1
|
Zhao Y, Li L, Tan J, Zhao H, Wang Y, Zhang A, Jiang L. Metagenomic insights into the inhibitory effect of phytochemical supplementation on antibiotic resistance genes and virulence factors in the rumen of transition dairy cows. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137717. [PMID: 40020294 DOI: 10.1016/j.jhazmat.2025.137717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Antimicrobial resistance (AMR) is a major global health concern, with the rumen microbiota of dairy cows serving as an important reservoir for antibiotic resistance genes (ARGs) and virulence factors (VFs). This study explores the impact of dietary phytochemical supplementation on the rumen resistome and virulome of transition dairy cows using metagenomic sequencing. Naringin supplementation reduced the abundance of ARGs by up to 9.0 % and VFs by up to 7.2 % during the transition period, as indicated by metagenomic analysis (P < 0.05). Clinically high-risk ARGs, including those conferring resistance to beta-lactams (mecA), tetracyclines (tetM, tetO), and aminoglycosides (rmtF), were notably downregulated (P < 0.05). Virulence factors associated with adherence, secretion systems, and toxins were also significantly decreased (P < 0.05). Naringin altered the microbial community structure, particularly reducing the abundance of Proteobacteria, a key phylum harboring ARGs and VFs. Despite inducing increased ARG-VF network complexity, naringin supplementation promoted a less pathogenic microbiome with reduced resistance potential. These findings demonstrate the potential of naringin as a natural dietary strategy to mitigate AMR by reducing the risk of ARG and VF dissemination into the environment, while supporting rumen microbiota stability in transition dairy cows.
Collapse
Affiliation(s)
- Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jian Tan
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ying Wang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ao Zhang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
2
|
Kos D, Jelinski M, Ruzzini A. Retrospective analysis of antimicrobial resistance associated with bovine respiratory disease. Appl Environ Microbiol 2025; 91:e0190924. [PMID: 39918326 PMCID: PMC11921372 DOI: 10.1128/aem.01909-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/19/2025] [Indexed: 03/20/2025] Open
Abstract
The administration and utility of antibiotics to control and treat bovine respiratory disease (BRD) in beef cattle feedlots is a growing concern. Antimicrobial resistance (AMR) among BRD-associated bacterial pathogens has been the subject of cultivation-dependent and cultivation-independent surveillance. Bacterial genome sequencing and metagenomic approaches facilitate the characterization of AMR in the beef industry; however, the current collection of cattle-associated AMR research programs lack connections to each other. A more integrated view of how antimicrobial use (AMU) is related to resistance at a gene level is needed. We sought to establish a catalog of commonly observed AMR genes (ARGs) in opportunistic bacterial pathogens that contribute to BRD using publicly available data sets that were generated by the scientific community with and without AMU in mind. The presence of these clinically relevant ARGs appeared to differ by geography. Greater sampling in North America facilitated the generation of a list of ARGs often encoded by Mannheimia haemolytica and Pasteurella multocida. Detection of clinically relevant ARGs in shotgun metagenomes of cattle-associated and accessible feedlot samples such as water, soil, and feces was possible but limited by relative sequence read abundance. An exception was the tylosin esterase-encoding gene estT, which is among the most frequently observed ARGs in M. haemolytica and feedlot-related metagenomic data sets. Finally, by re-evaluating studies on the impact of AMU on AMR in beef production systems, we show that conventional practices, including in-feed antibiotic use, increase the relative abundance of ARGs in animal-derived samples.IMPORTANCEThis retrospective analysis delivers a list of ARGs found in opportunistic pathogens that contribute to BRD. The high incidence of BRD in North America is linked to the origin and implementation of metaphylaxis to mitigate detrimental animal losses at feedlots. Notably, ARGs commonly observed in these pathogens isolated in North America were not conserved across the globe, underscoring the relationship between regional AMU and AMR. A positive relationship was also observed between the relative abundance of ARGs in cattle-associated metagenomes with greater exposure to antibiotics. Overall, this analysis should help to guide future surveillance efforts and experimental designs to more directly evaluate the impacts of feedlot practices on AMR.
Collapse
Affiliation(s)
- Daniel Kos
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Murray Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Antonio Ruzzini
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Lee C, Zaheer R, Thomas K, Poulin-Laprade D, Talbot G, Diarra MS, Van Domselaar G, Zovoilis A, McAllister TA. Comparative metagenomics reveals limited differences in antimicrobial resistance gene abundance across conventional and natural livestock production systems. Can J Microbiol 2025; 71:1-8. [PMID: 40014853 DOI: 10.1139/cjm-2024-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The livestock industry has been a source of concern in terms of antimicrobial resistance (AMR) development and spread, especially from a One Health perspective. Raising livestock without antimicrobials, so called natural (NAT) production, is an increasingly popular practice. This study used metagenomics to compare this practice to conventional (CONV) antimicrobial use (AMU) on the microbiome and resistome in the feces of beef cattle and swine and the cecal contents of broiler chickens. In cattle, Bacteroidetes, Euryarchaeota, and Spirochaetes were more abundant (q < 0.01) in CONV than NAT systems, with no differences (q > 0.05) in bacterial profiles in either swine or chickens. Classes of antimicrobial resistant genes (ARG) were not impacted regardless of AMU in any of the livestock species. However, many tetracycline resistance genes were more abundant in CONV as compared to NAT swine (q < 0.05), but this difference was not observed in cattle or chickens. This study confirmed that elimination of AMU does not necessarily result in an immediate decline in the abundance or diversity of ARGs within a single livestock production cycle.
Collapse
Affiliation(s)
- Catrione Lee
- Department of Biological Sciences, University of Manitoba, 66 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Krysty Thomas
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Dominic Poulin-Laprade
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 2000 Rue du Collége, Sherbrooke, QC J1M 1Z3, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 2000 Rue du Collége, Sherbrooke, QC J1M 1Z3, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 93 Stone Road W., Guelph, ON N1G 5C9, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Government of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Athanasios Zovoilis
- Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
4
|
Collis RM, Biggs PJ, Burgess SA, Midwinter AC, Liu J, Brightwell G, Cookson AL. Assessing antimicrobial resistance in pasture-based dairy farms: a 15-month surveillance study in New Zealand. Appl Environ Microbiol 2024; 90:e0139024. [PMID: 39440981 DOI: 10.1128/aem.01390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/12/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial resistance is a global public and animal health concern. Antimicrobial resistance genes (ARGs) have been detected in dairy farm environments globally; however, few longitudinal studies have utilized shotgun metagenomics for ARG surveillance in pasture-based systems. This 15-month study aimed to undertake a baseline survey using shotgun metagenomics to assess the relative abundance and diversity of ARGs in two pasture-based dairy farm environments in New Zealand with different management practices. There was no statistically significant difference in overall ARG relative abundance between the two dairy farms (P = 0.321) during the study period. Compared with overseas data, the relative abundance of ARG copies per 16S rRNA gene in feces (0.08-0.17), effluent (0.03-0.37), soil (0.20-0.63), and bulk tank milk (0.0-0.12) samples was low. Models comparing the presence or absence of resistance classes found in >10% of all feces, effluent, and soil samples demonstrated no statistically significant associations (P > 0.05) with "season," and only multi-metal (P = 0.020) and tetracycline (P = 0.0003) resistance were significant at the "farm" level. Effluent samples harbored the most diverse ARGs, some with a recognized public health risk, whereas soil samples had the highest ARG relative abundance but without recognized health risks. This highlights the importance of considering the genomic context and risk of ARGs in metagenomic data sets. This study suggests that antimicrobial resistance on pasture-based dairy farms is low and provides essential baseline ARG surveillance data for such farming systems.IMPORTANCEAntimicrobial resistance is a global threat to human and animal health. Despite the detection of antimicrobial resistance genes (ARGs) in dairy farm environments globally, longitudinal surveillance in pasture-based systems remains limited. This study assessed the relative abundance and diversity of ARGs in two New Zealand dairy farms with different management practices and provided important baseline ARG surveillance data on pasture-based dairy farms. The overall ARG relative abundance on these two farms was low, which provides further evidence for consumers of the safety of New Zealand's export products. Effluent samples harbored the most diverse range of ARGs, some of which were classified with a recognized risk to public health, whereas soil samples had the highest ARG relative abundance; however, the soil ARGs were not classified with a recognized public health risk. This emphasizes the need to consider genomic context and risk as well as ARG relative abundance in resistome studies.
