1
|
Jia X, Jiu X, Liu Y, Guo C, Liu D, Zhao X, Chen H, Du T. Transcriptomic and biochemical insights into key gene networks driving bulbil development of Pinellia ternata (Thunb.) Breit. PLoS One 2025; 20:e0314396. [PMID: 39932947 PMCID: PMC11813136 DOI: 10.1371/journal.pone.0314396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/08/2024] [Indexed: 02/13/2025] Open
Abstract
In this study, we explored the developmental characteristics of Pinellia ternate bulbils as well as the key gene networks driving the development of bulbils. Based on physiological and biochemical reactions as well as transcriptome technology, this study determined the content of endogenous metabolites and related enzyme activities during the five growth stages of the bulbils, obtained the transcriptome information of all samples. The results showed that the contents of sucrose and starch increased significantly in the ZY_2 and ZY_4 stages, and the changes in the activities of SPS, SuSy, and SS were basically consistent with the changing characteristics of sucrose and starch content. The contents of ABA and JA generally showed an increasing trend from ZY_1 to ZY_4, while the content of IAA was significantly higher only in ZY_1 and ZY_4 stages compared to other stages. In order to get more bioinformatic support for these results, RNA-Seq analysis was performed. There were 12 key enzyme genes differentially expressed in the sucrose-starch metabolic pathway, and 14 enzyme genes differentially expressed in the above-mentioned endogenous hormone metabolic pathway. Their expression characteristics well supported the measurement results of physiological and biochemical substances. Our results showed that ZY_2 and ZY_4 stages are the critical periods for the accumulation of sucrose and starch in the bulbils. JA has an important role in the whole development process of bulbils, which may enhance the adaptability of the bulbils to the environment in the transition process from the tender to the mature tissues. The low concentration of GA was beneficial to the normal development of the bulbils. IAA may have a strong regulatory role in the initial formation stage of the bulbils, which is beneficial to their tissue differentiation. In addition, four core transcripts involved in the bulbils development process were screened using WGCNA. This study provides an information source for analyzing the molecular mechanism of bulbils growth and development, and also helps to address the lack of genetic information in non-model plant species.
Collapse
Affiliation(s)
- Xiwei Jia
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- College of Life Sciences and Technology, Ningxia Polytechnic, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Xijia Jiu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
| | - Yuan Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
| | - Chao Guo
- College of Life Sciences and Technology, Ningxia Polytechnic, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Dong Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
| | - Xin Zhao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
| | - Honggang Chen
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Northwest Chinese and Tibetan Medicine Collaborative Innovation Center, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
| | - Tao Du
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Northwest Chinese and Tibetan Medicine Collaborative Innovation Center, Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
| |
Collapse
|
2
|
Liang Y, Gao Q, Li F, Du Y, Wu J, Pan W, Wang S, Zhang X, Zhang M, Song X, Zhong L, Zhang F, Li Y, Wang Z, Li D, Duan Q, Li S, Jin C, Zhang P, Gu Y, Chen ZH, Mayer KFX, Zhou X, Wang J, Zhang L. The giant genome of lily provides insights into the hybridization of cultivated lilies. Nat Commun 2025; 16:45. [PMID: 39747119 PMCID: PMC11696169 DOI: 10.1038/s41467-024-55545-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Lilies are economically important monocots known for their ornamental flowers, bulbs, and large genomes. The absence of their genomic information has impeded evolutionary studies and genome-based breeding efforts. Here, we present reference genomes for Lilium sargentiae (lily, 35.66 Gb) and Gloriosa superba (flame lily, 5.09 Gb). The giant lily genome is shaped by recent long terminal repeat retroelements. Phylogenetic analysis reveals diverse, independent origins of lily cultivars. Gene families involved in sucrose and starch metabolism are significantly expanded in the lily genome. Key homologs of XTH22, SOC1, and AP1/FUL-like genes regulate the development, bud growth transition, and floral bud growth transition of lily bulbs. Colchicine biosynthetic gene clusters are identified in G. superba but are absent in L. sargentiae, highlighting independent colchicine evolution in Colchicaceae. These genomic insights enhance understanding of Liliales evolution, providing a foundation for future breeding and molecular research.
Collapse
Affiliation(s)
- Yuwei Liang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China
| | - Qiang Gao
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China
| | - Fan Li
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Yunpeng Du
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, Agricultural University, Beijing, China
| | - Wenqiang Pan
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, Agricultural University, Beijing, China
| | - Shaokun Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, Agricultural University, Beijing, China
| | - Xiuhai Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Institute of Grassland, Flowers, and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoming Song
- Center for Genomics and Bio-computing, College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Linlin Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
| | - Yan Li
- Qi Biodesign, Beijing, China
| | | | - Danqing Li
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Duan
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Chunlian Jin
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Peihua Zhang
- Yunnan Seed Laboratory, Kunming, China
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Yang Gu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Center Munich, Neuherberg, Germany.
- School of Life Sciences, Technical University Munich, Munich, Germany.
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China.
| | - Jihua Wang
- Yunnan Seed Laboratory, Kunming, China.
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China.
| | - Liangsheng Zhang
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, China.
- Yazhouwan National Laboratory, Sanya, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
3
|
Du S, Wang M, Liang J, Pan W, Sang Q, Ma Y, Jin M, Zhang M, Zhang X, Du Y. Histological, Transcriptomic, and Functional Analyses Reveal the Role of Gibberellin in Bulbil Development in Lilium lancifolium. PLANTS (BASEL, SWITZERLAND) 2024; 13:2965. [PMID: 39519884 PMCID: PMC11547782 DOI: 10.3390/plants13212965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Lily bulbils, advantageous axillary organs used for asexual reproduction, have an underexplored developmental mechanism. Gibberellins are known to participate in bulbil development, but the regulatory mechanisms remain unclear. In this study, exogenous gibberellin (GA3) significantly increased the bulbil length, width, and weight by raising the endogenous gibberellin levels and elongating the scale cells. Transcriptomic analysis identified LlGA20ox2, a key gibberellin biosynthesis gene, which was upregulated during bulbil development and significantly responsive to GA3 treatment. Given the similarities in bulbil and bulblet development, we determined the roles of LlGA20ox2 using a bulblet system. Silencing LlGA20ox2 in bulblets inhibited development by reducing the cell length, while overexpression increased the bulblet length and width. In the gibberellin signaling pathway, we identified two key genes, LlGID1C and LlCIGR2. Silencing these genes resulted in phenotypes similar to LlGA20ox2, inhibiting bulblet development. Further transcriptomic analysis revealed that gibberellin-responsive genes were enriched in the glucuronate pathway, pentose phosphate pathway and galactose metabolism pathways. Most of these differentially expressed genes responded to gibberellin and were highly expressed in later stages of bulbil development, suggesting their involvement in gibberellin-regulated bulbil growth. In conclusion, we preliminarily explored the mechanisms of gibberellin regulation in bulbil development, offering significant commercial potential for new lily reproductive organs.
Collapse
Affiliation(s)
- Shanshan Du
- School of Life Sciences, Jilin University, Changchun 130118, China;
| | - Mengdi Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Jiahui Liang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Wenqiang Pan
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Qianzi Sang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
- Agriculture College, Yanbian University, Yanji 133002, China
| | - Yanfang Ma
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Mengzhu Jin
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Mingfang Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Xiuhai Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| | - Yunpeng Du
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (M.W.); (J.L.); (W.P.); (Q.S.); (Y.M.); (M.J.); (M.Z.); (X.Z.)
- Ornamental & Edible Lily Engineering Research Center of National Forestry and Grassland, Beijing 100097, China
| |
Collapse
|
4
|
Fan X, Chen Y, Li M, Yuan H, Pan T, Sun H. Functional analysis of LdPMAT1, a positive regulator that promotes drought tolerance in Lilium distic hum nakai. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109162. [PMID: 39489095 DOI: 10.1016/j.plaphy.2024.109162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/24/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024]
Abstract
Abiotic stress has become a major challenge for lily crop growth, development, yield and quality under irregular climate and precipitation trends. Molecular breeding is one of the most effective methods for developing highly stress-resistant cultivars. Previous studies revealed that miR396b and its target gene LdPMAT1 are involved in drought resistance, and in lily silencing miR396b significantly enhances drought resistance and LdPMAT1 expression. However, the function of LdPMAT1 in the lily response to abiotic stress is unclear. In this study, GUS activity tests and dual luciferase reporter gene assays (LUC) confirmed that LdPMAT1 is a novel miR396b target. The LdPMAT1 transcription level was greater in the roots and leaves and increased significantly within 7 days of drought stress. Stable LdPMAT1 overexpression significantly reduced leaf wilting and enhanced cell membrane stability by affecting osmoregulatory substance accumulation, improving plant drought resistance. Additionally, LdPMAT1 overexpression significantly increased the expression levels of LdCAT3 and SOD2, which encode superoxide dismutase (SOD) and catalase (CAT), respectively, as well as SOD and CAT enzyme activities. In contrast, reactive oxygen species (ROS) accumulated at high levels in the leaves and roots of the silenced plants, and the degree of damage was significantly greater than that in the wild type plants. Under conditions of 1% NaCl and 42 °C, plants overexpressing LdPMAT1 exhibited similar characteristic s of high stress resistance, with less wilting and lower ROS accumulation. This study provides a theoretical basis for cultivating new highly resistant lily cultivars and accelerating germplasm innovation to produce high-quality lilies worldwide.
Collapse
Affiliation(s)
- Xinyue Fan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yang Chen
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Min Li
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hong Yuan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Tianqi Pan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, 110866, China.
| |
Collapse
|
5
|
Hou X, Zhang K, Lyu Y. Functional Study on the Key Gene LaLBD37 Related to the Lily Bulblets Formation. Int J Mol Sci 2024; 25:9456. [PMID: 39273407 PMCID: PMC11395201 DOI: 10.3390/ijms25179456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Oriental hybrid lilies, known for their vibrant colors, diverse flower shapes, and long blooming seasons, require annual bulb propagation in horticultural production. This necessity can lead to higher production costs and limit their use in landscaping. The LA hybrid lily 'Aladdin' has shown strong self-reproduction capabilities in optimal cultivation environments, producing numerous high-quality underground stem bulblets. This makes it a valuable model for studying bulblet formation in lilies under natural conditions. Through transcriptome data analysis of different developmental stages of 'Aladdin' bulblets, the LaLBD37 gene, linked to bulblet formation, was identified. Bioinformatics analysis, subcellular localization studies, and transcriptional activation activity tests were conducted to understand the characteristics of LaLBD37. By introducing the LaLBD37 gene into 'Sorbonne' aseptic seedlings via Agrobacterium-mediated transformation, resistant plants were obtained. Positive plants were identified through various methods such as GUS activity detection, PCR, and fluorescence quantitative PCR. Phenotypic changes in positive plants were observed, and various physiological indicators were measured to confirm the role of LaLBD37 in bulblet formation, including soluble sugar content, starch content, sucrose synthase activity, and endogenous hormone levels. The findings suggest that the LaLBD37 gene plays a significant role in promoting the development of lily bulblets, offering insights for enhancing the reproductive capacity of Oriental hybrid lilies and exploring the molecular mechanisms involved in lily bulb regeneration.
Collapse
Affiliation(s)
- Xinru Hou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Kewen Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Wang J, Yan D, Liu R, Wang T, Lian Y, Lu Z, Hong Y, Wang Y, Li R. The Physiological and Molecular Mechanisms of Exogenous Melatonin Promote the Seed Germination of Maize ( Zea mays L.) under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2142. [PMID: 39124260 PMCID: PMC11313997 DOI: 10.3390/plants13152142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Salt stress caused by high concentrations of Na+ and Cl- in soil is one of the most important abiotic stresses in agricultural production, which seriously affects grain yield. The alleviation of salt stress through the application of exogenous substances is important for grain production. Melatonin (MT, N-acetyl-5-methoxytryptamine) is an indole-like small molecule that can effectively alleviate the damage caused by adversity stress on crops. Current studies have mainly focused on the effects of MT on the physiology and biochemistry of crops at the seedling stage, with fewer studies on the gene regulatory mechanisms of crops at the germination stage. The aim of this study was to explain the mechanism of MT-induced salt tolerance at physiological, biochemical, and molecular levels and to provide a theoretical basis for the resolution of MT-mediated regulatory mechanisms of plant adaptation to salt stress. In this study, we investigated the germination, physiology, and transcript levels of maize seeds, analyzed the relevant differentially expressed genes (DEGs), and examined salt tolerance-related pathways. The results showed that MT could increase the seed germination rate by 14.28-19.04%, improve seed antioxidant enzyme activities (average increase of 11.61%), and reduce reactive oxygen species accumulation and membrane oxidative damage. In addition, MT was involved in regulating the changes of endogenous hormones during the germination of maize seeds under salt stress. Transcriptome results showed that MT affected the activity of antioxidant enzymes, response to stress, and seed germination-related genes in maize seeds under salt stress and regulated the expression of genes related to starch and sucrose metabolism and phytohormone signal transduction pathways. Taken together, the results indicate that exogenous MT can affect the expression of stress response-related genes in salt-stressed maize seeds, enhance the antioxidant capacity of the seeds, reduce the damage induced by salt stress, and thus promote the germination of maize seeds under salt stress. The results provide a theoretical basis for the MT-mediated regulatory mechanism of plant adaptation to salt stress and screen potential candidate genes for molecular breeding of salt-tolerant maize.
