1
|
Li X, Yan Y, Wang L, Li G, Wu Y, Zhang Y, Xu L, Wang S. Integrated Transcriptomic and Metabolomic Analysis Revealed Abscisic Acid-Induced Regulation of Monoterpene Biosynthesis in Grape Berries. PLANTS (BASEL, SWITZERLAND) 2024; 13:1862. [PMID: 38999702 PMCID: PMC11243831 DOI: 10.3390/plants13131862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Monoterpenes are a class of volatile organic compounds that play crucial roles in imparting floral and fruity aromas to Muscat-type grapes. However, our understanding of the regulatory mechanisms underpinning monoterpene biosynthesis in grapes, particularly following abscisic acid (ABA) treatment, remains elusive. This study aimed to explore the impact of exogenous ABA on monoterpene biosynthesis in Ruiduhongyu grape berries by employing Headspace Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry (HS-SPME/GC-MS) analysis and transcriptome sequencing. The results suggested significant differences in total soluble solids (TSS), pH, and total acid content. ABA treatment resulted in a remarkable increase in endogenous ABA levels, with concentrations declining from veraison to ripening stages. ABA treatment notably enhanced monoterpene concentrations, particularly at the E_L37 and E_L38 stages, elevating the overall floral aroma of grape berries. According to the variable gene expression patterns across four developmental stages in response to ABA treatment, the E_L37 stage had the largest number of differential expressed genes (DEGs), which was correlated with a considerable change in free monoterpenes. Furthermore, functional annotation indicated that the DEGs were significantly enriched in primary and secondary metabolic pathways, underlining the relationship between ABA, sugar accumulation, and monoterpene biosynthesis. ABA treatment upregulated key genes involved in the methylerythritol phosphate (MEP) pathway, enhancing carbon allocation and subsequently impacting terpene synthesis. This study also identified transcription factors, including MYB and AP2/ERF families, potentially modulating monoterpene and aroma-related genes. Weighted gene co-expression network analysis (WGCNA) linked ABA-induced gene expression to monoterpene accumulation, highlighting specific modules enriched with genes associated with monoterpene biosynthesis; one of these modules (darkgreen) contained genes highly correlated with most monoterpenes, emphasizing the role of ABA in enhancing grape quality during berry maturation. Together, these findings provide valuable insights into the multifaceted effects of exogenous ABA on monoterpene compounds and grape berry flavor development, offering potential applications in viticulture and enology.
Collapse
Affiliation(s)
- Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixuan Yan
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guanhan Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yusen Wu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ying Zhang
- Grape and Wine Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Lurong Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Liu M, Wang C, Ji H, Sun M, Liu T, Wang J, Cao H, Zhu Q. Ethylene biosynthesis and signal transduction during ripening and softening in non-climacteric fruits: an overview. FRONTIERS IN PLANT SCIENCE 2024; 15:1368692. [PMID: 38736445 PMCID: PMC11082881 DOI: 10.3389/fpls.2024.1368692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the ethylene-mediated ripening and softening of non-climacteric fruits have been widely mentioned. In this paper, recent research into the ethylene-mediated ripening and softening of non-climacteric fruits is summarized, including the involvement of ethylene biosynthesis and signal transduction. In addition, detailed studies on how ethylene interacts with other hormones to regulate the ripening and softening of non-climacteric fruits are also reviewed. These findings reveal that many regulators of ethylene biosynthesis and signal transduction are linked with the ripening and softening of non-climacteric fruits. Meanwhile, the perspectives of future research on the regulation of ethylene in non-climacteric fruit are also proposed. The overview of the progress of ethylene on the ripening and softening of non-climacteric fruit will aid in the identification and characterization of key genes associated with ethylene perception and signal transduction during non-climacteric fruit ripening and softening.
