1
|
Yan S, Zhang Y, Huang J, Liu Y, Li S. Comparative Study of Gut Microbiome in Urban and Rural Eurasian Tree Sparrows. Animals (Basel) 2024; 14:3497. [PMID: 39682463 DOI: 10.3390/ani14233497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Gut microbiota play a significant role in various physiological functions, including digestion, nutritional metabolism, and host immune function. The composition of these gut microbes is largely influenced by habitats. This study examines the gut microbiota of the Eurasian tree sparrow (Passer montanus) inhabiting rural and urban environments to understand the effects of habitat variation on microbial composition. We captured 36 rural and 29 urban adult tree sparrows and observed minor differences in body mass but substantial differences in foraging microhabitats between the two groups. Fecal samples from adult males with similar body mass were selected for a gut microbiome analysis to mitigate potential confounding effects, resulting in 20 successfully sequenced samples. The analysis disclosed disparities in gut microbiota diversity and composition between rural and urban sparrows. The urban group demonstrated slightly higher alpha diversity and distinct dominant phyla and genera compared to the rural group. Additionally, differences in the relative abundance of potentially pathogenic bacteria were observed between the groups. Several potentially pathogenic bacteria (e.g., TM7, Staphylococcus, Helicobacter, and Shigella) were more abundant in the urban group, suggesting that tree sparrows may act as transmission vectors and develop stronger immune systems. This could potentially facilitate pathogen dissemination while also contributing to the natural cycling of nutrients and maintaining ecosystem health in urban environments. The beta diversity analysis confirmed structural differences in microbial communities, implicating habitat variation as a contributing factor. Furthermore, the LEfSe analysis emphasized significant differences in gut bacteria abundance (across two phyla, three classes, six orders, seven families, and eight genera) between urban and rural sparrows, with predicted functional differences in metabolic pathways. Notably, lipid metabolism was enriched in urban sparrows, indicating enhanced lipid synthesis and metabolism in urban habitats. In conclusion, this study underscores the profound influence of habitat on the gut microbiota composition and functional potential in tree sparrows. Our findings highlight that urbanization alters the gut microbes and, consequently, the physiological functions of bird species.
Collapse
Affiliation(s)
- Shuai Yan
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Yu Zhang
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Ji Huang
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Yingbao Liu
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
| | - Shaobin Li
- College of Life Sciences, Yangtze University, Jingzhou 434025, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| |
Collapse
|
2
|
Loncaric I, Szostak MP, Cabal-Rosel A, Grünzweil OM, Riegelnegg A, Misic D, Müller E, Feßler AT, Braun SD, Schwarz S, Monecke S, Ehricht R, Ruppitsch W, Spergser J, Lewis A, Bloom PH, Saggese MD. Molecular characterization, virulence and antimicrobial and biocidal susceptibility of selected bacteria isolated from the cloaca of nestling ospreys (Pandion haliaetus) from Mono Lake, California, USA. PLoS One 2024; 19:e0311306. [PMID: 39331631 PMCID: PMC11432900 DOI: 10.1371/journal.pone.0311306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
In the present study, the presence of the Enterobacterales, Staphylococcus spp., Mammaliicoccus spp., and Enterococcus spp. in cloacal samples of nestling ospreys (Pandion haliaetus), a fish-eating specialist, from Mono Lake, California, USA was examined by a multiphasic approach, including antimicrobial and biocide susceptibility testing, genotyping, and whole genome sequencing of selected isolates. The most commonly detected species was Escherichia coli, followed by Mammaliicoccus sciuri, Staphylococcus delphini, Enterococcus faecalis, Enterococcus faecium, Hafnia alvei, Klebsiella pneumoniae, Citrobacter braakii and single isolates of Edwardsiella tarda, Edwardsiella albertii, Klebsiella aerogenes, Plesiomonas shigelloides and Staphylococcus pseudintermedius. Multi-drug resistance (MDR) was observed in two E. coli isolates and in an Enterococcus faecium isolate. The MDR blaCTX-M-55-positive E. coli belonged to the pandemic clone ST58. The results of the present study suggest that nestling ospreys are exposed to MDR bacteria, possibly through the ingestion of contaminated fish. Ospreys may be good biosentinels for the presence of these microorganisms and antibiotic resistance in the local environment and the risk for other wildlife, livestock and humans.
Collapse
Affiliation(s)
- Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael P Szostak
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Adriana Cabal-Rosel
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Olivia M Grünzweil
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alina Riegelnegg
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dusan Misic
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Andrea T Feßler
- Centre of Infection Medicine, School of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Stefan Schwarz
- Centre of Infection Medicine, School of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinik Dresden, Dresden, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ashli Lewis
- California State Parks, Grass Valley, CA, United States of America
| | - Peter H Bloom
- Bloom Research Inc, Santa Ana, CA, United States of America
| | - Miguel D Saggese
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States of America
| |
Collapse
|
3
|
Wang Y, Zhai J, Tang B, Dong Y, Sun S, He S, Zhao W, Lancuo Z, Jia Q, Wang W. Metagenomic comparison of gut communities between wild and captive Himalayan griffons. Front Vet Sci 2024; 11:1403932. [PMID: 38784654 PMCID: PMC11112026 DOI: 10.3389/fvets.2024.1403932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Himalayan griffons (Gyps himalayensis), known as the scavenger of nature, are large scavenging raptors widely distributed on the Qinghai-Tibetan Plateau and play an important role in maintaining the balance of the plateau ecosystem. The gut microbiome is essential for host health, helping to maintain homeostasis, improving digestive efficiency, and promoting the development of the immune system. Changes in environment and diet can affect the composition and function of gut microbiota, ultimately impacting the host health and adaptation. Captive rearing is considered to be a way to protect Himalayan griffons and increase their population size. However, the effects of captivity on the structure and function of the gut microbial communities of Himalayan griffons are poorly understood. Still, availability of sequenced metagenomes and functional information for most griffons gut microbes remains limited. Methods In this study, metagenome sequencing was used to analyze the composition and functional structures of the gut microbiota of Himalayan griffons under wild and captive conditions. Results Our results showed no significant differences in the alpha diversity between the two groups, but significant differences in beta diversity. Taxonomic classification revealed that the most abundant phyla in the gut of Himalayan griffons were Fusobacteriota, Proteobacteria, Firmicutes_A, Bacteroidota, Firmicutes, Actinobacteriota, and Campylobacterota. At the functional level, a series of Kyoto Encyclopedia of Genes and Genome (KEGG) functional pathways, carbohydrate-active enzymes (CAZymes) categories, virulence factor genes (VFGs), and pathogen-host interactions (PHI) were annotated and compared between the two groups. In addition, we recovered nearly 130 metagenome-assembled genomes (MAGs). Discussion In summary, the present study provided a first inventory of the microbial genes and metagenome-assembled genomes related to the Himalayan griffons, marking a crucial first step toward a wider investigation of the scavengers microbiomes with the ultimate goal to contribute to the conservation and management strategies for this near threatened bird.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jundie Zhai
