1
|
Bostanci A, Doganlar O. MELATONIN ENHANCES TEMOZOLOMIDE-INDUCED APOPTOSIS IN GLIOBLASTOMA AND NEUROBLASTOMA CELLS. Exp Oncol 2024; 46:87-100. [PMID: 39396175 DOI: 10.15407/exp-oncology.2024.02.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The combination of temozolomide (TMZ) and paclitaxel (PTX) is the most commonly used chemotherapy regimen for glioblastoma, but there is no specific treatment for neuroblastoma due to the acquired multidrug resistance. Approximately half of treated glioblastoma patients develop resistance to TMZ and experience serious side effects. Melatonin (MEL), a multifunctional hormone long known for its antitumor effects, has a great advantage in combination cancer therapy thanks to its ability to affect tumors differently than normal cells. AIM This study aims to evaluate the in vitro inhibitory effects of MEL in combination with TMZ on cancer cell viability and to elucidate the underlying mechanisms in the glioblastoma and neuroblastoma cell lines. MATERIALS AND METHODS C6 (Rattus norvegicus) and N1E-115 (Mus musculus) cancer cell lines and C8-D1A (mice) healthy cell lines were used. Cell proliferation was evaluated using the MTT test. IC50 values were determined by probit analysis. Two concentrations of TMZ (IC50 and 1/2 IC50) were used to induce cytotoxicity in the C6 and N1E-115 cell lines, both alone and in combination with PXT and MEL (all at IC50). The viable, dead, and apoptotic cells were determined by image-based cytometry using Annexin V/PI staining. The gene expression related to signaling pathways was assessed by the quantitative reverse transcription polymerase chain reaction (qRT-PCR), and key proteins were identified by the Western blot analysis. RESULTS MTT assay showed that the combination of TMZ and MEL significantly reduces the viability of both glioblastoma and neuroblastoma cells compared to the vehicle-treated controls. Notably, MEL combined with 1/2 IC50 TMZ showed a significant death rate of cancer cells compared to controls and PTX. According to qRT-PCR data, the TMZ + MEL combination resulted in the upregulation of the genes of antioxidative enzymes (Sod1 and Sod2) and DNA repair genes (Mlh1, Exo1, and Rad18) in both cell lines. Moreover, the levels of Nfkb1 and Pik3cg were significantly reduced following the TMZ + MEL treatment. The combination of MEL with TMZ also enhanced the cell cycle arrest and increased the expression of p53 and pro-apoptotic proteins (Bax and caspase-3), while significantly decreasing the expression of anti-apoptotic protein Bcl-2. CONCLUSIONS Our findings indicate that the combination of MEL with a low dose of TMZ may serve as an upstream inducer of apoptosis. This suggests the potential development of a novel selective therapeutic strategy as an alternative to TMZ for the treatment of both glioblastoma and neuroblastoma.
Collapse
Affiliation(s)
- A Bostanci
- Department of Genetics and Bioengineering, Trakya University, Edirne, Turkey
| | - O Doganlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
2
|
Kundu M, Das S, Dey A, Mandal M. Dual perspective on autophagy in glioma: Detangling the dichotomous mechanisms of signaling pathways for therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189168. [PMID: 39121913 DOI: 10.1016/j.bbcan.2024.189168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Autophagy is a normal physiological process that aids the recycling of cellular nutrients, assisting the cells to cope with stressed conditions. However, autophagy's effect on cancer, including glioma, is uncertain and involves complicated molecular mechanisms. Several contradictory reports indicate that autophagy may promote or suppress glioma growth and progression. Autophagy inhibitors potentiate the efficacy of chemotherapy or radiation therapy in glioma. Numerous compounds stimulate autophagy to cause glioma cell death. Autophagy is also involved in the therapeutic resistance of glioma. This review article aims to detangle the complicated molecular mechanism of autophagy to provide a better perception of the two-sided role of autophagy in glioma and its therapeutic implications. The protein and epigenetic modulators of the cytoprotective and cytotoxic role of autophagy are described in this article. Moreover, several signaling pathways are associated with autophagy and its effects on glioma. We have reviewed the molecular pathways and highlighted the signaling axis involved in cytoprotective and cytotoxic autophagy. Additionally, this article discusses the role of autophagy in therapeutic resistance, including glioma stem cell maintenance and tumor microenvironment regulation. It also summarizes several investigations on the anti-glioma effects of autophagy modulators to understand the associated mechanisms and provide insights regarding its therapeutic implications.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, India; Department of Pharmaceutical Technology, Brainware University, Barasat, India.
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Allied Health Sciences, Brainware University, Barasat, India
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
3
|
Hosseinzadeh A, Alinaghian N, Sheibani M, Seirafianpour F, Naeini AJ, Mehrzadi S. Melatonin: Current evidence on protective and therapeutic roles in gynecological diseases. Life Sci 2024; 344:122557. [PMID: 38479596 DOI: 10.1016/j.lfs.2024.122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Melatonin, a potent antioxidant and free radical scavenger, has been demonstrated to be effective in gynecological conditions and female reproductive cancers. This review consolidates the accumulating evidence on melatonin's multifaceted protective effects in different pathological contexts. In gynecological conditions such as endometriosis, polycystic ovary syndrome (PCOS), and uterine leiomyoma, melatonin has shown promising effects in reducing oxidative stress, inflammation, and hormonal imbalances. It inhibits adhesion molecules' production, and potentially mitigates leukocyte adherence and inflammatory responses. Melatonin's regulatory effects on hormone production and insulin sensitivity in PCOS individuals make it a promising candidate for improving oocyte quality and menstrual irregularities. Moreover, melatonin exhibits significant antitumor effects by modulating various signaling pathways, promoting apoptosis, and suppressing metastasis in breast cancers and gynecological cancers, including ovarian, endometrial, and cervical cancers. Furthermore, melatonin's protective effects are suggested to be mediated by interactions with its receptors, estrogen receptors and other nuclear receptors. The regulation of clock-related genes and circadian clock systems may also contribute to its inhibitory effects on cancer cell growth. However, more comprehensive research is warranted to fully elucidate the underlying molecular mechanisms and establish melatonin as a potential therapeutic agent for these conditions.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nazila Alinaghian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Qin Y, Xiong S, Ren J, Sethi G. Autophagy machinery in glioblastoma: The prospect of cell death crosstalk and drug resistance with bioinformatics analysis. Cancer Lett 2024; 580:216482. [PMID: 37977349 DOI: 10.1016/j.canlet.2023.216482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Brain tumors are common malignancies with high mortality and morbidity in which glioblastoma (GB) is a grade IV astrocytoma with heterogeneous nature. The conventional therapeutics for the GB mainly include surgery and chemotherapy, however their efficacy has been compromised due to the aggressiveness of tumor cells. The dysregulation of cell death mechanisms, especially autophagy has been reported as a factor causing difficulties in cancer therapy. As a mechanism contributing to cell homeostasis, the autophagy process is hijacked by tumor cells for the purpose of aggravating cancer progression and drug resistance. The autophagy function is context-dependent and its role can be lethal or protective in cancer. The aim of the current paper is to highlight the role of autophagy in the regulation of GB progression. The cytotoxic function of autophagy can promote apoptosis and ferroptosis in GB cells and vice versa. Autophagy dysregulation can cause drug resistance and radioresistance in GB. Moreover, stemness can be regulated by autophagy and overall growth as well as metastasis are affected by autophagy. The various interventions including administration of synthetic/natural products and nanoplatforms can target autophagy. Therefore, autophagy can act as a promising target in GB therapy.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Afflicted Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Shengjun Xiong
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, 16 Medical Drive, Singapore, 117600, Singapore.
