1
|
Tian C, Rehman A, Wang X, Wang Z, Li H, Ma J, Du X, Peng Z, He S. Late embryogenesis abundant gene GhLEA-5 of semi-wild cotton positively regulates salinity tolerance in upland cotton. Gene 2025; 949:149372. [PMID: 40023341 DOI: 10.1016/j.gene.2025.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The productivity and quality of cotton are significantly compromised by salt stress. In this study, the full length of encoding region and genomic DNA sequences of GhLEA_5A/D (Gh_A10G166600 and Gh_D10G188300), which belong to the late embryogenesis abundant gene family in allotetraploid upland cotton (Gossypium hirsutum L.) and semi-wild cotton (Gossypium purpurascens), were isolated and their salt tolerance was experimentally confirmed. Analysis of sequence alignments and phylogenetic trees indicated a significant level of homology between GhLEA-5A and GhLEA-5D. Additionally, a conserved protein motif was consistently identified across these sequences. The transcriptome data analysis showed that the expression level of GhLEA-5A/D was substantially enhanced in the leaves of salt-tolerant G. purpurascens accessions compared to salt-sensitive materials. In the real-time quantitative reverse transcription PCR (qRT-PCR) assays, notable expression levels of the GhLEA-5D gene were detected in salt-tolerant upland cotton materials following exposure to salt stress at 3 and 12-hour time points. The suppression of GhLEA-5A/D transcription via Virus-induced Gene Silencing (VIGS) technology significantly exacerbates salt sensitivity in cotton. This is evidenced by the nearly 50 % increase in malondialdehyde (MDA) content alongside a 60 % reduction in peroxidase (POD) levels in salt-treated plants when compared to the control group. The overexpression of the GhLEA-5A/D gene conferred enhanced salt tolerance in Arabidopsis, resulting in a 25 % increase in root length, a 30 % improvement in survival rate, a 15 % increase in water retention, and a 15 % boost in photosynthetic efficiency. The chlorophyll fluorescence parameters, enzyme activities, diaminobenzine, and nitroblue tetrazolium staining suggested that GhLEA-5A/D likely exhibited a positive regulatory role for cotton responding to salt stress. Furthermore, we identified 76 candidate proteins that potentially interact with GhLEA-5 in the yeast two-hybrid screening library. These results provide a theoretical basis for studying the mechanism of cotton salt tolerance and offer new resources for improving cotton salt tolerance genes.
Collapse
Affiliation(s)
- Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Zhenzhen Wang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Jun Ma
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
2
|
Zhang S, Yan S, Zhang L, Yan P, Zhang H, Zhang L. Overexpression of Lol-miR11467 negatively affects osmotic resistance in Larix kaempferi 3 × L. gmelinii 9. BMC PLANT BIOLOGY 2025; 25:592. [PMID: 40329178 PMCID: PMC12054245 DOI: 10.1186/s12870-025-06591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Larch (Larix gmelinii (Rupr.) Kuzen.) is an important timber and ecological tree species in northern China. Excellent germplasm resources have been acquired through time-consuming traditional breeding. Molecular breeding offers a promising approach to shorten the breeding cycle and achieve genetic improvements more efficiently. MicroRNAs (miRNAs) are non-coding, single-stranded small RNAs that primarily affect plant growth and stress resistance, including drought stress. However, the study of miRNAs in larch under drought stress has not been well explored. RESULTS In this study, to investigate the function of Lol-miR11467 under PEG osmotic stress in larch, embryogenic callus tissue of Larix kaempferi 3 × L. gmelinii 9 was employed as the experimental material, serving as the explants for this study. Lol-miR11467 was transferred into the explants using an Agrobacterium-mediated method to determine the physiological changes and survey gene expression changes in overexpressing Lol-miR11467 cell lines. The results showed that the fresh weight, peroxidase (POD), soluble protein and soluble sugar content of the overexpressing Lol-miR11467 were lower than that of the wild-type, while malondialdehyde (MDA) content increased under PEG osmotic stress. Transcriptome analysis showed that genes associated with phenylpropanoid metabolism, transcription factors, oxidoreductase, plant hormone signal transduction, glucose metabolism and bioprotective macromolecules were mainly downregulated in Lol-miR11467 cell lines. CONCLUSIONS Overall, these results indicated that the drought resistance of the overexpressing Lol-miR11467 cell lines was reduced. This study's findings might provide a foundation for understanding the molecular mechanisms of miRNAs under PEG osmotic stress in larch, potentially contributing to the development of strategies for improving plant resilience to environmental stresses.
Collapse
Affiliation(s)
- Sufang Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University), Harbin, 150040, China
| | - Shanshan Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University), Harbin, 150040, China
| | - Li Zhang
- Shandong Xiandai University, Jinan, 250000, China
| | - Pingyu Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University), Harbin, 150040, China
| | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University), Harbin, 150040, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University), Harbin, 150040, China.
| |
Collapse
|
3
|
Terfa GN, Pan W, Hu L, Hao J, Zhao Q, Jia Y, Nie X. Mechanisms of Salt and Drought Stress Responses in Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2025; 14:1215. [PMID: 40284101 PMCID: PMC12030529 DOI: 10.3390/plants14081215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Salt and drought are destructive abiotic stresses that severely impact crop production and productivity, posing an increasing threat to global food security, particularly as their occurrence rises annually due to climate change. These salt and drought stresses adversely affect plant growth and development, leading to significant reductions in crop yields. Foxtail millet (Setaria italica) exhibits various adaptive mechanisms, including enhanced antioxidative systems, osmotic adjustment through osmolyte accumulation, and root system modification, which facilitate its tolerance to stressors. These traits underscore its significant potential for breeding climate-resilient crops to address food security and climate change challenges. Understanding the molecular basis of salt and drought tolerance mechanisms is essential for breeding or genetically engineering foxtail millet varieties with enhanced salt and drought tolerance, as well as improved yield potential. This review systematically overviewed the research progress and current status of the mechanisms underlying foxtail millet's tolerance to salt and drought stress from the perspectives of physiological, biochemical, and molecular responses. Additionally, it provides some future perspectives that will contribute to further deciphering the genetic mechanisms governing salt and drought tolerance, as well as further genetic improvement in foxtail millet.
Collapse
Affiliation(s)
- Gemechu Nedi Terfa
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
- Department of Plant Science, School of Agricultural Science, Ambo University, P.O. Box 19 Ambo, Ethiopia
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Longjiao Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Junwei Hao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Qinlong Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Yanzhe Jia
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| |
Collapse
|
4
|
Weldemichael MY, Gebremedhn HM. Enhancing tiny millets through genome editing: current status and future prospects. Mol Genet Genomics 2025; 300:22. [PMID: 39982542 DOI: 10.1007/s00438-025-02231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
This study aims to address the critical need for genetic improvement of small millets, which are vital yet underutilized cereal crops cultivated in semi-arid regions of Africa and Asia. Given their high nutritional value and climate resilience, small millets hold significant potential for food security and sustainable agriculture in arid regions. However, traditional breeding methods have proven to be time-consuming and inefficient in enhancing desirable traits. This study highlights the transformative potential of genome editing technologies, particularly the CRISPR/Cas9 system, in accelerating the development of improved small millet varieties. The findings presented in this paper detail recent advancements in using CRISPR/Cas for enhancing resistance to biotic stresses, including bacterial, viral, and fungal pathogens. Additionally, we explore how genome editing can be applied to improve abiotic stress tolerance, addressing challenges such as drought, cold, heat, and herbicides in small millets. We discuss the existing challenges faced by breeders, including issues related to ploidy levels, off-target effects, and limitations in organelle genome modification. The review also suggests potential strategies for overcoming these bottlenecks, aiming to develop stress-resistant super cultivars. Overall, this paper provides an overview of the current state of genome editing research in small millets while identifying future opportunities to enhance key traits for nutrient enrichment and climate resilience, ultimately paving the way for advancements in these crucial crops.
Collapse
Affiliation(s)
- Micheale Yifter Weldemichael
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia.
| | - Hailay Mehari Gebremedhn
- Department of Biotechnology, College of Dryland Agriculture and Natural Resources, Mekelle University, P.O. Box 231, Mekelle, Tigrai, Ethiopia
| |
Collapse
|
5
|
Hu M, Li Z, Lin X, Tang B, Xing M, Zhu H. Comparative analysis of the LEA gene family in seven Ipomoea species, focuses on sweet potato (Ipomoea batatas L.). BMC PLANT BIOLOGY 2024; 24:1256. [PMID: 39725899 DOI: 10.1186/s12870-024-05981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Late Embryogenesis Abundant (LEA) proteins are extensively distributed among higher plants and are crucial for regulating growth, development, and abiotic stress resistance. However, comprehensive data regarding the LEA gene family in Ipomoea species remains limited. In this study, we conducted a genome-wide comparative analysis across seven Ipomoea species, including sweet potato (I. batatas), I. trifida, I. triloba, I. nil, I. purpurea, I. cairica, and I. aquatica, identifying 73, 64, 77, 62, 70, 70, and 74 LEA genes, respectively. The LEA genes were divided into eight subgroups: LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, LEA_6, SMP, and Dehydrin according to the classification of the LEA family in Arabidopsis. Gene structure and protein motif analyses revealed that genes within the same phylogenetic group exhibited comparable exon/intron structures and motif patterns. The distribution of LEA genes across chromosomes varied among the different Ipomoea species. Duplication analysis indicated that segmental and tandem duplications significantly contributed to the expansion of the LEA gene family, with segmental duplications being the predominant mechanism. The analysis of the non-synonymous (Ka) to synonymous (Ks) ratio (Ka/Ks) indicated that the duplicated Ipomoea LEA genes predominantly underwent purifying selection. Extensive cis-regulatory elements associated with stress responses were identified in the promoters of LEA genes. Expression analysis revealed that the LEA gene exhibited widespread expression across diverse tissues and showed responsive modulation to various abiotic stressors. Furthermore, we selected 15 LEA genes from sweet potatoes for RT-qPCR analysis, demonstrating that five genes responded to salt stress in roots, while three genes were responsive to drought stress in leaves. Additionally, expression changes of seven genes varied at different stages of sweet potato tuber development. These findings enhanced our understanding of the evolutionary dynamics of LEA genes within the Ipomoea genome and may inform future molecular breeding strategies for sweet potatoes.