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Boyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Yonggang Dong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Shengzhen Sun
- Animal Disease Prevention and Control Center of Qinghai Province, Xining, Qinghai, China
| | - Shunfu He
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Wenxin Zhao
- Xining Wildlife Park of Qinghai Province, Xining, Qinghai, China
| | - Zhuoma Lancuo
- College of Finance and Economics, Qinghai University, Xining, Qinghai, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Wen Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
4
|
Bunker ME, Weiss SL. The reproductive microbiome and maternal transmission of microbiota via eggs in Sceloporus virgatus. FEMS Microbiol Ecol 2024; 100:fiae011. [PMID: 38308517 PMCID: PMC10873522 DOI: 10.1093/femsec/fiae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Maternal transmission of microbes occurs across the animal kingdom and is vital for offspring development and long-term health. The mechanisms of this transfer are most well-studied in humans and other mammals but are less well-understood in egg-laying animals, especially those with no parental care. Here, we investigate the transfer of maternal microbes in the oviparous phrynosomatid lizard, Sceloporus virgatus. We compared the microbiota of three maternal tissues-oviduct, cloaca, and intestine-to three offspring sample types: egg contents and eggshells on the day of oviposition, and hatchling intestinal tissue on the day of hatching. We found that maternal identity is an important factor in hatchling microbiome composition, indicating that maternal transmission is occurring. The maternal cloacal and oviductal communities contribute to offspring microbiota in all three sample types, with minimal microbes sourced from maternal intestines. This indicates that the maternal reproductive microbiome is more important for microbial inheritance than the gut microbiome, and the tissue-level variation of the adult S. virgatus microbiota must develop as the hatchling matures. Despite differences between adult and hatchling communities, offspring microbiota were primarily members of the Enterobacteriaceae and Yersiniaceae families (Phylum Proteobacteria), consistent with this and past studies of adult S. virgatus microbiomes.
Collapse
Affiliation(s)
- Marie E Bunker
- Department of Biology, University of Puget Sound, 1500 N. Warner Street, Tacoma, WA 98416, United States
| | - Stacey L Weiss
- Department of Biology, University of Puget Sound, 1500 N. Warner Street, Tacoma, WA 98416, United States
| |
Collapse
|
5
|
Schmiedová L, Černá K, Li T, Těšický M, Kreisinger J, Vinkler M. Bacterial communities along parrot digestive and respiratory tracts: the effects of sample type, species and time. Int Microbiol 2024; 27:127-142. [PMID: 37222909 PMCID: PMC10830831 DOI: 10.1007/s10123-023-00372-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.
Collapse
Affiliation(s)
- Lucie Schmiedová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic.
| | - Kateřina Černá
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tao Li
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Zhu Y, Ma R, Hu L, Yang H, Gong H, He K. Structure, variation and assembly of body-wide microbiomes in endangered crested ibis Nipponia nippon. Mol Ecol 2024; 33:e17238. [PMID: 38108198 DOI: 10.1111/mec.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Limited knowledge of bird microbiome in the all-body niche hinders our understanding of host-microbial relationships and animal health. Here, we characterized the microbial composition of the crested ibis from 13 body sites, representing the cloaca, oral, feather and skin habitats, and explored assembly mechanism structuring the bacterial community of the four habitats respectively. The bacterial community characteristics were distinct among the four habitats. The skin harboured the highest alpha diversity and most diverse functions, followed by feather, oral and cloaca. Individual-specific features were observed when the skin and feathers were concentrated independently. Skin and feather samples of multiple body sites from the same individual were more similar than those from different individuals. Although a significant proportion of the microbiota in the host (85.7%-96.5%) was not derived from the environmental microbiome, as body sites became more exposed to the environment, the relative importance of neutral processes (random drift or dispersal) increased. Neutral processes were the most important contributor in shaping the feather microbiome communities (R2 = .859). A higher percentage of taxa (29.3%) on the skin were selected by hosts compared to taxa on other body habitats. This study demonstrated that niche speciation and partial neutral processes, rather than environmental sources, contribute to microbiome variation in the crested ibis. These results enhance our knowledge of baseline microbial diversity in birds and will aid health management in crested ibises in the future.
Collapse
Affiliation(s)
- Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Provincial Key Laboratory for Alpine Grassland Conservation and Utilization on Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Ruifeng Ma
- Institute of Qinghai-Tibetan Plateau, Provincial Key Laboratory for Alpine Grassland Conservation and Utilization on Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Lei Hu
- Institute of Qinghai-Tibetan Plateau, Provincial Key Laboratory for Alpine Grassland Conservation and Utilization on Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Haiqiong Yang
- Emei Breeding Center for Crested Ibis, Emei, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haizhou Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
7
|
Graciette AGC, Hoopes LA, Clauss T, Stewart FJ, Pratte ZA. The microbiome of African penguins (Spheniscus demersus) under managed care resembles that of wild marine mammals and birds. Sci Rep 2023; 13:16679. [PMID: 37794122 PMCID: PMC10551019 DOI: 10.1038/s41598-023-43899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023] Open
Abstract
Animals under managed care in zoos and aquariums are ideal surrogate study subjects for endangered species that are difficult to obtain in the wild. We compared the fecal and oral microbiomes of healthy, managed African penguins (Spheniscus demersus) to those of other domestic and wild vertebrate hosts to determine how host identity, diet, and environment shape the penguin microbiome. The African penguin oral microbiome was more similar to that of piscivorous marine mammals, suggesting that diet and a marine environment together play a strong role in shaping the oral microbiome. Conversely, the penguin cloaca/fecal microbiome was more similar to that of other birds, suggesting that host phylogeny plays a significant role in shaping the gut microbiome. Although the penguins were born under managed care, they had a gut microbiome more similar to that of wild bird species compared to domesticated (factory-farmed) birds, suggesting that the managed care environment and diet resemble those experienced by wild birds. Finally, the microbiome composition at external body sites was broadly similar to that of the habitat, suggesting sharing of microbes between animals and their environment. Future studies should link these results to microbial functional capacity and host health, which will help inform conservation efforts.