Collapse
Affiliation(s)
- Rose M Collis
- Food System Integrity, AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J Biggs
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Sara A Burgess
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C Midwinter
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jinxin Liu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gale Brightwell
- Food System Integrity, AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Adrian L Cookson
- Food System Integrity, AgResearch Ltd, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Dillon L, Dimonaco NJ, Creevey CJ. Accessory genes define species-specific routes to antibiotic resistance. Life Sci Alliance 2024; 7:e202302420. [PMID: 38228374 PMCID: PMC10791901 DOI: 10.26508/lsa.202302420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
A deeper understanding of the relationship between the antimicrobial resistance (AMR) gene carriage and phenotype is necessary to develop effective response strategies against this global burden. AMR phenotype is often a result of multi-gene interactions; therefore, we need approaches that go beyond current simple AMR gene identification tools. Machine-learning (ML) methods may meet this challenge and allow the development of rapid computational approaches for AMR phenotype classification. To examine this, we applied multiple ML techniques to 16,950 bacterial genomes across 28 genera, with corresponding MICs for 23 antibiotics with the aim of training models to accurately determine the AMR phenotype from sequenced genomes. This resulted in a >1.5-fold increase in AMR phenotype prediction accuracy over AMR gene identification alone. Furthermore, we revealed 528 unique (often species-specific) genomic routes to antibiotic resistance, including genes not previously linked to the AMR phenotype. Our study demonstrates the utility of ML in predicting AMR phenotypes across diverse clinically relevant organisms and antibiotics. This research proposes a rapid computational method to support laboratory-based identification of the AMR phenotype in pathogens.
Collapse
Affiliation(s)
- Lucy Dillon
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Nicholas J Dimonaco
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | | |
Collapse
|
6
|
Strickland AH, Murray SA, Vinasco J, Auvermann BW, Bush KJ, Sawyer JE, Scott HM, Norman KN. Comparative microbiome analysis of beef cattle, the feedyard environment, and airborne particulate matter as a function of probiotic and antibiotic use, and change in pen environment. Front Microbiol 2024; 15:1348171. [PMID: 38389541 PMCID: PMC10883649 DOI: 10.3389/fmicb.2024.1348171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Intensive beef cattle production systems are frequently implicated as a source of bacteria that can be transferred to nearby humans and animals via effluent water, manure used as fertilizer, or airborne particulate matter. It is crucial to understand microbial population dynamics due to manure pack desiccation, antibiotic usage, and antibiotic alternatives within beef cattle and their associated feedyard environment. Understanding how bacterial communities change in the presence of antibiotics can also improve management practices for reducing the spread of foodborne bacteria. Methods In this study, we aimed to compare the microbiomes within cattle feces, the feedyard environment and artificially produced airborne particulate matter as a function of pen change and treatment with tylosin or probiotics. We utilized 16S rRNA sequencing to compare bacterial communities among sample types, study days, and treatment groups. Results Bacterial community diversity varied as a function of sampling day and pen change (old or new) within fecal and manure pack samples. Manure pack samples from old pens and new pens contained diverse communities of bacteria on days 0 and 84; however, by day 119 of the study these taxonomic differences were less evident. Particulate matter samples exhibited significant differences in community diversity and predominant bacterial taxa compared to the manure pack they originated from. Treatment with tylosin did not meaningfully impact bacterial communities among fecal, environmental, or particulate matter samples; however, minor differences in bacterial community structure were observed in feces from cattle treated with probiotics. Discussion This study was the first to characterize and compare microbial communities within feces, manure pack, and airborne particulate matter from the same location and as a function of tylosin and probiotic treatment, and pen change. Although fecal and environmental samples are commonly used in research studies and other monitoring programs to infer public health risk of bacteria and antimicrobial resistance determinants from feedyard environments, our study suggests that these samples may not be appropriate to infer public health risk associated with airborne particulate matter.
Collapse
Affiliation(s)
- A. H. Strickland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - S. A. Murray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - J. Vinasco
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - B. W. Auvermann
- Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, TX, United States
| | - K. J. Bush
- Texas A&M AgriLife Research and Extension Center at Amarillo, Amarillo, TX, United States
| | - J. E. Sawyer
- Department of Animal Sciences, Texas A&M University, College Station, TX, United States
| | - H. M. Scott
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - K. N. Norman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Yang X, Narvaez-Bravo C, Zhang P. Driving forces shaping the microbial ecology in meat packing plants. Front Microbiol 2024; 14:1333696. [PMID: 38322759 PMCID: PMC10844536 DOI: 10.3389/fmicb.2023.1333696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/22/2023] [Indexed: 02/08/2024] Open
Abstract
Meat production is a complex system, continually receiving animals, water, air, and workers, all of which serve as carriers of bacteria. Selective pressures involved in different meat processing stages such as antimicrobial interventions and low temperatures, may promote the accumulation of certain residential microbiota in meat cutting facilities. Bacteria including human pathogens from all these sources can contaminate meat surfaces. While significant advancements have been made in enhancing hygienic standards and pathogen control measures in meat plants, resulting in a notable reduction in STEC recalls and clinical cases, STEC still stands as a predominant contributor to foodborne illnesses associated with beef and occasionally with pork. The second-and third-generation sequencing technology has become popular in microbiota related studies and provided a better image of the microbial community in the meat processing environments. In this article, we reviewed the potential factors influencing the microbial ecology in commercial meat processing facilities and conducted a meta-analysis on the microbiota data published in the last 10 years. In addition, the mechanisms by which bacteria persist in meat production environments have been discussed with a focus on the significant human pathogen E. coli O157:H7 and generic E. coli, an indicator often used for the hygienic condition in food production.
Collapse
Affiliation(s)
- Xianqin Yang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | | | - Peipei Zhang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
- Department of Animal Sciences, Center for Meat Safety and Quality, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Chai J, Zhuang Y, Cui K, Bi Y, Zhang N. Metagenomics reveals the temporal dynamics of the rumen resistome and microbiome in goat kids. MICROBIOME 2024; 12:14. [PMID: 38254181 PMCID: PMC10801991 DOI: 10.1186/s40168-023-01733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 11/28/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND The gut microbiome of domestic animals carries antibiotic resistance genes (ARGs) which can be transmitted to the environment and humans, resulting in challenges of antibiotic resistance. Although it has been reported that the rumen microbiome of ruminants may be a reservoir of ARGs, the factors affecting the temporal dynamics of the rumen resistome are still unclear. Here, we collected rumen content samples of goats at 1, 7, 14, 28, 42, 56, 70, and 84 days of age, analyzed their microbiome and resistome profiles using metagenomics, and assessed the temporal dynamics of the rumen resistome in goats at the early stage of life under a conventional feeding system. RESULTS In our results, the rumen resistome of goat kids contained ARGs to 41 classes, and the richness of ARGs decreased with age. Four antibiotic compound types of ARGs, including drugs, biocides, metals, and multi-compounds, were found during milk feeding, while only drug types of ARGs were observed after supplementation with starter feed. The specific ARGs for each age and their temporal dynamics were characterized, and the network inference model revealed that the interactions among ARGs were related to age. A strong correlation between the profiles of rumen resistome and microbiome was found using Procrustes analysis. Ruminal Escherichia coli within Proteobacteria phylum was the main carrier of ARGs in goats consuming colostrum, while Prevotella ruminicola and Fibrobacter succinogenes associated with cellulose degradation were the carriers of ARGs after starter supplementation. Milk consumption was likely a source of rumen ARGs, and the changes in the rumen resistome with age were correlated with the microbiome modulation by starter supplementation. CONCLUSIONS Our data revealed that the temporal dynamics of the rumen resistome are associated with the microbiome, and the reservoir of ARGs in the rumen during early life is likely related to age and diet. It may be a feasible strategy to reduce the rumen and its downstream dissemination of ARGs in ruminants through early-life dietary intervention. Video Abstract.
