1
|
Eigenfeld M, Schwaminger SP. Cellular variability as a driver for bioprocess innovation and optimization. Biotechnol Adv 2025; 79:108528. [PMID: 39914686 DOI: 10.1016/j.biotechadv.2025.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/29/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Cellular heterogeneity plays a crucial role in biotechnological processes, significantly influencing metabolic activity, product yield, and process consistency. This review explores the different dimensions of cellular heterogeneity, focusing on its manifestation at both single-cell and population levels. The study examines how factors such as asymmetric cell division, age, and environmental conditions contribute to functional diversity within cell populations, with an emphasis on microorganisms like yeast. Age-related cellular heterogeneity, in particular, is highlighted for its impact on metabolic pathways, mitochondrial function, and secondary metabolite production, which directly affect bioprocess outcomes. Furthermore, the review discusses advanced techniques for detecting and managing heterogeneity, including surface marker-based approaches, which utilize proteins, polysaccharides, and lipids, and label-free methods that leverage cellular volume and physical properties for separation. Understanding and controlling cellular heterogeneity is essential for optimizing industrial bioprocesses, improving yield, and ensuring product quality. The review also underscores the potential of emerging biotechnological tools, such as real-time single-cell analysis and microfluidic devices, in enhancing separation techniques and managing cellular diversity for better process efficiency and robustness.
Collapse
Affiliation(s)
- M Eigenfeld
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, NanoLab Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| | - S P Schwaminger
- Medical University of Graz, Otto Loewi Research Center, Division of Medicinal Chemistry, NanoLab Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|
2
|
Kumar RKR, Haddad I, Ndiaye MM, Marbouty M, Vinh J, Verdier Y. A single microfluidic device for multi-omics analysis sample preparation. LAB ON A CHIP 2025; 25:590-599. [PMID: 39820672 DOI: 10.1039/d4lc00919c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Combining different "omics" approaches, such as genomics and proteomics, is necessary to generate a detailed and complete insight into microbiome comprehension. Proper sample collection and processing and accurate analytical methods are crucial in generating reliable data. We previously developed the ChipFilter device for proteomic analysis of microbial samples. We have shown that this device coupled to LC-MS/MS can successfully be used to identify microbial proteins. In the present work, we have developed our workflow to analyze concomitantly proteins and nucleic acids from the same sample. We performed lysis and proteolysis in the device using cultures of E. coli, B. subtilis, and S. cerevisiae. After peptide recovery for LC-MS/MS analysis, DNA from the same samples was recovered and successfully amplified by PCR for the 3 species. This workflow was further extended to a complex microbial mixture of known compositions. Protein analysis was carried out, enabling the identification of more than 5000 proteins. The recovered DNA was sequenced, performing comparable to DNA extracted with a commercial kit without proteolysis. Our results show that the ChipFilter device is suited to prepare samples for parallel proteomic and genomic analyses, which is particularly relevant in the case of low-abundant samples and drastically reduces sampling bias.
Collapse
Affiliation(s)
- Ranjith Kumar Ravi Kumar
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Iman Haddad
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Massamba Mbacké Ndiaye
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Spacial Regulation of Genome Group, Université Paris Cité, CNRS 3525 - 25-28 Rue du Dr Roux, F-75015 Paris, France
| | - Joëlle Vinh
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| | - Yann Verdier
- Spectrométrie de Masse Biologique et Protéomique SMBP, ESPCI Paris, LPC CNRS UMR 8249, PSL University, 10 Rue Vauquelin, F-75005 Paris, France.
| |
Collapse
|
3
|
Mante J, Groover KE, Pullen RM. Environmental community transcriptomics: strategies and struggles. Brief Funct Genomics 2025; 24:elae033. [PMID: 39183066 PMCID: PMC11735753 DOI: 10.1093/bfgp/elae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Transcriptomics is the study of RNA transcripts, the portion of the genome that is transcribed, in a specific cell, tissue, or organism. Transcriptomics provides insight into gene expression patterns, regulation, and the underlying mechanisms of cellular processes. Community transcriptomics takes this a step further by studying the RNA transcripts from environmental assemblies of organisms, with the intention of better understanding the interactions between members of the community. Community transcriptomics requires successful extraction of RNA from a diverse set of organisms and subsequent analysis via mapping those reads to a reference genome or de novo assembly of the reads. Both, extraction protocols and the analysis steps can pose hurdles for community transcriptomics. This review covers advances in transcriptomic techniques and assesses the viability of applying them to community transcriptomics.