| |
Collapse
|
5
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
6
|
Miao HT, Song RX, Xin Y, Wang LY, Lv JM, Liu NN, Wu ZY, Zhang W, Li Y, Zhang DX, Zhang LM. Spautin-1 Protects Against Mild TBI-Induced Anxiety-Like Behavior in Mice via Immunologically Silent Apoptosis. Neuromolecular Med 2023; 25:336-349. [PMID: 36745326 DOI: 10.1007/s12017-023-08737-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Anxiety is reportedly one of the most common mental changes after traumatic brain injury (TBI). Perineuronal nets (PNNs) produced by astrocytes in the lateral hypothalamus (LHA) that surround gamma-aminobutyric acid-ergic (GABAergic) neurons have been associated with anxiety. The potent anti-tumor effects of Spautin-1, a novel autophagy inhibitor, have been documented in malignant melanoma; moreover, the inhibition of autophagy is reported to mitigate anxiety disorders. However, little is known about the ability of spautin-1 to alleviate anxiety. In this study, we sought to investigate whether spautin-1 could alleviate anxiety-like behaviors post-TBI by reducing the loss of PNNs in the LHA. A mild TBI was established in mice through Feeney's weight-drop model. Then, Spautin-1 (20 mmol/2 μl) was immediately administered into the left lateral ventricle. Behavioral and pathological changes were assessed at 24 h, 7 days, 30 days, 31 days and 32 days after TBI by the neurological severity scores (NSS), open field test (OFT), elevated plus-maze (EPM) test, western blot, immunofluorescence assays and electron microscopy. Spautin-1 significantly reversed TBI-induced decreased time in the central zone during OFT and in the open-arm during the EPM test. Spautin-1 also increased PNNs around GABAergic neurons indicated by WFA- plus GAD2- positive A2-type astrocytes and attenuated M1-type microglia in the LHA 32 days after TBI compared to TBI alone. Moreover, compared to mice that only underwent TBI, spautin-1 downregulated autophagic vacuoles, abnormal organelles, the expression of Beclin 1, USP13, phospho-TBK1, and phospho-IRF3 and upregulated the levels of cleaved caspase-3, -7 and -9, but failed to increase TUNEL-positive cells in the LHA at 24 h. Spautin-1 alleviated anxiety-like behavior in mice exposed to mild TBI; this protective mechanism may be associated with decreased PNNs loss around GABAergic neurons via immunologically silent apoptosis induced by the caspase cascade.
Collapse
Affiliation(s)
- Hui-Tao Miao
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Lu-Ying Wang
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jin-Meng Lv
- Department of Anesthesia and Trauma Research, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Na-Na Liu
- Department of Pediatric, Cangzhou Central Hospital, Cangzhou, China
| | - Zhi-You Wu
- Department of Neurosurgery, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Li
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China.
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China.
| |
Collapse
|
7
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
8
|
Zhang LM, Zhang DX, Miao HT, Song RX, Shao JJ, Liu JZ, Jia SY, Xin Y, Wang H, Zhang W. Spautin-1 administration mitigates mild TBI-induced cognitive and memory dysfunction in mice via activation of caspase-3. Int Immunopharmacol 2023; 117:109906. [PMID: 36822083 DOI: 10.1016/j.intimp.2023.109906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Cognitive and memory dysfunction, a common sequela of traumatic brain injury (TBI), places a heavy social and economic burden on individuals, families, communities, and countries. Although the potent anti-tumor effects of spautin-1, a novel autophagy inhibitor, have been documented in malignant melanoma, little is known regarding its efficacy on alleviation of cognitive and memory dysfunction. Here, we describe the effect of spautin-1 administration on cognitive and memory impairment post-TBI, and reveal its underlying mechanism of action. METHODS We first induced mild TBI in mice through Feeney's weight-drop model, then immediately administered spautin-1 (10 mmol/μl, 2 μl) into the left lateral ventricle. Behavioral and pathological changes were assessed at 24 h, 7 and 30 days after TBI by analyzing neurological severity scores (NSS), novel objective recognition (NOR), Morris water maze (MWM) test, recording of local field potential (LFP), as well as western blot, and immunofluorescence assays. RESULTS Mild TBI not only reduced recognition index and times crossing platform, but also aggravated neuronal injury, including reduced MAP2, GAD2, VGlut2, and CHAT intensity. It also elevated activated microglia and CD86-occupied areas in TMEM119-positive cells, but suppressed θ, β, and γ oscillation power in the hippocampal CA1. However, spautin-1 administration significantly reversed these changes, whereas AC-DEVD-CHO an inhibitor of caspase-3 partially blocked the neuroprotective effects of spautin-1. CONCLUSION Spautin-1 administration mitigates mild TBI-induced cognitive and memory dysfunction in mice, potentially through activation of caspase-3.