Collapse
Affiliation(s)
- Jianmin Chai
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Yimin Zhuang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Kai Cui
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Yanliang Bi
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Naifeng Zhang
- Institute of Feed Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
9
|
Zhuang Y, Guo W, Cui K, Tu Y, Diao Q, Zhang N, Bi Y, Ma T. Altered microbiota, antimicrobial resistance genes, and functional enzyme profiles in the rumen of yak calves fed with milk replacer. Microbiol Spectr 2024; 12:e0131423. [PMID: 38014976 PMCID: PMC10871699 DOI: 10.1128/spectrum.01314-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Yaks, as ruminants inhabiting high-altitude environments, possess a distinct rumen microbiome and are resistant to extreme living conditions. This study investigated the microbiota, resistome, and functional gene profiles in the rumen of yaks fed milk or milk replacer (MR), providing insights into the regulation of the rumen microbiome and the intervention of antimicrobial resistance in yaks through dietary methods. The abundance of Prevotella members increased significantly in response to MR. Tetracycline resistance was the most predominant. The rumen of yaks contained multiple antimicrobial resistance genes (ARGs) originating from different bacteria, which could be driven by MR, and these ARGs displayed intricate and complex interactions. MR also induced changes in functional genes. The enzymes associated with fiber degradation and butyrate metabolism were activated and showed close correlations with Prevotella members and butyrate concentration. This study allows us to deeply understand the ruminal microbiome and ARGs of yaks and their relationship with rumen bacteria in response to different milk sources.
Collapse
Affiliation(s)
- Yimin Zhuang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Ramos-Barbero MD, Gómez-Gómez C, Vique G, Sala-Comorera L, Rodríguez-Rubio L, Muniesa M. Recruitment of complete crAss-like phage genomes reveals their presence in chicken viromes, few human-specific phages, and lack of universal detection. THE ISME JOURNAL 2024; 18:wrae192. [PMID: 39361891 PMCID: PMC11475920 DOI: 10.1093/ismejo/wrae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
The order Crassvirales, which includes the prototypical crAssphage (p-crAssphage), is predominantly associated with humans, rendering it the most abundant and widely distributed group of DNA phages in the human gut. The reported human specificity and wide global distribution of p-crAssphage makes it a promising human fecal marker. However, the specificity for the human gut as well as the geographical distribution around the globe of other members of the order Crassvirales remains unknown. To determine this, a recruitment analysis using 91 complete, non-redundant genomes of crAss-like phages in human and animal viromes revealed that only 13 crAss-like phages among the 91 phages analyzed were highly specific to humans, and p-crAssphage was not in this group. Investigations to elucidate whether any characteristic of the phages was responsible for their prevalence in humans showed that the 13 human crAss-like phages do not share a core genome. Phylogenomic analysis placed them in three independent families, indicating that within the Crassvirales group, human specificity is likely not a feature of a common ancestor but rather was introduced on separate/independent occasions in their evolutionary history. The 13 human crAss-like phages showed variable geographical distribution across human metagenomes worldwide, with some being more prevalent in certain countries than in others, but none being universally identified. The varied geographical distribution and the absence of a phylogenetic relationship among the human crAss-like phages are attributed to the emergence and dissemination of their bacterial host, the symbiotic human strains of Bacteroides, across various human populations occupying diverse ecological niches worldwide.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Clara Gómez-Gómez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Gloria Vique
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Laura Sala-Comorera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Lorena Rodríguez-Rubio
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| | - Maite Muniesa
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonal, 643, Prevosti Building, Floor 0. Barcelona E-08028, Spain
| |
Collapse
|
11
|
Kos D, Schreiner B, Thiessen S, McAllister T, Jelinski M, Ruzzini A. Insight into antimicrobial resistance at a new beef cattle feedlot in western Canada. mSphere 2023; 8:e0031723. [PMID: 37855607 PMCID: PMC10732036 DOI: 10.1128/msphere.00317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE A better understanding of how environmental reservoirs of ARGs in the feedlot relate to those found in animal pathogens will help inform and improve disease management, treatment strategies, and outcomes. Monitoring individual cattle or small groups is invasive, logistically challenging, expensive, and unlikely to gain adoption by the beef cattle industry. Wastewater surveillance has become standard in public health studies and has inspired similar work to better our understanding of AMR in feedlots. We derived our insights from sampling water bowls in a newly established feedlot: a unique opportunity to observe AMR prior to animal arrival and to monitor its development over 2 months. Importantly, the bacterial community of a single water bowl can be influenced by direct contact with hundreds of animals. Our results suggest that water bowl microbiomes are economical and pragmatic sentinels for monitoring relevant AMR mechanisms.
Collapse
Affiliation(s)
- Daniel Kos
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brittany Schreiner
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Tim McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Murray Jelinski
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Antonio Ruzzini
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
12
|
Lee C, Zaheer R, Munns K, Holman DB, Van Domselaar G, Zovoilis A, McAllister TA. Effect of Antimicrobial Use in Conventional Versus Natural Cattle Feedlots on the Microbiome and Resistome. Microorganisms 2023; 11:2982. [PMID: 38138126 PMCID: PMC10745953 DOI: 10.3390/microorganisms11122982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Antimicrobial use (AMU) in the livestock industry has been associated with increased levels of antimicrobial resistance. Recently, there has been an increase in the number of "natural" feedlots in the beef cattle sector that raise cattle without antibiotics. Shotgun metagenomics was employed to characterize the impact of AMU in feedlot cattle on the microbiome, resistome, and mobilome. Sequenced fecal samples identified a decline (q < 0.01) in the genera Methanobrevibacter and Treponema in the microbiome of naturally vs. conventionally raised feedlot cattle, but this difference was not (q > 0.05) observed in catch basin samples. No differences (q > 0.05) were found in the class-level resistome between feedlot practices. In fecal samples, decreases from conventional to natural (q < 0.05) were noted in reads for the antimicrobial-resistant genes (ARGs) mefA, tet40, tetO, tetQ, and tetW. Plasmid-associated ARGs were more common in feces from conventional than natural feedlot cattle. Interestingly, more chromosomal- than plasmid-associated macrolide resistance genes were observed in both natural and conventional feedlots, suggesting that they were more stably conserved than the predominately plasmid-associated tetracycline resistance genes. This study suggests that generationally selected resistomes through decades of AMU persist even after AMU ceases in natural production systems.
Collapse
Affiliation(s)
- Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (C.L.); (R.Z.); (K.M.)
- Southern Alberta Genomic Sciences Centre, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (C.L.); (R.Z.); (K.M.)
| | - Krysty Munns
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; (C.L.); (R.Z.); (K.M.)
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada;
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Government of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada;
| | - Athanasios Zovoilis
- Southern Alberta Genomic Sciences Centre, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| | - Tim A. McAllister
- Southern Alberta Genomic Sciences Centre, Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
13
|
Tyagi I, Tyagi K, Gupta V, Dutta R, Singhvi N, Kumar V, Bhutiani R, Prakash O. Microbial diversity characterizations, associated pathogenesis and antimicrobial resistance profiling of Najafgarh drain. ENVIRONMENTAL RESEARCH 2023; 238:117140. [PMID: 37716389 DOI: 10.1016/j.envres.2023.117140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
The Najafgarh drain plays a significant role in the pollution of the Yamuna River, accounting for 40% of the total pollution. Therefore, it is crucial to investigate and analyze the microbial diversity, metabolic functional capacity, and antibiotic resistance genes (ARGs) present in the Najafgarh drain. Additionally, studying the water quality and its relationship with the proliferation of microorganisms in the drain is of utmost importance. Results obtained confirmed the deteriorated water quality as physico-chemical parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), and total suspended solids (TSS) in the range of 125-140, 400-460, 0-0.2, 25-140.4 mg/l respectively violated the standard permissible national and global standards. In addition, the next generation sequencing (NGS) analysis confirm the presence of genus such as Thauera, Arcobacter, Pseudomonas, Geobacter, Dechloromonas, Tolumonas, Sulfurospirullum, Desulfovibrio, Aeromonas, Bacteroides, Prevotella, Cloacibacterium, Bifidobacterium, Clostridium etc. along with 864 ARGs in the wastewater obtained from the Najafgarh drain. Findings confirm that the pathogenic species reported from this dataset possess severe detrimental impact on faunal and human health. Further, Pearson's r correlation analysis indicated that environmental variables, mainly total dissolved solids (TDS) and chemical oxygen demand (COD), play a pivotal role in driving microbial community structure of this heavily polluted drain. Thus, the poor water quality, presence of a microbial nexus, pathogenic markers, and ARGs throughout this drain confirmed that it would be one potential contributor to the dissemination of disease-causing agents (pathogens) to the household and drinking water supplies in the near future.