Collapse
Affiliation(s)
- Jiajie Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Di Yan
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Rui Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ting Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yijia Lian
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Zhenzong Lu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Yue Hong
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
| | - Ye Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Runzhi Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.W.); (D.Y.); (R.L.); (T.W.); (Y.L.); (Z.L.); (Y.H.); (Y.W.)
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| |
Collapse
|
7
|
Shu F, Wang D, Sarsaiya S, Jin L, Liu K, Zhao M, Wang X, Yao Z, Chen G, Chen J. Bulbil initiation: a comprehensive review on resources, development, and utilisation, with emphasis on molecular mechanisms, advanced technologies, and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1343222. [PMID: 38650701 PMCID: PMC11033377 DOI: 10.3389/fpls.2024.1343222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/14/2024] [Indexed: 04/25/2024]
Abstract
Bulbil is an important asexual reproductive structure of bulbil plants. It mainly grows in leaf axils, leaf forks, tubers and the upper and near ground ends of flower stems of plants. They play a significant role in the reproduction of numerous herbaceous plant species by serving as agents of plant propagation, energy reserves, and survival mechanisms in adverse environmental conditions. Despite extensive research on bulbil-plants regarding their resources, development mechanisms, and utilisation, a comprehensive review of bulbil is lacking, hindering progress in exploiting bulbil resources. This paper provides a systematic overview of bulbil research, including bulbil-plant resources, identification of development stages and maturity of bulbils, cellular and molecular mechanisms of bulbil development, factors influencing bulbil development, gene research related to bulbil development, multi-bulbil phenomenon and its significance, medicinal value of bulbils, breeding value of bulbils, and the application of plant tissue culture technology in bulbil production. The application value of the Temporary Immersion Bioreactor System (TIBS) and Terahertz (THz) in bulbil breeding is also discussed, offering a comprehensive blueprint for further bulbil resource development. Additionally, additive, seven areas that require attention are proposed: (1) Utilization of modern network technologies, such as plant recognition apps or websites, to collect and identify bulbous plant resources efficiently and extensively; (2) Further research on cell and tissue structures that influence bulb cell development; (3) Investigation of the network regulatory relationship between genes, proteins, metabolites, and epigenetics in bulbil development; (4) Exploration of the potential utilization value of multiple sprouts, including medicinal, ecological, and horticultural applications; (5) Innovation and optimization of the plant tissue culture system for bulbils; (6) Comprehensive application research of TIBS for large-scale expansion of bulbil production; (7) To find out the common share genetics between bulbils and flowers.
Collapse
Affiliation(s)
- Fuxing Shu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Dongdong Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Surendra Sarsaiya
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Leilei Jin
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Kai Liu
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou, Anhui, China
- Joint Research Center for Chinese Herbal Medicine of Anhui of Institution of Health and Medicine, Bozhou, Anhui Provence, China
| | - Mengru Zhao
- Bozhou Xinghe Agricultural Development Co., Ltd., Bozhou, Anhui, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Zhaoxu Yao
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoguang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Jishuang Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, China
- Bioresource Institute for Healthy Utilization, Zunyi Medical University, Zunyi, Guizhou, China
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Li W, Zhao J, Zhang Z, Ren Z, Li X, Zhang R, Ma X. Uptake and effect of carboxyl-modified polystyrene microplastics on cotton plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133581. [PMID: 38271872 DOI: 10.1016/j.jhazmat.2024.133581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Microplastics (MPs) have emerged as a significant global environmental concern, particularly within agricultural soil systems. The extensive use of plastic film mulching in cotton cultivation has led to the alarming presence of MP pollution in cotton fields. However, the uptake and effects of MPs on the growth of cotton plants are poorly understood. In this study, we conducted a comprehensive analysis of hydroponically cultured cotton seedlings at the phenotypic, transcriptional, and metabolic levels after exposure to carboxyl-modified polystyrene microplastics (PS-COOH). Treatment with three concentrations of PS-COOH (100, 300, and 500 mg/L) resulted in notable growth inhibition of treated plants and exhibited a dose-dependent effect. And, PS-COOH can invade cotton roots and be absorbed through the intercellular spaces via apoplastic uptake, with accumulation commensurate with treatment duration. Transcriptomic analysis showed significant up-regulation of genes associated with antioxidant activity in response to 300 mg/L PS-COOH treatment, suggesting the induction of oxidative stress. In addition, the PS-COOH treatment activated the phenylpropanoid biosynthesis pathway, leading to lignin and flavonoid accumulation, and altered sucrose catabolism. These findings illustrate the absorption and effects of MPs on cotton seedlings and offer valuable insights into the potential toxicity of MPs to plants in soil mulched with plastic film.
Collapse
Affiliation(s)
- Wei Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Junjie Zhao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Zhiqiang Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhongying Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Ruoyu Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China
| | - Xiongfeng Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
9
|
Zhang H, Xi J, Liu Z, Chen M, Lu Z, Xue H, Bi Y. Isolation and Identification of Pathogens Causing Blue Mold of Lanzhou Lily during Postharvest Storage and Control of Disease and Mycotoxin Accumulation by Ozone Treatment. J Fungi (Basel) 2023; 9:1091. [PMID: 37998896 PMCID: PMC10672371 DOI: 10.3390/jof9111091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Blue mold (penicilliosis) is a common disease of Lanzhou lily (Lilium davidii var. willmottiae) during postharvest storage, which not only seriously affects the appearance and reduces the quality of lily bulbs, but also leads to the accumulation of mycotoxins in rotten lily tissues, seriously endangering human health. Therefore, it is of great significance to clarify the main isolates causing postharvest blue mold of fresh Lanzhou lily and put forward effective measures to control the disease caused by these pathogens. In this study, pathogens were isolated and purified from the naturally diseased blue-mold tissue of Lanzhou lily, and then morphological and molecular biology techniques were applied to identify the isolates, verify the pathogenicity, determine the disease index and disease incidence, and finally, to analyze the control effect of ozone treatment on the blue mold of lily scale and mycotoxin accumulation. The results indicated that the main isolates causing postharvest blue mold of lily were Talaromyces adpressus, Penicillium gladioli, T. calidominioluteus, and P. polonicum. The pathogenicity test showed that P. gladioli and P. polonicum had a higher disease index than T. calidominioluteus and T. adpressus. Ozone treatment significantly reduced the incidence of disease caused by P. gladioli and P. polonicum, and effectively controlled the accumulation of patulin. This study characterized the main pathogens causing blue mold of postharvest Lanzhou lily during storage, and confirmed ozone application has a significant inhibitory effect on blue mold development and patulin accumulation in Lanzhou lily, which could be helpful in commercially controlling blue mold of postharvest Lanzhou lily during storage.
Collapse
Affiliation(s)
- Hui Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Jihui Xi
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Zhiguang Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Minxuan Chen
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Zhenhang Lu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China; (H.Z.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
10
|
Zhang X, Xu S, Pan X, Wu Z, Ding L, Teng N. Low LdMYB12 expression contributes to petal spot deficiency in Lilium davidii var. unicolor. Mol Genet Genomics 2023; 298:1545-1557. [PMID: 37910265 DOI: 10.1007/s00438-023-02080-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Petal spots are widespread in plants, they are important for attracting pollinators and as economic traits in crop breeding. However, the genetic and developmental control of petal spots has seldom been investigated. To further clarify the development of petal spots formation, we performed comparative transcriptome analysis of Lilium davidii var. unicolor and Lilium davidii petals at the full-bloom stage. In comparison with the parental species L. davidii, petals of the lily variety L. davidii var. unicolor do not have the distinct anthocyanin spots. We show that among 7846 differentially expressed genes detected, LdMYB12 was identified as a candidate gene contributing to spot formation in lily petals. The expression level of LdMYB12 in the petals of L. davidii was higher than that in L. davidii var. unicolor petals. Moreover, overexpression of LdMYB12 led to the appearance of spots on the petals of L. davidii var. unicolor, accompanied by increased expression of anthocyanin synthesis-related genes. Taken together, these results indicate that abnormal expression of LdMYB12 contributes to petal spot deficiency in L. davidii var. unicolor.
Collapse
Affiliation(s)
- Xinqi Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Xue Pan
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Liping Ding
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd. Jiangsu Graduate Workstation/Nanjing Agricultural University Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing, 210043, China.
| |
Collapse
|
11
|
Gao C, Zhang L, Xu Y, Liu Y, Xiao X, Cui L, Xia Y, Wu Y, Ren Z. Full-length transcriptome analysis revealed that 2,4-dichlorophenoxyacetic acid promoted in vitro bulblet initiation in lily by affecting carbohydrate metabolism and auxin signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1236315. [PMID: 37799550 PMCID: PMC10548195 DOI: 10.3389/fpls.2023.1236315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
Bulblet initiation, including adventitious bud initiation and bulblet formation, is a crucial process for lily and other bulbous flowers that are commercially propagated by vegetative means. Here, by a hybrid strategy combining Pacific Biosciences (PacBio) full-length sequencing and Illumina RNA sequencing (RNA-seq), high-quality transcripts of L. brownii (Lb) and its variety, L. brownii var. giganteum (Lbg), during in vitro bulblet initiation were obtained. A total of 53,576 and 65,050 high-quality non-redundant full-length transcripts of Lbg and Lb were generated, respectively. Morphological observation showed that Lbg possessed a stronger capacity to generate bulblets in vitro than Lb, and 1 mg L-1 2,4-dichlorophenoxyacetic acid (2,4-D) significantly increased bulblet regeneration rate in two lilies. Screening of differentially expressed transcripts (DETs) between different stages and Mfuzz analysis showed 0 DAT to 1 DAT was the crucial stage with the most complex transcriptional change, with carbohydrate metabolism pathway was significantly enriched. In addition, 6,218 and 8,965 DETs were screened between the 2,4-D-treated group and the control group in Lbg and Lb, respectively. 2,4-D application had evident effects on the expression of genes involved in auxin signaling pathway, such as TIRs, ARFs, Aux/IAAs, GH3s and SAURs. Then, we compared the expression profiles of crucial genes of carbohydrate metabolism between different stages and different treatments. SUSs, SUTs, TPSs, AGPLs, GBSSs and SSs showed significant responses during bulblet initiation. The expression of CWINs, SUTs and SWEETs were significantly upregulated by 2,4-D in two lilies. In addition, 2,4-D increased the expression of starch degradation genes (AMYs and BAMs) and inhibited starch synthesis genes (AGPLs, GBSSs and SSs). SBEs were significantly upregulated in Lbg but not in Lb. Significant co-expression was showed between genes involved in carbohydrate metabolism and auxin signaling, together with transcription factors such as bHLHs, MYBs, ERFs and C3Hs. This study indicates the coordinate regulation of bulblet initiation by carbohydrate metabolism and auxin signaling, serving as a basis for further studies on the molecular mechanism of bulblet initiation in lily and other bulbous flowers.