Collapse
Affiliation(s)
- Ana G Clavere Graciette
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Frank J Stewart
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, USA
| | - Zoe A Pratte
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
8
|
Alba C, Sansano-Maestre J, Cid Vázquez MD, Martínez-Herrero MDC, Garijo-Toledo MM, Azami-Conesa I, Moraleda Fernández V, Gómez-Muñoz MT, Rodríguez JM. Captive Breeding and Trichomonas gallinae Alter the Oral Microbiome of Bonelli's Eagle Chicks. MICROBIAL ECOLOGY 2023; 85:1541-1551. [PMID: 35385973 PMCID: PMC10167124 DOI: 10.1007/s00248-022-02002-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/18/2022] [Indexed: 05/10/2023]
Abstract
Bonelli's eagle (Aquila fasciata) is an endangered raptor species in Europe, and trichomonosis is one of the menaces affecting chicks at nest. In this paper, we attempt to describe the oral microbiome of Bonelli's eagle nestlings and evaluate the influence of several factors, such as captivity breeding, Trichomonas gallinae infection, and the presence of lesions at the oropharynx. The core oral microbiome of Bonelli's eagle is composed of Firmicutes, Bacteroidota, Fusobacteria and Proteobacteria as the most abundant phyla, and Megamonas and Bacteroides as the most abundant genera. None of the factors analysed showed a significant influence on alfa diversity, but beta diversity was affected for some of them. Captivity breeding exerted a high influence on the composition of the oral microbiome, with significant differences in the four most abundant phyla, with a relative increase of Proteobacteria and a decrease of the other three phyla in comparison with chicks bred at nest. Some genera were more abundant in captivity bred chicks, such as Escherichia-Shigella, Enterococcus, Lactobacillus, Corynebacterium, Clostridium and Staphylococcus, while Bacteroides, Oceanivirga, Peptostreptococcus, Gemella, Veillonella, Mycoplasma, Suttonella, Alloscardovia, Varibaculum and Campylobacter were more abundant in nest raised chicks. T. gallinae infection slightly influenced the composition of the microbiome, but chicks displaying trichomonosis lesions had a higher relative abundance of Bacteroides and Gemella, being the last one an opportunistic pathogen of abscess complications in humans. Raptor's microbiomes are scarcely studied. This is the first study on the factors that influence the oral microbiome of Bonelli's eagle.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain
| | - José Sansano-Maestre
- Department of Animal Production and Public Health, Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia, Valencia, Spain
| | - María Dolores Cid Vázquez
- Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain
| | - María Del Carmen Martínez-Herrero
- Department of Animal Production and Health, Public Veterinary Health and Food Science and Technology, Faculty of Veterinary Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - María Magdalena Garijo-Toledo
- Department of Animal Production and Health, Public Veterinary Health and Food Science and Technology, Faculty of Veterinary Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Iris Azami-Conesa
- Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain
| | | | - María Teresa Gómez-Muñoz
- Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain.
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
9
|
Rohrer SD, Jiménez-Uzcátegui G, Parker PG, Chubiz LM. Composition and function of the Galapagos penguin gut microbiome vary with age, location, and a putative bacterial pathogen. Sci Rep 2023; 13:5358. [PMID: 37005428 PMCID: PMC10067942 DOI: 10.1038/s41598-023-31826-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Microbial colonization plays a direct role in host health. Understanding the ecology of the resident microbial community for a given host species is thus an important step for detecting population vulnerabilities like disease. However, the idea of integrating microbiome research into conservation is still relatively new, and wild birds have received less attention in this field than mammals or domesticated animals. Here we examine the composition and function of the gut microbiome of the endangered Galapagos penguin (Spheniscus mendiculus) with the goals of characterizing the normal microbial community and resistome, identifying likely pathogens, and testing hypotheses of structuring forces for this community based on demographics, location, and infection status. We collected fecal samples from wild penguins in 2018 and performed 16S rRNA gene sequencing and whole genome sequencing (WGS) on extracted DNA. 16S sequencing revealed that the bacterial phyla Fusobacteria, Epsilonbacteraeota, Firmicutes, and Proteobacteria dominate the community. Functional pathways were computed from WGS data, showing genetic functional potential primarily focused on metabolism-amino acid metabolism, carbohydrate metabolism, and energy metabolism are the most well-represented functional groups. WGS samples were each screened for antimicrobial resistance, characterizing a resistome made up of nine antibiotic resistance genes. Samples were screened for potential enteric pathogens using virulence factors as indicators; Clostridium perfringens was revealed as a likely pathogen. Overall, three factors appear to be shaping the alpha and beta diversity of the microbial community: penguin developmental stage, sampling location, and C. perfringens. We found that juvenile penguins have significantly lower alpha diversity than adults based on three metrics, as well as significantly different beta diversity. Location effects are minimal, but one site has significantly lower Shannon diversity than the other primary sites. Finally, when samples were grouped by C. perfringens virulence factors, we found dramatic changes in beta diversity based on operational taxonomic units, protein families, and functional pathways. This study provides a baseline microbiome for an endangered species, implicates both penguin age and the presence of a potential bacterial pathogen as primary factors associated with microbial community variance, and reveals widespread antibiotic resistance genes across the population.