Collapse
Affiliation(s)
- Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India.
| | - Koamud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India
| | - Vipin Gupta
- Ministry of Environment Forest and Climate Change, Integrated Regional Office-Dehradun, India, 248001, Uttarakhand, India
| | - Ritesh Dutta
- Kiit School of Biotechnology, Bhubaneswar, 751024, Odisha, India
| | - Nirjara Singhvi
- School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, 700 053, West Bengal, India.
| | - Rakesh Bhutiani
- Limnology and Ecological Modelling Lab, Department of Zoology and Environmental Science, Gurukul Kangri (Deemed to be University), Haridwar, 249404, UK, India
| | - Om Prakash
- Symbiosis Centre for Climate Change and Sustainability (SCCCS), Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharastra, India
| |
Collapse
|
14
|
Diebold PJ, Rhee MW, Shi Q, Trung NV, Umrani F, Ahmed S, Kulkarni V, Deshpande P, Alexander M, Thi Hoa N, Christakis NA, Iqbal NT, Ali SA, Mathad JS, Brito IL. Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide. Nat Commun 2023; 14:7366. [PMID: 37963868 PMCID: PMC10645880 DOI: 10.1038/s41467-023-42998-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
The acquisition of antimicrobial resistance (AR) genes has rendered important pathogens nearly or fully unresponsive to antibiotics. It has been suggested that pathogens acquire AR traits from the gut microbiota, which collectively serve as a global reservoir for AR genes conferring resistance to all classes of antibiotics. However, only a subset of AR genes confers resistance to clinically relevant antibiotics, and, although these AR gene profiles are well-characterized for common pathogens, less is known about their taxonomic associations and transfer potential within diverse members of the gut microbiota. We examined a collection of 14,850 human metagenomes and 1666 environmental metagenomes from 33 countries, in addition to nearly 600,000 isolate genomes, to gain insight into the global prevalence and taxonomic range of clinically relevant AR genes. We find that several of the most concerning AR genes, such as those encoding the cephalosporinase CTX-M and carbapenemases KPC, IMP, NDM, and VIM, remain taxonomically restricted to Proteobacteria. Even cfiA, the most common carbapenemase gene within the human gut microbiome, remains tightly restricted to Bacteroides, despite being found on a mobilizable plasmid. We confirmed these findings in gut microbiome samples from India, Honduras, Pakistan, and Vietnam, using a high-sensitivity single-cell fusion PCR approach. Focusing on a set of genes encoding carbapenemases and cephalosporinases, thus far restricted to Bacteroides species, we find that few mutations are required for efficacy in a different phylum, raising the question of why these genes have not spread more widely. Overall, these data suggest that globally prevalent, clinically relevant AR genes have not yet established themselves across diverse commensal gut microbiota.
Collapse
Affiliation(s)
- Peter J Diebold
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew W Rhee
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nguyen Vinh Trung
- Oxford University Clinical Research Unit (OUCRU) in Ho Chi Minh City, Ho Chi Minh city, Viet Nam
| | | | | | - Vandana Kulkarni
- Johns Hopkins University Clinical Trials Unit, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | - Prasad Deshpande
- Johns Hopkins University Clinical Trials Unit, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | - Mallika Alexander
- Johns Hopkins University Clinical Trials Unit, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
| | - Ngo Thi Hoa
- Oxford University Clinical Research Unit (OUCRU) in Ho Chi Minh City, Ho Chi Minh city, Viet Nam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Microbiology Department and Center for Tropical Medicine Research, Ngoc Thach University of Medicine, Ho Chi Minh city, Vietnam
| | | | | | | | | | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
15
|
Lee C, Polo RO, Zaheer R, Van Domselaar G, Zovoilis A, McAllister TA. Evaluation of metagenomic assembly methods for the detection and characterization of antimicrobial resistance determinants and associated mobilizable elements. J Microbiol Methods 2023; 213:106815. [PMID: 37699502 DOI: 10.1016/j.mimet.2023.106815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Antimicrobial resistance genes (ARGs) can be transferred between members of a bacterial population by mobile genetic elements (MGE). Understanding the risk of these transfer events is important in monitoring and predicting antimicrobial resistance (AMR), especially in the context of a One Health Continuum. However, there is no universally accepted method for detection of ARGs and MGEs, and especially for determining their linkages. This study used publicly available shotgun metagenomic DNA short-read (Illumina, 100 bp paired-end) sequence data from samples across the One Health Continuum (including beef cattle composite feces from feedlots, catch basin water at feedlots, agricultural soil from feedlot manured surrounding fields, and urban/municipal sewage influent from two municipal wastewater treatment plants) to develop a workflow to identify and associate ARGs and MGEs. ARG- and MGE-based targeted-assemblies with available short-read data were unable to meet this analysis goal. In contrast, de novo assembly of contigs provided enough sequence context to associate ARGs and MGEs, without compromising discovery rate. However, to estimate the relative abundance of these elements, unassembled sequence data must still be used.
Collapse
Affiliation(s)
- Catrione Lee
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T3M 2L7, Canada
| | - Rodrigo Ortega Polo
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Government of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, AB T3M 2L7, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Government of Canada, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada.
| |
Collapse
|
16
|
Patangia DV, Grimaud G, Linehan K, Ross RP, Stanton C. Microbiota and Resistome Analysis of Colostrum and Milk from Dairy Cows Treated with and without Dry Cow Therapies. Antibiotics (Basel) 2023; 12:1315. [PMID: 37627735 PMCID: PMC10451192 DOI: 10.3390/antibiotics12081315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
This study investigated the longitudinal impact of methods for the drying off of cows with and without dry cow therapy (DCT) on the microbiota and resistome profile in colostrum and milk samples from cows. Three groups of healthy dairy cows (n = 24) with different antibiotic treatments during DCT were studied. Colostrum and milk samples from Month 0 (M0), 2 (M2), 4 (M4) and 6 (M6) were analysed using whole-genome shotgun-sequencing. The microbial diversity from antibiotic-treated groups was different and higher than that of the non-antibiotic group. This difference was more evident in milk compared to colostrum, with increasing diversity seen only in antibiotic-treated groups. The microbiome of antibiotic-treated groups clustered separately from the non-antibiotic group at M2-, M4- and M6 milk samples, showing the effect of antibiotic treatment on between-group (beta) diversity. The non-antibiotic group did not show a high relative abundance of mastitis-causing pathogens during early lactation and was more associated with genera such as Psychrobacter, Serratia, Gordonibacter and Brevibacterium. A high relative abundance of antibiotic resistance genes (ARGs) was observed in the milk of antibiotic-treated groups with the Cephaguard group showing a significantly high abundance of genes conferring resistance to cephalosporin, aminoglycoside and penam classes. The data support the use of non-antibiotic alternatives for drying off in cows.
Collapse
Affiliation(s)
- Dhrati V. Patangia
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Ghjuvan Grimaud
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Kevin Linehan
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - R. Paul Ross
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland; (D.V.P.); (R.P.R.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| | - Catherine Stanton
- Biosciences Building, Teagasc Food Research Centre, P61 C996 Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
17
|
Volmer JG, Soo RM, Evans PN, Hoedt EC, Astorga Alsina AL, Woodcroft BJ, Tyson GW, Hugenholtz P, Morrison M. Isolation and characterisation of novel Methanocorpusculum species indicates the genus is ancestrally host-associated. BMC Biol 2023; 21:59. [PMID: 36949471 PMCID: PMC10035134 DOI: 10.1186/s12915-023-01524-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/20/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND With an increasing interest in the manipulation of methane produced from livestock cultivation, the microbiome of Australian marsupials provides a unique ecological and evolutionary comparison with 'low-methane' emitters. Previously, marsupial species were shown to be enriched for novel lineages of Methanocorpusculum, as well as Methanobrevibacter, Methanosphaera, and Methanomassiliicoccales. Despite sporadic reports of Methanocorpusculum from stool samples of various animal species, there remains little information on the impacts of these methanogens on their hosts. RESULTS Here, we characterise novel host-associated species of Methanocorpusculum, to explore unique host-specific genetic factors and their associated metabolic potential. We performed comparative analyses on 176 Methanocorpusculum genomes comprising 130 metagenome-assembled genomes (MAGs) recovered from 20 public animal metagenome datasets and 35 other publicly available Methanocorpusculum MAGs and isolate genomes of host-associated and environmental origin. Nine MAGs were also produced from faecal metagenomes of the common wombat (Vombatus ursinus) and mahogany glider (Petaurus gracilis), along with the cultivation of one axenic isolate from each respective animal; M. vombati (sp. nov.) and M. petauri (sp. nov.). CONCLUSIONS Through our analyses, we substantially expand the available genetic information for this genus by describing the phenotypic and genetic characteristics of 23 host-associated species of Methanocorpusculum. These lineages display differential enrichment of genes associated with methanogenesis, amino acid biosynthesis, transport system proteins, phosphonate metabolism, and carbohydrate-active enzymes. These results provide insights into the differential genetic and functional adaptations of these novel host-associated species of Methanocorpusculum and suggest that this genus is ancestrally host-associated.