Collapse
Affiliation(s)
- Li-Min Zhang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China; Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), China
| | - Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Hui-Tao Miao
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Rong-Xin Song
- Department of Anesthesiology, Cangzhou Central Hospital, Hebei Medical University, Cangzhou, China
| | - Jing-Jing Shao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji-Zhen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Yue Xin
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Han Wang
- Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma. Cells 2022; 11:cells11213467. [DOI: 10.3390/cells11213467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Metabolic rewiring in glioblastoma (GBM) is linked to intra- and extracellular pH regulation. In this study, we sought to characterize the role of melatonin on intracellular pH modulation and metabolic consequences to identify the mechanisms of action underlying melatonin oncostatic effects on GBM tumor initiating cells. GBM tumor initiating cells were treated at different times with melatonin (1.5 and 3.0 mM). We analyzed melatonin’s functional effects on GBM proliferation, cell cycle, viability, stemness, and chemo-radiosensitivity. We then assessed the effects of melatonin on GBM metabolism by analyzing the mitochondrial and glycolytic parameters. We also measured the intracellular and extracellular pH. Finally, we tested the effects of melatonin on a mouse subcutaneous xenograft model. We found that melatonin downregulated LDHA and MCT4, decreasing lactate production and inducing a decrease in intracellular pH that was associated with an increase in ROS and ATP depletion. These changes blocked cell cycle progression and induced cellular death and we observed similar results in vivo. Melatonin’s cytotoxic effects on GBM were due, at least in part, to intracellular pH modulation, which has emerged as a newly identified mechanism, providing new insights into the oncostatic effect of melatonin on GBM.
Collapse
|
10
|
Sanati M, Binabaj MM, Ahmadi SS, Aminyavari S, Javid H, Mollazadeh H, Bibak B, Mohtashami E, Jamialahmadi T, Afshari AR, Sahebkar A. Recent advances in glioblastoma multiforme therapy: A focus on autophagy regulation. Biomed Pharmacother 2022; 155:113740. [PMID: 36166963 DOI: 10.1016/j.biopha.2022.113740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/02/2022] Open
Abstract
Despite conventional treatment options including chemoradiation, patients with the most aggressive primary brain tumor, glioblastoma multiforme (GBM), experience an average survival time of less than 15 months. Regarding the malignant nature of GBM, extensive research and discovery of novel treatments are urgently required to improve the patients' prognosis. Autophagy, a crucial physiological pathway for the degradation and recycling of cell components, is one of the exciting targets of GBM studies. Interventions aimed at autophagy activation or inhibition have been explored as potential GBM therapeutics. This review, which delves into therapeutic techniques to block or activate autophagy in preclinical and clinical research, aims to expand our understanding of available therapies battling GBM.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moradi Binabaj
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seyed Sajad Ahmadi
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Ube2c-inhibition alleviated amyloid pathology and memory deficits in APP/PS1 mice model of AD. Prog Neurobiol 2022; 215:102298. [PMID: 35671859 DOI: 10.1016/j.pneurobio.2022.102298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/24/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022]
Abstract
Autophagy is a major intracellular degradation pathway for the clearance of damaged organelles and misfolded peptides. Previous studies have indicated that autophagy is involved in the pathogenesis of neurodegenerative disease including Alzheimer's disease (AD). Defective autophagy and highly expressed ubiquitin-conjugating enzyme 2C (Ube2c) have been found in AD patients and mouse. However, little is known about the regulation of autophagy in AD. The association of Ube2c with autophagy, amyloid pathology and cognitive deficits in AD remains unclear. In the present study, we characterized over expression of Ube2c and declined autophagy in amyloid β (Aβ)-treated microglia and demonstrated the protective effects of agomelatine (AGO) in APP/PS1 mice. We found that knockdown of Ube2c with AAV2 encoding shUbe2c resulted in an obvious enhancement of autophagy in BV2 microglia cells, and an alleviation of Aβ pathology and memory deficits in APP/PS1 mice. Further, pharmacological inhibition of Ube2c by AGO significantly reduced Aβ plaques, improved synaptic plasticity and cognitive behaviors in APP/PS1 mice, as well as promoted autophagy in microglia. Our findings uncover a potent role of Ube2c over-expression and autophagy decline in the pathogenesis of AD, and suggest that regulation of Ube2c and autophagy may provide an important clue and a potential target for the novel therapeutics of AD.
Collapse
|
12
|
Li J, Zhu P, Chen Y, Zhang S, Zhang Z, Zhang Z, Wang Y, Jiang X, Lin K, Wu W, Mo Z, Sze SCW, Yung KKL. Isoalantolactone Induces Cell Cycle Arrest, Apoptosis and Autophagy in Colorectal Cancer Cells. Front Pharmacol 2022; 13:903599. [PMID: 35645799 PMCID: PMC9133875 DOI: 10.3389/fphar.2022.903599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Colorectal cancer (CRC) is an aggressive cancer. Isoalantolactone (IATL) has been reported to exert cytotoxicity against various cancer cells, but not CRC. In this study, we explored the anti-CRC effects and mechanism of action of IATL in vitro and in vivo. Our results demonstrated that IATL inhibited proliferation by inducing G0/G1 phase cell cycle arrest, apoptosis and autophagy in CRC cells. Repression of autophagy with autophagy inhibitors chloroquine (CQ) and Bafilomycin A1 (Baf-A1) enhanced the anti-CRC effects of IATL, suggesting that IATL induces cytoprotective autophagy in CRC cells. Mechanistic studies revealed that IATL lowered protein levels of phospho-AKT (Ser473), phospho-mTOR (Ser2448), phospho-70S6K (Thr421/Ser424) in CRC cells. Inhibition of AKT and mTOR activities using LY294002 and rapamycin, respectively, potentiated the inductive effects of IATL on autophagy and cell death. In vivo studies showed that IATL suppressed HCT116 tumor growth without affecting the body weight of mice. In consistent with the in vitro results, IATL lowered protein levels of Bcl-2, Bcl-XL, phospho-AKT (Ser473), phospho-mTOR (Ser2448), and phsopho-70S6K (Thr421/Ser424), whereas upregulated protein levels of cleaved-PARP and LC3B-II in HCT116 tumors. Collectively, our results demonstrated that in addition to inhibiting proliferation, inducing G0/G1-phase cell cycle arrest and apoptosis, IATL initiates cytoprotective autophagy in CRC cells by inhibiting the AKT/mTOR signaling pathway. These findings provide an experimental basis for the evaluation of IATL as a novel medication for CRC treatment.