Collapse
Affiliation(s)
- Meiying Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
- College of Enology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaoran Wang
- College of Agriculture & Forestry Technology, Weifang Vocational College, Weifang, China
| | - Hongliang Ji
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Maoxiang Sun
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Tongyu Liu
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Jiahao Wang
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Hui Cao
- Key Laboratory of Biochemistry and Molecular Biology in University of Shandong, School of Advanced Agricultural Sciences, Weifang University, Weifang, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Wang YC, Wei Y, Li XY, Zhang HM, Meng X, Duan CQ, Pan QH. Ethylene-responsive VviERF003 modulates glycosylated monoterpenoid synthesis by upregulating VviGT14 in grapes. HORTICULTURE RESEARCH 2024; 11:uhae065. [PMID: 38689696 PMCID: PMC11059816 DOI: 10.1093/hr/uhae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 05/02/2024]
Abstract
Terpenoids are important contributors to the aroma of grapes and wines. Grapes contain terpenoids in both volatile free form and non-volatile glycosidic form, with the latter being more abundant. Glycosylated terpenoids are deemed as latent aromatic potentials for their essential role in adding to the flowery and fruity bouquet of wines. However, the transcriptional regulatory mechanism underlying glycosylated terpenoid biosynthesis remains poorly understood. Our prior study identified an AP2/ERF transcription factor, VviERF003, through DNA pull-down screening using the promoter of terpenoid glycosyltransferase VviGT14 gene. This study demonstrated that both genes were co-expressed and synchronized with the accumulation of glycosylated monoterpenoids during grape maturation. VviERF003 can bind to the VviGT14 promoter and promote its activity according to yeast one-hybrid and dual-luciferase assays. VviERF003 upregulated VviGT14 expression in vivo, leading to increased production of glycosylated monoterpenoids based on the evidence from overexpression or RNA interference in leaves, berry skins, and calli of grapes, as well as tomato fruits. Additionally, VviERF003 and VviGT14 expressions and glycosylated monoterpenoid levels were induced by ethylene in grapes. The findings suggest that VviERF003 is ethylene-responsive and stimulates glycosylated monoterpenoid biosynthesis through upregulating VviGT14 expression.
Collapse
Affiliation(s)
- Ya-Chen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiang-Yi Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Min Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Meng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
4
|
Niederauer GF, de Oliveira GL, Aono AH, da Silva Graciano D, Carmello-Guerreiro SM, Moura MF, de Souza AP. Uncovering the molecular mechanisms of russet skin formation in Niagara grapevine (Vitis vinifera × Vitis labrusca). Sci Rep 2024; 14:6600. [PMID: 38504117 PMCID: PMC10950848 DOI: 10.1038/s41598-024-55745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024] Open
Abstract
Grape breeding programs are mostly focused on developing new varieties with high production volume, sugar contents, and phenolic compound diversity combined with resistance and tolerance to the main pathogens under culture and adverse environmental conditions. The 'Niagara' variety (Vitis labrusca × Vitis vinifera) is one of the most widely produced and commercialized table grapes in Brazil. In this work, we selected three Niagara somatic variants with contrasting berry phenotypes and performed morphological and transcriptomic analyses of their berries. Histological sections of the berries were also performed to understand anatomical and chemical composition differences of the berry skin between the genotypes. An RNA-Seq pipeline was implemented, followed by global coexpression network modeling. 'Niagara Steck', an intensified russet mutant with the most extreme phenotype, showed the largest difference in expression and showed selection of coexpressed network modules involved in the development of its russet-like characteristics. Enrichment analysis of differently expressed genes and hub network modules revealed differences in transcription regulation, auxin signaling and cell wall and plasmatic membrane biogenesis. Cutin- and suberin-related genes were also differently expressed, supporting the anatomical differences observed with microscopy.
Collapse
Affiliation(s)
- Guilherme Francio Niederauer
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Geovani Luciano de Oliveira
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Diego da Silva Graciano
- Department of Plant Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Department of Plant Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
5
|
Olmedo P, Vidal J, Ponce E, Defilippi BG, Pérez-Donoso AG, Meneses C, Carpentier S, Pedreschi R, Campos-Vargas R. Proteomic and Low-Polar Metabolite Profiling Reveal Unique Dynamics in Fatty Acid Metabolism during Flower and Berry Development of Table Grapes. Int J Mol Sci 2023; 24:15360. [PMID: 37895040 PMCID: PMC10607693 DOI: 10.3390/ijms242015360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Grapevine development and ripening are complex processes that involve several biochemical pathways, including fatty acid and lipid metabolism. Fatty acids are essential components of lipids, which play crucial roles in fruit maturation and flavor development. However, the dynamics of fatty acid metabolism in grape flowers and berries are poorly understood. In this study, we present those dynamics and investigate the mechanisms of fatty acid homeostasis on 'Thompson Seedless' berries using metabolomic and proteomic analyses. Low-polar metabolite profiling indicated a higher abundance of fatty acids at the pre-flowering and pre-veraison stages. Proteomic analyses revealed that grape flowers and berries display unique profiles of proteins involved in fatty acid biosynthesis, triacylglycerol assembly, fatty acid β-oxidation, and lipid signaling. These findings show, for the first time, that fatty acid metabolism also plays an important role in the development of non-oil-rich tissues, opening new perspectives about lipid function and its relation to berry quality.
Collapse
Affiliation(s)
- Patricio Olmedo
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
| | - Juan Vidal
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
| | - Excequel Ponce
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
| | - Bruno G. Defilippi
- Unidad de Postcosecha, Instituto de Investigaciones Agropecuarias (INIA) La Platina, Santiago 8831314, Chile;
| | - Alonso G. Pérez-Donoso
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (A.G.P.-D.); (C.M.)
| | - Claudio Meneses
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (A.G.P.-D.); (C.M.)