Collapse
Affiliation(s)
- James G Volmer
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, 4102, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, 4102, Australia
| | - Rochelle M Soo
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, University of Queensland, Saint Lucia, 4072, Australia
| | - Paul N Evans
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, University of Queensland, Saint Lucia, 4072, Australia
| | - Emily C Hoedt
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, 4102, Australia
- Current Address: NHMRC Centre of Research Excellence (CRE) in Digestive Health, Hunter Medical Research Institute (HMRI), Newcastle, NSW, Australia
| | - Ana L Astorga Alsina
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, 4102, Australia
| | - Benjamin J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, 4102, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences and Australian Centre for Ecogenomics, University of Queensland, Saint Lucia, 4072, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, 4102, Australia.
| |
Collapse
|
18
|
Zhang Y, Hao X, Thomas BW, McAllister TA, Workentine M, Jin L, Shi X, Alexander TW. Soil antibiotic resistance genes accumulate at different rates over four decades of manure application. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130136. [PMID: 36444046 DOI: 10.1016/j.jhazmat.2022.130136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/11/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Manure can be a source of antibiotic resistance genes (ARGs) that enter the soil. However, previous studies assessing ARG persistence in soil have generally lacked continuity over sampling times, consistency of location, and assessing the impact of discontinuing manure application. We evaluated both short- and long-term ARG accumulation dynamics in soil with a 40-year known history of manure use. Manure application caused a greater abundance of tetracycline, macrolide, and sulfonamide ARGs in the soil. There was an initial spike in ARG abundance resulting from manure bacteria harboring ARGs being introduced to soil, followed by resident soil bacteria out-competing them, which led to ARG dissipation within a year. However, over four decades, annual manure application caused linear or exponential ARG accumulation, and bacteria associated with ARGs differed compared to those in the short term. Eleven years after discontinuing manure application, most soil ARG levels declined but remained elevated. We systematically explored the historical accumulation of ARGs in manured soil, and provide insight into factors that affect their persistence.
Collapse
Affiliation(s)
- Yuting Zhang
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China; Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Xiying Hao
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Ben W Thomas
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, Agassiz, BC V0M 1A0, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Matthew Workentine
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Long Jin
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada
| | - Xiaojun Shi
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Academy of Agriculture Science, Southwest University, Chongqing 400716, China
| | - Trevor W Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB T1J 4B1, Canada.
| |
Collapse
|
19
|
Kang J, Liu Y, Chen X, Xu F, Wang H, Xiong W, Li X. Metagenomic insights into the antibiotic resistomes of typical Chinese dairy farm environments. Front Microbiol 2022; 13:990272. [PMID: 36246251 PMCID: PMC9555277 DOI: 10.3389/fmicb.2022.990272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic resistance genes (ARGs) in the environment pose a threat to human and animal health. Dairy cows are important livestock in China; however, a comprehensive understanding of antibiotic resistance in their production environment has not been well clarified. In this study, we used metagenomic methods to analyze the resistomes, microbiomes, and potential ARG bacterial hosts in typical dairy farm environments (including feces, wastewater, and soil). The ARGs resistant to tetracyclines, MLS, β-lactams, aminoglycoside, and multidrug was dominant in the dairy farm ecosystem. The abundance and diversity of total ARGs in dairy feces and wastewater were significantly higher than in soil (P < 0.05). The same environmental samples from different dairy have similar resistomes and microbiomes. A high detection rate of tet(X) in wastewater and feces (100% and 71.4%, respectively), high abundance (range from 5.74 to 68.99 copies/Gb), and the finding of tet(X5) challenged the clinical application of the last antibiotics resort of tigecycline. Network analysis identified Bacteroides as the dominant genus in feces and wastewater, which harbored the greatest abundance of their respective total ARG coverage and shared ARGs. These results improved our understanding of ARG profiles and their bacterial hosts in dairy farm environments and provided a basis for further surveillance.
Collapse
Affiliation(s)
- Jijun Kang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiming Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaojie Chen
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Xu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglei Wang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutic Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Xiubo Li
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality and Safety Risk Assessment for Products on Feed-origin Risk Factor, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Kang J, Liu Y, Chen X, Xu F, Xiong W, Li X. Shifts of Antibiotic Resistomes in Soil Following Amendments of Antibiotics-Contained Dairy Manure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10804. [PMID: 36078515 PMCID: PMC9517759 DOI: 10.3390/ijerph191710804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Dairy manure is a nutrition source for cropland soils and also simultaneously serves as a contamination source of antibiotic resistance genes (ARGs). In this study, five classes of antibiotics including aminoglycosides, beta-lactams, macrolides, sulfonamides, and tetracyclines, were spiked in dairy manure and incubated with soil for 60 days. The high throughput qPCR and 16S rRNA amplicon sequencing were used to detect temporal shifts of the soil antibiotic resistomes and bacterial community. Results indicated dairy manure application increased the ARG abundance by 0.5-3.7 times and subtype numbers by 2.7-3.7 times and changed the microbial community structure in soils. These effects were limited to the early incubation stage. Selection pressure was observed after the addition of sulfonamides. Bacterial communities played an important role in the shifts of ARG profiles and accounted for 44.9% of the resistome variation. The incubation period, but not the different antibiotic treatments, has a strong impact on the bacteria community. Firmicutes and Bacteroidetes were the dominant bacterial hosts for individual ARGs. This study advanced our understanding of the effect of dairy manure and antibiotics on the antibiotic resistome in soils and provided a reference for controlling ARG dissemination from dairy farms to the environment.
Collapse
Affiliation(s)
- Jijun Kang
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiming Liu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaojie Chen
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Xu
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutic Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiubo Li
- Key Laboratory of Animal Antimicrobial Resistance Surveillance, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
21
|
Zaidi SEZ, Zaheer R, Barbieri R, Cook SR, Hannon SJ, Booker CW, Church D, Van Domselaar G, Zovoilis A, McAllister TA. Genomic Characterization of Enterococcus hirae From Beef Cattle Feedlots and Associated Environmental Continuum. Front Microbiol 2022; 13:859990. [PMID: 35832805 PMCID: PMC9271880 DOI: 10.3389/fmicb.2022.859990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Enterococci are commensal bacteria of the gastrointestinal tract of humans, animals, and insects. They are also found in soil, water, and plant ecosystems. The presence of enterococci in human, animal, and environmental settings makes these bacteria ideal candidates to study antimicrobial resistance in the One-Health continuum. This study focused on Enterococcus hirae isolates (n = 4,601) predominantly isolated from beef production systems including bovine feces (n = 4,117, 89.5%), catch-basin water (n = 306, 66.5%), stockpiled bovine manure (n = 24, 0.5%), and natural water sources near feedlots (n = 145, 32%), and a few isolates from urban wastewater (n = 9, 0.2%) denoted as human-associated environmental samples. Antimicrobial susceptibility profiling of a subset (n = 1,319) of E. hirae isolates originating from beef production systems (n = 1,308) showed high resistance to tetracycline (65%) and erythromycin (57%) with 50.4% isolates harboring multi-drug resistance, whereas urban wastewater isolates (n = 9) were resistant to nitrofurantoin (44.5%) and tigecycline (44.5%) followed by linezolid (33.3%). Genes for tetracycline (tetL, M, S/M, and O/32/O) and macrolide resistance erm(B) were frequently found in beef production isolates. Antimicrobial resistance profiles of E. hirae isolates recovered from different environmental settings appeared to reflect the kind of antimicrobial usage in beef and human sectors. Comparative genomic analysis of E. hirae isolates showed an open pan-genome that consisted of 1,427 core genes, 358 soft core genes, 1701 shell genes, and 7,969 cloud genes. Across species comparative genomic analysis conducted on E. hirae, Enterococcus faecalis and Enterococcus faecium genomes revealed that E. hirae had unique genes associated with vitamin production, cellulose, and pectin degradation, traits which may support its adaptation to the bovine digestive tract. E. faecium and E. faecalis more frequently harbored virulence genes associated with biofilm formation, iron transport, and cell adhesion, suggesting niche specificity within these species.
