1
|
Makhanthisa TI, Guarido MM, Kemp A, Weyer J, Rostal MK, Karesh WB, Thompson PN. Characterization of mosquito host-biting networks of potential Rift Valley fever virus vectors in north-eastern KwaZulu-Natal province, South Africa. Parasit Vectors 2024; 17:341. [PMID: 39138532 PMCID: PMC11323694 DOI: 10.1186/s13071-024-06416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Rift Valley fever virus (RVFV) is a zoonotic mosquito-borne virus with serious implications for livestock health, human health, and the economy in Africa, and is suspected to be endemic in north-eastern KwaZulu-Natal (KZN), South Africa. The vectors of RVFV in this area are poorly known, although several species, such as Aedes (Neomelaniconion) mcintoshi, Aedes (Neomelaniconion) circumluteolus, Aedes (Aedimorphus) durbanensis, and Culex (Lasioconops) poicilipes may be involved. The aim of the study was to determine the vertebrate blood meal sources of potential RVFV mosquito vectors in north-eastern KZN and to characterize the host-biting network. METHODS Blood-fed mosquitoes were collected monthly from November 2019 to February 2023 using a backpack aspirator, CO2-baited Centers for Disease Control and Prevention (CDC) miniature light traps and tent traps, in the vicinity of water bodies and livestock farming households. The mosquitoes were morphologically identified. DNA was extracted from individual mosquitoes and used as templates to amplify the vertebrate cytochrome c oxidase I (COI) and cytochrome b (cytb) genes using conventional polymerase chain reaction (PCR). Amplicons were sequenced and queried in GenBank and the Barcode of Life Data systems to identify the vertebrate blood meal sources and confirm mosquito identifications. All mosquitoes were screened for RVFV using real time reverse transcription (RT)-PCR. RESULTS We identified the mammalian (88.8%) and avian (11.3%) blood meal sources from 409 blood-fed mosquitoes. Aedes circumluteolus (n = 128) made up the largest proportion of collected mosquitoes. Cattle (n = 195) and nyala (n = 61) were the most frequent domestic and wild hosts, respectively. Bipartite network analysis showed that the rural network consisted of more host-biting interactions than the reserve network. All mosquitoes tested negative for RVFV. CONCLUSIONS Several mosquito species, including Ae. circumluteolus, and vertebrate host species, including cattle and nyala, could play a central role in RVFV transmission. Future research in this region should focus on these species to better understand RVFV amplification.
Collapse
Affiliation(s)
- Takalani I Makhanthisa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Milehna M Guarido
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
| | - Jacqueline Weyer
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, South Africa
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Peter N Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
- Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
| |
Collapse
|
2
|
Laredo-Tiscareño SV, Garza-Hernandez JA, Tangudu CS, Dankaona W, Rodríguez-Alarcón CA, Adame-Gallegos JR, De Luna Santillana EJ, Huerta H, Gonzalez-Peña R, Rivera-Martínez A, Rubio-Tabares E, Beristain-Ruiz DM, Blitvich BJ. Discovery of Novel Viruses in Culicoides Biting Midges in Chihuahua, Mexico. Viruses 2024; 16:1160. [PMID: 39066322 PMCID: PMC11281482 DOI: 10.3390/v16071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Biting midges (Culicoides) are vectors of many pathogens of medical and veterinary importance, but their viromes are poorly characterized compared to certain other hematophagous arthropods, e.g., mosquitoes and ticks. The goal of this study was to use metagenomics to identify viruses in Culicoides from Mexico. A total of 457 adult midges were collected in Chihuahua, northern Mexico, in 2020 and 2021, and all were identified as female Culicoides reevesi. The midges were sorted into five pools and homogenized. An aliquot of each homogenate was subjected to polyethylene glycol precipitation to enrich for virions, then total RNA was extracted and analyzed by unbiased high-throughput sequencing. We identified six novel viruses that are characteristic of viruses from five families (Nodaviridae, Partitiviridae, Solemoviridae, Tombusviridae, and Totiviridae) and one novel virus that is too divergent from all classified viruses to be assigned to an established family. The newly discovered viruses are phylogenetically distinct from their closest known relatives, and their minimal infection rates in female C. reevesi range from 0.22 to 1.09. No previously known viruses were detected, presumably because viral metagenomics had never before been used to study Culicoides from the Western Hemisphere. To conclude, we discovered multiple novel viruses in C. reevesi from Mexico, expanding our knowledge of arthropod viral diversity and evolution.