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
| | - Sebastien Carpentier
- Facility for Systems Biology Based Mass Spectrometry SYBIOMA, KU Leuven, B-3000 Leuven, Belgium;
- Bioversity International, Biodiversity for Food & Agriculture, B-3001 Leuven, Belgium
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile; (P.O.); (J.V.); (E.P.)
- Millennium Institute Center for Genome Regulation (CRG), Santiago 7800003, Chile
| | - Reinaldo Campos-Vargas
- Centro de Estudios Postcosecha, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8831314, Chile;
| |
Collapse
|
6
|
Ferrandino A, Pagliarani C, Pérez-Álvarez EP. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. FRONTIERS IN PLANT SCIENCE 2023; 14:1124298. [PMID: 37404528 PMCID: PMC10315584 DOI: 10.3389/fpls.2023.1124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.
Collapse
Affiliation(s)
- Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Chiara Pagliarani
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP. Finca La Grajera, Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, La Rioja, Spain
| |
Collapse
|
7
|
Ren Y, Sadeghnezhad E, Leng X, Pei D, Dong T, Zhang P, Gong P, Jia H, Fang J. Assessment of 'Cabernet Sauvignon' Grape Quality Half-Véraison to Maturity for Grapevines Grown in Different Regions. Int J Mol Sci 2023; 24:ijms24054670. [PMID: 36902101 PMCID: PMC10002954 DOI: 10.3390/ijms24054670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Grapes are widely cultivated around the world and their quality has distinct regional characteristics. In this study, the qualitative characteristics of the 'Cabernet Sauvignon' grape variety in seven regions, from half-véraison to maturity, were analyzed comprehensively at physiological and transcriptional levels. The results indicated that the quality traits of 'Cabernet Sauvignon' grapes in different regions were significantly different with obvious regionality. Total phenols, anthocyanins, and titratable acids were the main factors of the regionality of berry quality, which were very sensitive to changes in the environment. It should be noted that the changes in titrating acids and total anthocyanin of berries vary greatly from half-véraison to maturity between regions. Moreover, the transcriptional analysis showed that the co-expressed genes between regions characterized the core transcriptome of berry development, while the unique genes of each region reflected the regionality of berries. The differentially expressed genes (DEGs) between half-véraison and maturity can be used to demonstrate that the environment of the regions could promote or inhibit gene expression. The functional enrichment suggested that these DEGs help to understand the interpretation of the plasticity of the quality composition of grapes according to the environment. Taken together, the information generated by this study could contribute to the development of viticultural practices aimed at making better use of native varieties for the development of wines with regional characteristics.
Collapse
Affiliation(s)
- Yanhua Ren
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Ehsan Sadeghnezhad
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangpeng Leng
- Horticultural College, Qingdao Agricultural University, Qingdao 266109, China
| | - Dan Pei
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Peian Zhang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Peijie Gong
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing 210095, China
- Horticultural College, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
8
|
Teixeira A, Noronha H, Frusciante S, Diretto G, Gerós H. Biosynthesis of Chlorophyll and Other Isoprenoids in the Plastid of Red Grape Berry Skins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1873-1885. [PMID: 36652329 PMCID: PMC9896546 DOI: 10.1021/acs.jafc.2c07207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Despite current knowledge showing that fruits like tomato and grape berries accumulate different components of the light reactions and Calvin cycle, the role of green tissues in fruits is not yet fully understood. In mature tomato fruits, chlorophylls are degraded and replaced by carotenoids through the conversion of chloroplasts in chromoplasts, while in red grape berries, chloroplasts persist at maturity and chlorophylls are masked by anthocyanins. To study isoprenoid and lipid metabolism in grape skin chloroplasts, metabolites of enriched organelle fractions were analyzed by high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and the expression of key genes was evaluated by real-time polymerase chain reaction (PCR) in berry skins and leaves. Overall, the results indicated that chloroplasts of the grape berry skins, as with leaf chloroplasts, share conserved mechanisms of synthesis (and degradation) of important components of the photosynthetic machinery. Some of these components, such as chlorophylls and their precursors, and catabolites, carotenoids, quinones, and lipids have important roles in grape and wine sensory characteristics.