Collapse
Affiliation(s)
- Jeanet Mante
- Oak Ridge Associated Universities, Oak Ridge, 37831, TN, USA
| | - Kyra E Groover
- Department of Molecular Biosciences, University of Texas at Austin, Austin, 78705, TX, USA
| | - Randi M Pullen
- DEVCOM Army Research Laboratory, Adelphi, 20783, MD, USA
| |
Collapse
|
4
|
Goodrum R, Li H. Lysis of Extracellular Vesicles and Multiplexed Protein Detection via a Reverse Phase Immunoassay Using a Gold-Nanoparticle-Embedded Membrane Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22177-22189. [PMID: 39388120 DOI: 10.1021/acs.langmuir.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound particles with molecular cargo reflective of their cell of origin. Analysis of disease-related EVs and associated cargo from biofluids is a promising tool for disease management. To facilitate the analysis of intravesicular molecules, EV lysis is needed. Moreover, highly sensitive and multiplexed detection methods are required to achieve early diagnostics. While cell lysis approaches have been well studied, the analysis of EV lysis methods and their effects on downstream molecular detection is lacking. In this work, we analyzed chemical, thermal, and mechanical EV lysis methods and determined their efficiency based on EV particle concentration and immunoassay activity. We, for the first time, discovered that vortex was an efficient EV lysis method and used it for detection of surface and intravesicular markers in a highly sensitive multiplexed reverse phase immunoassay on a gold-nanoparticle-embedded membrane. In phosphate-buffered saline, detection limits up to 3 orders of magnitude lower than enzyme-linked immunosorbent assay were achieved. In spiked human plasma, detection limits as low as 7.27 × 104 EVs/mL were achieved, making it suitable for early diagnostics. These results demonstrated an effective pipeline for lysing and molecular analysis of EVs from complex biofluids, paving the way for their broad applications in biomedicine.
Collapse
Affiliation(s)
- Rebecca Goodrum
- School of Engineering, University of Guelph, Guelph N1G2W1, Ontario, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph N1G2W1, Ontario, Canada
| |
Collapse
|
5
|
Lathe R, Schultek NM, Balin BJ, Ehrlich GD, Auber LA, Perry G, Breitschwerdt EB, Corry DB, Doty RL, Rissman RA, Nara PL, Itzhaki R, Eimer WA, Tanzi RE, Intracell Research Group Consortium Collaborators. Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer's disease: Research outline and call for collaboration. Alzheimers Dement 2023; 19:5209-5231. [PMID: 37283269 PMCID: PMC10918877 DOI: 10.1002/alz.13076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 06/08/2023]
Abstract
Microbial infections of the brain can lead to dementia, and for many decades microbial infections have been implicated in Alzheimer's disease (AD) pathology. However, a causal role for infection in AD remains contentious, and the lack of standardized detection methodologies has led to inconsistent detection/identification of microbes in AD brains. There is a need for a consensus methodology; the Alzheimer's Pathobiome Initiative aims to perform comparative molecular analyses of microbes in post mortem brains versus cerebrospinal fluid, blood, olfactory neuroepithelium, oral/nasopharyngeal tissue, bronchoalveolar, urinary, and gut/stool samples. Diverse extraction methodologies, polymerase chain reaction and sequencing techniques, and bioinformatic tools will be evaluated, in addition to direct microbial culture and metabolomic techniques. The goal is to provide a roadmap for detecting infectious agents in patients with mild cognitive impairment or AD. Positive findings would then prompt tailoring of antimicrobial treatments that might attenuate or remit mounting clinical deficits in a subset of patients.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Brian J. Balin
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego and VA San Diego Healthcare System, La Jolla, CA
| | | | - Ruth Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| | - William A. Eimer
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Intracell Research Group Consortium Collaborators
- David L. Hahn (Intracell Research Group, USA), Benedict C. Albensi (Nova Southeastern, USA), James St John (Griffith University, Australia), Jenny Ekberg (Griffith University, Australia), Mark L. Nelson (Intracell Research Group, USA), Gerald McLaughlin (National Institutes of Health, USA), Christine Hammond (Philadelphia College of Osteopathic Medicine, USA), Judith Whittum-Hudson (Wayne State University, USA), Alan P. Hudson (Wayne State University, USA), Guillaume Sacco (Université Cote d’Azur, Centre Hospitalier Universitaire de Nice, CoBTek, France), Alexandra Konig (Université Cote d’Azur and CoBTek, France), Bruno Pietro Imbimbo (Chiesi Farmaceutici, Parma, Italy), Nicklas Linz (Ki Elements Ltd, Saarbrücken, Germany), Nicole Danielle Bell (Author, 'What Lurks in the Woods'), Shima T. Moein (Smell and Taste Center, Department of Otorhinolaryngology, Perelman School of Medicine, University of Philadelphia, USA), Jürgen G. Haas (Infection Medicine, University of Edinburgh Medical School, UK)