Collapse
Affiliation(s)
- Sani-e-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- University of Lethbridge, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Ruth Barbieri
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Shaun R. Cook
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | | | | | - Deirdre Church
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Calgary Laboratory Services, Calgary, AB, Canada
| | - Gary Van Domselaar
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | | | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- *Correspondence: Tim A. McAllister,
| |
Collapse
|
22
|
Ma T, Zaheer R, McAllister TA, Guo W, Li F, Tu Y, Diao Q, Guan LL. Expressions of resistome is linked to the key functions and stability of active rumen microbiome. Anim Microbiome 2022; 4:38. [PMID: 35659381 PMCID: PMC9167530 DOI: 10.1186/s42523-022-00189-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The resistome describes the array of antibiotic resistant genes (ARGs) present within a microbial community. Recent research has documented the resistome in the rumen of ruminants and revealed that the type and abundance of ARGs could be affected by diet and/or antibiotic treatment. However, most of these studies only assessed ARGs using metagenomics, and expression of the resistome and its biological function within the microbiome remains largely unexplored. RESULTS We characterized the pools of ARGs (resistome) and their activities in the rumen of 48 beef cattle belonging to three breeds (Angus, Charolais, Kinsella composite hybrid), using shotgun metagenomics and metatranscriptomics. Sixty (including 20 plasmid-associated) ARGs were expressed which accounted for about 30% of the total number of ARGs (187) identified in metagenomic datasets, with tetW and mefA exhibiting the highest level of expression. In addition, the bacterial hosts of 17 expressed ARGs were identified. The active resistome was less diverse in Kinsella composite hybrid than Angus, however, expression of ARGs did not differ among breeds. Although not associated with feed efficiency, the total abundance of expressed ARGs was positively correlated with metabolic pathways and 'attenuation values' (a measurement of stability) of the active rumen microbiome, suggesting that ARGs expression influences the stability and functionality of the rumen microbiome. Moreover, Ruminococcus spp., Prevotella ruminicola, Muribaculaceae spp. and Collinsella aerofaciens were all identified as hosts of expressed ARGs, possibly promoting the dominance of these carbohydrate degraders within the rumen microbiome. CONCLUSIONS Findings from this study provide new insight into the active rumen resistome in vivo, which may inform strategies to limit the spread of ubiquitously found ARGs from the rumen to the broader environment without negatively impacting the key functional outcomes of the rumen microbiome.
Collapse
Affiliation(s)
- Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,4-16F, Agriculture/Forestry Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4P4, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4P4, Canada
| | - Wei Guo
- 4-16F, Agriculture/Forestry Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,State Key Laboratory of Grassland Agro-Ecosystems, International Centre of Tibetan Plateau Ecosystem Management, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fuyong Li
- 4-16F, Agriculture/Forestry Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Le Luo Guan
- 4-16F, Agriculture/Forestry Center, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
23
|
Freeman CN, Herman EK, Abi Younes J, Ramsay DE, Erikson N, Stothard P, Links MG, Otto SJG, Waldner C. Evaluating the potential of third generation metagenomic sequencing for the detection of BRD pathogens and genetic determinants of antimicrobial resistance in chronically ill feedlot cattle. BMC Vet Res 2022; 18:211. [PMID: 35655189 PMCID: PMC9161498 DOI: 10.1186/s12917-022-03269-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bovine respiratory disease (BRD) is an important cause of morbidity and mortality and is responsible for most of the injectable antimicrobial use in the feedlot industry. Traditional bacterial culture can be used to diagnose BRD by confirming the presence of causative pathogens and to support antimicrobial selection. However, given that bacterial culture takes up to a week and early intervention is critical for treatment success, culture has limited utility for informing rapid therapeutic decision-making. In contrast, metagenomic sequencing has the potential to quickly resolve all nucleic acid in a sample, including pathogen biomarkers and antimicrobial resistance genes. In particular, third-generation Oxford Nanopore Technology sequencing platforms provide long reads and access to raw sequencing data in real-time as it is produced, thereby reducing the time from sample collection to diagnostic answer. The purpose of this study was to compare the performance of nanopore metagenomic sequencing to traditional culture and sensitivity methods as applied to nasopharyngeal samples from segregated groups of chronically ill feedlot cattle, previously treated with antimicrobials for nonresponsive pneumonia or lameness.
Results
BRD pathogens were isolated from most samples and a variety of different resistance profiles were observed across isolates. The sequencing data indicated the samples were dominated by Moraxella bovoculi, Mannheimia haemolytica, Mycoplasma dispar, and Pasteurella multocida, and included a wide range of antimicrobial resistance genes (ARGs), encoding resistance for up to seven classes of antimicrobials. Genes conferring resistance to beta-lactams were the most commonly detected, while the tetH gene was detected in the most samples overall. Metagenomic sequencing detected the BRD pathogens of interest more often than did culture, but there was limited concordance between phenotypic resistance to antimicrobials and the presence of relevant ARGs.
Conclusions
Metagenomic sequencing can reduce the time from sampling to results, detect pathogens missed by bacterial culture, and identify genetically encoded determinants of resistance. Increasing sequencing coverage of target organisms will be an essential component of improving the reliability of this technology, such that it can be better used for the surveillance of pathogens of interest, genetic determinants of resistance, and to inform diagnostic decisions.
Collapse
|
24
|
Jadeja NB, Worrich A. From gut to mud: dissemination of antimicrobial resistance between animal and agricultural niches. Environ Microbiol 2022; 24:3290-3306. [PMID: 35172395 DOI: 10.1111/1462-2920.15927] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
With increasing reports on antimicrobial resistance (AMR) in humans, animals and the environment, we are at risk of returning to a pre-antibiotic era. Therefore, AMR is recognized as one of the major global health threats of this century. Antibiotics are used extensively in farming systems to treat and prevent infections in food animals or to increase their growth. Besides the risk of a transfer of AMR between the human and the animal sector, there is another yet largely overlooked sector in the One Health triad. Human-dominated ecosystems such as agricultural soils are a major sink for antibiotics and AMR originating from livestock farming. This review summarizes current knowledge on the prevalence of AMR at the interface of animal and agricultural production and discusses the potential implications for human health. Soil resistomes are augmented by the application of manure from treated livestock. Subsequent transfer of AMR into plant microbiomes may likely play a critical role in human exposure to antibiotic resistance in the environment. Based on the knowledge that is currently available we advocate that more attention should be paid to the role of environmental resistomes in the AMR crisis.