Collapse
Affiliation(s)
- António Teixeira
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Henrique Noronha
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Sarah Frusciante
- Italian
National Agency for New Technologies, Energy and Sustainable Development
(ENEA), Casaccia Research Centre, 00123 Rome, Italy
| | - Gianfranco Diretto
- Italian
National Agency for New Technologies, Energy and Sustainable Development
(ENEA), Casaccia Research Centre, 00123 Rome, Italy
| | - Hernâni Gerós
- Centre
of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Manzoor I, Samantara K, Bhat MS, Farooq I, Bhat KM, Mir MA, Wani SH. Advances in genomics for diversity studies and trait improvement in temperate fruit and nut crops under changing climatic scenarios. FRONTIERS IN PLANT SCIENCE 2023; 13:1048217. [PMID: 36743560 PMCID: PMC9893892 DOI: 10.3389/fpls.2022.1048217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 06/18/2023]
Abstract
Genetic improvement of temperate fruit and nut crops through conventional breeding methods is not sufficient alone due to its extreme time-consuming, cost-intensive, and hard-to-handle approach. Again, few other constraints that are associated with these species, viz., their long juvenile period, high heterozygosity, sterility, presence of sexual incompatibility, polyploidy, etc., make their selection and improvement process more complicated. Therefore, to promote precise and accurate selection of plants based on their genotypes, supplement of advanced biotechnological tools, viz., molecular marker approaches along with traditional breeding methods, is highly required in these species. Different markers, especially the molecular ones, enable direct selection of genomic regions governing the trait of interest such as high quality, yield, and resistance to abiotic and biotic stresses instead of the trait itself, thus saving the overall time and space and helping screen fruit quality and other related desired traits at early stages. The availability of molecular markers like SNP (single-nucleotide polymorphism), DArT (Diversity Arrays Technology) markers, and dense molecular genetic maps in crop plants, including fruit and nut crops, led to a revelation of facts from genetic markers, thus assisting in precise line selection. This review highlighted several aspects of the molecular marker approach that opens up tremendous possibilities to reveal valuable information about genetic diversity and phylogeny to boost the efficacy of selection in temperate fruit crops through genome sequencing and thus cultivar improvement with respect to adaptability and biotic and abiotic stress resistance in temperate fruit and nut species.
Collapse
Affiliation(s)
- Ikra Manzoor
- Division of Fruit Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Momin Showkat Bhat
- Division of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Iqra Farooq
- Field Station Bonera, Pulwama, Council of Industrial and Scientific Research (CSIR) Indian Institute of Integrative Medicine, J&K, Jammu, India
| | - Khalid Mushtaq Bhat
- Division of Fruit Science, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Mohammad Amin Mir
- Ambri Apple Research Centre, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shopian, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, Anantnag, India
| |
Collapse
|
10
|
Garrido A, Conde A, De Vos RCH, Cunha A. The influence of light microclimate on the lipid profile and associated transcripts of photosynthetically active grape berry seeds. FRONTIERS IN PLANT SCIENCE 2023; 13:1022379. [PMID: 36684778 PMCID: PMC9846335 DOI: 10.3389/fpls.2022.1022379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Lipids and oils determine the quality and industrial value of grape seeds. Studies with legume seeds demonstrated the influence of light on lipid metabolism and its association with seed photosynthesis. Grape berry seeds are photosynthetically active till mature stage, but mostly during the green stage and veraison. The objective of this work was to compare the lipid profiles of seeds from white grape berries (cv. Alvarinho) growing at two contrasting light microclimates in the canopy (low and high light, LL and HL respectively), previously reported to have distinct photosynthetic competences. Berries were collected at three developmental stages (green, veraison and mature) and from both microclimates, and the seeds were analyzed for their lipid profiles in an untargeted manner using liquid chromatography coupled to high resolution mass spectrometry (LCMS). The seed lipid profiles differed greatly among berry developmental stages, and to a lesser extend between microclimates. The LL microclimate coincided with a higher relative levels of fatty acids specifically at mature stage, while the HL microclimate led to an up-regulation of ceramides at green stage and of triacylglycerols and glycerophospholipids at mature stage. The seed transcript levels of four key genes (VvACCase1, VvΔ9FAD, VvFAD6 and VvLOXO) involved in fatty acid metabolism were analyzed using real-time qPCR. The lipoxygenase gene (VvLOXO) was down- and up-regulated by HL, as compared to LL, in seeds at green and veraison stages, respectively. These results suggest that seed photosynthesis may play distinct roles during seed growth and development, possibly by fueling different lipid pathways: at green stage mainly towards the accumulation of membrane-bound lipid species that are essential for cell growth and maintenance of the photosynthetic machinery itself; and at veraison and mature stages mainly towards storage lipids that contribute to the final quality of the grape seeds.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), Wageningen, Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