Collapse
Affiliation(s)
- Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunchen Xu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiao Xiao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liu Cui
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun Wu
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Ziming Ren
- Laboratory of Flower Bulbs, Department of Landscape Architecture, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Zhao Q, Shen W, Gu Y, Hu J, Ma Y, Zhang X, Du Y, Zhang Y, Du J. Exogenous melatonin mitigates saline-alkali stress by decreasing DNA oxidative damage and enhancing photosynthetic carbon metabolism in soybean (Glycine max [L.] Merr.) leaves. PHYSIOLOGIA PLANTARUM 2023; 175:e13983. [PMID: 37616002 DOI: 10.1111/ppl.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
Saline-alkali stress (SS) is a common abiotic stress affecting crop cultivation worldwide, seriously inhibiting plant growth and biomass accumulation. Melatonin has been proven to relieve the inhibition of multiple abiotic stresses on plant growth. Therefore, soybean cultivars Heihe 49 (HH49, SS-tolerant) and Henong 95 (HN95, SS-sensitive) were pot-cultured in SS soil and then treated with 300 μM melatonin at the V1 stage, when the first trifoliate leaves were fully unfolded, to investigate if melatonin has an effect on SS. SS increased reactive oxygen species (ROS) accumulation in soybean leaves and thereby induced DNA oxidative damage. In addition, SS retarded cell growth and decreased the mesophyll cell size, chloroplast number, photosynthetic pigment content, which further reduced the light energy capture and electron transport rate in soybean leaves, and affected carbohydrate accumulation and metabolism. However, melatonin treatment reduced SS-induced ROS accumulation in the soybean leaves by increasing antioxidant content and oxidase activity. Effective removal of ROS reduced SS-induced DNA oxidative damage in the soybean leaf genome, which was represented by decreased random-amplified polymorphic DNA polymorphism, 8-hydroxy-20-deoxyguanine content, and relative density of apurinic/apyrimidinic-sites. Melatonin treatment also increased the volume of mesophyll cells, the numbers of chloroplast and starch grains, the contents of chlorophyll a and b and carotenoids in soybean seedling leaves treated with SS, thereby increasing the efficiency of effective light capture and electron transfer and improving photosynthesis. Subsequently, carbohydrate accumulation and metabolism in soybean leaves under SS were improved by melatonin treatment, which contributes to providing basic substances and energy for cell growth and metabolism, ultimately improving soybean SS tolerance.
Collapse
Affiliation(s)
- Qiang Zhao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, PR China
| | - Wanzheng Shen
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Yanhua Gu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Jiachen Hu
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Yue Ma
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Xinlin Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Yanli Du
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
- National Coarse Cereals Engineering Research Center, Daqing, PR China
| | - Jidao Du
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, PR China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, PR China
- National Coarse Cereals Engineering Research Center, Daqing, PR China
| |
Collapse
|
13
|
Jo H, Lim K, Ibal JC, Kim MC, Kim HB, Baek C, Heo YM, Lee H, Kang S, Lee DG, Shin JH. Growth Increase in the Herbaceous Plant Centella asiatica by the Plant Growth-Promoting Rhizobacteria Priestia megaterium HyangYak-01. PLANTS (BASEL, SWITZERLAND) 2023; 12:2398. [PMID: 37446960 DOI: 10.3390/plants12132398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Centella asiatica is a traditional herbaceous plant with numerous beneficial effects, widely known for its medicinal and cosmetic applications. Maximizing its growth can lead to beneficial effects, by focusing on the use of its active compounds. The use of plant growth-promoting rhizobacteria (PGPR) is known to be an alternative to chemical fertilizers. In this study, we used the PGPR Priestia megaterium HY-01 to increase the yield of C. asiatica. In vitro assays showed that HY-01 exhibited plant growth-promoting activities (IAA production, denitrification, phosphate solubilization, and urease activity). Genomic analyses also showed that the strain has plant growth-promoting-related genes that corroborate with the different PGP activities found in the assays. This strain was subsequently used in field experiments to test its effectiveness on the growth of C. asiatica. After four months of application, leaf and root samples were collected to measure the plant growth rate. Moreover, we checked the rhizosphere microbiome between the treated and non-treated plots. Our results suggest that treatment with Hyang-yak-01 not only improved the growth of C. asiatica (leaf length, leaf weight, leaf width, root length, root width, and chlorophyll content) but also influenced the rhizosphere microbiome. Biodiversity was higher in the treated group, and the bacterial composition was also different from the control group.
Collapse
Affiliation(s)
- HyungWoo Jo
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyeongmo Lim
- Department of Applied Biosciences, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
| | - Jerald Conrad Ibal
- NGS Core Facility, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
| | - Min-Chul Kim
- NGS Core Facility, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
| | - Hye-Been Kim
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Chaeyun Baek
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Young Mok Heo
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Haeun Lee
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Seunghyun Kang
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
| | - Dong-Geol Lee
- COSMAX BTI, R&I Center, Seongnam 13486, Republic of Korea
- Department of Microbiology, Dankook University, Cheonan 31116, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
- NGS Core Facility, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
- Department of Integrative Biotechnology, Kyungpook National University, Daehak-ro 80, Daegu 41566, Republic of Korea
| |
Collapse
|
14
|
Fan X, Zou X, Fu L, Yang Y, Li M, Wang C, Sun H. The RING-H2 gene LdXERICO plays a negative role in dormancy release regulated by low temperature in Lilium davidii var. unicolor. HORTICULTURE RESEARCH 2023; 10:uhad030. [PMID: 37799625 PMCID: PMC10548414 DOI: 10.1093/hr/uhad030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/14/2023] [Indexed: 10/07/2023]
Abstract
Dormancy regulation is the basis of the sustainable development of the lily industry. Therefore, basic research on lily dormancy is crucial for innovation in lily cultivation and breeding. Previous studies revealed that dormancy release largely depends on abscisic acid (ABA) degradation. However, the key genes and potential regulatory network remain unclear. We used exogenous ABA and ABA inhibitors to elucidate the effect of ABA on lily dormancy. Based on the results of weighted gene coexpression network analysis (WGCNA), the hub gene LdXERICO was identified in modules highly related to endogenous ABA, and a large number of coexpressed genes were identified. LdXERICO was induced by exogenous ABA and expressed at higher levels in tissues with vigorous physiological activity. Silencing LdXERICO increased the low-temperature sensitivity of bulblets and accelerated bulblet sprouting. LdXERICO rescued the ABA insensitivity of xerico mutants during seed germination in Arabidopsis, suggesting that it promotes seed dormancy and supporting overexpression studies on lily bulblets. The significant increase in ABA levels in transgenic Arabidopsis expressing LdXERICO indicated that LdXERICO played a role by promoting ABA synthesis. We generated three transgenic lines by overexpressing LdICE1 in Arabidopsis thaliana and showed that, in contrast to LdXERICO, LdICE1 positively regulated dormancy release. Finally, qRT-PCR confirmed that LdXERICO was epistatic to LdICE1 for dormancy release. We propose that LdXERICO, an essential gene in dormancy regulation through the ABA-related pathway, has a complex regulatory network involving temperature signals. This study provides a theoretical basis for further exploring the mechanism of bulb dormancy release.
Collapse
Affiliation(s)
- Xinyue Fan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoman Zou
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Linlan Fu
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yue Yang
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Min Li
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Chunxia Wang
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, China
| |
Collapse
|
15
|
Yang Q, Yuan Y, Liu J, Han M, Li J, Jin F, Feng B. Transcriptome analysis reveals new insights in the starch biosynthesis of non-waxy and waxy broomcorn millet (Panicum miliaceum L.). Int J Biol Macromol 2023; 230:123155. [PMID: 36610580 DOI: 10.1016/j.ijbiomac.2023.123155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Broomcorn millet is a popular cereal with health benefits, and its grains are rich in starch. However, the differences in the pathway and key genes involved in starch biosynthesis of waxy and non-waxy broomcorn millet grain remain unclear. Therefore, the grain and starch physicochemical index and transcriptomic analyses of two genotypes of broomcorn millet were conducted at 3, 6, 9, 12, 15, 18, and 21 days after pollination. The phenotypic and physiological results indicated that the starch synthetic process of non-waxy and waxy broomcorn millet was significantly different. The amylose, amylopectin, and total starch contents of non-waxy broomcorn millet were 1.99, 4.74, and 6.73 mg/grain, while those of waxy broomcorn millet were 0.34, 5.94, and 6.28 mg/grain, respectively. The transcriptomic analysis revealed that 106 differentially expressed genes were identified, which were mainly enriched in the "amino sugar and nucleotide sugar metabolism", "pyruvate metabolism", "galactose metabolism", and "starch and sucrose metabolism" pathways. The WGCNA suggested that a total of 31 hub genes were correlated with starch biosynthesis. These findings provide a new approach to studying the starch synthesis in broomcorn millet.
Collapse
Affiliation(s)
- Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yuhao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jiajia Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Mengru Han
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fei Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas/College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
16
|
LoSWEET14, a Sugar Transporter in Lily, Is Regulated by Transcription Factor LoABF2 to Participate in the ABA Signaling Pathway and Enhance Tolerance to Multiple Abiotic Stresses in Tobacco. Int J Mol Sci 2022; 23:ijms232315093. [PMID: 36499419 PMCID: PMC9739489 DOI: 10.3390/ijms232315093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Sugar transport and distribution plays an important role in lily bulb development and resistance to abiotic stresses. In this study, a member of the Sugar Will Eventually be Exported Transporters (SWEET) gene family, LoSWEET14, from Oriental hybrid lily 'Sorbonne' was identified. LoSWEET14 encodes a protein of 278 amino acids and is capable of transporting sucrose and some types of hexoses. The transcript level of the LoSWEET14 gene was significantly increased under various stress conditions including drought, cold, salt stresses, and abscisic acid (ABA) treatment. Overexpression of LoSWEET14 in tobacco (Nicotiana tabacum) showed that the transgenic lines had larger leaves, accumulated more soluble sugars, and were more resistant to drought, cold, and salt stresses, while becoming more sensitive to ABA compared with wild-type lines. Promoter analysis revealed that multiple stress-related cis-acting elements were found in the promoter of LoSWEET14. According to the distribution of cis-acting elements, different lengths of 5'-deletion fragments were constructed and the LoSWEET14-pro3(-540 bp) was found to be able to drive GUS gene expression in response to abiotic stresses and ABA treatment. Furthermore, a yeast one hybrid (Y1H) assay proved that the AREB/ABF (ABRE-binding protein/ABRE-binding factor) from lilies (LoABF2) could bind to the promoter of LoSWEET14. These findings indicated that LoSWEET14 is induced by LoABF2 to participate in the ABA signaling pathway to promote soluble sugar accumulation in response to multiple abiotic stresses.
Collapse
|
17
|
Ren Z, Zhang D, Jiao C, Li D, Wu Y, Wang X, Gao C, Lin Y, Ruan Y, Xia Y. Comparative transcriptome and metabolome analyses identified the mode of sucrose degradation as a metabolic marker for early vegetative propagation in bulbs of Lycoris. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:115-134. [PMID: 35942603 PMCID: PMC9826282 DOI: 10.1111/tpj.15935] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/01/2023]
Abstract
Vegetative propagation (VP) is an important practice for production in many horticultural plants. Sugar supply constitutes the basis of VP in bulb flowers, but the underlying molecular basis remains elusive. By performing a combined sequencing technologies coupled with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry approach for metabolic analyses, we compared two Lycoris species with contrasting regeneration rates: high-regeneration Lycoris sprengeri and low-regeneration Lycoris aurea. A comprehensive multi-omics analyses identified both expected processes involving carbohydrate metabolism and transcription factor networks, as well as the metabolic characteristics for each developmental stage. A higher abundance of the differentially expressed genes including those encoding ethylene responsive factors was detected at bulblet initiation stage compared to the late stage of bulblet development. High hexose-to-sucrose ratio correlated to bulblet formation across all the species examined, indicating its role in the VP process in Lycoris bulb. Importantly, a clear difference between cell wall invertase (CWIN)-catalyzed sucrose unloading in high-regeneration species and the sucrose synthase-catalyzed pathway in low-regeneration species was observed at the bulblet initiation stage, which was supported by findings from carboxyfluorescein tracing and quantitative real-time PCR analyses. Collectively, the findings indicate a sugar-mediated model of the regulation of VP in which high CWIN expression or activity may promote bulblet initiation via enhancing apoplasmic unloading of sucrose or sugar signals, whereas the subsequent high ratio of hexose-to-sucrose likely supports cell division characterized in the next phase of bulblet formation.