Collapse
Affiliation(s)
- Junkui Li
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
| | - Yifei Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Shiqing Zhang
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
| | - Zhang Zhang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
| | - Ying Wang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
| | - Xiaoli Jiang
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
| | - Kaili Lin
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Wei Wu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Zhixian Mo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Zhixian Mo, ; Stephen Cho Wing Sze, ; Ken Kin Lam Yung,
| | - Stephen Cho Wing Sze
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
- *Correspondence: Zhixian Mo, ; Stephen Cho Wing Sze, ; Ken Kin Lam Yung,
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University (HKBU), Kowloon Tong, China
- Golden Meditech Center for NeuroRegeneration Sciences (GMCNS), HKBU, Kowloon Tong, China
- *Correspondence: Zhixian Mo, ; Stephen Cho Wing Sze, ; Ken Kin Lam Yung,
| |
Collapse
|
13
|
Li Z, Wang H, Zhang K, Zhao J, Liu H, Ma X, Guo J, Wang J, Lu W. Melatonin inhibits autophagy in TM3 cells via AKT/FOXO1 pathway. Mol Biol Rep 2022; 49:2925-2932. [PMID: 34997871 DOI: 10.1007/s11033-021-07107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Melatonin can regulate apoptosis and autophagy of mouse Leydig cells, but its specific mechanism is still unclear. METHODS In this study, we used the TM3 cell line as the research object, and used H2O2 to induce autophagy. After adding 10 ng/ml melatonin, we used qRT-PCR and western-blot to detect autophagy-related gene and protein expression, and flow cytometry to detect cellular ROS level. RESULTS The results showed that melatonin can significantly inhibit the occurrence of autophagy, accompanied by a significant decrease in the expression of Becn1, LC3, and FOXO1 (P < 0.05), a significant increase in the expression of p62 and pAKT (P < 0.05), and a significant decrease in ROS level (P < 0.05). After added the inhibitor of AKT perifosine, the effect of melatonin on inhibiting autophagy was reversed. On this basis, we used small RNA interference technology to knock down the expression of FOXO1, and found that there was no significant change of the expression of genes and proteins related to autophagy and ROS level. CONCLUSIONS In summary, melatonin can inhibit H2O2-induced autophagy in TM3 cells through the AKT/FOXO1 pathway.
Collapse
Affiliation(s)
- Zhiqiang Li
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Hongtao Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Hongyu Liu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Xin Ma
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Jing Guo
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China.,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China. .,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China. .,College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin Province, China.
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China. .,Key Lab of the Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, 130118, Changchun, Jilin, China. .,College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, 130118, Changchun, Jilin Province, China.
| |
Collapse
|
14
|
Chang CY, Wu CC, Wang JD, Liao SL, Chen WY, Kuan YH, Wang WY, Chen CJ. Endoplasmic Reticulum Stress Contributed to Dipyridamole-Induced Impaired Autophagic Flux and Glioma Apoptosis. Int J Mol Sci 2022; 23:579. [PMID: 35054765 PMCID: PMC8775759 DOI: 10.3390/ijms23020579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/03/2022] Open
Abstract
Elevation of intracellular cAMP levels has been implicated in glioma cell proliferation inhibition, differentiation, and apoptosis. Inhibition of phosphodiesterase is a way to elevate intracellular cAMP levels. The present study aimed to investigate the anti-glioma potential of dipyridamole, an inhibitor of phosphodiesterase. Upon treatment with dipyridamole, human U87 glioma cells decreased cell viability, clonogenic colonization, migration, and invasion, along with Noxa upregulation, Endoplasmic Reticulum (ER) stress, impaired autophagic flux, Yes-associated Protein 1 (YAP1) phosphorylation, and YAP1 reduction. Pharmacological and genetic studies revealed the ability of dipyridamole to initiate Noxa-guided apoptosis through ER stress. Additionally, the current study further identified the biochemical role of YAP1 in communicating with ER stress and autophagy under situations of dipyridamole treatment. YAP1 promoted autophagy and protected glioma cells from dipyridamole-induced apoptotic cell death. Dipyridamole impaired autophagic flux and rendered glioma cells more vulnerable to apoptotic cell death through ER stress-inhibitable YAP1/autophagy axis. The overall cellular changes caused by dipyridamole appeared to ensure a successful completion of apoptosis. Dipyridamole also duplicated the biochemical changes and apoptosis in glioma T98G cells. Since dipyridamole has additional biochemical and pharmacological properties, further research centered on the anti-glioma mechanisms of dipyridamole is still needed.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung 420, Taiwan;
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung 433, Taiwan
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, Hung Kuang University, Taichung 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
15
|
Zhang J, Yang W, Xiao Y, Shan L. MiR-125b Inhibits Cell Proliferation and Induces Apoptosis in Human Colon Cancer SW480 Cells via Targeting STAT3. Recent Pat Anticancer Drug Discov 2022; 17:187-194. [PMID: 34238196 DOI: 10.2174/1574892816666210708165037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Colon cancer is one of the most common types of cancer worldwide. Multiple studies have unveiled the key role of microRNAs (miRNAs) in the development of various types of cancer. However, the mechanism of action of miR-125b in the development and progression of colon cancer remains unknown. OBJECTIVES In this study, we explored the association of miR-125b and signal transducer and activator of transcription 3 (STAT3) and its role in the proliferation and apoptosis of SW480 colon cancer cells. METHODS The miR-125b expression in NCM460, SW480, HT29, and HCT8 cells was detected using quantitative real-time polymerase chain reaction (qRT-PCR). SW480 cells were transfected with lentiviruses of GFP-miR-125b and GFP-NC to establish a stable miR-125b overexpression colon cancer cell model and a control model. The targeting relationship between miR-125b and STAT3 was analyzed using bioinformatics and verified by the dual-luciferase reporter gene assay. Cell proliferation and apoptosis were assessed using the Cell Counting Kit-8 assay and TUNEL staining. The expression levels of STAT3, Bcl-2, and Bax were analyzed using Western blot analysis. RESULTS It was found that the relative mRNA expression of miR-125b was decreased in SW480, HT29, and HCT8 cells compared with that in NCM460 cells (P<0.05). The luciferase reporter gene assay confirmed that miR-125b downregulated the STAT3 gene expression (P<0.05). Overexpression of miR-125b inhibited proliferation and promoted apoptosis in SW480 colon cancer cells and was accompanied by upregulated Bax expression and downregulated Bcl-2 expression (P<0.05). Re-expression of STAT3 promoted cell proliferation and inhibited cell apoptosis, whereas Bcl-2 expression increased, and Bax expression decreased (P<0.05). CONCLUSION The miR-125b regulates the expression of Bax and Bcl-2 by downregulating the expression of STAT3, thereby inhibiting proliferation and inducing apoptosis of SW480 colon cancer cells.