Collapse
Affiliation(s)
- Sage D Rohrer
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., St. Louis, MO, 63121, USA.
| | | | - Patricia G Parker
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., St. Louis, MO, 63121, USA
- WildCare Institute, Saint Louis Zoo, One Government Drive, St. Louis, MO, 63110, USA
| | - Lon M Chubiz
- Department of Biology and Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, One University Blvd., St. Louis, MO, 63121, USA
| |
Collapse
|
10
|
Bunker ME, Weiss SL. Cloacal microbiomes of sympatric and allopatric Sceloporus lizards vary with environment and host relatedness. PLoS One 2022; 17:e0279288. [PMID: 36548265 PMCID: PMC9779040 DOI: 10.1371/journal.pone.0279288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Animals and their microbiomes exert reciprocal influence; the host's environment, physiology, and phylogeny can impact the composition of the microbiome, while the microbes present can affect host behavior, health, and fitness. While some microbiomes are highly malleable, specialized microbiomes that provide important functions can be more robust to environmental perturbations. Recent evidence suggests Sceloporus virgatus has one such specialized microbiome, which functions to protect eggs from fungal pathogens during incubation. Here, we examine the cloacal microbiome of three different Sceloporus species (spiny lizards; Family Phrynosomatidae)-Sceloporus virgatus, Sceloporus jarrovii, and Sceloporus occidentalis. We compare two species with different reproductive modes (oviparous vs. viviparous) living in sympatry: S. virgatus and S. jarrovii. We compare sister species living in similar habitats (riparian oak-pine woodlands) but different latitudes: S. virgatus and S. occidentalis. And, we compare three populations of one species (S. occidentalis) living in different habitat types: beach, low elevation forest, and the riparian woodland. We found differences in beta diversity metrics between all three comparisons, although those differences were more extreme between animals in different environments, even though those populations were more closely related. Similarly, alpha diversity varied among the S. occidentalis populations and between S. occidentalis and S. virgatus, but not between sympatric S. virgatus and S. jarrovii. Despite these differences, all three species and all three populations of S. occcidentalis had the same dominant taxon, Enterobacteriaceae. The majority of the variation between groups was in low abundance taxa and at the ASV level; these taxa are responsive to habitat differences, geographic distance, and host relatedness. Uncovering what factors influence the composition of wild microbiomes is important to understanding the ecology and evolution of the host animals, and can lead to more detailed exploration of the function of particular microbes and the community as a whole.
Collapse
Affiliation(s)
- Marie E. Bunker
- University of Puget Sound, Tacoma, WA, United States of America
| | - Stacey L. Weiss
- University of Puget Sound, Tacoma, WA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Perez-Marron J, Sanders C, Gomez E, Escopete S, Owerkowicz T, Orwin PM. Community and shotgun metagenomic analysis of Alligator mississippiensis oral cavity and GI tracts reveal complex ecosystems and potential reservoirs of antibiotic resistance. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111319. [PMID: 36115554 DOI: 10.1016/j.cbpa.2022.111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
We report here the community structure and functional analysis of the microbiome of the Alligator mississippiensis GI tract from the oral cavity through the entirety of the digestive tract. Although many vertebrate microbiomes have been studied in recent years, the archosaur microbiome has only been given cursory attention. In the oral cavity we used amplicon-based community analysis to examine the structure of the oral microbiome during alligator development. We found a community that diversified over time and showed many of the hallmarks we would expect of a stable oral community. This is a bit surprising given the rapid turnover of alligator teeth but suggests that the stable gumline microbes are able to rapidly colonize the emerging teeth. As we move down the digestive tract, we were able to use both long and short read sequencing approaches to evaluate the community using a shotgun metagenomics approach. Long read sequencing was applied to samples from the stomach/duodenum, and the colorectal region, revealing a fairly uniform and low complexity community made up primarily of proteobacteria at the top of the gut and much more diversity in the colon. We used deep short read sequencing to further interrogate this colorectal community. The two sequencing approaches were concordant with respect to community structure but substantially more detail was available in the short read data, in spite of high levels of host DNA contamination. Using both approaches we were able to show that the colorectal community is a potential reservoir for antibiotic resistance, human pathogens such as Clostridiodes difficile and a possible source of novel antimicrobials or other useful secondary metabolites.
Collapse
Affiliation(s)
| | - Ciara Sanders
- Biology Department, California State University at San Bernardino, San Bernardino, CA, USA. https://twitter.com/cisanders
| | - Esther Gomez
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Sean Escopete
- Biology Department, California State University at San Bernardino, San Bernardino, CA, USA
| | - Tomasz Owerkowicz
- Biology Department, California State University at San Bernardino, San Bernardino, CA, USA
| | - Paul M Orwin
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA.
| |
Collapse
|
12
|
Bunker ME, Arnold AE, Weiss SL. Wild microbiomes of striped plateau lizards vary with reproductive season, sex, and body size. Sci Rep 2022; 12:20643. [PMID: 36450782 PMCID: PMC9712514 DOI: 10.1038/s41598-022-24518-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
Long-term studies of animal microbiomes under natural conditions are valuable for understanding the effects of host demographics and environmental factors on host-associated microbial communities, and how those effects interact and shift over time. We examined how the cloacal microbiome of wild Sceloporus virgatus (the striped plateau lizard) varies under natural conditions in a multi-year study. Cloacal swabs were collected from wild-caught lizards across their entire active season and over three years in southeastern Arizona, USA. Analyses of 16S rRNA data generated on the Illumina platform revealed that cloacal microbiomes of S. virgatus vary as a function of season, sex, body size, and reproductive state, and do so independently of one another. Briefly, microbial diversity was lowest in both sexes during the reproductive season, was higher in females than in males, and was lowest in females when they were vitellogenic, and microbiome composition varied across seasons, sexes, and sizes. The pattern of decreased diversity during reproductive periods with increased sociality is surprising, as studies in other systems often suggest that microbial diversity generally increases with sociality. The cloacal microbiome was not affected significantly by hibernation and was relatively stable from year to year. This study highlights the importance of long term, wide-scale microbiome studies for capturing accurate perspectives on microbiome diversity and composition in animals. It also serves as a warning for comparisons of microbiomes across species, as each may be under a different suite of selective pressures or exhibit short-term variation from external or innate factors, which may differ in a species-specific manner.