Collapse
Affiliation(s)
- Mengqin Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Zhenqin Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xiongjian Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Binquan Tang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Meng Xing
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Hongbo Zhu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
6
|
Aggarwal PR, Muthamilarasan M, Choudhary P. Millet as a promising C4 model crop for sustainable biofuel production. J Biotechnol 2024; 395:110-121. [PMID: 39343056 DOI: 10.1016/j.jbiotec.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The rapid depletion of conventional fuel resources and rising energy demand has accelerated the search for alternative energy sources. Further, the expanding need to use bioenergy crops for sustainable fuel production has enhanced the competition for agricultural land, raising the "food vs. fuel" competition. Considering this, producing bioenergy crops on marginal land has a great perspective for achieving sustainable bioenergy production and mitigating the negative impacts of climate change. C4 crops are dual-purpose crops with better efficiency to fix atmospheric CO2 and convert solar energy into lignocellulosic biomass. Of these, millets have gained worldwide attention due to their climate resilience and nutraceutical properties. Due to close synteny with contemporary C4 bioenergy crops, millets are being considered a model crop for studying diverse agronomically important traits associated with biomass production. Millets can be cultivated on marginal land with minimum fertilizer inputs and maximum biomass production. In this regard, advanced molecular approaches, including marker-assisted breeding, multi-omics approaches, and gene-editing technologies, can be employed to genetically engineer these crops for enhanced biofuel production efficiency. The current study aims to provide an overview of millets as a sustainable bioenergy source and underlines the significance of millets as a C4 model to elucidate the genes and pathways involved in lignocellulosic biomass production using advanced molecular biology approaches.
Collapse
Affiliation(s)
- Pooja R Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Choudhary
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India.
| |
Collapse
|
7
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
8
|
Ceasar SA, Prabhu S, Ebeed HT. Protein research in millets: current status and way forward. PLANTA 2024; 260:43. [PMID: 38958760 DOI: 10.1007/s00425-024-04478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
MAIN CONCLUSION Millets' protein studies are lagging behind those of major cereals. Current status and future insights into the investigation of millet proteins are discussed. Millets are important small-seeded cereals majorly grown and consumed by people in Asia and Africa and are considered crops of future food security. Although millets possess excellent climate resilience and nutrient supplementation properties, their research advancements have been lagging behind major cereals. Although considerable genomic resources have been developed in recent years, research on millet proteins and proteomes is currently limited, highlighting a need for further investigation in this area. This review provides the current status of protein research in millets and provides insights to understand protein responses for climate resilience and nutrient supplementation in millets. The reference proteome data is available for sorghum, foxtail millet, and proso millet to date; other millets, such as pearl millet, finger millet, barnyard millet, kodo millet, tef, and browntop millet, do not have any reference proteome data. Many studies were reported on stress-responsive protein identification in foxtail millet, with most studies on the identification of proteins under drought-stress conditions. Pearl millet has a few reports on protein identification under drought and saline stress. Finger millet is the only other millet to have a report on stress-responsive (drought) protein identification in the leaf. For protein localization studies, foxtail millet has a few reports. Sorghum has the highest number of 40 experimentally proven crystal structures, and other millets have fewer or no experimentally proven structures. Further proteomics studies will help dissect the specific proteins involved in climate resilience and nutrient supplementation and aid in breeding better crops to conserve food security.
Collapse
Affiliation(s)
- S Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India.
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, Kerala, 683 104, India
| | - Heba T Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
- National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| |
Collapse
|
9
|
Luo D, Wang C, Mubeen S, Rehman M, Cao S, Yue J, Pan J, Jin G, Li R, Chen T, Chen P. HcLEA113, a late embryogenesis abundant protein gene, positively regulates drought-stress responses in kenaf. PHYSIOLOGIA PLANTARUM 2024; 176:e14506. [PMID: 39191701 DOI: 10.1111/ppl.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Late embryogenesis abundant (LEA) proteins have been widely recognized for their role in various abiotic stress responses in higher plants. Nevertheless, the specific mechanism responsible for the function of LEA proteins in plants has not yet been explored. This research involved the isolation and characterization of HcLEA113 from kenaf, revealing a significant increase in its expression in response to drought stress. When HcLEA113 was introduced into yeast, it resulted in an improved survival rate under drought conditions. Furthermore, the overexpression of HcLEA113 in tobacco plants led to enhanced tolerance to drought stress. Specifically, HcLEA113-OE plants exhibited higher germination rates, longer root lengths, greater chlorophyll content, and higher relative water content under drought stress compared to wild-type (WT) plants, while their relative conductivity was significantly lower than that of WT plants. Further physiological measurements revealed that the proline content, soluble sugars, and antioxidant activities of WT and HcLEA113-OE tobacco leaves increased significantly under drought stress, with greater changes in HcLEA113-OE plants than WT. The increase in hydrogen peroxide (H2O2), superoxide anions (O2 -), and malondialdehyde (MDA) content was significantly lower in HcLEA113-OE lines than in WT plants. Additionally, HcLEA113-OE plants can activate reactive oxygen species (ROS)- and osmotic-related genes in response to drought stress. On the other hand, silencing the HcLEA113 gene through virus-induced gene silencing (VIGS) in kenaf plants led to notable growth suppression when exposed to drought conditions, manifesting as decreased plant height and dry weight. Meanwhile, antioxidant enzymes' activity significantly decreased and the ROS content increased. This study offers valuable insights for future research on the genetic engineering of drought resistance in plants.
Collapse
Affiliation(s)
- Dengjie Luo
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Caijin Wang
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Muzammal Rehman
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Shan Cao
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Yue
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Jiao Pan
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, China
| | - Peng Chen
- College of Agriculture, Guangxi University; Guangxi Key Laboratory of Agro-environment and Agric-products safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, China
| |
Collapse
|
10
|
Patan SSVK, Vallepu S, Shaik KB, Shaik N, Adi Reddy NRY, Terry RG, Sergeant K, Hausman JF. Drought resistance strategies in minor millets: a review. PLANTA 2024; 260:29. [PMID: 38879859 DOI: 10.1007/s00425-024-04427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/26/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION The review discusses growth and drought-response mechanisms in minor millets under three themes: drought escape, drought avoidance and drought tolerance. Drought is one of the most prominent abiotic stresses impacting plant growth, performance, and productivity. In the context of climate change, the prevalence and severity of drought is expected to increase in many agricultural regions worldwide. Millets (coarse grains) are a group of small-seeded grasses cultivated in arid and semi-arid regions throughout the world and are an important source of food and feed for humans and livestock. Although minor millets, i.e., foxtail millet, finger millet, proso millet, barnyard millet, kodo millet and little millet are generally hardier and more drought-resistant than cereals and major millets (sorghum and pearl millet), understanding their responses, processes and strategies in response to drought is more limited. Here, we review drought resistance strategies in minor millets under three themes: drought escape (e.g., short crop cycle, short vegetative period, developmental plasticity and remobilization of assimilates), drought avoidance (e.g., root traits for better water absorption and leaf traits to control water loss), and drought tolerance (e.g., osmotic adjustment, maintenance of photosynthetic ability and antioxidant potential). Data from 'omics' studies are summarized to provide an overview of the molecular mechanisms important in drought tolerance. In addition, the final section highlights knowledge gaps and challenges to improving minor millets. This review is intended to enhance major cereals and millet per se in light of climate-related increases in aridity.
Collapse
Affiliation(s)
| | - Suneetha Vallepu
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Khader Basha Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Naseem Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | | | | | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| | - Jean François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
11
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
12
|
Hsiao AS. Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins. Int J Mol Sci 2024; 25:1178. [PMID: 38256256 PMCID: PMC10816898 DOI: 10.3390/ijms25021178] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid-liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes.
Collapse
Affiliation(s)
- An-Shan Hsiao
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
13
|
Lu M, Chen Z, Dang Y, Li J, Wang J, Zheng H, Li S, Wang X, Du X, Sui N. Identification of the MYB gene family in Sorghum bicolor and functional analysis of SbMYBAS1 in response to salt stress. PLANT MOLECULAR BIOLOGY 2023; 113:249-264. [PMID: 37964053 DOI: 10.1007/s11103-023-01386-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/06/2023] [Indexed: 11/16/2023]
Abstract
Salt stress adversely affects plant growth and development. It is necessary to understand the underlying salt response mechanism to improve salt tolerance in plants. MYB transcription factors can regulate plant responses to salt stress. However, only a few studies have explored the role of MYB TFs in Sorghum bicolor (L.) Moench. So we decided to make a systematic analysis and research on the sorghum MYB family. A total of 210 MYB genes in sorghum were identified in this study. Furthermore, 210 MYB genes were distributed across ten chromosomes, named SbMYB1-SbMYB210. To study the phylogeny of the identified TFs, 210 MYB genes were divided into six subfamilies. We further demonstrated that SbMYB genes have evolved under strong purifying selection. SbMYBAS1 (SbMYB119) was chosen as the study object, which the expression decreased under salt stress conditions. Further study of the SbMYBAS1 showed that SbMYBAS1 is located in the nucleus. Under salt stress conditions, Arabidopsis plants overexpressed SbMYBAS1 showed significantly lower dry/fresh weight and chlorophyll content but significantly higher membrane permeability, MDA content, and Na+/K+ ratio than the wild-type Arabidopsis plants. Yeast two-hybrid screening result showed that SbMYBAS1 might interact with proteins encoded by SORBI_302G184600, SORBI_3009G247900 and SORBI_3004G59600. Results also showed that SbMYBAS1 could regulate the expression of AtGSTU17, AtGSTU16, AtP5CS2, AtUGT88A1, AtUGT85A2, AtOPR2 and AtPCR2 under salt stress conditions. This work laid a foundation for the study of the response mechanism of sorghum MYB gene family to salt stress.
Collapse
Affiliation(s)
- Mei Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, No.88, East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
14
|
Narayanrao DR, Tomar RS, Sm P, Jasminkumar K, Ashish G, Chauhan NM, Singh SC, Upadhye V, Kuddus M, Kamble L, Hajare ST. De novo transcriptome sequencing of drought tolerance-associated genes in little millet (Panicum sumatrense L.). Funct Integr Genomics 2023; 23:303. [PMID: 37723408 DOI: 10.1007/s10142-023-01221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
The genome size of the little millet Panicum sumatrense is unknown, although its genome is fairly diploid (2n = 4x = 36). Despite tremendous nutritional value and adaptability to adverse climatic conditions, P. sumatrense use was limited by their low palatability, coarse grain, and lack of variety of culinary preparations. Hence, understanding how to vary their usage to offer food and nutritional security in the continuously changing modern world, the proposed study was aimed to determine potential genes and metabolites implicated in drought resistance. The drought-resistant genotype of tiny millet OLM-203/Tarini was offered in pots under both relaxed and demanding circumstances. The experimental seedlings were 32 days old and had been under water stress for 23 days. A total of 7606 genes were compared between 23 and 32 days for roots and 7264 total genes were compared between 23 and 32 days for leaves, according to a research on differential expression genes (DEGs). Twenty essential genes for drought tolerance were up-or down-regulated in the control and treated roots of the OLM-203 genotype. For instance, the genes RS193 and XB34 were up-regulated in leaves while, WLIM1 was found to be down-regulated. Gene SKI35 was up-regulated in roots, whereas MPK6 and TCMOp1 were down-regulated in root samples. The roots and leaves of the tiny millet OLM-203 genotype expressed 36 up-regulated and 21 down-regulated serine transcripts, respectively. Gene annotations for leaf samples were classified as having "molecular function" (46%), "cellular component" (19%), and "biological process" (35%), while root sample gene annotations were categorized as having "biological process" (573 contigs), "molecular function" (401 contigs), and "cellular components" (166 contigs). Noteworthy, polyamines play a crucial role in drought stress tolerance in the genotype, and it was found that top ten DEGs encoding for polyamines were common in two tissues (leaf and root). Collectively, transcriptomics profiling (RNA-seq) unveiled transcriptional stability drought stress provide a new insight in underlying modus of operandi in little millet genotype "OLM-203/Tarini" in response to heat stress.