| |
Collapse
|
6
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Ganguli A, Lim J, Mostafa A, Saavedra C, Rayabharam A, Aluru NR, Wester M, White KC, Kumar J, McGuffin R, Frederick A, Valera E, Bashir R. A culture-free biphasic approach for sensitive and rapid detection of pathogens in dried whole-blood matrix. Proc Natl Acad Sci U S A 2022; 119:e2209607119. [PMID: 36161889 PMCID: PMC9546527 DOI: 10.1073/pnas.2209607119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Blood stream infections (BSIs) cause high mortality, and their rapid detection remains a significant diagnostic challenge. Timely and informed administration of antibiotics can significantly improve patient outcomes. However, blood culture, which takes up to 5 d for a negative result, followed by PCR remains the gold standard in diagnosing BSI. Here, we introduce a new approach to blood-based diagnostics where large blood volumes can be rapidly dried, resulting in inactivation of the inhibitory components in blood. Further thermal treatments then generate a physical microscale and nanoscale fluidic network inside the dried matrix to allow access to target nucleic acid. The amplification enzymes and primers initiate the reaction within the dried blood matrix through these networks, precluding any need for conventional nucleic acid purification. High heme background is confined to the solid phase, while amplicons are enriched in the clear supernatant (liquid phase), giving fluorescence change comparable to purified DNA reactions. We demonstrate single-molecule sensitivity using a loop-mediated isothermal amplification reaction in our platform and detect a broad spectrum of pathogens, including gram-positive methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteria, gram-negative Escherichia coli bacteria, and Candida albicans (fungus) from whole blood with a limit of detection (LOD) of 1.2 colony-forming units (CFU)/mL from 0.8 to 1 mL of starting blood volume. We validated our assay using 63 clinical samples (100% sensitivity and specificity) and significantly reduced sample-to-result time from over 20 h to <2.5 h. The reduction in instrumentation complexity and costs compared to blood culture and alternate molecular diagnostic platforms can have broad applications in healthcare systems in developed world and resource-limited settings.
Collapse
Affiliation(s)
- Anurup Ganguli
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Jongwon Lim
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Ariana Mostafa
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Carlos Saavedra
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Archith Rayabharam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Narayana R. Aluru
- Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Matthew Wester
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Karen C. White
- Critical Care, Carle Foundation Hospital, Urbana, IL-61801, USA
- Department of Clinical Science, Carle Illinois College of Medicine, Urbana, IL-61801, USA
| | - James Kumar
- Hospital Medicine, Carle Foundation Hospital, Urbana, IL-61801, USA
- Department of Clinical Science, Carle Illinois College of Medicine, Urbana, IL-61801, USA
| | - Reubin McGuffin
- Specimen Procurement Service Center in the Research Department, Carle Foundation Hospital, Urbana, IL-61801, USA
| | - Ann Frederick
- Microbiology, Carle Foundation Hospital, Urbana,IL-61801, USA
| | - Enrique Valera
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana–Champaign, Urbana, IL-61801,USA
- Department of Biomedical and Translational Science, Carle Illinois College of Medicine, Urbana, IL-61801, USA
| |
Collapse
|
8
|
Jiao X, Shi J, Qin S, Huang D, Wang Y. Dataset of the transcriptomes of Urechis unicinctus to identify differentially expressed genes (DEGs) under different temperature and exposure to open air. Data Brief 2021; 35:106941. [PMID: 33842678 PMCID: PMC8020418 DOI: 10.1016/j.dib.2021.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 10/29/2022] Open
Abstract
Urechis unicinctus has a wide range of bioactive polypeptides with high edible, economic and medicinal values. As the key technical breakthrough, the artificial breeding is imperative. However, the seedling transport becomes a primary matter, which indicates the indispensability of realizing how Urechis unicinctus responses to various situations. We compared transcriptome of Urechis unicinctus under the dry and ultraviolet irradiation treatment and different temperature. The dataset of the organism in response to water-temperature variety was provided by using the Illumina Hiseq X Ten system, which will be helpful to understand the adaptation of Urechis unicinctus to changing temperature (low, high and room temperature) and open air (ultraviolet and desiccation). The assembly of the transcriptomes was carried out using the isoform sequencing (Iso-seq) method. The functions of expressed genes were annotated and categorized, while the DEGs were presented.