Collapse
Affiliation(s)
- Marie E. Bunker
- grid.267047.00000 0001 2105 7936Department of Biology, University of Puget Sound, Tacoma, WA USA
| | - A. Elizabeth Arnold
- grid.134563.60000 0001 2168 186XSchool of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ USA
| | - Stacey L. Weiss
- grid.267047.00000 0001 2105 7936Department of Biology, University of Puget Sound, Tacoma, WA USA
| |
Collapse
|
13
|
Du Y, Chen JQ, Liu Q, Fu JC, Lin CX, Lin LH, Li H, Qu YF, Ji X. Dietary Correlates of Oral and Gut Microbiota in the Water Monitor Lizard, Varanus salvator (Laurenti, 1768). Front Microbiol 2022; 12:771527. [PMID: 35069477 PMCID: PMC8770915 DOI: 10.3389/fmicb.2021.771527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Numerous studies have demonstrated that food shapes the structure and composition of the host’s oral and gut microbiota. The disorder of oral and gut microbiota may trigger various host diseases. Here, we collected oral and gut samples from wild water monitor lizards (Varanus salvator) and their captive conspecifics fed with bullfrogs, eggs, and depilated chicken, aiming to examine dietary correlates of oral and gut microbiota. We used the 16S rRNA gene sequencing technology to analyze the composition of the microbiota. Proteobacteria and Bacteroidota were the dominant phyla in the oral microbiota, and so were in the gut microbiota. The alpha diversity of microbiota was significantly higher in the gut than in the oral cavity, and the alpha diversity of oral microbiota was higher in captive lizards than in wild conspecifics. Comparing the relative abundance of oral and gut bacteria and their gene functions, differences among different animal groups presumably resulted from human contact in artificial breeding environments and complex food processing. Differences in gene function might be related to the absolute number and/or the taxonomic abundance of oral and gut microorganisms in the wild and the water environment. This study provides not only basic information about the oral and gut microbiota of captive and wild water monitor lizards, but also an inference that feeding on frogs and aquatic products and reducing human exposure help water monitor lizards maintain a microbiota similar to that in the wild environment.
Collapse
Affiliation(s)
- Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, China
| | - Jun-Qiong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qian Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jian-Chao Fu
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, China
| | - Chi-Xian Lin
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, China.,Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| |
Collapse
|
14
|
Bunker ME, Martin MO, Weiss SL. Recovered microbiome of an oviparous lizard differs across gut and reproductive tissues, cloacal swabs, and faeces. Mol Ecol Resour 2021; 22:1693-1705. [PMID: 34894079 DOI: 10.1111/1755-0998.13573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
Microbial diversity and community function are related, and can be highly specialized in different gut regions. The cloacal microbiome of Sceloporus virgatus females provides antifungal protection to eggshells, a specialized function that suggests a specialized microbiome. Here, we describe the cloacal, intestinal, and oviductal microbiome from S. virgatus gravid females, adding to growing evidence of microbiome localization in reptiles and other taxa. We further assessed whether common methods for sampling gastrointestinal (GI) microbes - cloacal swabs and faeces - provide accurate representations of these microbial communities. We found that different regions of the gut had unique microbial communities. The cloacal microbiome showed extreme specialization averaging 99% Proteobacteria (Phylum) and 83% Enterobacteriacaea (Family). Enterobacteriacaea decreased up the GI and reproductive tracts. Cloacal swabs recovered communities similar to that of lower intestine and cloacal tissues. In contrast, faecal samples had much higher diversity and a distinct composition (common Phyla: 62% Firmicutes, 18% Bacteroidetes, 10% Proteobacteria; common families: 39% Lachnospiraceae, 11% Ruminococcaceae, 11% Bacteroidaceae) relative to all gut regions. The common families in faecal samples made up <1% of cloacal tissue samples, increasing to 43% at the upper intestine. Similarly, the common families in gut tissue (Enterobacteriaceae and Helicobacteraceae) made up <1% of the faecal microbiome. Further, we found that cloacal swabs taken shortly after defaecation may be contaminated with faecal matter. Our results serve as a caution against using faeces as a proxy for GI microbes, and may help explain high between-sample variation seen in some studies using cloacal swabs.
Collapse
Affiliation(s)
- Marie E Bunker
- Department of Biology, University of Puget Sound, Tacoma, Washington, USA
| | - Mark O Martin
- Department of Biology, University of Puget Sound, Tacoma, Washington, USA
| | - Stacey L Weiss
- Department of Biology, University of Puget Sound, Tacoma, Washington, USA
| |
Collapse
|
15
|
Bunker ME, Elliott G, Heyer-Gray H, Martin MO, Arnold AE, Weiss SL. Vertically transmitted microbiome protects eggs from fungal infection and egg failure. Anim Microbiome 2021; 3:43. [PMID: 34134779 PMCID: PMC8207602 DOI: 10.1186/s42523-021-00104-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/31/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Beneficial microbes can be vertically transmitted from mother to offspring in many organisms. In oviparous animals, bacterial transfer to eggs may improve egg success by inhibiting fungal attachment and infection from pathogenic microbes in the nest environment. Vertical transfer of these egg-protective bacteria may be facilitated through behavioral mechanisms such as egg-tending, but many species do not provide parental care. Thus, an important mechanism of vertical transfer may be the passage of the egg through the maternal cloaca during oviposition itself. In this study, we examined how oviposition affects eggshell microbial communities, fungal attachment, hatch success, and offspring phenotype in the striped plateau lizard, Sceloporus virgatus, a species with no post-oviposition parental care. RESULTS Relative to dissected eggs that did not pass through the cloaca, oviposited eggs had more bacteria and fewer fungal hyphae when examined with a scanning electron microscope. Using high throughput Illumina sequencing, we also found a difference in the bacterial communities of eggshells that did and did not pass through the cloaca, and the diversity of eggshell communities tended to correlate with maternal cloacal diversity only for oviposited eggs, and not for dissected eggs, indicating that vertical transmission of microbes is occurring. Further, we found that oviposited eggs had greater hatch success and led to larger offspring than those that were dissected. CONCLUSIONS Overall, our results indicate that female S. virgatus lizards transfer beneficial microbes from their cloaca onto their eggs during oviposition, and that these microbes reduce fungal colonization and infection of eggs during incubation and increase female fitness. Cloacal transfer of egg-protective bacteria may be common among oviparous species, and may be especially advantageous to species that lack parental care.