Collapse
Affiliation(s)
- Zi‐Ming Ren
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Dong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Chen Jiao
- Key Lab of Molecular Biology of Crop Pathogens and InsectsInstitute of Biotechnology, Zhejiang UniversityHangzhou310058China
| | - Dan‐Qing Li
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and ArchitectureZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Xiu‐Yun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Ye‐Fan Lin
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| | - Yong‐Ling Ruan
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT2601Australia
- Yazhou Bay LaboratorySanya572024China
| | - Yi‐Ping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental PlantsZhejiang UniversityHangzhou310058China
| |
Collapse
|
18
|
Xu T, Zhang J, Shao L, Wang X, Zhang R, Ji C, Xia Y, Zhang L, Zhang J, Li D. Later Growth Cessation and Increased Freezing Tolerance Potentially Result in Later Dormancy in Evergreen Iris Compared with Deciduous Iris. Int J Mol Sci 2022; 23:ijms231911123. [PMID: 36232426 PMCID: PMC9569662 DOI: 10.3390/ijms231911123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Winter dormancy is a protective survival strategy for plants to resist harsh natural environments. In the context of global warming, the progression of dormancy has been significantly affected in perennials, which requires further research. Here, a systematic study was performed to compare the induction of dormancy in two closely related iris species with an ecodormancy-only process, the evergreen Iris japonica Thunb. and the deciduous Iris tectorum Maxim. under artificial conditions. Firstly, morphological and physiological observations were evaluated to ensure the developmental status of the two iris species. Furthermore, the expression patterns of the genes involved in key pathways related to plant winter dormancy were determined, and correlation analyses with dormancy marker genes were conducted. We found that deciduous iris entered dormancy earlier than evergreen iris under artificial dormancy induction conditions. Phytohormones and carbohydrates play roles in coordinating growth and stress responses during dormancy induction in both iris species. Moreover, dormancy-related MADS-box genes and SnRKs (Snf1-related protein kinase) might represent a bridge between carbohydrate and phytohormone interaction during iris dormancy. These findings provide a hypothetical model explaining the later dormancy in evergreen iris compared with deciduous iris under artificial dormancy induction conditions and reveal some candidate genes. The findings of this study could provide new insights into the research of dormancy in perennial plants with an ecodormancy-only process and contribute to effectively managing iris production, postharvest storage, and shipping.
Collapse
Affiliation(s)
- Tong Xu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiao Zhang
- Department of Environmental Science and Landscape Architecture, Graduate School of Horticulture, Chiba University, Chiba 271-0092, Japan
| | - Lingmei Shao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaobin Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Runlong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chenxi Ji
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiaping Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.Z.); (D.L.)
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.Z.); (D.L.)
| |
Collapse
|
19
|
Li J, Sun M, Li H, Ling Z, Wang D, Zhang J, Shi L. Full-length transcriptome-referenced analysis reveals crucial roles of hormone and wounding during induction of aerial bulbils in lily. BMC PLANT BIOLOGY 2022; 22:415. [PMID: 36030206 PMCID: PMC9419401 DOI: 10.1186/s12870-022-03801-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 06/09/2023]
Abstract
Aerial bulbils are important vegetative reproductive organs in Lilium. They are often perpetually dormant in most Lilium species, and little is known about the induction of these vegetative structures. The world-famous Oriental hybrid lily cultivar 'Sorbonne', which blooms naturally devoid of aerial bulbils, is known for its lovely appearance and sweet fragrance. We found that decapitation stimulated the outgrowth of aerial bulbils at lower stems (LSs) and then application of low and high concentrations of IAA promoted aerial bulbils emergence around the wound at upper stems (USs) of 'Sorbonne'. However, the genetic basis of aerial bulbil induction is still unclear. Herein, 'Sorbonne' transcriptome has been sequenced for the first time using the combination of third-generation long-read and next-generation short-read technology. A total of 46,557 high-quality non-redundant full-length transcripts were generated. Transcriptomic profiling was performed on seven tissues and stems with treatments of decapitation and application of low and high concentrations of IAA, respectively. Functional annotation of 1918 DEGs within stem samples of different treatments showed that hormone signaling, sugar metabolism and wound-induced genes were crucial to bulbils outgrowth. The expression pattern of auxin-, shoot branching hormone-, plant defense hormone- and wound-inducing-related genes indicated their crucial roles in bulbil induction. Then we established five hormone- and wounding-regulated co-expression modules and identified some candidate transcriptional factors, such as MYB, bZIP, and bHLH, that may function in inducing bulbils. High connectivity was observed among hormone signaling genes, wound-induced genes, and some transcriptional factors, suggesting wound- and hormone-invoked signals exhibit extensive cross-talk and regulate bulbil initiation-associated genes via multilayered regulatory cascades. We propose that the induction of aerial bulbils at LSs after decapitation can be explained as the release of apical dominance. In contrast, the induction of aerial bulbils at the cut surface of USs after IAA application occurs via a process similar to callus formation. This study provides abundant candidate genes that will deepen our understanding of the regulation of bulbil outgrowth, paving the way for further molecular breeding of lily.
Collapse
Affiliation(s)
- Jingrui Li
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Meiyu Sun
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Hui Li
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Zhengyi Ling
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Di Wang
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Jinzheng Zhang
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China
| | - Lei Shi
- Key Laboratory of Plant Resources and China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, Xiangshan, 100093, China.
| |
Collapse
|
20
|
Wang Y, Wang Y, Liu X, Zhou J, Deng H, Zhang G, Xiao Y, Tang W. WGCNA Analysis Identifies the Hub Genes Related to Heat Stress in Seedling of Rice (Oryza sativa L.). Genes (Basel) 2022; 13:genes13061020. [PMID: 35741784 PMCID: PMC9222641 DOI: 10.3390/genes13061020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Frequent high temperature weather affects the growth and development of rice, resulting in the decline of seed–setting rate, deterioration of rice quality and reduction of yield. Although some high temperature tolerance genes have been cloned, there is still little success in solving the effects of high temperature stress in rice (Oryza sativa L.). Based on the transcriptional data of seven time points, the weighted correlation network analysis (WGCNA) method was used to construct a co–expression network of differentially expressed genes (DEGs) between the rice genotypes IR64 (tolerant to heat stress) and Koshihikari (susceptible to heat stress). There were four modules in both genotypes that were highly correlated with the time points after heat stress in the seedling. We further identified candidate hub genes through clustering and analysis of protein interaction network with known–core genes. The results showed that the ribosome and protein processing in the endoplasmic reticulum were the common pathways in response to heat stress between the two genotypes. The changes of starch and sucrose metabolism and the biosynthesis of secondary metabolites pathways are possible reasons for the sensitivity to heat stress for Koshihikari. Our findings provide an important reference for the understanding of high temperature response mechanisms and the cultivation of high temperature resistant materials.
Collapse
Affiliation(s)
- Yubo Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Jieqiang Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
- Correspondence: (Y.X.); (W.T.)
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (Y.W.); (Y.W.); (X.L.); (J.Z.); (H.D.); (G.Z.)
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
- Correspondence: (Y.X.); (W.T.)
| |
Collapse
|
21
|
Zeng Z, Lyu T, Jia X, Chen Y, Lyu Y. Expression Patterns of Sugar Transporter Genes in the Allocation of Assimilates and Abiotic Stress in Lily. Int J Mol Sci 2022; 23:ijms23084319. [PMID: 35457135 PMCID: PMC9029133 DOI: 10.3390/ijms23084319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
During the growth cycle of lilies, assimilates undergo a process of accumulation, consumption and reaccumulation in bulbs and are transported and allocated between aboveground and underground organs and tissues. The sink-source relationship changes with the allocation of assimilates, affecting the vegetative growth and morphological establishment of lilies. In this study, the carbohydrate contents in different tissues of five critical stages during lily development were measured to observe the assimilates allocation. The results showed bulbs acted as the main source to provide energy before the budding stage (S3); after the flowering stage (S4), bulbs began to accumulate assimilates as a sink organ again. During the period when the plant height was 30cm with leaf-spread (S2), leaves mainly accumulated assimilates from bulbs through the symplastic pathway, while when leaves were fully expanded, it transformed to export carbohydrates. At the S4 stage, flowers became a new active sink with assimilates influx. To further understand the allocation of assimilates, 16 genes related to sugar transport and metabolism (ST genes) were identified and categorized into different subfamilies based on the phylogenetic analysis, and their protein physicochemical properties were also predicted. Tissue-specific analysis showed that most of the genes were highly expressed in stems and petals, and it was mainly the MST (monosaccharide transporter) genes that were obviously expressed in petals during the S4 stage, suggesting that they may be associated with the accumulation of carbohydrates in flowers and thus affect flower development process. LoSWEET14 (the Sugar will eventually be exported transporters) was significantly correlated with starch in scales and with soluble sugar in leaves. Sugar transporters LoHXT6 and LoSUT1 were significantly correlated with soluble sugar and sucrose in leaves, suggesting that these genes may play key roles in the accumulation and transportation of assimilates in lilies. In addition, we analyzed the expression patterns of ST genes under different abiotic stresses, and the results showed that all genes were significantly upregulated. This study lays a solid foundation for further research on molecular mechanism of sink-source change and response to abiotic stresses in lilies.
Collapse
Affiliation(s)
- Zhen Zeng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (X.J.); (Y.C.)
| | - Tong Lyu
- Beijing Flower Engineering Technology Research Center, Plant Institute, Management Department of Beijing Botanical Garden, Beijing 100094, China;
| | - Xin Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (X.J.); (Y.C.)
| | - Yue Chen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (X.J.); (Y.C.)
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (X.J.); (Y.C.)
- Correspondence:
| |
Collapse
|
22
|
Changes of starch and sucrose content and related gene expression during the growth and development of Lanzhou lily bulb. PLoS One 2022; 17:e0262506. [PMID: 35015792 PMCID: PMC8752016 DOI: 10.1371/journal.pone.0262506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/27/2021] [Indexed: 11/24/2022] Open
Abstract
As the main forms of carbohydrates, starch and sucrose play a vital role in the balance and coordination of various carbohydrates. Lanzhou lily is the most popular edible lily in China, mainly distributed in the central region of Gansu. To clarify the relationship between carbohydrate metabolism and bulb development of Lanzhou lily, so as to provide a basis for the promotion of the growth and development in Lanzhou lily and its important economic value, we studied lily bulbs in the squaring stage, flowering stage, half withering stage and withering stage. The plant height, fresh weight of mother and daughter bulbs continued to increase during the whole growth period and fresh weight of stem and leaf began to decrease in the half withering stage. The content of starch, sucrose and total soluble sugar in the lily mother bulb accumulated mostly in the flowering, withering and half withering stages, respectively. Starch, sucrose and total soluble sugar accumulated in the daughter bulb with the highest concentration during the withering stage. In the transcription level, sucrose synthase (SuSy1) and sucrose invertase (INV2) expressed the highest in squaring stage, and the expression was significantly higher in the mother bulb than in the daughter bulb. In flowering stage, the expression levels of soluble starch synthase (SSS1), starch-branching enzyme (SBE) and adenosine diphosphate-glucose pyrophosphorylase (AGP1) genes were higher in the mother bulb than in the daughter bulb. Altogether, our results indicate that starch and sucrose are important for the bulb growth and development of Lanzhou lily.
Collapse
|
23
|
Wang C, Hou X, Qi N, Li C, Luo Y, Hu D, Li Y, Liao W. An optimized method to obtain high-quality RNA from different tissues in Lilium davidii var. unicolor. Sci Rep 2022; 12:2825. [PMID: 35181714 PMCID: PMC8857280 DOI: 10.1038/s41598-022-06810-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/31/2022] [Indexed: 11/09/2022] Open
Abstract
The high quality, yield and purity total RNA samples are essential for molecular experiments. However, harvesting high quality RNA in Lilium davidii var. unicolor is a great challenge due to its polysaccharides, polyphenols and other secondary metabolites. In this study, different RNA extraction methods, namely TRIzol method, the modified TRIzol method, Kit method and cetyltrimethylammonium bromide (CTAB) method were employed to obtain total RNA from different tissues in L. davidii var. unicolor. A Nano drop spectrophotometer and 1% agarose gel electrophoresis were used to detect the RNA quality and integrity. Compared with TRIzol, Kit and CTAB methods, the modified TRIzol method obtained higher RNA concentrations from different tissues and the A260/A280 ratios of RNA samples were ranged from 1.97 to 2.27. Thus, the modified TRIzol method was shown to be the most effective RNA extraction protocol in acquiring RNA with high concentrations. Furthermore, the RNA samples isolated by the modified TRIzol and Kit methods were intact, whereas different degrees of degradation happened within RNA samples isolated by the TRIzol and CTAB methods. In addition, the modified TRIzol method could also isolate high-quality RNA from other edible lily bulbs. Taken together, the modified TRIzol method is an efficient method for total RNA isolation from L. davidii var. unicolor.