Collapse
Affiliation(s)
- Xudong Jiao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jiaxin Shi
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266000, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Dong Huang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,Agronomy College, Rudong University, Shandong, Yantai 264025, China
| | - Yinchu Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
9
|
Matic N, Stefanovic A, Leung V, Lawson T, Ritchie G, Li L, Champagne S, Romney MG, Lowe CF. Practical challenges to the clinical implementation of saliva for SARS-CoV-2 detection. Eur J Clin Microbiol Infect Dis 2021; 40:447-450. [PMID: 33236269 PMCID: PMC7685775 DOI: 10.1007/s10096-020-04090-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/28/2020] [Indexed: 10/30/2022]
Abstract
Due to global shortages of flocked nasopharyngeal swabs and appropriate viral transport media during the COVID-19 pandemic, alternate diagnostic specimens for SARS-CoV-2 detection are sought. The accuracy and feasibility of saliva samples collected and transported without specialized collection devices or media were evaluated. Saliva demonstrated good concordance with paired nasopharyngeal swabs for SARS-CoV-2 detection in 67/74 cases (90.5%), though barriers to saliva collection were observed in long-term care residents and outbreak settings. SARS-CoV-2 RNA was stable in human saliva at room temperature for up to 48 h after initial specimen collection, informing appropriate transport time and conditions.
Collapse
Affiliation(s)
- Nancy Matic
- Division of Medical Microbiology and Virology, Providence Health Care, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, V6Z 1Y6, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Aleksandra Stefanovic
- Division of Medical Microbiology and Virology, Providence Health Care, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Victor Leung
- Division of Medical Microbiology and Virology, Providence Health Care, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Tanya Lawson
- Division of Medical Microbiology and Virology, Providence Health Care, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, V6Z 1Y6, Canada
| | - Gordon Ritchie
- Division of Medical Microbiology and Virology, Providence Health Care, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Lynne Li
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Sylvie Champagne
- Division of Medical Microbiology and Virology, Providence Health Care, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Marc G Romney
- Division of Medical Microbiology and Virology, Providence Health Care, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F Lowe
- Division of Medical Microbiology and Virology, Providence Health Care, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Matic N, Lawson T, Ritchie G, Stefanovic A, Leung V, Champagne S, Romney MG, Lowe CF. Automated molecular testing of saliva for SARS-CoV-2 detection. Diagn Microbiol Infect Dis 2021; 100:115324. [PMID: 33529938 PMCID: PMC7826079 DOI: 10.1016/j.diagmicrobio.2021.115324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/12/2023]
Abstract
With surging global demand for SARS-CoV-2 testing capacity, laboratories seek automated, high-throughput molecular solutions, particularly for specimens not requiring specialized collection devices or viral transport media. Saliva specimens submitted from patients under investigation for COVID-19 from March to July 2020 were processed in the laboratory with sterile phosphate-buffered saline in a 1:2 dilution and tested using manual extraction and a commercial assay for detection of the SARS-CoV-2 E gene (LightMix®) in comparison to the Roche cobas® SARS-CoV-2 Test on the cobas® 6800 instrument. 34.4% (22/64) of saliva samples were positive for SARS-CoV-2. Positive and negative concordance between the LightMix® and cobas® assays were 100%. The overall invalid rate for saliva on the cobas® 6800 (1/128, 0.78%) was similar to the baseline invalid rate observed for nasopharyngeal swabs/viral transport media. Saliva is a feasible specimen type for SARS-CoV-2 testing on the cobas® 6800 platform, with potential to improve turnaround time and enhance testing capacity.