Collapse
Affiliation(s)
- M. E. Bunker
- Department of Biology, University of Puget Sound, Tacoma, WA USA
| | - G. Elliott
- Department of Biology, University of Puget Sound, Tacoma, WA USA
| | - H. Heyer-Gray
- Department of Biology, University of Puget Sound, Tacoma, WA USA
| | - M. O. Martin
- Department of Biology, University of Puget Sound, Tacoma, WA USA
| | - A. E. Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, AZ Tucson, USA
| | - S. L. Weiss
- Department of Biology, University of Puget Sound, Tacoma, WA USA
| |
Collapse
|
16
|
Guan Y, Wang H, Gong Y, Ge J, Bao L. The gut microbiota in the common kestrel ( Falco tinnunculus): a report from the Beijing Raptor Rescue Center. PeerJ 2020; 8:e9970. [PMID: 33344069 PMCID: PMC7718788 DOI: 10.7717/peerj.9970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
As a complex microecological system, the gut microbiota plays crucial roles in many aspects, including immunology, physiology and development. The specific function and mechanism of the gut microbiota in birds are distinct due to their body structure, physiological attributes and life history. Data on the gut microbiota of the common kestrel, a second-class protected animal species in China, are currently scarce. With high-throughput sequencing technology, we characterized the bacterial community of the gut from nine fecal samples from a wounded common kestrel by sequencing the V3-V4 region of the 16S ribosomal RNA gene. Our results showed that Proteobacteria (41.078%), Firmicutes (40.923%) and Actinobacteria (11.191%) were the most predominant phyla. Lactobacillus (20.563%) was the most dominant genus, followed by Escherichia-Shigella (17.588%) and Acinetobacter (5.956%). Our results would offer fundamental data and direction for the wildlife rescue.
Collapse
Affiliation(s)
- Yu Guan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| | - Hongfang Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| | - Yinan Gong
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| | - Jianping Ge
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| | - Lei Bao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering and College of Life Science, Beijing Normal University, Beijing, China
| |
Collapse
|
17
|
Zhou L, Huo X, Liu B, Wu H, Feng J. Comparative Analysis of the Gut Microbial Communities of the Eurasian Kestrel ( Falco tinnunculus) at Different Developmental Stages. Front Microbiol 2020; 11:592539. [PMID: 33391209 PMCID: PMC7775371 DOI: 10.3389/fmicb.2020.592539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
The gut microflora play a very important role in the life of animals. Although an increasing number of studies have investigated the gut microbiota of birds in recent years, there is a lack of research work on the gut microbiota of wild birds, especially carnivorous raptors, which are thought to be pathogen vectors. There are also a lack of studies focused on the dynamics of the gut microbiota during development in raptors. In this study, 16S rRNA gene amplicon high-throughput sequencing was used to analyze the gut microbiota community composition of a medium-sized raptor, the Eurasian Kestrel (Falco tinnunculus), and to reveal stage-specific signatures in the gut microbiota of nestlings during the pre-fledging period. Moreover, differences in the gut microbiota between adults and nestlings in the same habitat were explored. The results indicated that the Eurasian Kestrel hosts a diverse assemblage of gut microbiota. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the primary phyla shared within the guts of adults and chicks. However, adults harbored higher abundances of Proteobacteria while nestlings exhibited higher abundances of Firmicutes and Actinobacteria, and consequently the majority of dominant genera observed in chicks differed from those in adults. Although no significant differences in diversity were observed across the age groups during nestling ontogeny, chicks from all growth stages harbored richer and more diverse bacterial communities than adults. In contrast, the differences in gut microbial communities between adults and younger nestlings were more pronounced. The gut microbes of the nestlings in the last growth stage were converged with those of the adults. This study provides basic reference data for investigations of the gut microbiota community structure of wild birds and deepens our understanding of the dynamics of the gut microflora during raptor development.
Collapse
Affiliation(s)
- Lei Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Xiaona Huo
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Boyu Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Hui Wu
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jiang Feng
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| |
Collapse
|
18
|
Ji F, Zhang D, Shao Y, Yu X, Liu X, Shan D, Wang Z. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Sci Rep 2020; 10:19978. [PMID: 33203893 PMCID: PMC7673032 DOI: 10.1038/s41598-020-76821-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 10/05/2020] [Indexed: 11/14/2022] Open
Abstract
Pigeons, as the only altricial birds in poultry, are the primary Trichomonas gallinae (T. gallinae) host. To study the effects of T. gallinae infection on gut microbiota, we compared the microbiota diversity and composition in gastrointestinal (GI) tracts of pigeons at the age of 14 and 21 day with different degrees of T. gallinae infection. Thirty-six nestling pigeons were divided into three groups: the healthy group, low-grade and high-grade trichomonosis group. Then, the crop, small intestine and rectum contents were obtained for sequencing of the 16S rRNA gene V3–V4 hypervariable region. The results showed that the microbiota diversity was higher in crop than in small intestine and rectum, and the abundance of Lactobacillus genus was dominant in small intestine and rectum of healthy pigeons at 21 days. T. gallinae infection decreased the microbiota richness in crop at 14 days. The abundance of the Firmicutes phylum and Lactobacillus genus in small intestine of birds at 21 days were decreased by infection, however the abundances of Proteobacteria phylum and Enterococcus, Atopobium, Roseburia, Aeriscardovia and Peptostreptococcus genus increased. The above results indicated that crop had the highest microbiota diversity among GI tract of pigeons, and the gut microbiota diversity and composition of pigeon squabs were altered by T. gallinae infection.