Collapse
Affiliation(s)
- Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, Henan, P.R. China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan, P.R. China
| | - Wenwen Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, Henan, P.R. China
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, Henan, P.R. China
| | - Linlin Shan
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, Henan, P.R. China
| |
Collapse
|
16
|
Lactoferrin Alleviated AFM1-Induced Apoptosis in Intestinal NCM 460 Cells through the Autophagy Pathway. Foods 2021; 11:foods11010023. [PMID: 35010149 PMCID: PMC8750231 DOI: 10.3390/foods11010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Aflatoxin M1 (AFM1) is the only mycotoxin with maximum residue limit in milk, which may result in serious human diseases. On the contrary, lactoferrin (Lf) is an active protein with multiple functions. Studies have confirmed that Lf has a powerful potential to protect the intestines, but the influence of Lf on mycotoxins is not clear. This study aims to explore whether Lf can protect the cytotoxicity induced by AFM1, and determine the underlying mechanisms in human normal colonic epithelial NCM460 cells. The results indicated that AFM1 decreased the cell viability, and increased the levels of apoptosis and autophagy of NCM460 cells. Lf can alleviate the cytotoxicity induced by AFM1 through enhancing cell viability, significantly down-regulated the expression of apoptotic genes and proteins (BAX, caspase3, caspase9, caspase3, and caspase9), and regulated the gene and protein expression of autophagy factors (Atg5, Atg7, Atg12, Beclin1, ULK1, ULK2, LC3, and p62). Furthermore, interference of the key gene Atg5 of autophagy can reduce AFM1-induced apoptosis, which is consistent with the role of Lf, implying that Lf may protect AFM1-induced intestinal injury by inhibiting excessive autophagy-mediated apoptosis. Taken together, our data indicated that Lf has a mitigating effect on apoptosis induced by AFM1 through the autophagy pathway.
Collapse
|
17
|
Scuderi SA, Lanza M, Casili G, Esposito F, Colarossi C, Giuffrida D, Irene P, Cuzzocrea S, Esposito E, Campolo M. TBK1 Inhibitor Exerts Antiproliferative Effect on Glioblastoma Multiforme Cells. Oncol Res 2021; 28:779-790. [PMID: 33741083 PMCID: PMC8420908 DOI: 10.3727/096504021x16161478258040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Glioma are common malignant brain tumors, among which glioblastoma multiforme (GBM) has the worst prognosis. Different studies of GBM revealed that targeting nuclear factor B (NF-B) induced an attenuation tumor proliferation and prolonged cell survival. TBK1 {TANK [TRAF (TNF (tumor-necrosis-factor) receptor-associated factor)-associated NF-B activator]-binding kinase 1} is a serine/threonine protein kinase, and it is a member of the IB kinase (IKK) family involved in NF-B pathway activation. The aim of this study was to investigate the potential effect of BX795, an inhibitor of TBK1, in an in vitro and ex vivo model of GBM. GBM cell lines (U87 and U138) and primary GBM cells were treated with different concentrations of BX795 at different time points (24, 48, and 72h) to evaluate cell viability, autophagy, inflammation, and apoptosis. Our results demonstrated that BX795 10 M was able to reduce cell viability, showing antiproliferative effect in U87, U138, and primary GBM cells. Moreover, treatment with BX795 10 M increased the proapoptotic proteins Bax, p53, caspase 3, and caspase 9, whereas the antiapoptotic Bcl-2 expression was reduced. Additionally, our results showed a marked decrease in autophagy following BX795 treatment, reducing Atg 7, Atg 5/12, and AKT expression. The anti-inflammatory effect of BX795 was demonstrated by a significantly reduction in NIK, IKK, and TNF- expression, accompanied by a downregulation of angiogenesis. Furthermore, in primary GBM cell, BX795 10 M was able to reduce TBK1 pathway activation and SOX3 expression. In conclusion, these findings showed that TBK1 is involved in GBM proliferation, demonstrating that the inhibitor BX795, thanks to its abilities, could improve therapeutic strategies for GBM treatment.
Collapse
Affiliation(s)
- Sarah A. Scuderi
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Casili
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | | | - Paterniti Irene
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- *Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
18
|
Zhang Y, Cong P, Tong C, Jin H, Liu Y, Hou M. Melatonin pretreatment alleviates blast-induced oxidative stress in the hypothalamic-pituitary-gonadal axis by activating the Nrf2/HO-1 signaling pathway. Life Sci 2021; 280:119722. [PMID: 34153300 DOI: 10.1016/j.lfs.2021.119722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 01/14/2023]
Abstract
Although melatonin has been demonstrated to exert a potent antioxidant effect, the ability of melatonin to alleviate blast-induced oxidative stress in the hypothalamic-pituitary-gonadal (HPG) axis remains unclear. This study aimed to elucidate the effects and underlying mechanism of melatonin pretreatment on the HPG axis disrupted by blast injury. Sixty C57BL/6 mice were randomly divided into control, blast, and blast + melatonin groups for behavioral experiments. The elevated maze experiment, open field experiment, and Morris Water Maze experiment were carried out on the 7th, 14th and 28th day after the blast injury. Fifty Sprague Dawley rats were randomly divided into control, blast, blast + melatonin, and blast + melatonin + luzindole groups for hormone assays and molecular and pathological experiments. Blood samples were used for HPG axis hormone detection and ELISA assays, and tissue samples were used to detect oxidative stress, inflammation, apoptosis, and stress-related protein levels. The results showed that melatonin pretreatment alleviated blast-induced behavioral abnormalities in mice and maintained the HPG axis hormone homeostasis in rats. Additionally, melatonin significantly reduced MDA5 expression and increased the expression of Nrf2/HO-1. Moreover, melatonin significantly inhibited NF-κB expression and upregulated IL-10 expression, and it reversed the blast-induced high expression of caspase-3 and Bax and the low expression of Bcl-2. Furthermore, luzindole counteracted melatonin inhibition of NF-κB and upregulated Nrf2/HO-1. Melatonin significantly alleviated blast-induced HPG axis hormone dyshomeostasis, behavioral abnormalities, oxidative stress, inflammation, and apoptosis, which may be achieved by upregulating the Nrf2/HO-1 signaling pathway. Our study suggested that melatonin pretreatment is a potential treatment for blast-induced HPG axis hormonal and behavioral abnormalities.