Collapse
Affiliation(s)
- Nancy Matic
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Tanya Lawson
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada
| | - Gordon Ritchie
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Aleksandra Stefanovic
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Victor Leung
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Sylvie Champagne
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Marc G Romney
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F Lowe
- Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Cravener MV, Mitchell AP. Candida albicans Culture, Cell Harvesting, and Total RNA Extraction. Bio Protoc 2020; 10:e3803. [PMID: 33659457 DOI: 10.21769/bioprotoc.3803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/04/2023] Open
Abstract
Transcriptional analysis has become a cornerstone of biological research, and with the advent of cheaper and more efficient sequencing technology over the last decade, there exists a need for high-yield and efficient RNA extraction techniques. Fungi such as the human pathogen Candida albicans present a unique obstacle to RNA purification in the form of the tough cell wall made up of many different components such as chitin that are resistant to many common mammalian or bacterial cell lysis methods. Typical in vitro C. albicans cell harvesting methods can be time consuming and expensive if many samples are being processed with multiple opportunities for product loss or sample variation. Harvesting cells via vacuum filtration rather than centrifugation cuts down on time before the cells are frozen and therefore the available time for the RNA expression profile to change. Vacuum filtration is preferred for C. albicans for two main reasons: cell lysis is faster on non-pelleted cells due to increased exposed surface area, and filamentous cells are difficult to pellet in the first place unlike yeast or bacterial cells. Using mechanical cell lysis, by way of zirconia/silica beads, cuts down on time for processing as well as overall cost compared to enzymatic treatments. Overall, this method is a fast, efficient, and high-yield way to extract total RNA from in vitro cultures of C. albicans.
Collapse
Affiliation(s)
- Max V Cravener
- Department of Microbiology, University of Georgia, Athens, USA
| | | |
Collapse
|
12
|
Zhang M, Wang J, Niu C, Zheng F, Liu C, Li Q. Screening of thermosensitive autolytic mutant brewer’s yeast and transcriptomic analysis of heat stress response. Can J Microbiol 2020; 66:631-640. [DOI: 10.1139/cjm-2019-0456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Brewer’s yeast has been widely used in the food industry, and the autolysates thereof are increasingly being studied for their valuable nutritional compositions. Yeast autolysis is most affected by medium composition and temperature. In this study, a thermosensitive autolytic brewer’s yeast P-510 was obtained with atmospheric and room temperature plasma mutagenesis plus 5-bromo-chloro-3-indolyl phosphate screening. The mutant rapidly autolyzed at 37 °C and the autolysates contained more active components and showed higher antioxidant activities compared with that of the parental strain, which indicated that the mutant’s autolysates can potentially be used as functional food and nutritional ingredients. Transcriptomic analysis of the mutant and parental strains at 28 and 37 °C suggested that thermosensitive autolysis of P-510 was probably caused by mitochondrial disfunction, glycogen metabolic flux of glycolysis and pentose phosphate pathway disorder, as well as hexose transport inhibition. The results revealed the important role of mitochondrial metabolism and glycogen utilization regulation in heat stress response of yeast.
Collapse
Affiliation(s)
- Mingfang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China; Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| |
Collapse
|
13
|
Establishment of a dynamic osteosarcoma biobank: Ruijin experience. Cell Tissue Bank 2020; 21:447-455. [PMID: 32297010 DOI: 10.1007/s10561-020-09831-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/28/2020] [Indexed: 12/25/2022]
Abstract
Outcomes for patients with metastatic and recurrent osteosarcoma remain poor and a better understanding of the biology of this malignancy is critical to the development of prognostic biomarkers and novel therapies. The purpose of this study was to establish a biobank of osteosarcoma which has the potential of monitoring tumors dynamically with exosomes, to facilitate clinical and basic scientific research. The osteosarcoma biological specimen and clinical data of osteosarcoma were collected in Ruijin Hospital in two stages. In the first stage (2015-2017), the collection of tissue specimens and blood samples were performed at diagnostic biopsy, definitive surgery, recurrence and lung metastasis, according to the Children's Oncology Group protocol. In the second stage (2017-2019), the tissue specimens were collected the same as before, but the blood samples were collected at the beginning of each MAP-I (methotrexate, cisplatin, doxorubicin, ifosfamide) chemotherapy cycle, and every 6 months after the last chemotherapy up to 3 years, according to our modified protocol, to dynamically monitor the status of possible alteration of gene expression profiling in the osteosarcoma. A total of 268 patients with osteosarcoma were enrolled in this study, 161 were men and 107 were women, with the mean age of 24.51 ± 15.58 years. Local recurrence occurred in 29 patients and lung metastasis in 51. The numbers of tissue and blood specimens reached 360 and 1023, respectively. 11 specimens were from recurrent osteosarcoma and 25 were from lung metastasis. The corresponding clinical and demographic data were collected in our electronic database. The osteosarcoma biobank built with our modified protocol mentioned above has the potential of monitoring tumors dynamically with exosomes and could provide specimens to the researches improving the biological understanding and outcome of this disease.