11
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
12
|
Koyama K, Kono A, Ban Y, Bahena-Garrido SM, Ohama T, Iwashita K, Fukuda H, Goto-Yamamoto N. Genetic architecture of berry aroma compounds in a QTL (quantitative trait loci) mapping population of interspecific hybrid grapes (Vitis labruscana × Vitis vinifera). BMC PLANT BIOLOGY 2022; 22:458. [PMID: 36151514 PMCID: PMC9503205 DOI: 10.1186/s12870-022-03842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although grapes accumulate diverse groups of volatile compounds, their genetic regulation in different cultivars remains unelucidated. Therefore, this study investigated the volatile composition in the berries of an interspecific hybrid population from a Vitis labruscana 'Campbell Early' (CE) × Vitis vinifera 'Muscat of Alexandria' (MA) cross to understand the relationship among volatile compounds and their genetic regulation. Then, a quantitative trait locus (QTL) analysis of its volatile compounds was conducted. RESULTS While MA contained higher concentrations of monoterpenes and norisoprenoids, CE contained higher concentrations of C6 compounds, lactones and shikimic acid derivatives, including volatiles characteristic to American hybrids, i.e., methyl anthranilate, o-aminoacetophenone and mesifurane. Furthermore, a cluster analysis of volatile profiles in the hybrid population discovered ten coordinately modulated free and bound volatile clusters. QTL analysis identified a major QTL on linkage group (LG) 5 in the MA map for 14 monoterpene concentrations, consistent with a previously reported locus. Additionally, several QTLs detected in the CE map affected the concentrations of specific monoterpenes, such as linalool, citronellol and 1,8-cineol, modifying the monoterpene composition in the berries. As for the concentrations of five norisoprenoids, a major common QTL on LG2 was discovered first in this study. Several QTLs with minor effects were also discovered in various volatile groups, such as lactones, alcohols and shikimic acid derivatives. CONCLUSIONS An overview of the profiles of aroma compounds and their underlying QTLs in a population of interspecific hybrid grapes in which muscat flavor compounds and many other aroma compounds were mixed variously were elucidated. Coordinate modulation of the volatile clusters in the hybrid population suggested an independent mechanism for controlling the volatiles of each group. Accordingly, specific QTLs with significant effects were observed for terpenoids, norisoprenoids and some volatiles highly contained in CE berries.
Collapse
Affiliation(s)
- Kazuya Koyama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Atsushi Kono
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Yusuke Ban
- Western Region Agricultural Research Center (Kinki, Chugoku and Shikoku Regions), NARO, 6-12-1 Nishifukatsu, Fukuyama, Hiroshima, 721-8514, Japan
| | | | - Tomoko Ohama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiro Iwashita
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Hisashi Fukuda
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Nami Goto-Yamamoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
13
|
Genome-Wide Analysis of the ERF Family and Identification of Potential Genes Involved in Fruit Ripening in Octoploid Strawberry. Int J Mol Sci 2022; 23:ijms231810550. [PMID: 36142464 PMCID: PMC9502190 DOI: 10.3390/ijms231810550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Ethylene response factors (ERFs) belonging to the APETALA2/ERF superfamily acted at the end of the ethylene signaling pathway, and they were found to play important roles in plant growth and development. However, the information of ERF genes in strawberry and their involvement in fruit ripening have been limited. Here, a total of 235 ERF members were identified from 426 AP2/ERF genes at octoploid strawberry genome level and classified into six subgroups according to their sequence characteristics and phylogenetic relationship. Conserved motif and gene structure analysis supported the evolutionary conservation of FaERFs. Syntenic analysis showed that four types of duplication events occurred during the expansion of FaERF gene family. Of these, WGD/segmental duplication played a major role. Transcriptomic data of FaERF genes during fruit ripening and in response to abscisic acid screened one activator (FaERF316) and one repressor (FaERF118) that were involved in fruit ripening. Transcriptional regulation analysis showed some transcription factors related to ripening such as ABI4, TCP15, and GLK1 could bind to FaERF316 or FaERF118 promoters, while protein-protein interaction analysis displayed some proteins associated with plant growth and development could interact with FaERF118 or FaERF316. These results suggested that FaERF118 and FaERF316 were potential genes to regulate strawberry ripening. In summary, the present study provides the comprehensive and systematic information on FaERF family evolution and gains insights into FaERF's potential regulatory mechanism in strawberry ripening.