Collapse
Affiliation(s)
| | - R S Tomar
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| | - Padhiyar Sm
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| | - Kheni Jasminkumar
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| | - Gulwe Ashish
- Department of Bioinformatics, Sub Campus Latur, Swami Ramanand Teerth Marathawada University, Nanded, India
| | - Nitin Mahendra Chauhan
- ILRI and College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia
| | | | - Vijay Upadhye
- Research and Development Cell (RDC), Parul Institute of Applied Sciences (PIAS), Parul University, Vadodara, India
| | - Mohammed Kuddus
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Laxmikant Kamble
- Deputy Director and Associate Professor (CD4D), Parul University, Vadodara, Gujarat, India
- Swami Ramanand Teerth Marathawada University, Nanded, India
| | - Sunil Tulshiram Hajare
- ILRI and College of Natural and Computational Sciences, Dilla University, 419, Dilla, Ethiopia.
| |
Collapse
|
15
|
Jia JS, Ge N, Wang QY, Zhao LT, Chen C, Chen JW. Genome-wide identification and characterization of members of the LEA gene family in Panax notoginseng and their transcriptional responses to dehydration of recalcitrant seeds. BMC Genomics 2023; 24:126. [PMID: 36932328 PMCID: PMC10024439 DOI: 10.1186/s12864-023-09229-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins play an important role in dehydration process of seed maturation. The seeds of Panax notoginseng (Burkill) F. H. Chen are typically characterized with the recalcitrance and are highly sensitive to dehydration. However, it is not very well known about the role of LEA proteins in response to dehydration stress in P. notoginseng seeds. We will perform a genome-wide analysis of the LEA gene family and their transcriptional responses to dehydration stress in recalcitrant P. notoginseng seeds. RESULTS In this study, 61 LEA genes were identified from the P. notoginseng genome, and they were renamed as PnoLEA. The PnoLEA genes were classified into seven subfamilies based on the phylogenetic relationships, gene structure and conserved domains. The PnoLEA genes family showed relatively few introns and was highly conserved. Unexpectedly, the LEA_6 subfamily was not found, and the LEA_2 subfamily contained 46 (75.4%) members. Within 19 pairs of fragment duplication events, among them 17 pairs were LEA_2 subfamily. In addition, the expression of the PnoLEA genes was obviously induced under dehydration stress, but the germination rate of P. notoginseng seeds decreased as the dehydration time prolonged. CONCLUSIONS We found that the lack of the LEA_6 subfamily, the expansion of the LEA_2 subfamily and low transcriptional levels of most PnoLEA genes might be implicated in the recalcitrant formation of P. notoginseng seeds. LEA proteins are essential in the response to dehydration stress in recalcitrant seeds, but the protective effect of LEA protein is not efficient. These results could improve our understanding of the function of LEA proteins in the response of dehydration stress and their contributions to the formation of seed recalcitrance.
Collapse
Affiliation(s)
- Jin-Shan Jia
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Na Ge
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Qing-Yan Wang
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Li-Ting Zhao
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Cui Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China
| | - Jun-Wen Chen
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
- National & Local Joint Engineering Research Center On Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming, 650201, Yunnan, China.
| |
Collapse
|
16
|
Ma J, Zuo D, Ye H, Yan Y, Li M, Zhao P. Genome-wide identification, characterization, and expression pattern of the late embryogenesis abundant (LEA) gene family in Juglans regia and its wild relatives J. mandshurica. BMC PLANT BIOLOGY 2023; 23:80. [PMID: 36740678 PMCID: PMC9901102 DOI: 10.1186/s12870-023-04096-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Late Embryogenesis Abundant (LEA) proteins are a class of proteins associated with plant stress resistance. Two Juglans species, Juglans regia and J. mandshurica, are both diploid (2n = 32), monoecious perennial economic tree species with high edible, pharmaceutical, and timber value. The identification, characterization, and expression patterns of LEA proteins in J. regia and its wild relative, J. mandshurica, would not only provide the genetic basis of this gene family, but it would also supply clues for further studies of the evolution and regulating mechanisms of LEA proteins in other tree species. RESULTS In this study, we identified 25 and 20 members of the LEA gene family in Juglans regia and its wild relative, Juglans mandshurica, respectively. The results of phylogenetic analysis showed that the LEA members were divided into eight main subgroups. Predictions of their physicochemical properties showed the variable characteristics of LEA proteins, and the subcellular localization analysis indicated that most LEA proteins are localized in the nucleus. Chromosomal localization analysis and gene replication pattern prediction indicated that WGD is the predominant duplication mode of LEA genes. The results of the comparative analysis indicated a high level of collinearity between the two Juglans species. Analysis of cis-acting elements indicated that LEA genes had a relatively wide range of responses to abiotic stresses and phytohormonal processes, particularly in two phytohormones, methyl jasmonate and abscisic acid. Transcriptome profiling and qRT-PCR experiments showed that JrLEAs are commonly expressed in leaves, green husks, and male and female flowers, and most JmLEAs are more highly expressed in male flowers. We also hypothesized that JrLEAs are involved in the process of anthracnose resistance. Anthracnose-resistant varieties of JrLEAs presented relatively high expression levels at later stages. CONCLUSION In this study, we provide a theoretical basis for the functional study of LEA genes in J. regia and J. mandshurica. Analysis of cis-acting elements and gene expression indicated that JrLEAs and JmLEAs play important roles in resistance to biotic stresses in these species.
Collapse
Affiliation(s)
- Jiayu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Dongjun Zuo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
- College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Hang Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Yujie Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Mengdi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, 710069 Shaanxi China
| |
Collapse
|
17
|
Jiang Y, Zhang S, Xu H, Tian H, Zhang M, Zhu S, Wang C, Hou J, Chen G, Tang X, Wang W, Wu J, Huang X, Zhang J, Yuan L. Identification of the BcLEA Gene Family and Functional Analysis of the BcLEA73 Gene in Wucai ( Brassica campestris L.). Genes (Basel) 2023; 14:415. [PMID: 36833342 PMCID: PMC9957401 DOI: 10.3390/genes14020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins are important developmental proteins in the response of plants to abiotic stress. In our previous study, BcLEA73 was differentially expressed under low-temperature stress. Herein, we combined bioinformatics analysis, subcellular localization, expression assays, and stress experiments (including salt, drought, and osmotic stress) to identify and analyze the BcLEA gene family. Gene cloning and functional analysis of BcLEA73 were performed in tobacco and Arabidopsis. Based on the sequence homology and the available conservative motif, 82 BrLEA gene family members were identified and were divided into eight subfamilies in the genome-wide database of Chinese cabbage. The analysis showed that the BrLEA73 gene was located on chromosome A09 and belonged to the LEA_6 subfamily. Quantitative real-time PCR analysis indicated that the BcLEA genes were differentially expressed to varying degrees in the roots, stems, leaves, and petioles of Wucai. The overexpressed BcLEA73 transgenic plants exhibited no significant differences in root length and seed germination rates compared to the wild-type (WT) plants under control conditions. Under salt and osmotic stress treatment, the root length and seed germination rates of the BcLEA73-OE strain were significantly greater than those of WT plants. Under salt stress, the total antioxidant capacity (T-AOC) of the BcLEA73-OE lines increased significantly, and the relative conductivity, (REL), hydrogen peroxide (H2O2) content, and superoxide anion (O2-) production rate decreased significantly. Under drought treatment, the survival rate of the BcLEA73-OE lines was significantly higher than that of WT plants. These results showed that the BcLEA73 gene of Wucai functions in enhancing the tolerance of plants to salt, drought, and osmotic stress. This study provides a theoretical basis to explore the relevant functions of the BcLEA gene family members of Wucai.
Collapse
Affiliation(s)
- Yueyue Jiang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Shengnan Zhang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Hongcheng Xu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Hong Tian
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Mengyun Zhang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Xiaoyan Tang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Wenjie Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Jianqiang Wu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Xingxue Huang
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinlong Zhang
- Vegetable Industry Office, Agricultural and Rural Bureau of He County, Maanshan 238201, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| |
Collapse
|
18
|
Das A, Dedon N, Enders DJ, Fjellheim S, Preston JC. Testing the chilling- before drought-tolerance hypothesis in Pooideae grasses. Mol Ecol 2023; 32:772-785. [PMID: 36420966 PMCID: PMC10107940 DOI: 10.1111/mec.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Temperate Pooideae are a large clade of economically important grasses distributed in some of the Earth's coldest and driest terrestrial environments. Previous studies have inferred that Pooideae diversified from their tropical ancestors in a cold montane habitat, suggesting that above-freezing cold (chilling) tolerance evolved early in the subfamily. By contrast, drought tolerance is hypothesized to have evolved multiple times independently in response to global aridification that occurred after the split of Pooideae tribes. To independently test predictions of the chilling-before-drought hypothesis in Pooideae, we assessed conservation of whole plant and gene expression traits in response to chilling vs. drought. We demonstrated that both trait responses are more similar across tribes in cold as compared to drought, suggesting that chilling responses evolved before, and drought responses after, tribe diversification. Moreover, we found significantly more overlap between drought and chilling responsive genes within a species than between drought responsive genes across species, providing evidence that chilling tolerance genes acted as precursors for the novel acquisition of increased drought tolerance multiple times independently, partially through the cooption of chilling responsive genes.