Collapse
|
14
|
Cho YS, Kim HR, Ko HS, Jeong SB, Chan Kim B, Jung JH. Continuous Surveillance of Bioaerosols On-Site Using an Automated Bioaerosol-Monitoring System. ACS Sens 2020; 5:395-403. [PMID: 31913022 DOI: 10.1021/acssensors.9b02001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Real-time on-site monitoring of bioaerosols in an air environment is important for preventing various adverse health effects including respiratory diseases and allergies caused by bioaerosols. Here, we report the development of an on-site automated bioaerosol-monitoring system (ABMS) using integrated units including a wet-cyclone bioaerosol sampler, a thermal-lysis unit for extracting adenosine triphosphate (ATP), an ATP-detection unit based on the immobilization of luciferase/luciferin for bioluminescence reactions, and a photomultiplier tube-based detector. The performance of the bioaerosol detection system was verified using Escherichia coli (E. coli) as a model source. Each unit was optimized to process ∼9.6 × 105 times the concentrated ratio of collected bioaerosol samples, using a 3 min lysis time to extract ATP, and has a detection limit of ∼375 colony-forming units (CFUs)/mL with more than 30 days of stability for the immobilized-luciferase/luciferin detection unit supported by a glass-fiber conjugation pad. After the integration of all units, the ABMS achieved E. coli bioaerosol monitoring with continuous detection at 5 min intervals and a minimum detection limit of ∼130 CFU/mair3. Furthermore, the rapid responsivity and stable operation performance of the ABMS under test-bed conditions and during a field test demonstrated that the ABMS is capable of continuously monitoring bioaerosols in real-time with high sensitivity. The monitoring system developed here with immobilization strategies for bioluminescence reactions triggered by ATP extracted from collected bioaerosol samples using a simple heat-lysis method may help establish sustainable platforms to obtain stable signals for the real-time detection of bioaerosols on-site.
Collapse
Affiliation(s)
- Yu Sung Cho
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
| | - Hye Ri Kim
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Hyun Sik Ko
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
| | - Sang Bin Jeong
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
| | - Byoung Chan Kim
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jae Hee Jung
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Graduate School of Energy and Environment, Korea University, Seoul 02841, Republic of Korea
- Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
15
|
Rodríguez A, Duyvejonck H, Van Belleghem JD, Gryp T, Van Simaey L, Vermeulen S, Van Mechelen E, Vaneechoutte M. Comparison of procedures for RNA-extraction from peripheral blood mononuclear cells. PLoS One 2020; 15:e0229423. [PMID: 32084228 PMCID: PMC7034890 DOI: 10.1371/journal.pone.0229423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
RNA quality and quantity are important factors for ensuring the accuracy of gene expression analysis and other RNA-based downstream applications. Thus far, only a limited number of methodological studies have compared sample storage and RNA extraction procedures for human cells. We compared three commercially available RNA extraction kits, i.e., (NucliSENS) easyMAG, RNeasy (Mini Kit) and RiboPure (RNA Purification Kit–blood). In addition, additional conditions, such as storage medium and storage temperature of human peripheral blood mononuclear cells were evaluated, i.e., 4 °C for RNAlater or -80 °C for QIAzol and for the respective cognate lysis buffers; easyMAG, RNeasy or RiboPure. RNA was extracted from aliquots that had been stored for one day (Run 1) or 83 days (Run 2). After DNase treatment, quantity and quality of RNA were assessed by means of a NanoDrop spectrophotometer, 2100 Bioanalyzer and RT-qPCR for the ACTB reference gene. We observed that high-quality RNA can be obtained using RNeasy and RiboPure, regardless of the storage medium, whereas samples stored in RNAlater resulted in the least amount of RNA extracted. In addition, RiboPure combined with storage of samples in its cognate lysis buffer yielded twice as much RNA as all other procedures. These results were supported by RT-qPCR and by the reproducibility observed for two independent extraction runs.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| | - Hans Duyvejonck
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Biosciences, Faculty of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Jonas D. Van Belleghem
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tessa Gryp
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Leen Van Simaey
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stefan Vermeulen
- Department of Biosciences, Faculty of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Els Van Mechelen
- Department of Biosciences, Faculty of Education, Health and Social Work, University College Ghent, Ghent, Belgium