Collapse
Affiliation(s)
- Yin Zhang
- Graduate School, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Peifang Cong
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, Shenyang, Liaoning Province 116044, China
| | - Changci Tong
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, Shenyang, Liaoning Province 116044, China
| | - Hongxu Jin
- Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, Shenyang, Liaoning Province 116044, China
| | - Yunen Liu
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, No. 20 Beijiu Road, Heping District, Shenyang 110001, China; Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| | - Mingxiao Hou
- Graduate School, Dalian Medical University, Dalian, Liaoning Province 116044, China; Department of Emergency Medicine, The General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Trauma PLA, Shenyang, Liaoning Province 116044, China.
| |
Collapse
|
19
|
Alamdari AF, Rahnemayan S, Rajabi H, Vahed N, Kashani HRK, Rezabakhsh A, Sanaie S. Melatonin as a promising modulator of aging related neurodegenerative disorders: Role of microRNAs. Pharmacol Res 2021; 173:105839. [PMID: 34418564 DOI: 10.1016/j.phrs.2021.105839] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/02/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
One of the host risk factors involved in aging-related diseases is coupled with the reduction of endogenous melatonin (MLT) synthesis in the pineal gland. MLT is considered a well-known pleiotropic regulatory hormone to modulate a multitude of biological processes such as the regulation of circadian rhythm attended by potent anti-oxidant, anti-inflammatory, and anti-cancer properties. It has also been established that the microRNAs family, as non-coding mRNAs regulating post-transcriptional processes, also serve a crucial role to promote MLT-related advantageous effects in both experimental and clinical settings. Moreover, the anti-aging impact of MLT and miRNAs participation jointly are of particular interest, recently. In this review, we aimed to scrutinize recent advances concerning the therapeutic implications of MLT, particularly in the brain tissue in the face of aging. We also assessed the possible interplay between microRNAs and MLT, which could be considered a therapeutic strategy to slow down the aging process in the nervous system.
Collapse
Affiliation(s)
- Arezoo Fathalizadeh Alamdari
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Rajabi
- Research Center for Translational Medicine, School of Medicine, Koç University, Istanbul, Turkey
| | - Nafiseh Vahed
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Emergency Medicine Research Team, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sarvin Sanaie
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
20
|
Liu G, Lai D, Jiang Y, Yang H, Zhao H, Zhang Y, Liu D, Pang Y. Demethylzeylasteral Exerts Antitumor Effects via Disruptive Autophagic Flux and Apoptotic Cell Death in Human Colorectal Cancer Cells and Increases Cell Chemosensitivity to 5-Fluorouracil. Anticancer Agents Med Chem 2021; 22:851-863. [PMID: 34102996 DOI: 10.2174/1871520621666210608104021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Demethylzeylasteral (ZST93), a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF), has been reported to exert antineoplastic effects in several cancer cell types. However, the anti-tumour effects of ZST93 in human colorectal cancer (CRC) cells are unknown. OBJECTIVE The aim of the present study was to evaluate the antitumor effects of ZST93 on cell cycle arrest, disruptive autophagic flux, apoptotic cell death, and enhanced chemosensitivity to 5-FU in humans CRC cells. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide(MTT) assay, colony formation assay, flow cytometry, immunoblotting, immunofluorescence, 5-ethynyl-20-deoxyuridine (EdU) incorporation assay, and autophagy analysis were used to evaluate the effects of ZST93 on cell viability, cell cycle progression, apoptosis and autophagy in two human CRC cell lines. Moreover, ZST93's combined anti-tumour effects with 5-fluorouracil (5-FU) were evaluated. RESULTS ZST93 inhibited CRC cell proliferation and growth. It was responsible for blocked cell cycle transition by arresting CRC cells in the G0/G1 phase via down-regulation of CDK4, CDK6, Cyclin D1, and c-MYC. Moreover, ZST93 induced suppressive autophagic flux and caspase-3-dependent cell death, which were further strengthened by the blocking of the autophagy process using chloroquine (CQ). Moreover, ZST93 enhanced CRC cells' chemosensitivity to 5-FU via modulation of autophagy and apoptosis. CONCLUSION ZST93 exerts anti-tumour effects via disruptive autophagic flux and apoptotic cell death in human CRC cells and increases cell chemosensitivity to 5-FU. These results provide insights into the utilisation of ZST93 as an adjuvant or direct autophagy inhibitor and suggest ZST93 as a novel therapeutic strategy for treating CRC.