Collapse
Affiliation(s)
- Aayudh Das
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| | - Natalie Dedon
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| | - Daniel J Enders
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C Preston
- Department of Plant Biology, The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
19
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC PLANT BIOLOGY 2022; 22:596. [PMID: 36536303 PMCID: PMC9762057 DOI: 10.1186/s12870-022-03953-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants and play crucial roles in regulating plant growth and development processes and resisting abiotic stress. Cultivated tomato (Solanum lycopersicum) is an important vegetable crop worldwide; however, its growth, development, yield, and quality are currently severely constrained by abiotic stressors. In contrast, wild tomato species are more tolerant to abiotic stress and can grow normally in extreme environments. The main objective of this study was to identify, characterize, and perform gene expression analysis of LEA protein families from cultivated and wild tomato species to mine candidate genes and determine their potential role in abiotic stress tolerance in tomatoes. RESULTS Total 60, 69, 65, and 60 LEA genes were identified in S. lycopersicum, Solanum pimpinellifolium, Solanum pennellii, and Solanum lycopersicoides, respectively. Characterization results showed that these genes could be divided into eight clusters, with the LEA_2 cluster having the most members. Most LEA genes had few introns and were non-randomly distributed on chromosomes; the promoter regions contained numerous cis-acting regulatory elements related to abiotic stress tolerance and phytohormone responses. Evolutionary analysis showed that LEA genes were highly conserved and that the segmental duplication event played an important role in evolution of the LEA gene family. Transcription and expression pattern analyses revealed different regulatory patterns of LEA genes between cultivated and wild tomato species under normal conditions. Certain S. lycopersicum LEA (SlLEA) genes showed similar expression patterns and played specific roles under different abiotic stress and phytohormone treatments. Gene ontology and protein interaction analyses showed that most LEA genes acted in response to abiotic stimuli and water deficit. Five SlLEA proteins were found to interact with 11 S. lycopersicum WRKY proteins involved in development or resistance to stress. Virus-induced gene silencing of SlLEA6 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced drought resistance in S. lycopersicum. CONCLUSION These findings provide comprehensive information on LEA proteins in cultivated and wild tomato species and their possible functions under different abiotic and phytohormone stresses. The study systematically broadens our current understanding of LEA proteins and candidate genes and provides a theoretical basis for future functional studies aimed at improving stress resistance in tomato.
Collapse
Affiliation(s)
- Chunping Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| |
Collapse
|
20
|
Insights into the molecular aspects of salt stress tolerance in mycorrhizal plants. World J Microbiol Biotechnol 2022; 38:253. [DOI: 10.1007/s11274-022-03440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
|
21
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
22
|
Kong H, Xia W, Hou M, Ruan N, Li J, Zhu J. Cloning and function analysis of a Saussurea involucrata LEA4 gene. FRONTIERS IN PLANT SCIENCE 2022; 13:957133. [PMID: 35928707 PMCID: PMC9343949 DOI: 10.3389/fpls.2022.957133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Late embryogenesis abundant proteins (LEA) help adapt to adverse low-temperature environments. The Saussurea involucrate SiLEA4, which encodes a membrane protein, was significantly up-regulated in response to low temperature stress. Escherichia coli expressing SiLEA4 showed enhanced low-temperature tolerance, as evident from the significantly higher survival numbers and growth rates at low temperatures. Moreover, tomato strains expressing SiLEA4 had significantly greater freezing resistance, due to a significant increase in the antioxidase activities and proline content. Furthermore, they had higher yields due to higher water utilization and photosynthetic efficiency under the same water and fertilizer conditions. Thus, expressing SiLEA4 has multiple advantages: (1) mitigating chilling injury, (2) increasing yields, and (3) water-saving, which also indicates the great potential of the SiLEA4 for breeding applications.
Collapse
Affiliation(s)
- Hui Kong
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Wenwen Xia
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Mengjuan Hou
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Nan Ruan
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jin Li
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jianbo Zhu
- Key Laboratory of Agricultural Biotechnology, College of Life Sciences, Shihezi University, Shihezi, China
| |
Collapse
|
23
|
Huang Z, Zhu P, Zhong X, Qiu J, Xu W, Song L. Transcriptome Analysis of Moso Bamboo ( Phyllostachys edulis) Reveals Candidate Genes Involved in Response to Dehydration and Cold Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:960302. [PMID: 35928710 PMCID: PMC9343960 DOI: 10.3389/fpls.2022.960302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bamboo (Bambusoideae) belongs to the grass family (Poaceae) and has been utilized as one of the most important nontimber forest resources in the world. Moso bamboo (Phyllostachys edulis) is a large woody bamboo with high ecological and economic values. Global climate change brings potential challenges to the normal growth of moso bamboo, and hence its production. Despite the release of moso bamboo genome sequence, the knowledge on genome-wide responses to abiotic stress is still limited. In this study, we generated a transcriptome data set with respect to dehydration and cold responses of moso bamboo using RNA-seq technology. The differentially expressed genes (DEGs) under treatments of dehydration and cold stresses were identified. By combining comprehensive gene ontology (GO) analysis, time-series analysis, and co-expression analysis, candidate genes involved in dehydration and cold responses were identified, which encode abscisic acid (ABA)/water deficit stress (WDS)-induced protein, late embryogenesis abundant (LEA) protein, 9-cis-epoxycarotenoid dioxygenase (NCED), anti-oxidation enzymes, transcription factors, etc. Additionally, we used PeLEA14, a dehydration-induced gene encoding an "atypical" LEA protein, as an example to validate the function of the identified stress-related gene in tolerance to abiotic stresses, such as drought and salt. In this study, we provided a valuable genomic resource for future excavation of key genes involved in abiotic stress responses and genetic improvement of moso bamboo to meet the requirement for environmental resilience and sustainable production.
Collapse
|
24
|
Samtani H, Sharma A, Khurana P. Overexpression of HVA1 Enhances Drought and Heat Stress Tolerance in Triticum aestivum Doubled Haploid Plants. Cells 2022; 11:cells11050912. [PMID: 35269534 PMCID: PMC8909738 DOI: 10.3390/cells11050912] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
Plant responses to multiple environmental stresses include various signaling pathways that allow plant acclimation and survival. Amongst different stresses, drought and heat stress severely affect growth and productivity of wheat. HVA1, a member of the group 3 LEA protein, has been well known to provide protection against drought stress. However, its mechanism of action and its role in other stresses such as heat remain unexplored. In this study, doubled haploid (DH) wheat plants overexpressing the HVA1 gene were analyzed and found to be both drought-and heat stress-tolerant. The transcriptome analysis revealed the upregulation of transcription factors such as DREB and HsfA6 under drought and heat stress, respectively, which contribute toward the tolerance mechanism. Particularly under heat stress conditions, the transgenic plants had a lower oxidative load and showed enhanced yield. The overexpression lines were found to be ABA-sensitive, therefore suggesting the role of HsfA6 in providing heat tolerance via the ABA-mediated pathway. Thus, apart from its known involvement in drought stress, this study highlights the potential role of HVA1 in the heat stress signaling pathway. This can further facilitate the engineering of multiple stress tolerance in crop plants, such as wheat.
Collapse
|
25
|
Ajeesh Krishna TP, Maharajan T, Ceasar SA. Improvement of millets in the post-genomic era. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:669-685. [PMID: 35465206 PMCID: PMC8986959 DOI: 10.1007/s12298-022-01158-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/16/2023]
Abstract
Millets are food and nutrient security crops in the semi-arid tropics of developing countries. Crop improvement using modern tools is one of the priority areas of research in millets. The whole-genome sequence (WGS) of millets provides new insight into understanding and studying the genes, genome organization and genomic-assisted improvement of millets. The WGS of millets helps to carry out genome-wide comparison and co-linearity studies among millets and other cereal crops. This approach might lead to the identification of genes underlying biotic and abiotic stress tolerance in millets. The available genome sequence of millets can be used for SNP identification, allele discovery, association and linkage mapping, identification of valuable candidate genes, and marker-assisted breeding (MAB) programs. Next generation sequencing (NGS) technology provides opportunities for genome-assisted breeding (GAB) through genomic selection (GS) and genome-wide association studies (GAWS) for crop improvement. Clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing (GE) system provides new opportunities for millet improvement. In this review, we discuss the details on the WGS available for millets and highlight the importance of utilizing such resources in the post-genomic era for millet improvement. We also draw inroads on the utilization of various approaches such as GS, GWAS, functional genomics, gene validation and GE for millet improvement. This review might be helpful for understanding the developments in the post-genomic era of millet improvement.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| |
Collapse
|
26
|
Divya K, Palakolanu SR, Kavi Kishor P, Rajesh AS, Vadez V, Sharma KK, Mathur PB. Functional characterization of late embryogenesis abundant genes and promoters in pearl millet (Pennisetum glaucum L.) for abiotic stress tolerance. PHYSIOLOGIA PLANTARUM 2021; 173:1616-1628. [PMID: 34455597 DOI: 10.1111/ppl.13544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Late embryogenesis abundant (LEA) genes display distinct functions in response to abiotic stresses in plants. In pearl millet (Pennisetum glaucum L.), a total of 21 PgLEA genes were identified and classified into six groups including LEA1, LEA2, LEA3, LEA5, LEA7, and dehydrins (DHN). Open reading frames (ORFs) of PgLEAs range from 291 bp (PgLEA1-1) to 945 bp (PgLEA2-11) and distributed randomly among the seven chromosomes. Phylogenetic analysis revealed that all PgLEA proteins are closely related to sorghum LEA proteins. The PgLEAs were found to be expressed differentially under high progressive vapor pressure deficit (VPD), PgLEA7 was significantly expressed under high VPD and was selected for functional validation. In silico analysis of the PgLEA promoter regions revealed abiotic stress-specific cis-acting elements such as ABRE, CCAAT, MYBS, and LTRE. Based on the type of motifs, PgLEAPC promoter (758 bp), its deletion 1 (PgLpd1, 349 bp) and deletion 2 (PgLpd2, 125 bp) were cloned into the plant expression vector pMDC164 having the promoter-less uidA gene. All the three plant expression vectors were introduced into tobacco through Agrobacterium tumefaciens-mediated transformation to obtain T1 and T2 generations of transgenic plants. Based on expression of the uidA gene, tissue-specific expression was observed in mature stems, roots and seedlings of PgLEAPC and PgLpd1 carrying transgenics only. While the transgenic PgLEAPC plants displayed significantly higher uidA expression in the stem and root tissues under salt, drought, heat, and cold stresses, very low or no expression was observed in PgLpd1 and PgLpd2 transgenics under the tested stress conditions. The results of this study indicate that the complete promoter of PgLEAPC plays a role in developing abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Kummari Divya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Polavarapu Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Aishwarya Shankhapal Rajesh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Kiran K Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | - Pooja Bhatnagar Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| |
Collapse
|
27
|
Huangfu Y, Pan J, Li Z, Wang Q, Mastouri F, Li Y, Yang S, Liu M, Dai S, Liu W. Genome-wide identification of PTI1 family in Setaria italica and salinity-responsive functional analysis of SiPTI1-5. BMC PLANT BIOLOGY 2021; 21:319. [PMID: 34217205 PMCID: PMC8254068 DOI: 10.1186/s12870-021-03077-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND PTI1 (Pto-interacting 1) protein kinase belongs to the receptor-like cytoplasmic kinase (RLCK) group of receptor-like protein kinases (RLK), but lack extracellular and transmembrane domains. PTI1 was first identified in tomato (Solanum lycopersicum) and named SlPTI1, which has been reported to interact with bacterial effector Pto, a serine/threonine protein kinase involved in plant resistance to bacterial disease. Briefly, the host PTI1 specifically recognizes and interacts with the bacterial effector AvrPto, which triggers hypersensitive cell death to inhibit the pathogen growth in the local infection site. Previous studies have demonstrated that PTI1 is associated with oxidative stress and hypersensitivity. RESULTS We identified 12 putative PTI1 genes from the genome of foxtail millet (Setaria italica) in this study. Gene replication analysis indicated that both segmental replication events played an important role in the expansion of PTI1 gene family in foxtail millet. The PTI1 family members of model plants, i.e. S. italica, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays), S. lycopersicum, and soybean (Glycine max), were classified into six major categories according to the phylogenetic analysis, among which the PTI1 family members in foxtail millet showed higher degree of homology with those of rice and maize. The analysis of a complete set of SiPTI1 genes/proteins including classification, chromosomal location, orthologous relationships and duplication. The tissue expression characteristics revealed that SiPTI1 genes are mainly expressed in stems and leaves. Experimental qRT-PCR results demonstrated that 12 SiPTI1 genes were induced by multiple stresses. Subcellular localization visualized that all of foxtail millet SiPTI1s were localized to the plasma membrane. Additionally, heterologous expression of SiPTI1-5 in yeast and E. coli enhanced their tolerance to salt stress. CONCLUSIONS Our results contribute to a more comprehensive understanding of the roles of PTI1 protein kinases and will be useful in prioritizing particular PTI1 for future functional validation studies in foxtail millet.