Collapse
Affiliation(s)
- S. Viridiana Laredo-Tiscareño
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (S.V.L.-T.); (C.S.T.); (W.D.)
- Laboratorio Entomología Médica, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 31125, Mexico; (J.A.G.-H.)
| | - Javier A. Garza-Hernandez
- Laboratorio Entomología Médica, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 31125, Mexico; (J.A.G.-H.)
| | - Chandra S. Tangudu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (S.V.L.-T.); (C.S.T.); (W.D.)
| | - Wichan Dankaona
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (S.V.L.-T.); (C.S.T.); (W.D.)
- Animal Virome and Diagnostic Development Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Carlos A. Rodríguez-Alarcón
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico; (C.A.R.-A.); (D.M.B.-R.)
| | | | - Erick J. De Luna Santillana
- Laboratorio Medicina de la Conservación, Centro de Biotecnología Genómica del Instituto Politécnico Nacional, Reynosa, Tamaulipas 88700, México;
| | - Herón Huerta
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de México 01480, Mexico;
| | - Rodolfo Gonzalez-Peña
- Laboratorio Entomología Médica, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 31125, Mexico; (J.A.G.-H.)
- Laboratorio de Arbovirología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatan 97225, Mexico
| | - Alejandra Rivera-Martínez
- Laboratorio Entomología Médica, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 31125, Mexico; (J.A.G.-H.)
| | - Ezequiel Rubio-Tabares
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico; (C.A.R.-A.); (D.M.B.-R.)
| | - Diana M. Beristain-Ruiz
- Departamento de Ciencias Veterinarias, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua 32310, Mexico; (C.A.R.-A.); (D.M.B.-R.)
| | - Bradley J. Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (S.V.L.-T.); (C.S.T.); (W.D.)
| |
Collapse
|
3
|
Morphological and Molecular Characterization Using Genitalia and CoxI Barcode Sequence Analysis of Afrotropical Mosquitoes with Arbovirus Vector Potential. DIVERSITY 2022. [DOI: 10.3390/d14110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Potential arboviral Afrotropical mosquito vectors are underrepresented in public databases of CoxI barcode sequences. Furthermore, available CoxI sequences for many species are often not associated with voucher specimens to match the corresponding fine morphological characterization of specimens. Hence, this study focused on the characterization of Culicine mosquitoes from South Africa, Mozambique, and Angola and their classification using a complementary approach including a morphological analysis of specimens’ genitalia and phylogenetic study based on the analysis of CoxI barcode sequences using maximum likelihood and Bayesian phylogenetic inference methods, alongside Median-Joining Network and PCOORD analyses. Overall, 800 mosquitoes (652 males and 148 females) from 67 species, were analyzed. Genitalia from 663 specimens allowed the identification of 55 species of 10 genera. A total of 247 CoxI partial gene sequences corresponding to 65 species were obtained, 11 of which (Aedes capensis, Ae. mucidus, Culex andersoni, Cx. telesilla, Cx. inconspicuosus, Eretmapodites subsimplicipes, Er. quinquevittatus, Ficalbia uniformis, Mimomyia hispida, Uranotaenia alboabdominalis, and Ur. mashonaensis) are, to the best of our knowledge, provided here for the first time. The presence of Cx. pipiens ecotypes molestus and pipiens and their hybrids, as well as Cx. infula, is newly reported in the Afrotropical region. The rates of correct sequence identification using BOLD and BLASTn (≥95% identity) were 64% and 53%, respectively. Phylogenetic analysis revealed that, except for subgenus Eumelanomyia of Culex, there was support for tribes Aedini, Culicini, Ficalbiini, and Mansoniini. A divergence >2% was observed in conspecific sequences, e.g., Aedeomyia africana, Ae. cumminsii, Ae. unilineatus, Ae. metallicus, Ae. furcifer, Ae. caballus, and Mansonia uniformis. Conversely, sequences from groups and species complexes, namely, Ae. simpsoni, Ae. mcintoshi, Cx. bitaeniorhynchus, Cx. simpsoni, and Cx. pipiens were insufficiently separated. A contribution has been made to the barcode library of Afrotropical mosquitoes with associated genitalia morphological identifications.