Collapse
Affiliation(s)
- Guiyuan Liu
- The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing, China
| | - Dengxiang Lai
- The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing, China
| | - Yi Jiang
- The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing, China
| | - Hongjing Yang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Hui Zhao
- The Affiliated Hospital of Chongqing Three Gorges Medical College, Chongqing, China
| | - Yonghui Zhang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Dan Liu
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| | - Yi Pang
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing, China
| |
Collapse
|
21
|
Batara DCR, Choi MC, Shin HU, Kim H, Kim SH. Friend or Foe: Paradoxical Roles of Autophagy in Gliomagenesis. Cells 2021; 10:1411. [PMID: 34204169 PMCID: PMC8227518 DOI: 10.3390/cells10061411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor in adults, with a poor median survival of approximately 15 months after diagnosis. Despite several decades of intensive research on its cancer biology, treatment for GBM remains a challenge. Autophagy, a fundamental homeostatic mechanism, is responsible for degrading and recycling damaged or defective cellular components. It plays a paradoxical role in GBM by either promoting or suppressing tumor growth depending on the cellular context. A thorough understanding of autophagy's pleiotropic roles is needed to develop potential therapeutic strategies for GBM. In this paper, we discussed molecular mechanisms and biphasic functions of autophagy in gliomagenesis. We also provided a summary of treatments for GBM, emphasizing the importance of autophagy as a promising molecular target for treating GBM.
Collapse
Affiliation(s)
- Don Carlo Ramos Batara
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea;
| | - Hyeon-Uk Shin
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| | - Hyunggee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea;
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea; (D.C.R.B.); (H.-U.S.)
| |
Collapse
|
22
|
Estaras M, Gonzalez-Portillo MR, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco-Fernandez G, Lopez-Guerra D, Roncero V, Salido GM, González A. Melatonin Induces Apoptosis and Modulates Cyclin Expression and MAPK Phosphorylation in Pancreatic Stellate Cells Subjected to Hypoxia. Int J Mol Sci 2021; 22:5555. [PMID: 34074034 PMCID: PMC8197391 DOI: 10.3390/ijms22115555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
In certain diseases of the pancreas, pancreatic stellate cells form an important part of fibrosis and are critical for the development of cancer cells. A hypoxic condition develops within the tumor, to which pancreatic stellate cells adapt and are able to proliferate. The consequence is the growth of the tumor. Melatonin, the product of the pineal gland, is gaining attention as an agent with therapeutic potential against pancreatic cancers. Its actions on tumor cells lead, in general, to a reduction in cell viability and proliferation. However, its effects on pancreatic stellate cells subjected to hypoxia are less known. In this study, we evaluated the actions of pharmacological concentrations of melatonin (1 mM-1 µM) on pancreatic stellate cells subjected to hypoxia. The results show that melatonin induced a decrease in cell viability at the highest concentrations tested. Similarly, the incorporation of BrdU into DNA was diminished by melatonin. The expression of cyclins A and D also was decreased in the presence of melatonin. Upon treatment of cells with melatonin, increases in the expression of major markers of ER stress, namely BIP, phospho-eIF2α and ATF-4, were detected. Modulation of apoptosis was noticed as an increase in caspase-3 activation. In addition, changes in the phosphorylated state of p44/42, p38 and JNK MAPKs were detected in cells treated with melatonin. A slight decrease in the content of α-smooth muscle actin was detected in cells treated with melatonin. Finally, treatment of cells with melatonin decreased the expression of matrix metalloproteinases 2, 3, 9 and 13. Our observations suggest that melatonin, at pharmacological concentrations, diminishes the proliferation of pancreatic stellate cells subjected to hypoxia through modulation of cell cycle, apoptosis and the activation of crucial MAPKs. Cellular responses might involve certain ER stress regulator proteins. In view of the results, melatonin could be taken into consideration as a potential therapeutic agent for pancreatic fibrosis.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Manuel R. Gonzalez-Portillo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Miguel Fernandez-Bermejo
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Jose M. Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, 10003 Caceres, Spain; (M.F.-B.); (J.M.M.); (D.V.)
| | - Gerardo Blanco-Fernandez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, University Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, University Hospital, 06080 Badajoz, Spain; (G.B.-F.); (D.L.-G.)
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain;
| | - Gines M. Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 10003 Caceres, Spain; (M.E.); (M.R.G.-P.); (G.M.S.)
| |
Collapse
|
23
|
Melatonin in Cancer Treatment: Current Knowledge and Future Opportunities. Molecules 2021; 26:molecules26092506. [PMID: 33923028 PMCID: PMC8123278 DOI: 10.3390/molecules26092506] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.
Collapse
|
24
|
Mehrzadi S, Pourhanifeh MH, Mirzaei A, Moradian F, Hosseinzadeh A. An updated review of mechanistic potentials of melatonin against cancer: pivotal roles in angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Cancer Cell Int 2021; 21:188. [PMID: 33789681 PMCID: PMC8011077 DOI: 10.1186/s12935-021-01892-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Farid Moradian
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Zhang M, Zhang M, Li R, Zhang R, Zhang Y. Melatonin sensitizes esophageal cancer cells to 5‑fluorouracil via promotion of apoptosis by regulating EZH2 expression. Oncol Rep 2021; 45:22. [PMID: 33649858 PMCID: PMC7905689 DOI: 10.3892/or.2021.7973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
The present study aimed to investigate the effects of melatonin (MLT) and 5-fluorouracil (5-FU) combination on the chemotherapeutic effect of 5-FU in esophageal cancer, and determine the potential molecular mechanisms. The effects of MLT and 5-FU combination on cell proliferation, cell migration and invasion, and cell apoptosis were detected by Cell Counting Kit-8, Transwell assays and flow cytometric analysis, respectively. Quantitative PCR and western blotting were performed for mRNA and protein quantification, respectively. The present study revealed that MLT significantly inhibited cell activity in a dose-dependent manner and MLT significantly enhanced 5-FU-mediated inhibition of cell proliferation in esophageal cancer cells. Compared with the 5-FU group, the MLT and 5-FU combination group significantly inhibited the invasion and migration of EC-9706 and EC-109 cells. The present study also revealed that MLT and 5-FU synergistically promoted apoptosis via activation of the caspase-dependent apoptosis pathway. Histone-lysine N-methyltransferase EZH2 (EZH2) was highly expressed in esophageal cancer tissues and cells and its high expression promoted esophageal cancer progression. MLT and 5-FU combination inhibited cell proliferation and promoted apoptosis by regulating EZH2 expression. In conclusion, MLT enhanced 5-FU-mediated inhibition of cell proliferation via promotion of apoptosis by regulating EZH2 expression in esophageal cancer.