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Öztürk S, Demir İ, Çalık P. Isolation of High‐Quality RNA from
Pichia pastoris. ACTA ACUST UNITED AC 2019; 98:e101. [DOI: 10.1002/cpps.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical University Ankara Turkey
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical University Ankara Turkey
| | - İrem Demir
- Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical University Ankara Turkey
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical University Ankara Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical EngineeringMiddle East Technical University Ankara Turkey
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied SciencesMiddle East Technical University Ankara Turkey
| |
Collapse
|
17
|
Rodríguez A, Guillemyn B, Coucke P, Vaneechoutte M. Nucleic acids enrichment of fungal pathogens to study host-pathogen interactions. Sci Rep 2019; 9:18037. [PMID: 31792282 PMCID: PMC6889467 DOI: 10.1038/s41598-019-54608-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Fungal infections, ranging from superficial to life-threatening infections, represent a major public health problem that affects 25% of the worldwide population. In this context, the study of host-pathogen interactions within the host is crucial to advance antifungal therapy. However, since fungal cells are usually outnumbered by host cells, the fungal transcriptome frequently remains uncovered. We compared three different methods to selectively lyse human cells from in vitro mixes, composed of Candida cells and peripheral blood mononuclear cells. In order to prevent transcriptional modification, the mixes were stored in RNAlater. We evaluated the enrichment of fungal cells through cell counting using microscopy and aimed to further enrich fungal nucleic acids by centrifugation and by reducing contaminant nucleic acids from the host. We verified the enrichment of fungal DNA and RNA through qPCR and RT-qPCR respectively and confirmed that the resulting RNA has high integrity scores, suitable for downstream applications. The enrichment method provided here, i.e., lysis with Buffer RLT followed by centrifugation, may contribute to increase the proportion of nucleic acids from fungi in clinical samples, thus promoting more comprehensive analysis of fungal transcriptional profiles. Although we focused on C. albicans, the enrichment may be applicable to other fungal pathogens.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium.
| | - Brecht Guillemyn
- Center for Medical Genetics Ghent, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, 9000, Belgium
| | - Paul Coucke
- Center for Medical Genetics Ghent, Ghent University Hospital, Department of Biomolecular Medicine, Ghent, 9000, Belgium
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
18
|
Microfluidic platform for rapid screening of bacterial cell lysis. J Chromatogr A 2019; 1610:460539. [PMID: 31543341 DOI: 10.1016/j.chroma.2019.460539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Over the past decade significant progress has been found in the upstream production processes, shifting the main bottlenecks in current manufacturing platforms for biopharmaceuticals towards the downstream processing. Challenges in the purification process include reducing the production costs, developing robust and efficient purification processes as well as integrating both upstream and downstream processes. Microfluidic technologies have recently emerged as effective tools for expediting bioprocess design in a cost-effective manner, since a large number of variables can be evaluated in a small time frame, using reduced volumes and manpower. Their modularity also allows to integrate different unit operations into a single chip, and consequently to evaluate the effect of each stage on the overall process efficiency. This paper describes the development of a diffusion-based microfluidic device for the rapid screening of continuous chemical lysis conditions. The release of a recombinant green fluorescent protein (GFP) expressed in Escherichia coli (E. coli) was used as model system due to the simple evaluation of cell growth and product concentration by fluorescence. The concept can be further applied to any biopharmaceutical production platform. The microfluidic device was successfully used to test the lytic effect of both enzymatic and chemical lysis solutions, with lysis efficiency of about 60% and close to 100%, respectively, achieved. The microfluidic technology also demonstrated the ability to detect potential process issues, such as the increased viscosity related with the rapid release of genomic material, that can arise for specific lysis conditions and hinder the performance of a bioprocess. Finally, given the continuous operation of the lysis chip, the microfluidic technology has the potential to be integrated with other microfluidic modules in order to model a fully continuous biomanufacturing process on a chip.
Collapse
|