Collapse
Affiliation(s)
- Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Nana Qi
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanyan Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dongliang Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
24
|
Sun M, Zhao Y, Shao X, Ge J, Tang X, Zhu P, Wang J, Zhao T. EST-SSR Marker Development and Full-Length Transcriptome Sequence Analysis of Tiger Lily ( Lilium lancifolium Thunb). Appl Bionics Biomech 2022; 2022:7641048. [PMID: 35126662 PMCID: PMC8816598 DOI: 10.1155/2022/7641048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
The fast advancement and deployment of sequencing technologies after the Human Genome Project have greatly increased our knowledge of the eukaryotic genome sequences. However, due to technological concerns, high-quality genomic data has been confined to a few key organisms. Moreover, our understanding of which portions of genomes make up genes and which transcript isoforms synthesize these genes is scarce. Therefore, the current study has been designed to explore the reliability of the tiger lily (Lilium lancifolium Thunb) transcriptome. The PacBio-SMRT was used for attaining the complete transcriptomic profile. We obtained a total of 815,624 CCS (Circular Consensus Sequence) reads with an average length of 1295 bp. The tiger lily transcriptome has been sequenced for the first time using third-generation long-read technology. Furthermore, unigenes (38,707), lncRNAs (6852), and TF members (768) were determined based on the transcriptome data, followed by evaluating SSRs (3319). It has also been revealed that 105 out of 128 primer pairs effectively amplified PCR products. Around 15,608 transcripts were allocated to 25 distinct KOG Clusters, and 10,706 unigenes were grouped into 52 functional categories in the annotated transcripts. Until now, no tiger lily lncRNAs have been discovered. Results of this study may serve as an extensive set of reference transcripts and help us learn more about the transcriptomes of tiger lilies and pave the path for further research.
Collapse
Affiliation(s)
- Mingwei Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | | | - Xiaobin Shao
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Jintao Ge
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Xueyan Tang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Pengbo Zhu
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Jiangying Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| | - Tongli Zhao
- Lianyungang Academy of Agricultural Sciences, Lianyungang, China
| |
Collapse
|
25
|
Guo C, Li J, Li M, Xu X, Chen Y, Chu J, Yao X. Regulation Mechanism of Exogenous Brassinolide on Bulbil Formation and Development in Pinellia ternata. FRONTIERS IN PLANT SCIENCE 2022; 12:809769. [PMID: 35069668 PMCID: PMC8766408 DOI: 10.3389/fpls.2021.809769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The bulbil is the propagative organ of the P. ternata, which has a great effect on the yield of P. ternata. It is well known that plant hormones play important roles in bulbil formation and development. However, there is not clear about brassinolide (BR) regulation on bulbil formation and development. In this study, we revealed the effects of BR and BR biosynthesis inhibitors (propiconazole, Pcz) application on the histological observation, starch and sucrose metabolism, photosynthesis pathway, and hormone signaling pathway of P. ternata. The results showed that BR treatment reduced starch catabolism to maltodextrin and maltose in bulbil by decreasing BAM and ISA genes expression and increased cellulose catabolism to D-glucose in bulbil by enhancing edg and BGL genes expression. BR treatment enhanced the photosynthetic pigment content and potential maximum photosynthetic capacity and improved the photoprotection ability of P. ternata by increasing the dissipation of excess light energy to heat, thus reduced the photodamage in the PSII center. BR treatment increased the GA and BR content in bulbil of P. ternata, and decreased the ABA content in bulbil of P. ternata. Pcz treatment increased the level of GA, SL, ABA, and IAA in bulbil of P. ternata. BR regulated the signal transduction of BR, IAA, and ABA to regulate the formation and development of bulbil in P. ternata. These results provide molecular insight into BR regulation on bulbil formation and development.
Collapse
Affiliation(s)
- Chenchen Guo
- College of Life Sciences, Hebei University, Baoding, China
| | - Jigang Li
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Minghui Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Xihang Xu
- College of Life Sciences, Hebei University, Baoding, China
| | - Ying Chen
- College of Life Sciences, Hebei University, Baoding, China
| | - Jianzhou Chu
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xiaoqin Yao
- College of Life Sciences, Hebei University, Baoding, China
- Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
26
|
Ren Z, Xu Y, Lvy X, Zhang D, Gao C, Lin Y, Liu Y, Wu Y, Xia Y. Early Sucrose Degradation and the Dominant Sucrose Cleavage Pattern Influence Lycoris sprengeri Bulblet Regeneration In Vitro. Int J Mol Sci 2021; 22:ijms222111890. [PMID: 34769318 PMCID: PMC8585118 DOI: 10.3390/ijms222111890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
Bulblet formation and development determine the quantitative and qualitative traits, respectively, of bulb yield for most flowering bulbs. For Lycoris species, however, the underlying molecular mechanism remains elusive. Here, clonal bulblets of Lycoris sprengeri (Ls) derived from the same probulb were used as explants to establish efficient and inefficient in vitro regeneration systems by adjusting the 6-benzyladenine (BA) concentrations in media. BA application did not change the biological processes among groups but led to earlier decreases in sucrose and total soluble sugar (TSS) contents. Correlation analyses showed that the BA treatments changed the interaction between carbohydrate and endogenous hormone contents during bulblet regeneration. We found that two sucrose degradation enzyme-related genes, cell wall invertase (CWIN) and sucrose synthase, exhibited exactly opposite expression patterns during the competence stage. In addition, the regeneration system that obtained more bulblets showed significantly higher expression of LsCWIN2 than those that obtained fewer bulblets. Our data demonstrate the essential role of BA in accelerating sucrose degradation and the selection of a dominant sucrose cleavage pattern at the competence stage of in vitro bulblet regeneration. We propose that a relatively active CWIN-catalyzed pathway at the competence stage might promote bulblet regeneration, thus influencing bulb yield.
Collapse
Affiliation(s)
- Ziming Ren
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yunchen Xu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Xuesi Lvy
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Dong Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Yefan Lin
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Yue Liu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
| | - Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (Y.W.); (Y.X.)
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; (Z.R.); (Y.X.); (X.L.); (D.Z.); (C.G.); (Y.L.); (Y.L.)
- Correspondence: (Y.W.); (Y.X.)
| |
Collapse
|
27
|
Li C, Wang K, Lei C, Cao S, Huang Y, Ji N, Xu F, Zheng Y. Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1250-1266. [PMID: 34410840 DOI: 10.1094/mpmi-06-21-0142-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Defense elicitors can induce fruit disease resistance to control postharvest decay but may incur quality impairment. Our present work aimed to investigate the resistance against Botrytis cinerea induced by the elicitor β-aminobutyric acid (BABA) and to elucidate the specific transcriptional mechanism implicated in defense-related metabolic regulations. The functional dissection results demonstrated that, after inoculation with the fungal necrotroph B. cinerea, a suite of critical genes encoding enzymes related to the sucrose metabolism and phenylpropanoid pathway in priming defense in grapes were transcriptionally induced by treatment with 10 mM BABA. In contrast, more UDP-glucose, a shared precursor of phenylpropanoid and sucrose metabolism, may be redirected to the phenylpropanoid pathway for the synthesis of phytoalexins, including trans-resveratrol and ɛ-viniferin, in 100 mM BABA-treated grapes, resulting in direct resistance but compromised soluble sugar contents. An R2R3-type MYB protein from Vitis vinifera, VvMYB44, was isolated and characterized. VvMYB44 expression was significantly induced upon the grapes expressed defensive reaction. Subcellular localization, yeast two-hybrid, and coimmunoprecipitation assays revealed that the nuclear-localized VvMYB44 physically interacted with the salicylic acid-responsive transcription coactivator NPR1 in vivo for defense expression. In addition, VvMYB44 directly bound to the promoter regions of sucrose and phenylpropanoid metabolism-related genes and transactivated their expression, thus tipping the balance of antifungal compound accumulation and soluble sugar maintenance. Hence, these results suggest that 2R-type VvMYB44 might be a potential positive participant in BABA-induced priming defense in grape berries that contributes to avoiding the excessive consumption of soluble sugars during the postharvest storage.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Chunhong Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Kaituo Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Changyi Lei
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315211, China
| | - Yixiao Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China
- College of Arts and Sciences, University of Miami, Coral Gables, FL 33143, U.S.A
| | - Nana Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Feng Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| |
Collapse
|
28
|
Hou X, Qi N, Wang C, Li C, Huang D, Li Y, Wang N, Liao W. Hydrogen-rich water promotes the formation of bulblets in Lilium davidii var. unicolor through regulating sucrose and starch metabolism. PLANTA 2021; 254:106. [PMID: 34689230 PMCID: PMC8542194 DOI: 10.1007/s00425-021-03762-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 05/08/2023]
Abstract
HRW increased the content of starch and sucrose via regulating a series of sucrose and starch synthesis genes, which induced the formation of bulblets and adventitious roots of Lilium davidii var. unicolor. Hydrogen gas (H2), as a signaling molecule, has been reported to be involved in plant growth and development. Here, the effect of hydrogen-rich water (HRW) on the formation of bulblets and adventitious roots in the scale cuttings of Lilium davidii var. unicolor and its mechanisms at the molecular levels were investigated. The results revealed that compared with distilled water treatment (Con), the number of bulblets and adventitious roots were significantly promoted by different concentrations of HRW treatment. Treatment with 100% HRW obtained the most positive effects. RNA sequencing (RNA-seq) analysis found that compared with Con, a total of 1702 differentially expressed genes (DEGs, upregulated 552 DEGs, downregulated 1150 DEGs) were obtained under HRW treatment. The sucrose and starch metabolism, cysteine and methionine metabolism and phenylalanine metabolism were significantly enriched in the analysis of the Kyoto encyclopedia of genes and genomes (KEGG). In addition, the genes involved in carbohydrate metabolism were significantly upregulated or downregulated (upregulated 22 DEGs, downregulated 15 DEGs), indicating that starch and sucrose metabolism held a central position. The expressions of 12 DEGs were identified as coding for key enzymes in metabolism of carbohydrates was validated by qPCR during bulblet formation progress. RNA-seq analysis and expression profiles indicated that the unigene levels such as glgc, Susy, otsA and glgP, BMY and TPS were well correlated with sucrose and starch metabolism during HRW-induced bulblet formation. The change of key enzyme content in starch and sucrose metabolism pathway was explored during bulblet formation in Lilium under HRW treatment. Meanwhile, compared with Con, 100% HRW treatment increased the levels of sucrose and starch, and decreased the trehalose content, which were agreed with the expression pattern of DEGs related to the biosynthesis pathway of sucrose, starch and trehalose. Therefore, this study suggested that HRW could promote the accumulation of sucrose and starch contents in mother scales, and decreased the trehalose content, this might provide more energy for bulblet formation.
Collapse
Affiliation(s)
- Xuemei Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Nana Qi
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ni Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
29
|
Qi N, Hou X, Wang C, Li C, Huang D, Li Y, Wang N, Liao W. Methane-rich water induces bulblet formation of scale cuttings in Lilium davidii var. unicolor by regulating the signal transduction of phytohormones and their levels. PHYSIOLOGIA PLANTARUM 2021; 172:1919-1930. [PMID: 33748992 DOI: 10.1111/ppl.13401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 05/21/2023]
Abstract
Previous studies have shown that methane (CH4 ) has promoting roles in the adventitious root (AR) and lateral root (LR) formation in plants. However, whether CH4 could trigger the bulblet formation in scale cutting of Lilium davidii var. unicolor has not been elucidated. To gain insight into the effect of CH4 on the bulblet formation, different concentrations (1, 10, 50, and 100%) of methane-rich water (MRW) and distilled water were applied to treat the scale cuttings of Lilium. We observed that treatment with 100% MRW obviously induced the bulblet formation in scale cuttings. To explore the mechanism of CH4 -induced bulblet formation, the transcriptome of scales was analyzed. A total of 2078 differentially expressed genes (DEGs) were identified. The DEGs were classified into different metabolic pathways, especially phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant signal transduction. Of these, approximately 38 candidate DEGs involved in the plant signal transduction were further studied. In addition, the expression of AP2-ERF/ERF, WRKY, GRAS, ARF, and NAC transcription factors (TFs) was changed by MRW treatment, suggesting their potential involvement in bulblet formation. As for hormones, exogenous IAA, GA, and ABA could induce the bulblet formation. Additional experiments suggested that MRW could increase the endogenous IAA, GA, and JA levels, but decrease the levels of ABA during bulblet formation, which showed that higher IAA, GA, JA levels and lower ABA content might facilitate bulblet formation. In addition, the levels of endogenous hormones were consistent with the expression level of genes involved in phytohormone signal transduction. Overall, this study has revealed that CH4 might improve the bulblet formation of cutting scales in Lilium by regulating the expression of genes related to phytohormone signal transduction and TFs, as well as by changing the endogenous hormone levels.