Collapse
|
14
|
Liu S, Shan B, Zhou X, Gao W, Liu Y, Zhu B, Sun L. Transcriptome and Metabolomics Integrated Analysis Reveals Terpene Synthesis Genes Controlling Linalool Synthesis in Grape Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9084-9094. [PMID: 35820041 DOI: 10.1021/acs.jafc.2c00368] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, four hybrids from the cross between "Italia" and "Tamina" grapes were chosen to investigate their distinct monoterpenoids patterns and candidate genes involved. Monoterpenoid profiles and transcriptome data were generated at four berry developmental stages. Trans-rose oxide, cis-rose oxide, citronellol, neral, nerol, nerol oxide, geraniol, geranial, geranic acid, and cis-isogeraniol were the dominant compounds in R250 hybrid, while linalool, hotrienol, linalool oxide pyranoside, and cis-furan linalool oxide were the main compounds in R77 hybrid. Six TPS-g subfamily genes were found related with the contents of linalool and its related monoterpenoids by weighted gene coexpression network analysis (WGCNA) and phylogenetic analysis. Among them, TPS59 was cloned and functionally verified by transient overexpression in the leaves of Vitis quinquangularis. Meanwhile, NAC (newGene_195), C2C2-GATA (VIT_15s0021g02510), and bHLH (VIT_14s0128g00110) were selected as candidate transcription factors (TFs) that could regulate the expression of the six TPS-b genes. These data enhanced our understanding on the regulation of monoterpenoid biosynthesis in grapes.
Collapse
Affiliation(s)
- Songyu Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Rui-Wang-Fen, Minzhuang Road, Beijing 100093, China
| | - Bingqi Shan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Rui-Wang-Fen, Minzhuang Road, Beijing 100093, China
| | - Xiaomiao Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Rui-Wang-Fen, Minzhuang Road, Beijing 100093, China
| | - Wenping Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yaran Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing 100083, China
- Beijing Key Laboratory of Forestry Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lei Sun
- Institute of Forestry and Pomology, Beijing Academy of Agricultural and Forestry Sciences, Rui-Wang-Fen, Minzhuang Road, Beijing 100093, China
| |
Collapse
|
15
|
Ginzberg I, Faigenboim A. Ripening of Pomegranate Skin as Revealed by Developmental Transcriptomics. Cells 2022; 11:cells11142215. [PMID: 35883658 PMCID: PMC9320897 DOI: 10.3390/cells11142215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
The appearance of pomegranate (Punica granatum L.) fruit is highly important for its marketing. The primary concerns are obtaining sufficient red pigment accumulation and minimal cracking of the fruit skin (the outer red layer of the peel). We analyzed the skin transcriptome of pomegranate cv. Wonderful at distinct time points of fruit development to characterize the processes that occur in the skin during fruit ripening and which may reflect on processes in the whole fruit, such as the non-climacteric nature of pomegranate. The data suggested a ripening mechanism in pomegranate skin that differs from that in strawberry—the model plant for non-climacteric fruit where abscisic acid is the growth regulator that drives ripening—involving ethylene, polyamine, and jasmonic acid pathways. The biosynthetic pathways of important metabolites in pomegranate—hydrolyzable tannins and anthocyanins—were co-upregulated at the ripening stage, in line with the visual enhancement of red coloration. Interestingly, cuticle- and cell-wall-related genes that showed differential expression between the developmental stages were mainly upregulated in the skin of early fruit, with lower expression at mid-growth and ripening stages. Nevertheless, lignification may be involved in skin hardening in the mature fruit.
Collapse
|
16
|
Wan R, Song J, Lv Z, Qi X, Han X, Guo Q, Wang S, Shi J, Jian Z, Hu Q, Chen Y. Genome-Wide Identification and Comprehensive Analysis of the AP2/ERF Gene Family in Pomegranate Fruit Development and Postharvest Preservation. Genes (Basel) 2022; 13:895. [PMID: 35627280 PMCID: PMC9141937 DOI: 10.3390/genes13050895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a kind of fruit with significant economic, ecological and health values. AP2/ERF transcription factors belong to a large group of factors mainly found in plants and play key roles in plant growth and development. However, AP2/ERF genes in pomegranate and their implication in development and postharvest preservation have been little described. In this study, 116 PgAP2/ERF genes in pomegranate were identified and renamed based on their chromosomal distributions. Phylogenetic relationship with genes from other species, structures, duplications, annotations, cis-elements in promoter sequences, and protein-protein interaction networks among PgAP2/ERF proteins were comprehensively explored. Expression analysis revealed several PgAP2/ERFs associated with the phenotypes of pomegranate seed hardness, including PgAP2/ERF5, PgAP2/ERF36, PgAP2/ERF58, and PgAP2/ERF86. Subsequent analysis indicated that many differentially expressed PgAP2/ERF genes are potentially important regulators of pomegranate fruit development. Furthermore, expression of more than one-half of PgAP2/ERFs was repressed in 'Tunisian soft seed' pomegranate fruit under low-temperature cold storage. The results showed that 1-MCP implicated in promoting postharvest preservation of 'Tunisian soft seed' pomegranate upregulated the PgAP2/ERF4, PgAP2/ERF15, PgAP2/ERF26, PgAP2/ERF30, PgAP2/ERF35 and PgAP2/ERF45 genes compared to those under low-temperature cold storage. This indicates that these genes are important candidate genes involved in pomegranate postharvest preservation. In summary, the findings of the present study provide an important basis for characterizing the PgAP2/ERF family genes and provide information on the candidate genes involved in pomegranate fruit development and postharvest preservation.