Collapse
Affiliation(s)
- Yongguan Huangfu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Jiaowen Pan
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhen Li
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Qingguo Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Fatemeh Mastouri
- Bota Bioscience, 325 Vassar st. Suite 2a, Cambridge, MA, 02139, USA
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Stephen Yang
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
| | - Min Liu
- Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Wei Liu
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
28
|
Li Z, Chi H, Liu C, Zhang T, Han L, Li L, Pei X, Long Y. Genome-wide identification and functional characterization of LEA genes during seed development process in linseed flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2021; 21:193. [PMID: 33882851 PMCID: PMC8059249 DOI: 10.1186/s12870-021-02972-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND LEA proteins are widely distributed in the plant and animal kingdoms, as well as in micro-organisms. LEA genes make up a large family and function in plant protection against a variety of adverse conditions. RESULTS Bioinformatics approaches were adopted to identify LEA genes in the flax genome. In total, we found 50 LEA genes in the genome. We also conducted analyses of the physicochemical parameters and subcellular location of the genes and generated a phylogenetic tree. LuLEA genes were unevenly mapped among 15 flax chromosomes and 90% of the genes had less than two introns. Expression profiles of LuLEA showed that most LuLEA genes were expressed at a late stage of seed development. Functionally, the LuLEA1 gene reduced seed size and fatty acid contents in LuLEA1-overexpressed transgenic Arabidopsis lines. CONCLUSION Our study adds valuable knowledge about LEA genes in flax which can be used to improve related genes of seed development.
Collapse
Affiliation(s)
- Zhen Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hui Chi
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tianbao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yan Long
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
29
|
Cheng Z, Zhang X, Yao W, Zhao K, Liu L, Fan G, Zhou B, Jiang T. Genome-wide search and structural and functional analyses for late embryogenesis-abundant (LEA) gene family in poplar. BMC PLANT BIOLOGY 2021; 21:110. [PMID: 33627082 PMCID: PMC7903804 DOI: 10.1186/s12870-021-02872-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/02/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The Late Embryogenesis-Abundant (LEA) gene families, which play significant roles in regulation of tolerance to abiotic stresses, widely exist in higher plants. Poplar is a tree species that has important ecological and economic values. But systematic studies on the gene family have not been reported yet in poplar. RESULTS On the basis of genome-wide search, we identified 88 LEA genes from Populus trichocarpa and renamed them as PtrLEA. The PtrLEA genes have fewer introns, and their promoters contain more cis-regulatory elements related to abiotic stress tolerance. Our results from comparative genomics indicated that the PtrLEA genes are conserved and homologous to related genes in other species, such as Eucalyptus robusta, Solanum lycopersicum and Arabidopsis. Using RNA-Seq data collected from poplar under two conditions (with and without salt treatment), we detected 24, 22 and 19 differentially expressed genes (DEGs) in roots, stems and leaves, respectively. Then we performed spatiotemporal expression analysis of the four up-regulated DEGs shared by the tissues, constructed gene co-expression-based networks, and investigated gene function annotations. CONCLUSION Lines of evidence indicated that the PtrLEA genes play significant roles in poplar growth and development, as well as in responses to salt stress.
Collapse
Affiliation(s)
- Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Lin Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Gaofeng Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
30
|
Water Conservation and Plant Survival Strategies of Rhizobacteria under Drought Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111683] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Drylands are stressful environment for plants growth and production. Plant growth-promoting rhizobacteria (PGPR) acts as a rampart against the adverse impacts of drought stress in drylands and enhances plant growth and is helpful in agricultural sustainability. PGPR improves drought tolerance by implicating physio-chemical modifications called rhizobacterial-induced drought endurance and resilience (RIDER). The RIDER response includes; alterations of phytohormonal levels, metabolic adjustments, production of bacterial exopolysaccharides (EPS), biofilm formation, and antioxidant resistance, including the accumulation of many suitable organic solutes such as carbohydrates, amino acids, and polyamines. Modulation of moisture status by these PGPRs is one of the primary mechanisms regulating plant growth, but studies on their effect on plant survival are scarce in sandy/desert soil. It was found that inoculated plants showed high tolerance to water-deficient conditions by delaying dehydration and maintaining the plant’s water status at an optimal level. PGPR inoculated plants had a high recovery rate after rewatering interms of similar biomass at flowering compared to non-stressed plants. These rhizobacteria enhance plant tolerance and also elicit induced systemic resistance of plants to water scarcity. PGPR also improves the root growth and root architecture, thereby improving nutrient and water uptake. PGPR promoted accumulation of stress-responsive plant metabolites such as amino acids, sugars, and sugar alcohols. These metabolites play a substantial role in regulating plant growth and development and strengthen the plant’s defensive system against various biotic and abiotic stresses, in particular drought stress.
Collapse
|
31
|
Genetic and genomic resources, and breeding for accelerating improvement of small millets: current status and future interventions. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00322-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbstractCurrent agricultural and food systems encourage research and development on major crops, neglecting regionally important minor crops. Small millets include a group of small- seeded cereal crops of the grass family Poaceae. This includes finger millet, foxtail millet, proso millet, barnyard millet, kodo millet, little millet, teff, fonio, job’s tears, guinea millet, and browntop millet. Small millets are an excellent choice to supplement major staple foods for crop and dietary diversity because of their diverse adaptation on marginal lands, less water requirement, lesser susceptibility to stresses, and nutritional superiority compared to major cereal staples. Growing interest among consumers about healthy diets together with climate-resilient features of small millets underline the necessity of directing more research and development towards these crops. Except for finger millet and foxtail millet, and to some extent proso millet and teff, other small millets have received minimal research attention in terms of development of genetic and genomic resources and breeding for yield enhancement. Considerable breeding efforts were made in finger millet and foxtail millet in India and China, respectively, proso millet in the United States of America, and teff in Ethiopia. So far, five genomes, namely foxtail millet, finger millet, proso millet, teff, and Japanese barnyard millet, have been sequenced, and genome of foxtail millet is the smallest (423-510 Mb) while the largest one is finger millet (1.5 Gb). Recent advances in phenotyping and genomics technologies, together with available germplasm diversity, could be utilized in small millets improvement. This review provides a comprehensive insight into the importance of small millets, the global status of their germplasm, diversity, promising germplasm resources, and breeding approaches (conventional and genomic approaches) to accelerate climate-resilient and nutrient-dense small millets for sustainable agriculture, environment, and healthy food systems.
Collapse
|
32
|
Shi H, He X, Zhao Y, Lu S, Guo Z. Constitutive expression of a group 3 LEA protein from Medicago falcata (MfLEA3) increases cold and drought tolerance in transgenic tobacco. PLANT CELL REPORTS 2020; 39:851-860. [PMID: 32240329 DOI: 10.1007/s00299-020-02534-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/18/2020] [Indexed: 05/22/2023]
Abstract
KEY MESSAGE MfLEA3 is involved in protection of catalase activity and confers multiple abiotic stress tolerance. Late embryogenesis abundant (LEA) proteins are involved in plant growth, development and abiotic stress tolerance. A member of group 3 LEA proteins from Medicago sativa subsp. falcata (L.) Arcang, MfLEA3, was investigated in the study. MfLEA3 transcript was induced in response to cold, dehydration, and abscisic acid (ABA), while the cold-induced transcript of MfLEA3 was blocked by pretreatment with inhibitor of ABA synthesis. Constitutive expression of MfLEA3 led to enhanced tolerance to cold, drought, and high-light stress in transgenic tobacco plants. Compared to accumulated reactive oxygen species (ROS) in the wild-type in response to treatments with low temperature, drought, and high light, ROS were not accumulated in transgenic plants. Superoxide dismutase, catalase (CAT), and ascorbate-peroxidase activities were increased in all plants after treatments with the above stresses, while higher CAT activity was maintained in transgenic plants compared with wild-type. However, transcript level of CAT-encoding genes including CAT1, CAT2, and CAT3 showed no significant difference between transgenic plants and wild-type, indicating that the higher CAT activity was not associated with its gene expression. ABA sensitivity and transcripts of several ABA and stress-responsive genes showed no difference between transgenic plant and wild-type, indicating that ABA signaling was not affected by constitutive expression of MfLEA3. The results suggest that MfLEA3 may be involved in the protection of CAT activity and confers multiple abiotic stress tolerance.