Collapse
Affiliation(s)
- Nana Qi
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Changxia Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Dengjing Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ni Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
30
|
Li J, Seng S, Li D, Zhang F, Liu Y, Yao T, Liang J, Yi M, Wu J. Antagonism between abscisic acid and gibberellin regulates starch synthesis and corm development in Gladiolus hybridus. HORTICULTURE RESEARCH 2021; 8:155. [PMID: 34193854 PMCID: PMC8245626 DOI: 10.1038/s41438-021-00589-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/22/2021] [Accepted: 05/04/2021] [Indexed: 05/20/2023]
Abstract
Understanding corm development in flower bulbs is of importance for securing the quality of cut flowers and propagation of commercial stocks. Gladiolus is one of the most popular bulb plants worldwide. Its corm development is characterized by starch accumulation. Previous research has shown that phytohormones (especially gibberellin (GA)) are involved in tuber development. However, the relationship between abscisic acid (ABA)/GA and starch during corm development remains unclear. To gain deeper insights into the biological process of corm development, we performed a detailed anatomical characterization of different stages of corm development and analyzed phytohormone levels. Our study showed that corm development is linked to hormones (ABA and GA) and carbohydrates (sucrose and starch). Exogenous hormone treatment and silencing of endogenous hormone biosynthesis genes indicated that ABA positively regulates corm development, while GA acts as an antagonist of ABA function. A sucrose synthase gene (GhSUS2) was shown to be involved in the antagonism between ABA and GA. GhSUS2 was upregulated by ABA and downregulated by GA. The increase in the transcript level of GhSUS2 coincided with the development of corm/cormels. Silencing of GhSUS2 repressed corm development and starch accumulation. In conclusion, we propose that GhSUS2, an essential enzyme in sucrose degradation, is differentially regulated by ABA and GA and controls corm development in Gladiolus.
Collapse
Affiliation(s)
- Jingru Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Shanshan Seng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Donglei Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Fengqin Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Yixuan Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Ting Yao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Jiahui Liang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China.
| |
Collapse
|
31
|
WU Y, SUN M, LI S, MIN R, GAO C, LYU Q, REN Z, XIA Y. Molecular cloning, characterization and expression analysis of three key starch synthesis-related genes from the bulb of a rare lily germplasm, Lilium brownii var. giganteum. J Zhejiang Univ Sci B 2021; 22:476-491. [PMID: 34128371 PMCID: PMC8214946 DOI: 10.1631/jzus.b2000545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/10/2020] [Indexed: 11/11/2022]
Abstract
Starch is the predominant compound in bulb scales, and previous studies have shown that bulblet development is closely associated with starch enrichment. However, how starch synthesis affects bulbification at the molecular level is unclear. In this study, we demonstrate that Lilium brownii var. giganteum, a wild lily with a giant bulb in nature, and L. brownii, the native species, have different starch levels and characteristics according to cytological and ultra-structural observations. We cloned the complete sequence of three key gene-encoding enzymes (LbgAGPS, LbgGBSS, andLbgSSIII) during starch synthesis by rapid amplification of 5' and 3' complementary DNA (cDNA) ends (RACE) technology. Bioinformatics analysis revealed that the proteins deduced by these genes contain the canonical conserved domains. Constructed phylogenetic trees confirmed the evolutionary relationships with proteins from other species, including monocotyledons and dicotyledons. The transcript levels of various tissues and time course samples obtained during bulblet development uncovered relatively high expression levels in bulblets and gradual increase expression accompanying bulblet growth. Moreover, a set of single nucleotide polymorphisms (SNPs) was discovered in the AGPS genes of four lily genotypes, and a purifying selection fashion was predicted according to the non-synonymous/synonymous (Ka/Ks) values. Taken together, our results suggested that key starch-synthesizing genes might play important roles in bulblet development and lead to distinctive phenotypes in bulblet size.
Collapse
Affiliation(s)
- Yun WU
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou310018, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Minyi SUN
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Shiqi LI
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Ruihan MIN
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Cong GAO
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Qundan LYU
- Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui323000, China
| | - Ziming REN
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| | - Yiping XIA
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
32
|
Lan Y, Wu L, Wu M, Liu H, Gao Y, Zhang K, Xiang Y. Transcriptome analysis reveals key genes regulating signaling and metabolic pathways during the growth of moso bamboo (Phyllostachys edulis) shoots. PHYSIOLOGIA PLANTARUM 2021; 172:91-105. [PMID: 33280114 DOI: 10.1111/ppl.13296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/22/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Moso bamboo (Phyllostachys edulis), a high-value bamboo used to produce food (young shoots), building, and industrial goods. To explore key candidate genes regulating signal transduction and metabolic processes during the initiation of stem elongation in moso bamboo, a transcriptome analysis of the shoots during three successive early elongation stages was performed. From cluster and differential expression analyses, 2984 differentially expressed genes (DEGs) were selected for an enrichment analysis. The DEGs were significantly enriched in the plant hormone signal transduction, sugar and starch metabolism, and energy metabolism pathways. Consequently, the DEG expression patterns of these pathways were analyzed, and the plant endogenous hormone and carbon metabolite (including sucrose, total soluble sugar, and starch) contents for each growth stage, of the shoot, were determined. The cytokinin-signaling pathway was continuously active in the three successive elongation stages, in which several cytokinin-signaling genes played indispensable roles. Additionally, many key DEGs regulating sugar, starch metabolism, and energy conversion, which are actively involved in energy production and substrate synthesis during the continuous growth of the shoots, were found. In summary, our study lays a foundation for understanding the mechanisms of moso bamboo growth and provides useful gene resources for breeding through genetic engineering.
Collapse
Affiliation(s)
- Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Lin Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Huanlong Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yameng Gao
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
33
|
Qi X, Wang K, Yang L, Deng Z, Sun Z. The complete mitogenome sequence of the coral lily ( Lilium pumilum) and the Lanzhou lily ( Lilium davidii) in China. Open Life Sci 2021; 15:1060-1067. [PMID: 33817292 PMCID: PMC7874665 DOI: 10.1515/biol-2020-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/18/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022] Open
Abstract
Background The mitogenomes of higher plants are conserved. This study was performed to complete the mitogenome of two China Lilium species (Lilium pumilum Redouté and Lilium davidii var. unicolor (Hoog) cotton). Methods Genomic DNA was separately extracted from the leaves of L. pumilum and L. davidii in triplicate and used for sequencing. The mitogenome of Allium cepa was used as a reference. Genome assembly, annotation and phylogenetic tree were analyzed. Results The mitogenome of L. pumilum and L. davidii was 988,986 bp and 924,401 bp in length, respectively. There were 22 core protein-coding genes (including atp1, atp4, atp6, atp9, ccmB, ccmC, ccmFc, ccmFN1, ccmFN2, cob, cox3, matR, mttB, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7 and nad9), one open reading frame and one ribosomal protein-coding gene (rps12) in the mitogenomes. Compared with the A. cepa mitogenome, the coding sequence of the 24 genes and intergenic spacers in L. pumilum and L. davidii mitogenome contained 1,621 and 1,617 variable sites, respectively. In the phylogenetic tree, L. pumilum and L. davidii were distinct from A. cepa (NC_030100). Conclusions L. pumilum and L. davidii mitogenomes have far distances from other plants. This study provided additional information on the species resources of China Lilium.
Collapse
Affiliation(s)
- Xiangying Qi
- China Lily Laboratory, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Kaiqi Wang
- China Lily Laboratory, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Liping Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Zhenshan Deng
- China Lily Laboratory, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Zhihong Sun
- China Lily Laboratory, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan'an University, Yan'an, 716000, Shaanxi, China
| |
Collapse
|
34
|
Ma L, Ding S, Fu X, Yan Z, Tang D. Enzymatic and transcriptomic analysis reveals the essential role of carbohydrate metabolism in freesia ( Freesia hybrida) corm formation. PeerJ 2021; 9:e11078. [PMID: 33777537 PMCID: PMC7983857 DOI: 10.7717/peerj.11078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
Starch and sucrose metabolism plays a crucial role in the formation and development of bulbs in bulbous plants. However, these mechanisms remain unclear and unexplored in the corms of Freesia hybrida. Herein, we investigated the dynamics of the major form of carbohydrates and related enzyme activities and profiled the transcriptome of freesia corms at four developmental stages with the aim to reveal the relation between the expression of genes involved in the metabolism of carbohydrates and the accumulation of carbohydrates in corm developmental stages for further exploring the mechanism on the starch and sucrose metabolism regulating the formation and development of corms in F. hybrida. The content of starch, sucrose and soluble sugars followed an overall upward trend across the corm developmental stages. Activities of the adenosine diphosphoglucose pyrophosphorylase, starch branching enzyme and β-amylase generally followed the pattern of the starch and sucrose levels. Activities of sucrose phosphate synthase increased from corm formation till the initial swelling stage and subsequently reached a plateau. Activities of invertase and sucrose synthase peaked at the later rapid swelling stage. These suggested that the starch and sucrose dynamics paralleled corm swelling under the action of metabolic enzymes. A total of 100,999 unigenes were assembled in the transcriptomic analysis, and 44,405 unigenes of them were annotated. Analysis based on Clusters of Orthologous Groups suggested that carbohydrate transport and metabolism (9.34% of the sequences) was prominent across the corm developmental process. In total 3,427 differentially expressed genes (DEGs) were identified and the enrichment analysis detected starch and sucrose metabolism as a critical pathway in corm development, especially at the rapid swelling stage. Further, DEGs encoding key carbohydrate-metabolizing enzymes were identified and correlated to enzyme activities and carbohydrate accumulation. The results construct a valuable resource pool for further molecular-level studies, which are helpful for metabolic regulation of carbohydrates and improvement in F. hybrida.
Collapse
Affiliation(s)
- Li Ma
- Department of Landscape Architecture, Shanghai Jiao Tong University, Shanghai, China
| | - Suqin Ding
- Department of Landscape Architecture, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Fu
- Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zi Yan
- Department of Landscape Architecture, Shanghai Jiao Tong University, Shanghai, China
| | - Dongqin Tang
- Department of Landscape Architecture, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Wu Y, Ren Z, Gao C, Sun M, Li S, Min R, Wu J, Li D, Wang X, Wei Y, Xia Y. Change in Sucrose Cleavage Pattern and Rapid Starch Accumulation Govern Lily Shoot-to-Bulblet Transition in vitro. FRONTIERS IN PLANT SCIENCE 2021; 11:564713. [PMID: 33519832 PMCID: PMC7840508 DOI: 10.3389/fpls.2020.564713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/30/2020] [Indexed: 05/11/2023]
Abstract
In bulb crops, bulbing is a key progress in micropropagation and is the feature that most distinguishes bulbous crops from other plants. Generally, bulbing involves a shoot-to-bulblet transition; however, the underlying mechanism remains elusive. We explored this process by tracking the shoot-to-bulblet transition under different culture conditions. Rapid starch accumulation occurred at 15 days after transplanting (DAT) in the bulblet-inducing treatments as confirmed via histological observations and the significant elevation of starch synthesis related-gene transcription, including LohAGPS, LohAGPL, LohGBSS, LohSS, and LohSBE. However, for shoots that did not transition to bulblets and maintained the shoot status, much higher soluble sugars were detected. Interestingly, we observed a clear shift from invertase-catalyzed to sucrose synthase-catalyzed sucrose cleavage pattern based on the differential expression of LohCWIN and LohSuSy during the key transition stage (prior to and after bulbing at 0-15 DAT). Shoots that transitioned into bulblets showed significantly higher LohSuSy expression, especially LohSuSy4 expression, than shoots that did not transition. A symplastic phloem unloading pathway at the bulblet emergence stage (15 DAT) was verified via the 6(5)-carboxyfluorescein diacetate fluorescent tracer. We propose that starch is the fundamental compound in the shoot-to-bulblet transition and that starch synthesis is likely triggered by the switch from apoplastic to symplastic sucrose unloading, which may be related to sucrose depletion. Furthermore, this study is the first to provide a complete inventory of the genes involved in starch metabolism based on our transcriptome data. Two of these genes, LohAGPS1.2b and LohSSIIId, were verified by rapid amplification of cDNA ends cloning, and these data will provide additional support for Lilium research since whole genome is currently lacking.