Collapse
Affiliation(s)
- Ran Wan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Jinhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Zhenyang Lv
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Xingcheng Qi
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Xuemeng Han
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Qiang Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Sa Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Jiangli Shi
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Zaihai Jian
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Qingxia Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
| | - Yanhui Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China; (R.W.); (J.S.); (Z.L.); (X.Q.); (X.H.); (Q.G.); (S.W.); (J.S.); (Z.J.); (Y.C.)
- Henan Key Laboratory of Fruit and Cucurbit Biology, College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
17
|
Wang J, VanderWeide J, Yan Y, Tindjau R, Pico J, Deluc L, Zandberg WF, Castellarin SD. Impact of hormone applications on ripening-related metabolites in Gewürztraminer grapes (Vitis vinifera L.): The key role of jasmonates in terpene modulation. Food Chem 2022; 388:132948. [PMID: 35447584 DOI: 10.1016/j.foodchem.2022.132948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/27/2022] [Accepted: 04/08/2022] [Indexed: 01/20/2023]
Abstract
Terpenes play a formative role in grape and wine flavor, particularly for high-terpenic cultivars. Differences in terpene profiles influence grape varietal character and vintage quality. Little is known about the endogenous factors controlling terpene biosynthesis in grape. Through multiple experiments, six hormones (abscisic acid, ABA; ethylene, ETH; jasmonic acid, JA; methyl jasmonate, MeJA; indole-3-acetic acid, IAA; 1-naphthaleneacetic acid, NAA) that either promote or repress ripening were applied to Gewürztraminer clusters near veraison to gauge their effect on ripening and terpene biosynthesis. Jasmonates (JA, MeJA) increased terpene concentrations and the expression of terpene genes in grapes. Such increases were not associated to increases of other ripening-related metabolites such as sugars or anthocyanins. MeJA also affected the expression of several hormone related genes, increased IAA levels, and reduced sugar and anthocyanin concentration in grapes. This research provides novel insights into terpene regulation by ripening-related hormones and jasmonates in grapes.
Collapse
Affiliation(s)
- Junfang Wang
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Joshua VanderWeide
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yifan Yan
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Ricco Tindjau
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Joana Pico
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Laurent Deluc
- Department of Horticulture, Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| | - Wesley F Zandberg
- Department of Chemistry, Wine Research Centre, Irving K. Barber Faculty of Science, University of British Columbia, Okanagan Campus, Canada
| | - Simone D Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
18
|
Savoi S, Torregrosa L, Romieu C. Transcripts switched off at the stop of phloem unloading highlight the energy efficiency of sugar import in the ripening V. vinifera fruit. HORTICULTURE RESEARCH 2021; 8:193. [PMID: 34465746 PMCID: PMC8408237 DOI: 10.1038/s41438-021-00628-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 06/03/2021] [Accepted: 06/15/2021] [Indexed: 05/24/2023]
Abstract
Transcriptomic changes at the cessation of sugar accumulation in the pericarp of Vitis vinifera were addressed on single berries re-synchronised according to their individual growth patterns. The net rates of water, sugars and K+ accumulation inferred from individual growth and solute concentration confirmed that these inflows stopped simultaneously in the ripe berry, while the small amount of malic acid remaining at this stage was still being oxidised at low rate. Re-synchronised individual berries displayed negligible variations in gene expression among triplicates. RNA-seq studies revealed sharp reprogramming of cell-wall enzymes and structural proteins at the stop of phloem unloading, associated with an 80% repression of multiple sugar transporters and aquaporins on the plasma or tonoplast membranes, with the noticeable exception of H+/sugar symporters, which were rather weakly and constitutively expressed. This was verified in three genotypes placed in contrasted thermo-hydric conditions. The prevalence of SWEET suggests that electrogenic transporters would play a minor role on the plasma membranes of SE/CC complex and the one of the flesh, while sucrose/H+ exchangers dominate on its tonoplast. Cis-regulatory elements present in their promoters allowed to sort these transporters in different groups, also including specific TIPs and PIPs paralogs, and cohorts of cell wall-related genes. Together with simple thermodynamic considerations, these results lead to propose that H+/sugar exchangers at the tonoplast, associated with a considerably acidic vacuolar pH, may exhaust cytosolic sugars in the flesh and alleviate the need for supplementary energisation of sugar transport at the plasma membrane.