Collapse
Affiliation(s)
- Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaohan Yu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dacong Shan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
19
|
Engel K, Pankoke H, Jünemann S, Brandl HB, Sauer J, Griffith SC, Kalinowski J, Caspers BA. Family matters: skin microbiome reflects the social group and spatial proximity in wild zebra finches. BMC Ecol 2020; 20:58. [PMID: 33187490 PMCID: PMC7664024 DOI: 10.1186/s12898-020-00326-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
Background So far, large numbers of studies investigating the microbiome have focused on gut microbiota and less have addressed the microbiome of the skin. Especially in avian taxa our understanding of the ecology and function of these bacteria remains incomplete. The involvement of skin bacteria in intra-specific communication has recently received attention, and has highlighted the need to understand what information is potentially being encoded in bacterial communities. Using next generation sequencing techniques, we characterised the skin microbiome of wild zebra finches, aiming to understand the impact of sex, age and group composition on skin bacteria communities. For this purpose, we sampled skin swabs from both sexes and two age classes (adults and nestlings) of 12 different zebra finch families and analysed the bacterial communities. Results Using 16S rRNA sequencing we found no effect of age, sex and family on bacterial diversity (alpha diversity). However, when comparing the composition (beta diversity), we found that animals of social groups (families) harbour highly similar bacterial communities on their skin with respect to community composition. Within families, closely related individuals shared significantly more bacterial taxa than non-related animals. In addition, we found that age (adults vs. nestlings) affected bacterial composition. Finally, we found that spatial proximity of nest sites, and therefore individuals, correlated with the skin microbiota similarity. Conclusions Birds harbour very diverse and complex bacterial assemblages on their skin. These bacterial communities are distinguishable and characteristic for intraspecific social groups. Our findings are indicative for a family-specific skin microbiome in wild zebra finches. Genetics and the (social) environment seem to be the influential factors shaping the complex bacterial communities. Bacterial communities associated with the skin have a potential to emit volatiles and therefore these communities may play a role in intraspecific social communication, e.g. via signalling social group membership.
Collapse
Affiliation(s)
- Kathrin Engel
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Helga Pankoke
- Evonik Nutrition & Care GmbH, Kantstr. 2, 33790, Halle, Germany
| | - Sebastian Jünemann
- Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany.,Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hanja B Brandl
- Institute of Zoology, Behavioural Biology, University of Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jan Sauer
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| |
Collapse
|
20
|
Merging Metagenomics and Spatial Epidemiology To Understand the Distribution of Antimicrobial Resistance Genes from Enterobacteriaceae in Wild Owls. Appl Environ Microbiol 2020; 86:AEM.00571-20. [PMID: 32769191 DOI: 10.1128/aem.00571-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) is a well-documented phenomenon in bacteria from many natural ecosystems, including wild animals. However, the specific determinants and spatial distribution of resistant bacteria and antimicrobial resistance genes (ARGs) in the environment remain incompletely understood. In particular, information regarding the importance of anthropogenic sources of AMR relative to that of other biological and ecological influences is lacking. We conducted a cross-sectional study of AMR in great horned owls (Bubo virginianus) and barred owls (Strix varia) admitted to a rehabilitation center in the midwestern United States. A combination of selective culture enrichment and shotgun metagenomic sequencing was used to identify ARGs from Enterobacteriaceae Overall, the prevalence of AMR was comparable to that in past studies of resistant Enterobacteriaceae in raptors, with acquired ARGs being identified in 23% of samples. Multimodel regression analyses identified seasonality and owl age to be important predictors of the likelihood of the presence of ARGs, with birds sampled during warmer months being more likely to harbor ARGs than those sampled during cooler months and with birds in their hatch year being more likely to harbor β-lactam ARGs than adults. Beyond host-specific determinants, ARG-positive owls were also more likely to be recovered from areas of high agricultural land cover. Spatial clustering analyses identified a significant high-risk cluster of tetracycline resistance gene-positive owls in the southern sampling range, but this could not be explained by any predictor variables. Taken together, these results highlight the complex distribution of AMR in natural environments and suggest that both biological and anthropogenic factors play important roles in determining the emergence and persistence of AMR in wildlife.IMPORTANCE Antimicrobial resistance (AMR) is a multifaceted problem that poses a worldwide threat to human and animal health. Recent reports suggest that wildlife may play an important role in the emergence, dissemination, and persistence of AMR. As such, there have been calls for better integration of wildlife into current research on AMR, including the use of wild animals as biosentinels of AMR contamination in the environment. A One Health approach can be used to gain a better understanding of all AMR sources and pathways, particularly those at the human-animal-environment interface. Our study focuses on this interface in order to assess the effect of human-impacted landscapes on AMR in a wild animal. This work highlights the value of wildlife rehabilitation centers for environmental AMR surveillance and demonstrates how metagenomic sequencing within a spatial epidemiology framework can be used to address questions surrounding AMR complexity in natural ecosystems.
Collapse
|
21
|
Martínez-Herrero MC, Sansano-Maestre J, Ortega J, González F, López-Márquez I, Gómez-Muñoz MT, Garijo-Toledo MM. Oral trichomonosis: Description and severity of lesions in birds in Spain. Vet Parasitol 2020; 283:109196. [PMID: 32731053 DOI: 10.1016/j.vetpar.2020.109196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
Avian trichomonosis is a parasitic disease caused by the flagellated protozoan Trichomonas gallinae. Columbiformes are the reservoir host of the parasite, with high levels of infection, but also other domestic and wild birds from a variety of orders are susceptible to the infection and development of gross lesions. In this paper we describe the type and severity of lesions in wild birds in four avian orders (Accipitriformes, Falconiformes, Strigiformes and Columbiformes). A total of 94 clinical cases diagnosed of trichomonosis were selected for the categorization of their lesions in the upper digestive tract. The affected birds were classified into three different categories (mild, moderate and severe) based on size (in relation to the tracheal opening), depth and location of the lesions. Mild cases are those with small and superficial lesions far from the oropharyngeal opening; moderate cases possess larger and deeper lesions, and severe cases very large and deep lesions that impede swallowing or affect the skull. Mild lesions were found in 10.6 % of cases; moderate lesions were observed in 18.1 % of the birds and severe lesions in 71.3 %. Treatment outcomes in birds with either mild or moderate lesions were favorable, while severe lesions were related to poor body score, leading to death or euthanasia in most cases. A relationship between severe lesions and avian order was found, with a higher percentage of birds with this type in Falconiformes, Columbiformes and Strigiformes. Multifocal lesions were more frequent in Columbiformes and Falconiformes. In Strigiformes, 93.3 % of birds showed lesions in the upper jaw. This study seeks to further understanding of avian trichomonosis and to provide information that will be useful to veterinarians and related professionals for assessment, prognosis and treatment choice for these birds.
