and persistence in the skin. Curr Opin Immunol 2020; 66:65-73. [PMID: 32446136 DOI: 10.1016/j.coi.2020.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Human African trypanosomes rely for their transmission on tsetse flies (Glossina sp.) that inoculate parasites into the skin during blood feeding. The absence of a protective vaccine, limited knowledge about the infection immunology, and the existence of asymptomatic carriers sustaining transmission are major outstanding challenges towards elimination. All these relate to the skin where (i) parasites persist and transmit to tsetse flies and (ii) a successful vaccination strategy should ideally be effective. Host immune processes and parasite strategies that underlie early infection and skin tropism are essential aspects to comprehend the transmission-success of trypanosomes and the failure in vaccine development. Recent insights into the early infection establishment may pave the way to novel strategies aimed at blocking transmission.
Collapse
|
8
|
Rath CT, Schnellrath LC, Damaso CR, de Arruda LB, Vasconcelos PFDC, Gomes C, Laurenti MD, Calegari Silva TC, Vivarini ÁDC, Fasel N, Pereira RMS, Lopes UG. Amazonian Phlebovirus (Bunyaviridae) potentiates the infection of Leishmania (Leishmania) amazonensis: Role of the PKR/IFN1/IL-10 axis. PLoS Negl Trop Dis 2019; 13:e0007500. [PMID: 31216268 PMCID: PMC6602282 DOI: 10.1371/journal.pntd.0007500] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/01/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Leishmania parasites are transmitted to vertebrate hosts by phlebotomine sandflies and, in humans, may cause tegumentary or visceral leishmaniasis. The role of PKR (dsRNA activated kinase) and Toll-like receptor 3 (TLR3) activation in the control of Leishmania infection highlights the importance of the engagement of RNA sensors, which are usually involved in the antiviral cell response, in the fate of parasitism by Leishmania. We tested the hypothesis that Phlebovirus, a subgroup of the Bunyaviridae, transmitted by sandflies, would interfere with Leishmania infection. METHODOLOGY/PRINCIPAL FINDINGS We tested two Phlebovirus isolates, Icoaraci and Pacui, from the rodents Nectomys sp. and Oryzomys sp., respectively, both natural sylvatic reservoir of Leishmania (Leishmania) amazonensis from the Amazon region. Phlebovirus coinfection with L. (L.) amazonensis in murine macrophages led to increased intracellular growth of L. (L.) amazonensis. Further studies with Icoaraci coinfection revealed the requirement of the PKR/IFN1 axis on the exacerbation of the parasite infection. L. (L.) amazonensis and Phlebovirus coinfection potentiated PKR activation and synergistically induced the expression of IFNβ and IL-10. Importantly, in vivo coinfection of C57BL/6 mice corroborated the in vitro data. The exacerbation effect of RNA virus on parasite infection may be specific because coinfection with dengue virus (DENV2) exerted the opposite effect on parasite load. CONCLUSIONS Altogether, our data suggest that coinfections with specific RNA viruses shared by vectors or reservoirs of Leishmania may enhance and sustain the activation of host cellular RNA sensors, resulting in aggravation of the parasite infection. The present work highlights new perspectives for the investigation of antiviral pathways as important modulators of protozoan infections.
Collapse
Affiliation(s)
- Carolina Torturella Rath
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laila Castro Schnellrath
- Laboratory of Molecular Biology of Virus, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa R. Damaso
- Laboratory of Molecular Biology of Virus, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Barros de Arruda
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Claudia Gomes
- Department of Pathology, Medical School, University of São Paulo, Brazil
| | | | - Teresa Cristina Calegari Silva
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Áislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Switzerland
| | - Renata Meirelles Santos Pereira
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (RMSP); (UGL)
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (RMSP); (UGL)
| |
Collapse
|
9
|
Odeniran PO, Macleod ET, Ademola IO, Welburn SC. Endosymbionts interaction with trypanosomes in Palpalis group of Glossina captured in southwest Nigeria. Parasitol Int 2019; 70:64-69. [DOI: 10.1016/j.parint.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
|
10
|
Kariithi HM, Meki IK, Schneider DI, De Vooght L, Khamis FM, Geiger A, Demirbaş-Uzel G, Vlak JM, iNCE IA, Kelm S, Njiokou F, Wamwiri FN, Malele II, Weiss BL, Abd-Alla AMM. Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives. BMC Microbiol 2018; 18:179. [PMID: 30470182 PMCID: PMC6251094 DOI: 10.1186/s12866-018-1280-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - Daniela I Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, 00100, Nairobi, Kenya
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Guler Demirbaş-Uzel
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - ikbal Agah iNCE
- Institute of Chemical, Environmental & Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Sorge Kelm
- Department of Medical Microbiology, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, 34752, Ataşehir, Istanbul, Turkey
| | - Flobert Njiokou
- Centre for Biomolecular Interactions Bremen, Faculty for Biology & Chemistry, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Florence N Wamwiri
- Laboratory of Parasitology and Ecology, Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, BP 812 Cameroon
| | - Imna I Malele
- Trypanosomiasis Research Centre, Kenya Agricultural & Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Adly M M Abd-Alla
- Molecular Department, Vector and Vector Borne Diseases Institute, Tanzania Veterinary Laboratory Agency, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| |
Collapse
|