Collapse
|
4
|
van den Bergh C, Thompson PN, Swanepoel R, Almeida APG, Paweska JT, Jansen van Vuren P, Wilson WC, Kemp A, Venter EH. Detection of Rift Valley Fever Virus in Aedes (Aedimorphus) durbanensis, South Africa. Pathogens 2022; 11:pathogens11020125. [PMID: 35215069 PMCID: PMC8879006 DOI: 10.3390/pathogens11020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne, zoonotic phlebovirus-causing disease in domestic ruminants and humans in Africa, the Arabian Peninsula and some Indian Ocean islands. Outbreaks, characterized by abortion storms and a high morbidity rate in newborn animals, occur after heavy and prolonged rainfalls favouring the breeding of mosquitoes. However, the identity of the important mosquito vectors of RVFV is poorly known in most areas. Mosquitoes collected in the Ndumo area of tropical north-eastern KwaZulu-Natal (KZN), South Africa, were tested for RVFV nucleic acid using RT-PCR. The virus was detected in a single pool of unfed Aedes (Aedimorphus) durbanensis, indicating that this seasonally abundant mosquito species could serve as a vector in this area of endemic RVFV circulation. Phylogenetic analysis indicated the identified virus is closely related to two isolates from the earliest outbreaks, which occurred in central South Africa more than 60 years ago, indicating long-term endemicity in the region. Further research is required to understand the eco-epidemiology of RVFV and the vectors responsible for its circulation in the eastern tropical coastal region of southern Africa.
Collapse
Affiliation(s)
- Carien van den Bergh
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (R.S.); (E.H.V.)
- Correspondence: ; Tel.: +27-(0)82-300-7406
| | - Peter N. Thompson
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0002, South Africa;
| | - Robert Swanepoel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (R.S.); (E.H.V.)
| | - Antonio P. G. Almeida
- Unidade de Parasitologia Medica, Global Health and Tropical Medicine, Universidade Nova Lisboa, 1365-008 Lisboa, Portugal;
| | - Janusz T. Paweska
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa; (J.T.P.); (P.J.v.V.); (A.K.)
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Petrus Jansen van Vuren
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa; (J.T.P.); (P.J.v.V.); (A.K.)
- Australian Centre for Disease Preparedness, CSIRO-Health and Biosecurity, Geelong, VIC 3220, Australia
| | - William C. Wilson
- National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - Alan Kemp
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg 2192, South Africa; (J.T.P.); (P.J.v.V.); (A.K.)
| | - Estelle H. Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa; (R.S.); (E.H.V.)
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
5
|
Morais P, Trovão NS, Abecasis AB, Parreira R. Genetic lineage characterization and spatiotemporal dynamics of classical insect-specific flaviviruses: outcomes and limitations. Virus Res 2021; 303:198507. [PMID: 34271039 DOI: 10.1016/j.virusres.2021.198507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
The genus Flavivirus incorporates bona fide arboviruses, as well as others viruses with restricted replication in insect cells. Among the latter, a large monophyletic cluster of viruses, known as cISF (classical insect-specific flaviviruses), has been sampled in many species of mosquitoes collected over a large geographic range. In this study, we investigated nucleotide and protein sequences with a suite of molecular characterization approaches including genetic distance, Shannon entropy, selective pressure analysis, polymorphism identification, principal coordinate analysis, likelihood mapping, phylodynamic reconstruction, and spatiotemporal dispersal, to further characterize this diverse group of insect-viruses. The different lineages and sub-lineages of viral sequences presented low sequence diversity and entropy (though some displayed lineage-specific polymorphisms), did not show evidence of frequent recombination and evolved under strong purifying selection. Moreover, the reconstruction of the evolutionary history and spatiotemporal dispersal was highly impacted by overall low signals of sequence divergence throughout time but suggested that cISF distribution in space and time is dynamic and may be dependent on human activities, including commercial trading and traveling.
Collapse
Affiliation(s)
- Paulo Morais
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (NOVA), Lisboa, Portugal/Global Health and Tropical Medicine (GHTM), Lisboa, Portugal
| | - Nídia S Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Ana B Abecasis
- Unidade de Saúde Pública Internacional e Bioestatística, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (NOVA), Lisboa, Portugal/Global Health and Tropical Medicine (GHTM), Lisboa, Portugal
| | - Ricardo Parreira
- Unidade de Microbiologia Médica, Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (NOVA), Lisboa, Portugal/Global Health and Tropical Medicine (GHTM), Lisboa, Portugal.
| |
Collapse
|