Collapse
Affiliation(s)
- Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xueying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yujuan Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
33
|
Sood P, Singh RK, Prasad M. An efficient Agrobacterium-mediated genetic transformation method for foxtail millet (Setaria italica L.). PLANT CELL REPORTS 2020; 39:511-525. [PMID: 31938834 DOI: 10.1007/s00299-019-02507-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/30/2019] [Indexed: 05/25/2023]
Abstract
A simple and robust Agrobacterium-mediated gene expression system in the C4 panicoid model crop, foxtail millet has been developed with up to 27 % transformation efficiency. Foxtail millet (Setaria italica L.) is a model crop to study C4 photosynthesis, abiotic stress tolerance, and bioenergy traits. Advances in molecular genetics and genomics had identified several potential genes in this crop that would serve as candidates for imparting climate-resilient traits in related millets, cereals, and biofuel crops. However, the lack of an efficient genetic transformation system has been impeding the functional characterization of these genes in foxtail millet per se. Given this, an easy and efficient regeneration and transformation protocol was optimized using mature seeds as a choicest explant. The suitability of secondary embryogenic calli over primary calli is underlined due to their high competence. The use of perfect combinations of plant growth regulators together with the ionic strength of organic and inorganics salts was found to influence regeneration and genetic transformation. We studied and optimized various crucial factors that affect the genetic transformation of foxtail millet calli using Agrobacterium tumefaciens-mediated approach. Secondary embryogenic calli and LBA44404 strain were found to be the best targets for transformation. The use of high sucrose and glucose, together with freshly prepared tobacco leaves extract, Silwet L-77 and acetosyringone, improved the efficiency of the genetic transformation of foxtail millet. Moreover, the use of an in vitro regeneration system with 84% callusing efficiency and 70-74% regeneration frequency led to a high recovery of transformants. Altogether, the present study reports a highly efficient (~ 27%) transformation system in foxtail millet that will expedite forward and reverse genetic studies in this important crop.
Collapse
Affiliation(s)
- Priyanka Sood
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
34
|
Rhizobacteriome: Promising Candidate for Conferring Drought Tolerance in Crops. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Genome-wide transcriptome and physiological analyses provide new insights into peanut drought response mechanisms. Sci Rep 2020; 10:4071. [PMID: 32139708 PMCID: PMC7058030 DOI: 10.1038/s41598-020-60187-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
Drought is one of the main constraints in peanut production in West Texas and eastern New Mexico regions due to the depletion of groundwater. A multi-seasonal phenotypic analysis of 10 peanut genotypes revealed C76-16 (C-76) and Valencia-C (Val-C) as the best and poor performers under deficit irrigation (DI) in West Texas, respectively. In order to decipher transcriptome changes under DI, RNA-seq was performed in C-76 and Val-C. Approximately 369 million raw reads were generated from 12 different libraries of two genotypes subjected to fully irrigated (FI) and DI conditions, of which ~329 million (90.2%) filtered reads were mapped to the diploid ancestors of peanut. The transcriptome analysis detected 4,508 differentially expressed genes (DEGs), 1554 genes encoding transcription factors (TFs) and a total of 514 single nucleotide polymorphisms (SNPs) among the identified DEGs. The comparative analysis between the two genotypes revealed higher and integral tolerance in C-76 through activation of key genes involved in ABA and sucrose metabolic pathways. Interestingly, one SNP from the gene coding F-box protein (Araip.3WN1Q) and another SNP from gene coding for the lipid transfer protein (Aradu.03ENG) showed polymorphism in selected contrasting genotypes. These SNPs after further validation may be useful for performing early generation selection for selecting drought-responsive genotypes.
Collapse
|
36
|
Ostria-Gallardo E, Larama G, Berríos G, Fallard A, Gutiérrez-Moraga A, Ensminger I, Bravo LA. A comparative gene co-expression analysis using self-organizing maps on two congener filmy ferns identifies specific desiccation tolerance mechanisms associated to their microhabitat preference. BMC PLANT BIOLOGY 2020; 20:56. [PMID: 32019526 PMCID: PMC7001327 DOI: 10.1186/s12870-019-2182-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/03/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Filmy-ferns (Hymenophyllaceae) are poikilohydric, homoiochlorophyllous desiccation-tolerant (DT) epiphytes. They can colonize lower and upper canopy environments of humid forest. Filmy-ferns desiccate rapidly (hours), contrasting with DT angiosperms (days/weeks). It has been proposed that desiccation tolerance in filmy-ferns would be associated mainly with constitutive features rather than induced responses during dehydration. However, we hypothesize that the inter-specific differences in vertical distribution would be associated with different dynamics of gene expression within the dehydration or rehydration phases. A comparative transcriptomic analysis with an artificial neural network was done on Hymenophyllum caudiculatum (restricted to lower canopy) and Hymenophyllum dentatum (reach upper canopy) during a desiccation/rehydration cycle. RESULTS Raw reads were assembled into 69,599 transcripts for H. dentatum and 34,726 transcripts for H. caudiculatum. Few transcripts showed significant changes in differential expression (DE). H. caudiculatum had ca. twice DE genes than H. dentatum and higher proportion of increased-and-decreased abundance of genes occurs during dehydration. In contrast, the abundance of genes in H. dentatum decreased significantly when transitioning from dehydration to rehydration. According to the artificial neural network results, H. caudiculatum enhanced osmotic responses and phenylpropanoid related pathways, whilst H. dentatum enhanced its defense system responses and protection against high light stress. CONCLUSIONS Our findings provide a deeper understanding of the mechanisms underlying the desiccation tolerance responses of two filmy ferns and the relationship between the species-specific response and the microhabitats these ferns occupy in nature.
Collapse
Affiliation(s)
- Enrique Ostria-Gallardo
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas CEAZA, La Serena, Chile.
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
| | - Giovanni Larama
- Centro de Excelencia de Modelación y Computación Científica, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - Graciela Berríos
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ana Fallard
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | | | - Ingo Ensminger
- Department of Biology, University of Toronto, Toronto, ON, Canada
| | - León A Bravo
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Cs. Agronómicas y Recursos Naturales, Facultad de Cs. Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
37
|
Genome-wide identification and characterization of late embryogenesis abundant protein-encoding gene family in wheat: Evolution and expression profiles during development and stress. Gene 2020; 736:144422. [PMID: 32007584 DOI: 10.1016/j.gene.2020.144422] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are involved in plant stress responses and osmotic regulation, and they are accumulated in the late embryonic stage. There have been no previous genome-wide analyses of the LEA gene family members in wheat and its close relatives. In this study, 281, 53, 151, 89, 99, and 99 LEA genes were identified in wheat (Triticum aestivum), Triticum urartu, Triticum dicoccoides, Aegilops tauschii, barley, and Brachypodium distachyon, respectively. The wheat LEA gene family (TaLEA genes) was divided into eight subfamilies according to the conserved domains. All TaLEA genes contain very few introns (<3) and they are unevenly distributed on the 21 chromosomes. We identified 39 pairs of tandem duplication genes and 9 pairs of segmental duplication genes in the wheat LEA gene family. This proved that the tandem duplication and segmental duplication played an important role in the expansion of the TaLEA gene family. According to published transcriptome data and qRT-PCR analysis, the TaLEA genes exhibit different tissue expression patterns and they are regulated by various abiotic stresses, especially salt and cold stress. This study provides a comprehensive understanding of the wheat LEA gene family.
Collapse
|
38
|
Nadeem F, Ahmad Z, Ul Hassan M, Wang R, Diao X, Li X. Adaptation of Foxtail Millet ( Setaria italica L.) to Abiotic Stresses: A Special Perspective of Responses to Nitrogen and Phosphate Limitations. FRONTIERS IN PLANT SCIENCE 2020; 11:187. [PMID: 32184798 PMCID: PMC7058660 DOI: 10.3389/fpls.2020.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/07/2020] [Indexed: 05/12/2023]
Abstract
Amongst various environmental constraints, abiotic stresses are increasing the risk of food insecurity worldwide by limiting crop production and disturbing the geographical distribution of food crops. Millets are known to possess unique features of resilience to adverse environments, especially infertile soil conditions, although the underlying mechanisms are yet to be determined. The small diploid genome, short stature, excellent seed production, C4 photosynthesis, and short life cycle of foxtail millet make it a very promising model crop for studying nutrient stress responses. Known to be a drought-tolerant crop, it responds to low nitrogen and low phosphate by respective reduction and enhancement of its root system. This special response is quite different from that shown by maize and some other cereals. In contrast to having a smaller root system under low nitrogen, foxtail millet enhances biomass accumulation, facilitating root thickening, presumably for nutrient translocation. The low phosphate response of foxtail millet links to the internal nitrogen status, which tends to act as a signal regulating the expression of nitrogen transporters and hence indicates its inherent connection with nitrogen nutrition. Altogether, the low nitrogen and low phosphate responses of foxtail millet can act as a basis to further determine the underlying molecular mechanisms. Here, we will highlight the abiotic stress responses of foxtail millet with a key note on its low nitrogen and low phosphate adaptive responses in comparison to other crops.
Collapse
Affiliation(s)
- Faisal Nadeem
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Zeeshan Ahmad
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Mahmood Ul Hassan
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Ruifeng Wang
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuexian Li
- MOE Key Laboratory of Plant-Soil Interactions, Department of Plant Nutrition, China Agricultural University, Beijing, China
- *Correspondence: Xuexian Li,
| |
Collapse
|
39
|
Zheng J, Su H, Lin R, Zhang H, Xia K, Jian S, Zhang M. Isolation and characterization of an atypical LEA gene (IpLEA) from Ipomoea pes-caprae conferring salt/drought and oxidative stress tolerance. Sci Rep 2019; 9:14838. [PMID: 31619699 PMCID: PMC6796003 DOI: 10.1038/s41598-019-50813-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/18/2019] [Indexed: 12/23/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins belong to a large family that exists widely in plants and is mainly involved in desiccation processes during plant development or in the response to abiotic stresses. Here, we reported on an atypical LEA gene (IpLEA) related to salt tolerance from Ipomoea pes-caprae L. (Convolvulaceae). Sequence analysis revealed that IpLEA belongs to the LEA_2 (PF03168) group. IpLEA was shown to have a cytoplasmic localization pattern. Quantitative reverse transcription PCR analysis showed that IpLEA was widely expressed in different organs of the I. pes-caprae plants, and the expression levels increased following salt, osmotic, oxidative, freezing, and abscisic acid treatments. Analysis of the 1,495 bp promoter of IpLEA identified distinct cis-acting regulatory elements involved in abiotic stress. Induction of IpLEA improved Escherichia coli growth performance compared with the control under abiotic stresses. To further assess the function of IpLEA in plants, transgenic Arabidopsis plants overexpressing IpLEA were generated. The IpLEA-overexpressing Arabidopsis seedlings and adult plants showed higher tolerance to salt and drought stress than the wild-type. The transgenic plants also showed higher oxidative stress tolerance than the wild-type Arabidopsis. Furthermore, the expression patterns of a series of stress-responsive genes were affected. The results indicate that IpLEA is involved in the plant response to salt and drought, probably by mediating water homeostasis or by acting as a reactive oxygen species scavenger, thereby influencing physiological processes under various abiotic stresses in microorganisms and plants.