Collapse
Affiliation(s)
- Mengti Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| | - Mengli Zhang
- Department of Traditional Chinese Medicine, Kaifeng Central Hospital, Kaifeng, Henan 475000, P.R. China
| | - Ruijia Li
- Department of Pharmacy, The 8th Hospital of Xi'an, Xian, Shaanxi 710061, P.R. China
| | - Rui Zhang
- Department of Critical Care Medicine, Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xian, Shaanxi 710061, P.R. China
| | - Yueli Zhang
- Department of Clinical Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
26
|
Pourhanifeh MH, Mehrzadi S, Hosseinzadeh A. Melatonin and regulation of miRNAs: novel targeted therapy for cancerous and noncancerous disease. Epigenomics 2020; 13:65-81. [PMID: 33350862 DOI: 10.2217/epi-2020-0241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
miRNAs, small noncoding RNAs with crucial diagnostic and prognostic capabilities, play essential therapeutic roles in different human diseases. These biomarkers are involved in several biological mechanisms and are responsible for the regulation of multiple genes expressions in cells. miRNA-based therapy has shown a very bright future in the case of clinical interventions. Melatonin, the main product of the pineal gland, is a multifunctional neurohormone with numerous therapeutic potentials in human diseases. Melatonin is able to regulate miRNAs in different pathologies such as malignant and nonmalignant diseases, which can be considered as a novel kind of targeted therapy. Herein, this review discusses possible therapeutic utility of melatonin for the regulation of miRNAs in various pathological conditions.
Collapse
Affiliation(s)
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Wu J, Bai Y, Wang Y, Ma J. Melatonin and regulation of autophagy: Mechanisms and therapeutic implications. Pharmacol Res 2020; 163:105279. [PMID: 33161138 DOI: 10.1016/j.phrs.2020.105279] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential subcellular units that generate basic energy for the cell, as well as influence Ca2+ flux, apoptosis, and cell signaling. Mitophagy can selectively remove impaired mitochondria to preserve mitochondrial function, which is crucial for normal cellular maintenance. Mitochondrial dysfunction and mitophagy are widely reported to be linked to various pathogeneses. In addition, there is increasing evidence regarding the beneficial role of melatonin in the regulation and intervention of mitophagy progression. In this review, we focus on specific pathological conditions, including ischemia/reperfusion injury (IRI), cancer and neurodegenerative diseases, and elucidate the essential role of melatonin in the modulation of mitophagy in each of these distinct disorders.
Collapse
Affiliation(s)
- Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yaguang Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
28
|
Pourhanifeh MH, Mehrzadi S, Kamali M, Hosseinzadeh A. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways. Eur J Pharmacol 2020; 886:173471. [PMID: 32877658 DOI: 10.1016/j.ejphar.2020.173471] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal (GI) cancers, leading causes of cancer-related deaths, have been serious challenging human diseases up to now. Because of high rates of mortality, late-stage diagnosis, metastasis to distant locations, and low effectiveness and adverse events of routine standard therapies, the quality of life and survival time are low in patients with GI cancers. Hence, many efforts need to be done to explore and find novel efficient treatments. Beneficial effects of melatonin have been reported in a wide variety of human diseases. Melatonin has antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. Various studies have showed the regulatory effects of melatonin on apoptotsis, autophagy and angiogenesis; these properties result in the inhibition of invasion, migration, and proliferation of GI cancer cells in vivo and in vitro. Together, this review suggests that melatonin in combination with anticancer agents may improve the efficacy of routine medicine and survival rate of patients with cancer.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Oxidative Stress-Part of the Solution or Part of the Problem in the Hypoxic Environment of a Brain Tumor. Antioxidants (Basel) 2020; 9:antiox9080747. [PMID: 32823815 PMCID: PMC7464568 DOI: 10.3390/antiox9080747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Rapid growth of brain tumors such as glioblastoma often results in oxygen deprivation and the emergence of hypoxic zones. In consequence, the enrichment of reactive oxygen species occurs, harming nonmalignant cells and leading them toward apoptotic cell death. However, cancer cells survive such exposure and thrive in a hypoxic environment. As the mechanisms responsible for such starkly different outcomes are not sufficiently explained, we aimed to explore what transcriptome rearrangements are used by glioblastoma cells in hypoxic areas. Using metadata analysis of transcriptome in different subregions of the glioblastoma retrieved from the Ivy Glioblastoma Atlas Project, we created the reactive oxygen species-dependent map of the transcriptome. This map was then used for the analysis of differential gene expression in the histologically determined cellular tumors and hypoxic zones. The gene ontology analysis cross-referenced with the clinical data from The Cancer Genome Atlas revealed that the metabolic shift is one of the major prosurvival strategies applied by cancer cells to overcome hypoxia-related cytotoxicity.
Collapse
|
30
|
Melatonin's Antineoplastic Potential Against Glioblastoma. Cells 2020; 9:cells9030599. [PMID: 32138190 PMCID: PMC7140435 DOI: 10.3390/cells9030599] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is one of the most intransigent and aggressive brain tumors, and its treatment is extremely challenging and ineffective. To improve patients’ expectancy and quality of life, new therapeutic approaches were investigated. Melatonin is an endogenous indoleamine with an incredible variety of properties. Due to evidence demonstrating melatonin’s activity against several cancer hallmarks, there is growing interest in its use for preventing and treating cancer. In this review, we report on the potential effects of melatonin, alone or in combination with anticancer drugs, against GBM. We also summarize melatonin targets and/or the intracellular pathways involved. Moreover, we describe melatonin’s epigenetic activity responsible for its antineoplastic effects. To date, there are too few clinical studies (involving a small number of patients) investigating the antineoplastic effects of melatonin against GBM. Nevertheless, these studies described improvement of GBM patients’ quality of life and did not show significant adverse effects. In this review, we also report on studies regarding melatonin-like molecules with the tumor-suppressive properties of melatonin together with implemented pharmacokinetics. Melatonin effects and mechanisms of action against GBM require more research attention due to the unquestionably high potential of this multitasking indoleamine in clinical practice.
Collapse
|
31
|
Anderson G. The effects of melatonin on signaling pathways and molecules involved in glioma: Melatonin and glioblastoma: pathophysiology and treatment. Fundam Clin Pharmacol 2020; 34:189-191. [PMID: 31958165 DOI: 10.1111/fcp.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|