Collapse
Affiliation(s)
- Yun Wu
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ziming Ren
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cong Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Minyi Sun
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shiqi Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ruihan Min
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing, China
| | - Danqing Li
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiuyun Wang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanping Wei
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Marković M, Trifunović Momčilov M, Uzelac B, Radulović O, Milošević S, Jevremović S, Subotić A. Breaking the Dormancy of Snake's Head Fritillary ( Fritillaria meleagris L.) In Vitro Bulbs-Part 2: Effect of GA 3 Soaking and Chilling on Sugar Status in Sprouted Bulbs. PLANTS 2020; 9:plants9111573. [PMID: 33203039 PMCID: PMC7698034 DOI: 10.3390/plants9111573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022]
Abstract
The bulb is the main propagation organ of snake’s head fritillary (Fritillaria meleagris L.), a horticulturally attractive and rare geophyte plant species. In this study, we investigated the effect of soaking bulbs in GA3 solution (1, 2, and 3 mg L−1) combined with low-temperature treatment (7 °C) on breaking the dormancy of in vitro bulbs. Sugar status (total soluble sugars, glucose, and fructose content) was analyzed in different parts of the sprouted bulbs. The results showed that the soluble sugar concentration was highest in bulbs soaked in GA3. The main sugar in fritillary bulbs was glucose, while fructose content was much lower. Glucose concentration dramatically increased after bulb chilling (7 °C), and its accumulation was predominantly detected in the lower sprout portion during the first weeks of sprouting. Sugar concentration was significantly lower in nonchilled bulbs, which indicates the importance of low temperature in bulb development and sprouting.
Collapse
|
37
|
Zhang T, Guo Y, Shi X, Yang Y, Chen J, Zhang Q, Sun M. Overexpression of LiTPS2 from a cultivar of lily (Lilium 'Siberia') enhances the monoterpenoids content in tobacco flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:391-399. [PMID: 32278293 DOI: 10.1016/j.plaphy.2020.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 05/17/2023]
Abstract
Lily, a famous cut flower with highly fragrance, has high ornamental and economic values. Monoterpenes are the main components contributing to its fragrance, and terpene synthase (TPS) genes play critical roles in the biosynthesis of monoterpenoids. To understand the function of TPS and to explore the molecular mechanism of floral scent in cultivar Lilium 'Siberia', transcriptomes of petal at different flowering stages and leaf were obtained by RNA sequencing and three unigenes related to TPS genes were selected for further validation. Quantitative real-time PCR showed that the expression level of LiTPS2 was greater than that of the other two TPS genes. Phylogenetic analysis indicated that LiTPS2 belonged to the TPSb subfamily, which was responsible for monoterpenes synthesis. Subcellular localization demonstrated that LiTPS2 was located in the chloroplasts. Furthermore, functional characterization showed that LiTPS2 utilized both geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP) to produce monoterpenoids such as linalool and sesquiterpenes like trans-nerolidol, respectively. Ectopic expression in transgenic tobacco plants suggested that the amount of linalool from the flowers of transgenic plants was 2-3 fold higher than that of wild-type plants. And the emissions of myrcene and (E)-β-ocimene were also accumulated from the flowers of LiTPS2 transgenic lines. Surprisingly, these three compounds were the main fragrance components of oriental lily hybrids. Our results indicated that LiTPS2 contributed to the production of monoterpenes and could effectively regulate the aroma of Lilium cultivars, laying the foundation for biotechnological modification of floral scent profiles.
Collapse
Affiliation(s)
- Tengxun Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yanhong Guo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xuejun Shi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yongjuan Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Juntong Chen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
38
|
Gu J, Zeng Z, Wang Y, Lyu Y. Transcriptome Analysis of Carbohydrate Metabolism Genes and Molecular Regulation of Sucrose Transport Gene LoSUT on the Flowering Process of Developing Oriental Hybrid Lily 'Sorbonne' Bulb. Int J Mol Sci 2020; 21:ijms21093092. [PMID: 32349427 PMCID: PMC7247698 DOI: 10.3390/ijms21093092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
The quality of Lily cut flower was determined by the quality of bulbs. During the process of vernalization and flower bud differentiation, sugar massively accumulated in the bulb, which influenced the bulb development. However, the details of sugar genes’ regulation mechanism for these processes were not fully understood. Here, morphological physiology, transcriptomes and gene engineering technology were used to explore this physiological change. Seventy-two genes of 25 kinds of sugar metabolism-related genes were annotated after re-analyzing transcriptome data of Oriental hybrid lily ‘Sorbonne’ bulbs, which were generated on Hiseq Illumina 2000. The results showed that these genes were closely related to lily bulb vernalization and development. Combining gene expression pattern with gene co-expression network, five genes (Contig5669, Contig13319, Contig7715, Contig1420 and Contig87292) were considered to be the most potential signals, and the sucrose transporter gene (SUT) was the focus of this study. Carbohydrate transport pathway and genes’ regulation mechanism were inferred through a physiological and molecular test. SUT seemed to be the sugar sensor that could sense and regulate sugar concentration, which might have effects on other genes, such as FT, LFY and so on. LoSUT2 and LoSUT4 genes were cloned from Oriental hybrid lily ‘Sorbonne’ by RACE, which was the first time for these genes in Oriental hybrid lily ‘Sorbonne’. The physiological properties of these proteins were analyzed such as hydrophobicity and phosphorylation. In addition, secondary and tertiary structures of proteins were predicted, which indicated the two proteins were membrane proteins. Their cellular locations were verified through positioning the experiment of the fluorescent vector. They were highly expressed in cells around phloem, which illustrated the key role of these genes in sugar transport. Furthermore, transient expression assays showed that overexpressed LoSUT2 and LoSUT4 in Arabidopsis thaliana bloomed significantly earlier than the wild type and the expression of FT, SOC1 and LFY were also affected by LoSUT2 and LoSUT4, which indicated that LoSUT2 and LoSUT4 may regulate plants flowering time.
Collapse
|
39
|
Xu J, Li Q, Yang L, Li X, Wang Z, Zhang Y. Changes in carbohydrate metabolism and endogenous hormone regulation during bulblet initiation and development in Lycoris radiata. BMC PLANT BIOLOGY 2020; 20:180. [PMID: 32334530 PMCID: PMC7183599 DOI: 10.1186/s12870-020-02394-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/12/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lycoris species have great ornamental and medicinal values; however, their low regeneration efficiency seriously restricts their commercial production. Understanding the mechanism of bulblet propagation in this genus, which has remained underexplored to date, could provide a theoretical basis for improving the reproductive efficiency. Therefore, we studied the bulblet initiation and developmental processes in Lycoris radiata. RESULTS We found that bulblets are formed on the junctions of the innermost layers of scales and the basal plate, and initially present as an axillary bud and gradually develop into a bulblet. We also determined the changes in carbohydrate and endogenous hormone contents during bulblet initiation and development, as well as the expression patterns of genes involved in carbohydrate metabolism and hormone biosynthesis and signaling through transcriptome analysis. Soluble sugars derived from starch degradation in the outer scales are transported to and promote bulblet initiation and development through starch synthesis in the inner scales. This process is mediated by several genes involved in carbohydrate metabolism, especially genes encoding ADP glucose pyrophosphorylase, a crucial starch synthesis enzyme. As for hormones, endogenous IAA, GA, and ABA content showed an increase and decrease during bulblet initiation and development, respectively, which were consistent with the expression patterns of genes involved in IAA, GA, and ABA synthesis and signal transduction. In addition, a decrease in ZR content may be down- and up-regulated by CK biosynthesis and degradation related genes, respectively, with increasing auxin content. Furthermore, expression levels of genes related to BR, JA, and SA biosynthesis were increased, while that of ethylene biosynthesis genes was decreased, which was also consistent with the expression patterns of their signal transduction genes. CONCLUSIONS The present study provides insights into the effect of carbohydrate metabolism and endogenous hormone regulation on control of L. radiata bulblet initiation and development. Based on the results, we propose several suggestions to improve L. radiata propagation efficiency in production, which will provide directions for future research.
Collapse
Affiliation(s)
- Junxu Xu
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qingzhu Li
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Liuyan Yang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xin Li
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhen Wang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yongchun Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| |
Collapse
|
40
|
Qi X, Wang K, Yang L, Deng Z, Sun Z. The complete chloroplast genome of Lilium davidii var. unicolor (Hoog) cotton (Liliaceae). Mitochondrial DNA B Resour 2020. [DOI: 10.1080/23802359.2020.1735281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Xiangying Qi
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, PR China
| | - Kaiqi Wang
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, PR China
| | - Liping Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, PR China
| | - Zhenshan Deng
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, PR China
| | - Zhihong Sun
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yan’an University, Yan’an, PR China
| |
Collapse
|
41
|
Effects of heat-moisture and acid treatments on the structural, physicochemical, and in vitro digestibility properties of lily starch. Int J Biol Macromol 2020; 148:956-968. [PMID: 31972200 DOI: 10.1016/j.ijbiomac.2020.01.181] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/04/2020] [Accepted: 01/19/2020] [Indexed: 11/20/2022]
Abstract
Starch extracted from lily bulb (Lilium brownii var. Viridulum Baker) was modified via heat-moisture treatment (HMT) at different moisture levels (15-35%) and acid treatment (AT) with hydrochloric acid at five different concentrations (0.25-2.0 M). The effects of HMT and AT on the physicochemical properties and in vitro digestibility of lily starch were investigated. HMT and AT led to the clustering of the starch granules, whose surface became rougher, thereby increasing the particle size. X-ray diffraction results showed that HMT increased the relative crystallinity and transformed the crystalline structure from B- to A-type. The relative crystallinity and X-ray patterns of the AT starch significantly increased. The swelling power of HMT and AT starch was significantly reduced, whereas the solubility of HMT starch decreased. The solubility of AT starch was significantly higher than that of native starch (NS) (p < 0.05). Differential scanning calorimetry revealed that the gelatinization temperature of lily starch was higher than that of NS after two modifications, whereas the gelatinization enthalpy of the NS was lower than that of the modified samples. The starch with HMT at 25% showed the highest resistant starch content of 44.15% in cooked samples.
Collapse
|
42
|
Xu J, Li Q, Li Y, Yang L, Zhang Y, Cai Y. Effect of Exogenous Gibberellin, Paclobutrazol, Abscisic Acid, and Ethrel Application on Bulblet Development in Lycoris radiata. FRONTIERS IN PLANT SCIENCE 2020; 11:615547. [PMID: 33552107 PMCID: PMC7855306 DOI: 10.3389/fpls.2020.615547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 05/16/2023]
Abstract
Lycoris species have great ornamental and medicinal values; however, their low regeneration efficiency significantly restricts their commercial production. Exogenous hormone application is an effective way to promote bulblet development, but their effect on Lycoris radiata has not been verified to date. In the present study, we examined the effect of different exogenous hormones on bulblet development in L. radiata, and found that gibberellic acid (GA) significantly inhibited, whereas paclobutrazol (PBZ), abscisic acid (ABA), and ethrel promoted bulblet development, especially PBZ, a GA biosynthesis inhibitor. Furthermore, GA reduced endogenous cytokinin (CK) content, as well as the activities of carbohydrate metabolism enzymes, including sucrose synthase (SUS) and glucose-1-phosphate adenylyltransferase (AGPase), by downregulating the expression levels of LrSUS1, LrSUS2, and genes encoding AGPase large and small subunits. This resulted in the decrease in carbohydrate accumulation in the bulblets, thus hindering their development. PBZ had the opposite effect to GA on carbohydrate metabolism; it decreased endogenous GA15 and GA24, thereby promoting bulblet development. ABA promoted endogenous auxin content and the activities of starch synthesis enzymes, especially soluble starch synthase (SSS) and granule-bound SS (GBSS), through the up-regulation of the expression levels of LrSS1, LrSS2, and LrGBSS1 genes, which could also result in the accumulation of carbohydrates in the bulblets and promote their development. In addition, ethrel application partly promoted bulblet development by promoting endogenous CK content. Although the accumulation of carbohydrates and the activity of starch enzymes were increased by ethrel treatment, we hypothesized that the effect of ethrel on regulating carbohydrate metabolism may be indirect. Our results could provide a basis for improving the propagation efficiency of L. radiata for production, as well as propose some directions for future research.