Collapse
Affiliation(s)
- Jiexuan Zheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Huaxiang Su
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Ruoyi Lin
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Hui Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, 100039, P.R. China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China
| | - Shuguang Jian
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China
| | - Mei Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China. .,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, P.R. China.
| |
Collapse
|
40
|
Jin X, Cao D, Wang Z, Ma L, Tian K, Liu Y, Gong Z, Zhu X, Jiang C, Li Y. Genome-wide identification and expression analyses of the LEA protein gene family in tea plant reveal their involvement in seed development and abiotic stress responses. Sci Rep 2019; 9:14123. [PMID: 31575979 PMCID: PMC6773783 DOI: 10.1038/s41598-019-50645-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are widely known to be present in higher plants and are believed to play important functional roles in embryonic development and abiotic stress responses. However, there is a current lack of systematic analyses on the LEA protein gene family in tea plant. In this study, a total of 48 LEA genes were identified using Hidden Markov Model profiles in C. sinensis, and were classified into seven distinct groups based on their conserved domains and phylogenetic relationships. Genes in the CsLEA_2 group were found to be the most abundant. Gene expression analyses revealed that all the identified CsLEA genes were expressed in at least one tissue, and most had higher expression levels in the root or seed relative to other tested tissues. Nearly all the CsLEA genes were found to be involved in seed development, and thirty-nine might play an important role in tea seed maturation concurrent with dehydration. However, only sixteen CsLEA genes were involved in seed desiccation, and furthermore, most were suppressed. Additionally, forty-six CsLEA genes could be induced by at least one of the tested stress treatments, and they were especially sensitive to high temperature stress. Furthermore, it was found that eleven CsLEA genes were involved in tea plant in response to all tested abiotic stresses. Overall, this study provides new insights into the formation of CsLEA gene family members and improves our understanding on the potential roles of these genes in normal development processes and abiotic stress responses in tea plant, particularly during seed development and desiccation. These results are beneficial for future functional studies of CsLEA genes that will help preserve the recalcitrant tea seeds for a long time and genetically improve tea plant.
Collapse
Affiliation(s)
- Xiaofang Jin
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Dan Cao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zhongjie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Linlong Ma
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kunhong Tian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Liu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ziming Gong
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Xiangxiang Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Changjun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
41
|
Liu D, Sun J, Zhu D, Lyu G, Zhang C, Liu J, Wang H, Zhang X, Gao D. Genome-Wide Identification and Expression Profiles of Late Embryogenesis-Abundant (LEA) Genes during Grain Maturation in Wheat ( Triticum aestivum L.). Genes (Basel) 2019; 10:genes10090696. [PMID: 31510067 PMCID: PMC6770980 DOI: 10.3390/genes10090696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Late embryogenesis-abundant (LEA) genes play important roles in plant growth and development, especially the cellular dehydration tolerance during seed maturation. In order to comprehensively understand the roles of LEA family members in wheat, we carried out a series of analyses based on the latest genome sequence of the bread wheat Chinese Spring. 121 Triticum aestivum L. LEA (TaLEA) genes, classified as 8 groups, were identified and characterized. TaLEA genes are distributed in all chromosomes, most of them with a low number of introns (≤3). Expression profiles showed that most TaLEA genes expressed specifically in grains. By qRT-PCR analysis, we confirmed that 12 genes among them showed high expression levels during late stage grain maturation in two spring wheat cultivars, Yangmai16 and Yangmai15. For most genes, the peak of expression appeared earlier in Yangmai16. Statistical analysis indicated that expression level of 8 genes in Yangmai 16 were significantly higher than Yangmai 15 at 25 days after anthesis. Taken together, our results provide more knowledge for future functional analysis and potential utilization of TaLEA genes in wheat breeding.
Collapse
Affiliation(s)
- Datong Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Jing Sun
- Yangzhou University, Yangzhou 225009, China.
| | - Dongmei Zhu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Guofeng Lyu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Chunmei Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Jian Liu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Hui Wang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Xiao Zhang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| | - Derong Gao
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture/Lixiahe Agricultural Institute of Jiangsu Province, Yangzhou 225007, China.
| |
Collapse
|
42
|
Priya M, Dhanker OP, Siddique KHM, HanumanthaRao B, Nair RM, Pandey S, Singh S, Varshney RK, Prasad PVV, Nayyar H. Drought and heat stress-related proteins: an update about their functional relevance in imparting stress tolerance in agricultural crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1607-1638. [PMID: 30941464 DOI: 10.1007/s00122-019-03331-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 03/19/2019] [Indexed: 05/21/2023]
Abstract
We describe here the recent developments about the involvement of diverse stress-related proteins in sensing, signaling, and defending the cells in plants in response to drought or/and heat stress. In the current era of global climate drift, plant growth and productivity are often limited by various environmental stresses, especially drought and heat. Adaptation to abiotic stress is a multigenic process involving maintenance of homeostasis for proper survival under adverse environment. It has been widely observed that a series of proteins respond to heat and drought conditions at both transcriptional and translational levels. The proteins are involved in various signaling events, act as key transcriptional activators and saviors of plants under extreme environments. A detailed insight about the functional aspects of diverse stress-responsive proteins may assist in unraveling various stress resilience mechanisms in plants. Furthermore, by identifying the metabolic proteins associated with drought and heat tolerance, tolerant varieties can be produced through transgenic/recombinant technologies. A large number of regulatory and functional stress-associated proteins are reported to participate in response to heat and drought stresses, such as protein kinases, phosphatases, transcription factors, and late embryogenesis abundant proteins, dehydrins, osmotins, and heat shock proteins, which may be similar or unique to stress treatments. Few studies have revealed that cellular response to combined drought and heat stresses is distinctive, compared to their individual treatments. In this review, we would mainly focus on the new developments about various stress sensors and receptors, transcription factors, chaperones, and stress-associated proteins involved in drought or/and heat stresses, and their possible role in augmenting stress tolerance in crops.
Collapse
Affiliation(s)
- Manu Priya
- Department of Botany, Panjab University, Chandigarh, India
| | - Om P Dhanker
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | | | | | - Sarita Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Sadhana Singh
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Telangana, 502324, India
| | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, USA
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|
43
|
Wang Y, Stevanato P, Lv C, Li R, Geng G. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6056-6073. [PMID: 31070911 DOI: 10.1021/acs.jafc.9b00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Soil salinity is one of the major constraints affecting agricultural production and crop yield. A detailed understanding of the underlying physiological and molecular mechanisms of the different genotypic salt tolerance response in crops under salinity is therefore a prerequisite for enhancing this tolerance. In this study, we explored the changes in physiological and proteome profiles of salt-sensitive (S210) and salt-tolerant (T510) sugar beet cultivars in response to salt stress. T510 showed better growth status, higher antioxidant enzymes activities and proline level, less Na accumulation, and lower P levels after salt-stress treatments. With iTRAQ-based comparative proteomics method, 47 and 56 differentially expressed proteins were identified in the roots and leaves of S210, respectively. In T510, 56 and 50 proteins changed significantly in the roots and leaves of T510, respectively. These proteins were found to be involved in multiple aspects of functions such as photosynthesis, metabolism, stress and defense, protein synthesis, and signal transduction. Our proteome results indicated that sensitive and tolerant sugar beet cultivars respond differently to salt stress. The proteins that were mapped to the protein modification, amino acid metabolism, tricarboxylic acid cycle, cell wall synthesis, and reactive oxygen species scavenging changed differently between the sensitive and tolerant cultivars, suggesting that these pathways may promote salt tolerance in the latter. This work leads to a better understanding of the salinity mechanism in sugar beet and provides a list of potential markers for the further engineering of salt tolerance in crops.
Collapse
Affiliation(s)
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente , Università degli Studi di Padova , Viale dell'Università 16 , Legnaro, Padova 35020 , Italy
| | | | | | | |
Collapse
|
44
|
Hu T, Liu Y, Zhu S, Qin J, Li W, Zhou N. Overexpression of OsLea14-A improves the tolerance of rice and increases Hg accumulation under diverse stresses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10537-10551. [PMID: 30762181 DOI: 10.1007/s11356-019-04464-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/03/2019] [Indexed: 04/16/2023]
Abstract
The group 5 LEA (late embryogenesis abundant) proteins are an atypical LEA protein group, which is associated with resistance to multiple stresses. In this study, OsLea14-A gene was isolated from Oryza sativa L., which encodes a 5C LEA protein with 151 amino acids. The qPCR analysis showed that OsLea14-A expressed in all tissues and organs at all times. The expression of OsLea14-A in the panicles of plumping stage were dramatically increased. The heterologous expression of OsLea14-A in Escherichia coli improved its growth performance under salinity, desiccation, high temperature, and freeze-thaw stresses. The purified OsLea14-A protein can protect LDH activity from freeze-thaw-, heat-, and desiccation-induced inactivation. The overexpression of OsLea14-A in rice improved tolerance to dehydration, high salinity, CuSO4, and HgCl2, but excluding K2Cr2O7. The analysis of metal contents showed that the accumulation of OsLea14-A protein in transgenic rice could increase the accumulation of Hg, but could not increase the accumulation of Na, Cr, and Cu after HgCl2, NaCl, K2Cr2O7, and CuSO4 treatment, respectively. These results suggested that OsLea14-A conferred multiple stress tolerance and Hg accumulation, which made it a possible gene in genetic improvement for plants to acclimatize itself to multiple stresses and remediate Hg-contaminated soil.