Collapse
Affiliation(s)
- M C Martínez-Herrero
- Department of Animal and Health Production, Public Health and Food Science and Technology, Faculty of Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115, Alfara del Patriarca, Spain.
| | - J Sansano-Maestre
- Department of Animal Production and Public Health, Faculty of Experimental and Veterinary Sciences, Catholic University of Valencia, Calle Guillem de Castro, 94, 46003, Valencia, Spain.
| | - J Ortega
- Department of Animal and Health Production, Public Health and Food Science and Technology, Faculty of Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115, Alfara del Patriarca, Spain.
| | - F González
- GREFA - Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat, Wildlife Veterinary Hospital, Carretera Monte del Pilar, s/n, 28220, Majadahonda, Spain.
| | - I López-Márquez
- GREFA - Grupo de Rehabilitación de la Fauna Autóctona y su Hábitat, Wildlife Veterinary Hospital, Carretera Monte del Pilar, s/n, 28220, Majadahonda, Spain.
| | - M T Gómez-Muñoz
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - M M Garijo-Toledo
- Department of Animal and Health Production, Public Health and Food Science and Technology, Faculty of Veterinary, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Tirant lo Blanc, 7, 46115, Alfara del Patriarca, Spain.
| |
Collapse
|
22
|
McCabe RA, Receveur JP, Houtz JL, Thomas KL, Benbow ME, Pechal JL, Wallace JR. Characterizing the microbiome of ectoparasitic louse flies feeding on migratory raptors. PLoS One 2020; 15:e0234050. [PMID: 32497084 PMCID: PMC7271990 DOI: 10.1371/journal.pone.0234050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/17/2020] [Indexed: 01/04/2023] Open
Abstract
Louse flies (Diptera: Hippoboscidae) are obligate ectoparasites that often cause behavioral, pathogenic, and evolutionary effects on their hosts. Interactions between ectoparasites and avian hosts, especially migrating taxa, may influence avian pathogen spread in tropical and temperate ecosystems and affect long-term survival, fitness and reproductive success. The purpose of this study was to characterize the vector-associated microbiome of ectoparasitic louse flies feeding on migrating raptors over the fall migration period. Surveys for louse flies occurred during fall migration (2015-2016) at a banding station in Pennsylvania, United States; flies were collected from seven species of migrating raptors, and we sequenced their microbial (bacteria and archaea) composition using high-throughput targeted amplicon sequencing of the 16S rRNA gene (V4 region). All louse flies collected belonged to the same species, Icosta americana. Our analysis revealed no difference in bacterial communities of louse flies retrieved from different avian host species. The louse fly microbiome was dominated by a primary endosymbiont, suggesting that louse flies maintain a core microbial structure despite receiving blood meals from different host species. Thus, our findings highlight the importance of characterizing both beneficial and potentially pathogenic endosymbionts when interpreting how vector-associated microbiomes may impact insect vectors and their avian hosts.
Collapse
Affiliation(s)
- Rebecca A. McCabe
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- * E-mail: (RAM); (JRW)
| | - Joseph P. Receveur
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jennifer L. Houtz
- Department of Biology, Millersville University, Millersville, Pennsylvania, United States of America
| | - Kayli L. Thomas
- Department of Biology, Millersville University, Millersville, Pennsylvania, United States of America
| | - M. Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jennifer L. Pechal
- Department of Entomology, Michigan State University, East Lansing, Michigan, United States of America
| | - John R. Wallace
- Department of Biology, Millersville University, Millersville, Pennsylvania, United States of America
- * E-mail: (RAM); (JRW)
| |
Collapse
|
23
|
Oliveira BCM, Murray M, Tseng F, Widmer G. The fecal microbiota of wild and captive raptors. Anim Microbiome 2020; 2:15. [PMID: 33499952 PMCID: PMC7863374 DOI: 10.1186/s42523-020-00035-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The microorganisms populating the gastro-intestinal tract of vertebrates, collectively known as "microbiota", play an essential role in digestion and are important in regulating the immune response. Whereas the intestinal microbiota in humans and model organisms has been studied for many years, much less is known about the microbiota populating the intestinal tract of wild animals. RESULTS The relatively large number of raptors admitted to the Tufts Wildlife Clinic on the Cummings School of Veterinary Medicine at Tufts University campus provided a unique opportunity to investigate the bacterial microbiota in these birds. Opportunistic collection of fecal samples from raptors of 7 different species in the orders Strigiformes, Accipitriformes, and Falconiformes with different medical histories generated a collection of 46 microbiota samples. Based on 16S amplicon sequencing of fecal DNA, large β-diversity values were observed. Many comparisons exceeded weighted UniFrac distances of 0.9. Microbiota diversity did not segregate with the taxonomy of the host; no significant difference between microbiota from Strigiformes and from Accipitriformes/Falconiformes were observed. In contrast, in a sample of 22 birds admitted for rehabilitation, a significant effect of captivity was found. The change in microbiota profile was driven by an expansion of the proportion of Actinobacteria. Based on a small number of raptors treated with anti-microbials, no significant effect of these treatments on microbiota α-diversity was observed. CONCLUSIONS The concept of "meta-organism conservation", i.e., conservation efforts focused on the host and its intestinal microbiome has recently been proposed. The observed effect of captivity on the fecal microbiota is relevant to understanding the response of wildlife to captivity and optimizing wildlife rehabilitation and conservation efforts.
Collapse
Affiliation(s)
- Bruno C M Oliveira
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA.,Universidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária, Araçatuba, Brazil
| | - Maureen Murray
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| | - Florina Tseng
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA
| | - Giovanni Widmer
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, 01536, USA.
| |
Collapse
|