Collapse
Affiliation(s)
- Junxu Xu
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qingzhu Li
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ye Li
- Agricultural Technology Extension Service Station of Langxia Town, Shanghai, China
| | - Liuyan Yang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yongchun Zhang
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Yongchun Zhang,
| | - Youming Cai
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Youming Cai,
| |
Collapse
|
43
|
Liu J, Wang R, Wang X, Yang L, Zhang Q, Shan Y, Ding S. Effect of blanching and drying temperatures on the browning‐related enzymes and physicochemical properties of lily bulb flours. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jie Liu
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Rongrong Wang
- College of Food Science and Technology Hunan Agricultural University Changsha China
| | - Xinyu Wang
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Lvzhu Yang
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Qun Zhang
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Yang Shan
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| | - Shenghua Ding
- Longping Branch Graduate School Hunan University Changsha China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety Hunan Agricultural Product Processing Institute Hunan Academy of Agricultural Sciences Changsha China
| |
Collapse
|
44
|
Comparative proteomic analysis provides new insights into the specialization of shoots and stolons in bermudagrass (Cynodon dactylon L.). BMC Genomics 2019; 20:708. [PMID: 31510936 PMCID: PMC6740039 DOI: 10.1186/s12864-019-6077-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 12/26/2022] Open
Abstract
Background Bermudagrass (Cynodon dactylon L.) is an important turfgrass species with two types of stems, shoots and stolons. Despite their importance in determining the morphological variance and plasticity of bermudagrass, the intrinsic differences between stolons and shoots are poorly understood. Results In this study, we compared the proteomes of internode sections of shoots and stolons in the bermudagrass cultivar Yangjiang. The results indicated that 376 protein species were differentially accumulated in the two types of stems. Pathway enrichment analysis revealed that five and nine biochemical pathways were significantly enriched in stolons and shoots, respectively. Specifically, enzymes participating in starch synthesis all preferentially accumulated in stolons, whereas proteins involved in glycolysis and diverse transport processes showed relatively higher abundance in shoots. ADP-glucose pyrophosphorylase (AGPase) and pyruvate kinase (PK), which catalyze rate-limiting steps of starch synthesis and glycolysis, showed high expression levels and enzyme activity in stolons and shoots, respectively, in accordance with the different starch and soluble sugar contents of the two types of stems. Conclusions Our study revealed the differences between the shoots and stolons of bermudagrass at the proteome level. The results not only expand our understanding of the specialization of stolons and shoots but also provide clues for the breeding of bermudagrass and other turfgrasses with different plant architectures. Supplementary material Supplementary information accompanies this paper at 10.1186/s12864-019-6077-3.
Collapse
|
45
|
He X, Li W, Zhang W, Jin X, Shenkute AG, Aynalem T, Xu S, Wang W. Transcriptome Sequencing Analysis Provides Insights Into the Response to Fusarium oxysporum in Lilium pumilum. Evol Bioinform Online 2019; 15:1176934319838818. [PMID: 31223231 PMCID: PMC6563521 DOI: 10.1177/1176934319838818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023] Open
Abstract
Lily basal rot, caused by Fusarium oxysporum f. sp. lilii, is one of the most serious diseases of lily. Although the lily germplasm which is resistant to F. oxysporum has been used in disease-resistant breeding, few studies on its molecular mechanism of disease resistance have been reported. To comprehensively study the mechanism of resistance to F. oxysporum, transcriptome sequencings of root tissues from Lilium pumilum inoculated with F. oxysporum or sterile water for 6, 12, or 24 h were performed. A total of 50 GB of data were obtained from the transcriptome sequencings of the 6 L. pumilum samples, and 217 098 Unigenes were obtained after the de novo assembly, of which 38.36% Unigenes were annotated. The sequencing results showed that the numbers of differentially expressed genes at 6, 12, and 24 h after inoculation compared with the control were 111, 254, and 2500, respectively. The functional enrichment analysis of the differentially expressed genes showed that several pathways were involved in responses of L. pumilum, mainly including starch and sucrose metabolism, glycolysis/gluconeogenesis, phenylpropanoid biosynthesis, plant hormone signal transduction, flavonoid biosynthesis, vitamin B6 (VB6) biosynthesis, acid biosynthesis, proteasome, and ribosome. Transcription factor analysis revealed that the WRKY and ERF families played important roles in responses of L. pumilum to F. oxysporum. The results of this study elucidate the molecular responses to F. oxysporum in lily and lay a theoretical foundation for improving lily breeding and strategies for lily basal rot resistance.
Collapse
Affiliation(s)
- Xiangfeng He
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China.,Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Wanyue Li
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Wenzhu Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xiaotong Jin
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Awraris Getachew Shenkute
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tessema Aynalem
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Shufa Xu
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenhe Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China.,Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| |
Collapse
|
46
|
Li H, Wang R, Zhang Q, Li G, Shan Y, Ding S. Morphological, structural, and physicochemical properties of starch isolated from different lily cultivars grown in China. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1603998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Huan Li
- Hunan Academy of Agricultural Sciences, Hunan Agricultural Product Processing Institute, Changsha, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qun Zhang
- Hunan Academy of Agricultural Sciences, Hunan Agricultural Product Processing Institute, Changsha, China
| | - Gaoyang Li
- Hunan Academy of Agricultural Sciences, Hunan Agricultural Product Processing Institute, Changsha, China
| | - Yang Shan
- Hunan Academy of Agricultural Sciences, Hunan Agricultural Product Processing Institute, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| | - Shenghua Ding
- Hunan Academy of Agricultural Sciences, Hunan Agricultural Product Processing Institute, Changsha, China
- Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
| |
Collapse
|
47
|
Lazare S, Bechar D, Fernie AR, Brotman Y, Zaccai M. The proof is in the bulb: glycerol influences key stages of lily development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:321-340. [PMID: 30288818 DOI: 10.1111/tpj.14122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 05/24/2023]
Abstract
A bulb is a whole plant condensed into an underground organ. A geophyte's bulb comprises both food reserves and important developmental history that may affect its whole growth. In Easter lily (Lilium longiflorum), bulb size is associated with the plant's flowering pathway - vernalization or photoperiod - and also affects sprouting, flower quality and abortion rate. The aim of this study was to investigate the reasons for the major physiological differences between large and small bulbs. Lily bulbs start their development from secondary meristems along the stem, with large bulbs being heavier and bear more scales than small ones. Peeling the outer scales of a large bulb converts its physiological responses into those of a small bulb, implying that the physiological discrepancies in plants developing from large or small bulbs are mediated by factors inherent to the bulb. We therefore performed broad analyses of the metabolite composition in the scales of bulbs subjected to temperature regimes affecting further plant development. We found a striking association between the level of glycerol, a primary metabolite mostly synthesized in the outer scales, and a delay in sprouting and flowering time, and reduction in abortion rate. Exogenous glycerol application to the bulbs before planting corroborated these results. Moreover, transcriptome analyses showed that flowering-promoting gene expression was downregulated in the bulb after glycerol treatment, while potential flowering inhibitor as well as a dormancy-related gene expressions were upregulated. Based on these studies, we postulate that glycerol is a major factor influencing both vegetative and reproductive development in lily.
Collapse
Affiliation(s)
- Silit Lazare
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Daniel Bechar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Michele Zaccai
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| |
Collapse
|
48
|
Lazare S, Burgos A, Brotman Y, Zaccai M. The metabolic (under)groundwork of the lily bulb toward sprouting. PHYSIOLOGIA PLANTARUM 2018; 163:436-449. [PMID: 29274128 DOI: 10.1111/ppl.12685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 12/19/2017] [Indexed: 06/07/2023]
Abstract
Large bulbs of Lilium longiflorum have an obligatory cold requirement to flower. Bulb cooling is widely used to induce and accelerate flowering. However, in-depth investigations of the effect of bulb cooling on major landmarks of plant development are lacking. It has been demonstrated that low temperature induces carbohydrate degradation, yet integrative studies on metabolic changes occurring in the bulb are not available. We detected that cold exposure mainly hastened bulb sprouting, rather than floral transition or blooming. Metabolite profiling of cooled and non-cooled bulbs was carried out, revealing cold-induced accumulation of soluble sugars, lipids and specific amino acids, and a significant reduction in tricarboxylic acid (TCA)-cycle elements. We observed that metabolic pathways located in the cytosol - including glycolysis, lipid synthesis and part of the gamma-Aminobutyric acid (GABA) shunt - were enhanced by cold exposure, while mitochondrial metabolism - namely the TCA cycle - was reduced by cold. We suggest a physiological model accounting for this metabolic discrepancy.
Collapse
Affiliation(s)
- Silit Lazare
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Asdrubal Burgos
- Laboratorio de Biotecnología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, CP 15110, Zapopan, Jalisco, Mexico
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michele Zaccai
- Department of Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
49
|
Shi S, Duan G, Li D, Wu J, Liu X, Hong B, Yi M, Zhang Z. Two-dimensional analysis provides molecular insight into flower scent of Lilium 'Siberia'. Sci Rep 2018; 8:5352. [PMID: 29599431 PMCID: PMC5876372 DOI: 10.1038/s41598-018-23588-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/16/2018] [Indexed: 11/10/2022] Open
Abstract
Lily is a popular flower around the world not only because of its elegant appearance, but also due to its appealing scent. Little is known about the regulation of the volatile compound biosynthesis in lily flower scent. Here, we conducted an approach combining two-dimensional analysis and weighted gene co-expression network analysis (WGCNA) to explore candidate genes regulating flower scent production. In the approach, changes of flower volatile emissions and corresponding gene expression profiles at four flower developmental stages and four circadian times were both captured by GC-MS and RNA-seq methods. By overlapping differentially-expressed genes (DEGs) that responded to flower scent changes in flower development and circadian rhythm, 3,426 DEGs were initially identified to be candidates for flower scent production, of which 1,270 were predicted as transcriptional factors (TFs). The DEGs were further correlated to individual flower volatiles by WGCNA. Finally, 37, 41 and 90 genes were identified as candidate TFs likely regulating terpenoids, phenylpropanoids and fatty acid derivatives productions, respectively. Moreover, by WGCNA several genes related to auxin, gibberellins and ABC transporter were revealed to be responsible for flower scent production. Thus, this strategy provides an important foundation for future studies on the molecular mechanisms involved in floral scent production.
Collapse
Affiliation(s)
- Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Guangyou Duan
- Energy Plant Research Center, School of Life Sciences, Qilu Normal University, Jinan, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
50
|
Du F, Fan J, Wang T, Wu Y, Grierson D, Gao Z, Xia Y. Identification of differentially expressed genes in flower, leaf and bulb scale of Lilium oriental hybrid 'Sorbonne' and putative control network for scent genes. BMC Genomics 2017; 18:899. [PMID: 29166855 PMCID: PMC5700745 DOI: 10.1186/s12864-017-4303-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/14/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Lily is an economically important plant, with leaves and bulbs consisting of overlapping scales, large ornamental flowers and a very large genome. Although it is recognized that flowers and bulb scales are modified leaves, very little is known about the genetic control and biochemical differentiation underlying lily organogenesis and development. Here we examined the differentially expressed genes in flower, leaf and scale of lily, using RNA-sequencing, and identified organ-specific genes, including transcription factors, genes involved in photosynthesis in leaves, carbohydrate metabolism in bulb scales and scent and color production in flowers. RESULTS Over 11Gb data were obtained and 2685, 2296, and 1709 differentially expressed genes were identified in the three organs, with 581, 662 and 977 unique DEGs in F-vs-S, L-vs-S and L-vs-F comparisons. By functional enrichment analysis, genes likely to be involved in biosynthetic pathways leading to floral scent production, such as 1-deoxy-D-xylulose-5-phosphate synthase (DXS), 3-ketoacyl-CoA thiolase (KAT), hydroperoxide lyase (HPL), geranylgeranyl pyrophosphate (GGPP) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HDS) and terpene synthase (TPS), and floral color genes, such as dihydroflavonol 4-reductase (DFR), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) were identified. Distinct groups of genes that participate in starch and sucrose metabolism, such as sucrose synthase (SS), invertase (INV), sucrose phosphate synthase (SPS), starch synthase (SSS), starch branching enzyme (SBE), ADP-glucose pyrophosphorylase (AGP) andβ-amylase (BAM) and photosynthesis genes (Psa, Psb, Pet and ATP) were also identified. The expression of six floral fragrance-related DGEs showed agreement between qRT-PCR results and RPKM values, confirming the value of the data obtained by RNA-seq. We obtained the open reading frame of the terpene synthase gene from Lilium 'Sorbonne', designated LsTPS, which had 99.55% homology to transcript CL4520.Contig5_All. In addition, 54, 48 and 50 differently expressed transcription factor were identified by pairwise comparisons between the three organs and a regulatory network for monoterpene biosynthesis was constructed. CONCLUSIONS Analysis of differentially expressed genes in flower, leaf and bulb scale of lily, using second generation sequencing technology, yielded detailed information on lily metabolic differentiation in three organs. Analysis of the expression of flower scent biosynthesis genes has provided a model for the regulation of the pathway and identified a candidate gene encoding an enzyme catalyzing the final step in scent production. These digital gene expression profiles provide a valuable and informative database for the further identification and analysis of structural genes and transcription factors in different lily organs and elucidation of their function.
Collapse
Affiliation(s)
- Fang Du
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 China
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Junmiao Fan
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 China
| | - Ting Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801 China
| | - Yun Wu
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Donald Grierson
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Zhongshan Gao
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yiping Xia
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|