Collapse
Affiliation(s)
- Tingzhang Hu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China.
| | - Yuanli Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Shanshan Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Juan Qin
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| | - Wenping Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, No. 174, Shazheng Street, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Nong Zhou
- College of Food and Biological Engineering, Chongqing Three Gorges University, Chongqing, 404120, China
| |
Collapse
|
45
|
Wang W, Gao T, Chen J, Yang J, Huang H, Yu Y. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:277-286. [PMID: 30593000 DOI: 10.1016/j.plaphy.2018.12.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 05/20/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are a large and highly diverse family of polypeptides that play important roles in plant growth, development and stress responses. At present, LEA gene families have been identified and systematically characterized in many plant species. However, the LEA gene family in tea plant has not been revealed, and the biological functions of the members of this family remain unknown. In this study, 33 CsLEA genes were identified from tea plant via a genome-wide study, and they were clustered into seven groups according to analyses of their phylogenetic relationships, gene structures and protein conserved motifs. In addition, expression analysis revealed that the CsLEA genes were specifically expressed in one or more tissues and significantly induced under cold and dehydration stresses, implying that CsLEA genes play important roles in tea plant growth, development and response to cold and dehydration stresses. Furthermore, a potential transcriptional regulatory network, including DREB/CBF, MYB, bZIP, bHLH, BPC and other transcription factors, is directly associated with the expression of CsLEA genes, which may be ubiquitous and important in the above mentioned processes. This study could help to increase our understanding of CsLEA proteins and their contributions to stress tolerance in tea plant.
Collapse
Affiliation(s)
- Weidong Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Tong Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiangfei Chen
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiankun Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huiyu Huang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
46
|
Nagaraju M, Kumar SA, Reddy PS, Kumar A, Rao DM, Kavi Kishor PB. Genome-scale identification, classification, and tissue specific expression analysis of late embryogenesis abundant (LEA) genes under abiotic stress conditions in Sorghum bicolor L. PLoS One 2019; 14:e0209980. [PMID: 30650107 PMCID: PMC6335061 DOI: 10.1371/journal.pone.0209980] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins, the space fillers or molecular shields, are the hydrophilic protective proteins which play an important role during plant development and abiotic stress. The systematic survey and characterization revealed a total of 68 LEA genes, belonging to 8 families in Sorghum bicolor. The LEA-2, a typical hydrophobic family is the most abundant family. All of them are evenly distributed on all 10 chromosomes and chromosomes 1, 2, and 3 appear to be the hot spots. Majority of the S. bicolor LEA (SbLEA) genes are intron less or have fewer introns. A total of 22 paralogous events were observed and majority of them appear to be segmental duplications. Segmental duplication played an important role in SbLEA-2 family expansion. A total of 12 orthologs were observed with Arabidopsis and 13 with Oryza sativa. Majority of them are basic in nature, and targeted by chloroplast subcellular localization. Fifteen miRNAs targeted to 25 SbLEAs appear to participate in development, as well as in abiotic stress tolerance. Promoter analysis revealed the presence of abiotic stress-responsive DRE, MYB, MYC, and GT1, biotic stress-responsive W-Box, hormone-responsive ABA, ERE, and TGA, and development-responsive SKn cis-elements. This reveals that LEA proteins play a vital role during stress tolerance and developmental processes. Using microarray data, 65 SbLEA genes were analyzed in different tissues (roots, pith, rind, internode, shoot, and leaf) which show clear tissue specific expression. qRT-PCR analysis of 23 SbLEA genes revealed their abundant expression in various tissues like roots, stems and leaves. Higher expression was noticed in stems compared to roots and leaves. Majority of the SbLEA family members were up-regulated at least in one tissue under different stress conditions. The SbLEA3-2 is the regulator, which showed abundant expression under diverse stress conditions. Present study provides new insights into the formation of LEAs in S. bicolor and to understand their role in developmental processes under stress conditions, which may be a valuable source for future research.
Collapse
Affiliation(s)
- M Nagaraju
- Department of Genetics, Osmania University, Hyderabad, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Silk Park, Prem Nagar, Dehradun, India
| | - D Manohar Rao
- Department of Genetics, Osmania University, Hyderabad, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad, India
| |
Collapse
|
47
|
Mining Late Embryogenesis Abundant (LEA) Family Genes in Cleistogenes songorica, a Xerophyte Perennial Desert Plant. Int J Mol Sci 2018; 19:ijms19113430. [PMID: 30388835 PMCID: PMC6274777 DOI: 10.3390/ijms19113430] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 11/17/2022] Open
Abstract
Plant growth and development depends on its ability to maintain optimal cellular homeostasis during abiotic and biotic stresses. Cleistogenes songorica, a xerophyte desert plant, is known to have novel drought stress adaptation strategies and contains rich pools of stress tolerance genes. Proteins encoded by Late Embryogenesis Abundant (LEA) family genes promote cellular activities by functioning as disordered molecules, or by limiting collisions between enzymes during stresses. To date, functions of the LEA family genes have been heavily investigated in many plant species except perennial monocotyledonous species. In this study, 44 putative LEA genes were identified in the C. songorica genome and were grouped into eight subfamilies, based on their conserved protein domains and domain organizations. Phylogenetic analyses indicated that C. songorica Dehydrin and LEA_2 subfamily proteins shared high sequence homology with stress responsive Dehydrin proteins from Arabidopsis. Additionally, promoter regions of CsLEA_2 or CsDehydrin subfamily genes were rich in G-box, drought responsive (MBS), and/or Abscisic acid responsive (ABRE) cis-regulatory elements. In addition, gene expression analyses indicated that genes from these two subfamilies were highly responsive to heat stress and ABA treatment, in both leaves and roots. In summary, the results from this study provided a comprehensive view of C. songoricaLEA genes and the potential applications of these genes for the improvement of crop tolerance to abiotic stresses.
Collapse
|
48
|
Wang Y, Shi C, Yang T, Zhao L, Chen J, Zhang N, Ren Y, Tang G, Cui D, Chen F. High-throughput sequencing revealed that microRNAs were involved in the development of superior and inferior grains in bread wheat. Sci Rep 2018; 8:13854. [PMID: 30218081 PMCID: PMC6138641 DOI: 10.1038/s41598-018-31870-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
High-throughput sequencing was employed to investigate the expression of miRNAs and their target genes in superior and inferior seeds of Aikang 58. Small RNA sequencing revealed 620 conserved and 64 novel miRNAs in superior grains, and 623 conserved and 66 novel miRNAs in inferior grains. Among these, 97 known miRNAs, and eight novel miRNAs showed differential expression between the superior and inferior seeds. Degradome sequencing revealed at least 140 candidate target genes associated with 35 miRNA families during the development of superior and inferior seeds. GO and KEGG pathway analysis showed that the differentially expressed miRNAs, both conserved and novel, were likely involved in hormone production, carbohydrate metabolic pathways, and cell division. We validated eight known and four novel grain development-related miRNAs and their target genes by quantitative real-time polymerase chain reaction to ensure the reliability of small RNA and degradome-seq results. Of these, miR160 and miR165/166 were knocked down in Arabidopsis using short-tandem target mimic (STTM160 and STTM165/166) technology, which confirmed their roles in seed development. Specifically, STTM160 showed significantly smaller grain size, lower grain weight, shorter siliques length, shorter plant height, and more serrated leaves, whereas STTM165/166 showed decreased seed number, disabled siliques, and curled upward leaves.
Collapse
Affiliation(s)
- Yongyan Wang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- Department of Biological Sciences, Life Science and Technology Instituted, Michigan Technological University, Houghton, MI, 49931, USA
| | - Chaonan Shi
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Tianxiao Yang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Lei Zhao
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Jianhui Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Ning Zhang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Yan Ren
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Guiliang Tang
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
- Department of Biological Sciences, Life Science and Technology Instituted, Michigan Technological University, Houghton, MI, 49931, USA
| | - Dangqun Cui
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Feng Chen
- Agronomy College/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China.
| |
Collapse
|
49
|
Wang Z, Yang Q, Shao Y, Zhang B, Feng A, Meng F, Li W. GmLEA2-1, a late embryogenesis abundant protein gene isolated from soybean (Glycine max (L.) Merr.), confers tolerance to abiotic stress. ACTA BIOLOGICA HUNGARICA 2018; 69:270-282. [PMID: 30257578 DOI: 10.1556/018.68.2018.3.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Late embryonic proteins (LEA) gene family was abundant mainly in higher plant embryos, which could protect the embryos from the damage caused by abiotic stress, especially drought and salt stresses. In the present study, GmLEA2-1 was cloned from soybean leaf tissue treated by 10% polyethylene glycol 6000 (PEG6000). The results of quantitative real-time PCR (qRT-PCR) revealed a variety of expression patterns of GmLEA2-1 in various tissues of soybean (root, stem, leaf, flower, pod, early embryo and late embryo). GmLEA2-1 gene shared a lower sequence similarity with other typical LEA genes of same group from different species, but similar functions. Overexpression of GmLEA2-1 in transgenic Arabidopsis thaliana conferred tolerance to drought and salt stresses. The fresh weight and dry weight of seedling, the primary root length and the lateral root density of transgenic Arabidopsis plants were higher than those of wild type Arabidopsis (WT) under drought and salt stresses. Cis-acting regulatory elements in the GmLEA2-1 promoter were also predicted. These data demonstrate that GmLEA2-1 protein play an important role in improving drought and salt tolerance in plants.
Collapse
Affiliation(s)
- Zhikun Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Qiang Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Yupeng Shao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Binbin Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Aiyun Feng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education/Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture ( Northeast Agricultural University ), Harbin , China
| |
Collapse
|
50
|
Chowrasia S, Panda AK, Rawal HC, Kaur H, Mondal TK. Identification of jumonjiC domain containing gene family among the Oryza species and their expression analysis in FL478, a salt tolerant rice genotype. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:43-53. [PMID: 29960182 DOI: 10.1016/j.plaphy.2018.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 05/26/2023]
Abstract
The jumonji (JMJ)-C domain containing proteins belong to histone demethylases family with the ability to demethylate the tri-methylated histone residues. They act as chromatin regulators to regulate many physiological functions in plants. The present study deals with the characterization of JMJ-C gene family members in wild as well as cultivated rice species and their expression analysis in salt tolerant rice genotype, FL478. The genome wide study identified 151 members belonging to JMJ-C gene family in 11 different Oryza species. We also studied their structure, genomic location, gene duplication events, phylogenetic relationship, in silico expression analysis and identified cis elements in their promoters. We also found a few JMJ-C gene family members in rice which underwent duplication before the whole genome duplication event of the rice. The qRT-PCR based expression profiling revealed that out of the total 15 rice JMJ-C members, two were highly expressed in the flag leaf stage of FL478 under salt treatment. These two candidate JMJ-C members were also found to render salinity tolerance when over-expressed in yeast cells. Thus, the present study helps in further structural as well as functional characterization of JMJ-C genes under salinity stress in Oryza species.
Collapse
Affiliation(s)
- Soni Chowrasia
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Alok Kumar Panda
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Hukam C Rawal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Harmeet Kaur
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Lal-Bahadur Shastri Centre, IARI, Pusa, New Delhi, 110012, India.
| |
Collapse
|