Collapse
Affiliation(s)
- Niti B Jadeja
- Ashoka Trust for Research in Ecology and the Environment, PO, Royal Enclave, Srirampura, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Anja Worrich
- Department of Environmental Microbiology, UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, Leipzig, 04318, Germany
| |
Collapse
|
25
|
Sapountzis P, Teseo S, Otani S, Aarestrup FM, Forano E, Suen G, Tsiamis G, Haley B, Van Kessel JA, Huws SA. FI: The Fecobiome Initiative. Foodborne Pathog Dis 2021; 19:441-447. [PMID: 34936494 PMCID: PMC9297326 DOI: 10.1089/fpd.2021.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Animal husbandry has been key to the sustainability of human societies for millennia. Livestock animals, such as cattle, convert plants to protein biomass due to a compartmentalized gastrointestinal tract (GIT) and the complementary contributions of a diverse GIT microbiota, thereby providing humans with meat and dairy products. Research on cattle gut microbial symbionts has mainly focused on the rumen (which is the primary fermentation compartment) and there is a paucity of functional insight on the intestinal (distal end) microbiota, where most foodborne zoonotic bacteria reside. Here, we present the Fecobiome Initiative (or FI), an international effort that aims at facilitating collaboration on research projects related to the intestinal microbiota, disseminating research results, and increasing public availability of resources. By doing so, the FI can help mitigate foodborne and animal pathogens that threaten livestock and human health, reduce the emergence and spread of antimicrobial resistance in cattle and their proximate environment, and potentially improve the welfare and nutrition of animals. We invite all researchers interested in this type of research to join the FI through our website: www.fecobiome.com
Collapse
Affiliation(s)
| | - Serafino Teseo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Saria Otani
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Evelyne Forano
- Université Clermont Auvergne, INRAE, UMR 0454 MEDIS, Clermont-Ferrand, France
| | - Garett Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - George Tsiamis
- Lab of Systems Microbiology and Applied Genomics, University of Patras, Agrinio, Greece
| | - Bradd Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Jo Ann Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | - Sharon A Huws
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast (QUB), Belfast, United Kingdom
| |
Collapse
|
26
|
Ma T, McAllister TA, Guan LL. A review of the resistome within the digestive tract of livestock. J Anim Sci Biotechnol 2021; 12:121. [PMID: 34763729 PMCID: PMC8588621 DOI: 10.1186/s40104-021-00643-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
Antimicrobials have been widely used to prevent and treat infectious diseases and promote growth in food-production animals. However, the occurrence of antimicrobial resistance poses a huge threat to public and animal health, especially in less developed countries where food-producing animals often intermingle with humans. To limit the spread of antimicrobial resistance from food-production animals to humans and the environment, it is essential to have a comprehensive knowledge of the role of the resistome in antimicrobial resistance (AMR), The resistome refers to the collection of all antimicrobial resistance genes associated with microbiota in a given environment. The dense microbiota in the digestive tract is known to harbour one of the most diverse resistomes in nature. Studies of the resistome in the digestive tract of humans and animals are increasing exponentially as a result of advancements in next-generation sequencing and the expansion of bioinformatic resources/tools to identify and describe the resistome. In this review, we outline the various tools/bioinformatic pipelines currently available to characterize and understand the nature of the intestinal resistome of swine, poultry, and ruminants. We then propose future research directions including analysis of resistome using long-read sequencing, investigation in the role of mobile genetic elements in the expression, function and transmission of AMR. This review outlines the current knowledge and approaches to studying the resistome in food-producing animals and sheds light on future strategies to reduce antimicrobial usage and control the spread of AMR both within and from livestock production systems.
Collapse
Affiliation(s)
- Tao Ma
- Key laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4P4, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Danofloxacin Treatment Alters the Diversity and Resistome Profile of Gut Microbiota in Calves. Microorganisms 2021; 9:microorganisms9102023. [PMID: 34683343 PMCID: PMC8538188 DOI: 10.3390/microorganisms9102023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Fluoroquinolones, such as danofloxacin, are used to control bovine respiratory disease complex in beef cattle; however, little is known about their effects on gut microbiota and resistome. The objectives were to evaluate the effect of subcutaneously administered danofloxacin on gut microbiota and resistome, and the composition of Campylobacter in calves. Twenty calves were injected with a single dose of danofloxacin, and ten calves were kept as a control. The effects of danofloxacin on microbiota and the resistome were assessed using 16S rRNA sequencing, quantitative real-time PCR, and metagenomic Hi-C ProxiMeta. Alpha and beta diversities were significantly different (p < 0.05) between pre-and post-treatment samples, and the compositions of several bacterial taxa shifted. The patterns of association between the compositions of Campylobacter and other genera were affected by danofloxacin. Antimicrobial resistance genes (ARGs) conferring resistance to five antibiotics were identified with their respective reservoirs. Following the treatment, some ARGs (e.g., ant9, tet40, tetW) increased in frequencies and host ranges, suggesting initiation of horizontal gene transfer, and new ARGs (aac6, ermF, tetL, tetX) were detected in the post-treatment samples. In conclusion, danofloxacin induced alterations of gut microbiota and selection and enrichment of resistance genes even against antibiotics that are unrelated to danofloxacin.
Collapse
|
28
|
Das Q, Shay J, Gauthier M, Yin X, Hasted TL, Ross K, Julien C, Yacini H, Kennes YM, Warriner K, Marcone MF, Diarra MS. Effects of Vaccination Against Coccidiosis on Gut Microbiota and Immunity in Broiler Fed Bacitracin and Berry Pomace. Front Immunol 2021; 12:621803. [PMID: 34149685 PMCID: PMC8213364 DOI: 10.3389/fimmu.2021.621803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Julie Shay
- Ottawa Laboratory (Carling) - Research and Development, Canadian Food Inspection Agency, Ottawa, ON, Canada
| | - Martin Gauthier
- Biological Informatics Centre of Excellence, AAFC, Saint-Hyacinthe, QC, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Teri-Lyn Hasted
- Department of Food Science, University of Guelph, Guelph, ON, Canada.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| | - Kelly Ross
- Summerland Research and Development Centre, AAFC, Summerland, BC, Canada
| | - Carl Julien
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Hassina Yacini
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Yan Martel Kennes
- Centre de recherche en sciences animales de Deschambault, Deschambault, QC, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Massimo F Marcone
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada (AAFC), Guelph, ON, Canada
| |
Collapse
|
29
|
Franklin AM, Brinkman NE, Jahne MA, Keely SP. Twenty-first century molecular methods for analyzing antimicrobial resistance in surface waters to support One Health assessments. J Microbiol Methods 2021; 184:106174. [PMID: 33774111 DOI: 10.1016/j.mimet.2021.106174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance (AMR) in the environment is a growing global health concern, especially the dissemination of AMR into surface waters due to human and agricultural inputs. Within recent years, research has focused on trying to understand the impact of AMR in surface waters on human, agricultural and ecological health (One Health). While surface water quality assessments and surveillance of AMR have historically utilized culture-based methods, culturing bacteria has limitations due to difficulty in isolating environmental bacteria and the need for a priori information about the bacteria for selective isolation. The use of molecular techniques to analyze AMR at the genetic level has helped to overcome the difficulties with culture-based techniques since they do not require advance knowledge of the bacterial population and can analyze uncultivable environmental bacteria. The aim of this review is to provide an overview of common contemporary molecular methods available for analyzing AMR in surface waters, which include high throughput real-time polymerase chain reaction (HT-qPCR), metagenomics, and whole genome sequencing. This review will also feature how these methods may provide information on human and animal health risks. HT-qPCR works at the nanoliter scale, requires only a small amount of DNA, and can analyze numerous gene targets simultaneously, but may lack in analytical sensitivity and the ability to optimize individual assays compared to conventional qPCR. Metagenomics offers more detailed genomic information and taxonomic resolution than PCR by sequencing all the microbial genomes within a sample. Its open format allows for the discovery of new antibiotic resistance genes; however, the quantity of DNA necessary for this technique can be a limiting factor for surface water samples that typically have low numbers of bacteria per sample volume. Whole genome sequencing provides the complete genomic profile of a single environmental isolate and can identify all genetic elements that may confer AMR. However, a main disadvantage of this technique is that it only provides information about one bacterial isolate and is challenging to utilize for community analysis. While these contemporary techniques can quickly provide a vast array of information about AMR in surface waters, one technique does not fully characterize AMR nor its potential risks to human, animal, or ecological health. Rather, a combination of techniques (including both molecular- and culture-based) are necessary to fully understand AMR in surface waters from a One Health perspective.
Collapse
Affiliation(s)
- A M Franklin
- Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA.
| | - N E Brinkman
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA
| | - M A Jahne
- Office of Research and Development, Center for Environmental Solutions and Emergency Response, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA
| | - S P Keely
- Office of Research and Development, Center for Environmental Measurement and Modeling, US Environmental Protection Agency, 26 Martin Luther King West, Cincinnati, OH 45268, USA
| |
Collapse
|
30
|
Xue MY, Xie YY, Zhong YF, Liu JX, Guan LL, Sun HZ. Ruminal resistome of dairy cattle is individualized and the resistotypes are associated with milking traits. Anim Microbiome 2021; 3:18. [PMID: 33568223 PMCID: PMC7877042 DOI: 10.1186/s42523-021-00081-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antimicrobial resistance is one of the most urgent threat to global public health, as it can lead to high morbidity, mortality, and medical costs for humans and livestock animals. In ruminants, the rumen microbiome carries a large number of antimicrobial resistance genes (ARGs), which could disseminate to the environment through saliva, or through the flow of rumen microbial biomass to the hindgut and released through feces. The occurrence and distribution of ARGs in rumen microbes has been reported, revealing the effects of external stimuli (e.g., antimicrobial administrations and diet ingredients) on the antimicrobial resistance in the rumen. However, the host effect on the ruminal resistome and their interactions remain largely unknown. Here, we investigated the ruminal resistome and its relationship with host feed intake and milk protein yield using metagenomic sequencing. RESULTS The ruminal resistome conferred resistance to 26 classes of antimicrobials, with genes encoding resistance to tetracycline being the most predominant. The ARG-containing contigs were assigned to bacterial taxonomy, and the majority of highly abundant bacterial genera were resistant to at least one antimicrobial, while the abundances of ARG-containing bacterial genera showed distinct variations. Although the ruminal resistome is not co-varied with host feed intake, it could be potentially linked to milk protein yield in dairy cows. Results showed that host feed intake did not affect the alpha or beta diversity of the ruminal resistome or the abundances of ARGs, while the Shannon index (R2 = 0.63, P < 0.01) and richness (R2 = 0.67, P < 0.01) of the ruminal resistome were highly correlated with milk protein yield. A total of 128 significantly different ARGs (FDR < 0.05) were identified in the high- and low-milk protein yield dairy cows. We found four ruminal resistotypes that are driven by specific ARGs and associated with milk protein yield. Particularly, cows with low milk protein yield are classified into the same ruminal resistotype and featured by high-abundance ARGs, including mfd and sav1866. CONCLUSIONS The current study uncovered the prevalence of ARGs in the rumen of a cohort of lactating dairy cows. The ruminal resistome is not co-varied with host feed intake, while it could be potentially linked to milk protein yield in dairy cows. Our results provide fundamental knowledge on the prevalence, mechanisms and impact factors of antimicrobial resistance in dairy cattle and are important for both the dairy industry and other food animal antimicrobial resistance control strategies.
Collapse
Affiliation(s)
- Ming-Yuan Xue
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Yi Xie
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Fan Zhong
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
31
|
Hoque MN, Istiaq A, Clement RA, Gibson KM, Saha O, Islam OK, Abir RA, Sultana M, Siddiki AMAMZ, Crandall KA, Hossain MA. Insights Into the Resistome of Bovine Clinical Mastitis Microbiome, a Key Factor in Disease Complication. Front Microbiol 2020; 11:860. [PMID: 32582039 PMCID: PMC7283587 DOI: 10.3389/fmicb.2020.00860] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
Bovine clinical mastitis (CM) is one of the most prevalent diseases caused by a wide range of resident microbes. The emergence of antimicrobial resistance in CM bacteria is well-known, however, the genomic resistance composition (the resistome) at the microbiome-level is not well characterized. In this study, we applied whole metagenome sequencing (WMS) to characterize the resistome of the CM microbiome, focusing on antibiotics and metals resistance, biofilm formation (BF), and quorum sensing (QS) along with in vitro resistance assays of six selected pathogens isolated from the same CM samples. The WMS generated an average of 21.13 million reads (post-processing) from 25 CM samples that mapped to 519 bacterial strains, of which 30.06% were previously unreported. We found a significant (P = 0.001) association between the resistomes and microbiome composition with no association with cattle breed, despite significant differences in microbiome diversity among breeds. The in vitro investigation determined that 76.2% of six selected pathogens considered "biofilm formers" actually formed biofilms and were also highly resistant to tetracycline, doxycycline, nalidixic acid, ampicillin, and chloramphenicol and remained sensitive to metals (Cr, Co, Ni, Cu, Zn) at varying concentrations. We also found bacterial flagellar movement and chemotaxis, regulation and cell signaling, and oxidative stress to be significantly associated with the pathophysiology of CM. Thus, identifying CM microbiomes, and analyzing their resistomes and genomic potentials will help improve the optimization of therapeutic schemes involving antibiotics and/or metals usage in the prevention and control of bovine CM.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Gynecology, Obstetrics and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Arif Istiaq
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Rebecca A. Clement
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Keylie M. Gibson
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Ovinu Kibria Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
- Department of Microbiology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - AMAM Zonaed Siddiki
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
32
|
Lim SK, Kim D, Moon DC, Cho Y, Rho M. Antibiotic resistomes discovered in the gut microbiomes of Korean swine and cattle. Gigascience 2020; 9:5829833. [PMID: 32369165 PMCID: PMC7317084 DOI: 10.1093/gigascience/giaa043] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Antibiotics administered to farm animals have led to increasing prevalence of resistance genes in different microbiomes and environments. While antibiotic treatments help cure infectious diseases in farm animals, the possibility of spreading antibiotic resistance genes into the environment and human microbiomes raises significant concerns. Through long-term evolution, antibiotic resistance genes have mutated, thereby complicating the resistance problems. Results In this study, we performed deep sequencing of the gut microbiomes of 36 swine and 41 cattle in Korean farms, and metagenomic analysis to understand the diversity and prevalence of antibiotic resistance genes. We found that aminoglycoside, β-lactam, lincosamide, streptogramin, and tetracycline were the prevalent resistance determinants in both swine and cattle. Tetracycline resistance was abundant and prevalent in cattle and swine. Specifically, tetQ, tetW, tetO, tet32, and tet44 were the 5 most abundant and prevalent tetracycline resistance genes. Their prevalence was almost 100% in swine and cattle. While tetQ was similarly abundant in both swine and cattle, tetW was more abundant in swine than in cattle. Aminoglycoside was the second highest abundant resistance determinant in swine, but not in cattle. In particular, ANT(6) and APH(3′′) were the dominant resistance gene families in swine. β-lactam was also an abundant resistance determinant in both swine and cattle. Cfx was the major contributing gene family conferring resistance against β-lactams. Conclusions Antibiotic resistome was more pervasive in swine than in cattle. Specifically, prevalent antibiotic resistance genes (prevalence >50%) were found more in swine than in cattle. Genomic investigation of specific resistance genes from the gut microbiomes of swine and cattle in this study should provide opportunities to better understand the exchange of antibiotic resistance genes in farm animals.
Collapse
Affiliation(s)
- Suk-Kyung Lim
- Animal and Plant Quarantine Agency, Bacterial Disease Division, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Dongjun Kim
- Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea, Department of Computer Science and Engineering
| | - Dong-Chan Moon
- Animal and Plant Quarantine Agency, Bacterial Disease Division, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Youna Cho
- Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea, Department of Computer Science and Engineering
| | - Mina Rho
- Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea, Department of Computer Science and Engineering.,Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea, Department of Biomedical Informatics
| |
Collapse
|
33
|
Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci Rep 2020; 10:3937. [PMID: 32127598 PMCID: PMC7054549 DOI: 10.1038/s41598-020-61002-5] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/13/2020] [Indexed: 11/24/2022] Open
Abstract
For a One-Health investigation of antimicrobial resistance (AMR) in Enterococcus spp., isolates from humans and beef cattle along with abattoirs, manured fields, natural streams, and wastewater from both urban and cattle feedlot sources were collected over two years. Species identification of Enterococcus revealed distinct associations across the continuum. Of the 8430 isolates collected, Enterococcus faecium and Enterococcus faecalis were the main species in urban wastewater (90%) and clinical human isolates (99%); Enterococcus hirae predominated in cattle (92%) and feedlot catch-basins (60%), whereas natural streams harbored environmental Enterococcus spp. Whole-genome sequencing of E. faecalis (n = 366 isolates) and E. faecium (n = 342 isolates), revealed source clustering of isolates, indicative of distinct adaptation to their respective environments. Phenotypic resistance to tetracyclines and macrolides encoded by tet(M) and erm(B) respectively, was prevalent among Enterococcus spp. regardless of source. For E. faecium from cattle, resistance to β-lactams and quinolones was observed among 3% and 8% of isolates respectively, compared to 76% and 70% of human clinical isolates. Clinical vancomycin-resistant E. faecium exhibited high rates of multi-drug resistance, with resistance to all β-lactam, macrolides, and quinolones tested. Differences in the AMR profiles among isolates reflected antimicrobial use practices in each sector of the One-Health continuum.
Collapse
|