Collapse
Affiliation(s)
- Stefania Savoi
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France
| | - Laurent Torregrosa
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France
| | - Charles Romieu
- AGAP, Montpellier University, CIRAD, INRAe, Institut Agro-Montpellier, UMT génovigne, 34060, 2 place Viala, Montpellier CEDEX, France.
| |
Collapse
|
19
|
Effects of Traditional and Modern Post-Harvest Withering Processes on the Composition of the Vitis v. Corvina Grape and the Sensory Profile of Amarone Wines. Molecules 2021; 26:molecules26175198. [PMID: 34500632 PMCID: PMC8434166 DOI: 10.3390/molecules26175198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
In the Valpolicella area (Verona, Italy) Vitis vinifera cv. Corvina is the main grape variety used to produce Amarone wine. Before starting the winemaking process, the Corvina grapes are stored in a withering (i.e., dehydrating) warehouse until about 30% of the berry weight is lost (WL). This practice is performed to concentrate the metabolites in the berry and enrich the Amarone wine in aroma and antioxidant compounds. In compliance with the guidelines and strict Amarone protocol set by the Consorzio of Amarone Valpolicella, withering must be carried out by setting the grapes in a suitable environment, either under controlled relative air humidity (RH) conditions and wind speed (WS)—no temperature modification is to be applied—or, following the traditional methods, in non-controlled environmental conditions. In general, the two processes have different dehydration kinetics due to the different conditions in terms of temperature, RH, and WS, which affect the accumulation of sugars and organic acids and the biosynthesis of secondary metabolites such as stilbenes and glycoside aroma precursors. For this study, the two grape-withering processes were carried out under controlled (C) and non-controlled (NC) conditions, and the final compositions of the Corvina dried grapes were compared also to evaluate the effects on the organoleptic characteristics of Amarone wine. The findings highlighted differences between the two processes mainly in terms of the secondary metabolites of the dried grapes, which affect the organoleptic characteristics of Amarone wine. Indeed, by the sensory evaluation, wines produced by adopting the NC process were found more harmonious, elegant, and balanced. Finally, we can state how using a traditional system, grapes were characterised by higher levels of VOCs (volatile compounds), whilst wines had a higher and appreciable complexity and finesse.
Collapse
|
20
|
Zheng T, Zhang S, Leng X, Sadeghnezhad E, Li T, Pervaiz T, Liu F, Jia H, Fang J. Profiling Analysis of Volatile and Non-volatile Compounds in Vitis Vinifera Berries (cv. Chardonnay) and Spontaneous Bud Mutation. Front Nutr 2021; 8:715528. [PMID: 34422886 PMCID: PMC8378792 DOI: 10.3389/fnut.2021.715528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/09/2021] [Indexed: 01/09/2023] Open
Abstract
A novel clonal variety of Vitis vinifera was identified from “Chardonnay” using inter-simple sequence repeat (ISSR) markers and called “bud mutation. ” The metabolomic profiles in Chardonnay and bud mutation berries indicated essential differences in the expression of key genes in the pathways of 2-C-methyl-D-erythritol-4-phosphate (MEP) and lipoxygenase-hydroperoxide lyase (LOX-HPL). Bud mutation fruits also matured 10 days earlier than Chardonnay and have higher carotenoid, sugar, and acidic compound contents. Furthermore, the gene expression was examined in the biosynthetic pathways of two ripening-associated hormones, abscisic acid (ABA) and jasmonic acid (JA), which significantly increased in bud mutation compared with the Chardonnay fruit. The synthesis and metabolism of amino acids, terpenes, fatty acids, volatile components, and specialized metabolites significantly increased in bud mutation. Therefore, in comparison with Chardonnay, bud mutation is considered a highly aroma-producing grape variety for an improvement in the beverage industry.
Collapse
Affiliation(s)
- Ting Zheng
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Saihang Zhang
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiangpeng Leng
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Ehsan Sadeghnezhad
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Teng Li
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tariq Pervaiz
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fanqi Liu
- Taiyihu International Winery Ecological and Cultural Zone, Weihai, China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,China Wine Industry Technology Institute, Yinchuan, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,China Wine Industry Technology Institute, Yinchuan, China
| |
Collapse
|
21
|
Fajardo TVM, Quecini V. Comparative transcriptome analyses between cultivated and wild grapes reveal conservation of expressed genes but extensive rewiring of co-expression networks. PLANT MOLECULAR BIOLOGY 2021; 106:1-20. [PMID: 33538951 DOI: 10.1007/s11103-021-01122-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The transcriptomes of wild and cultivated grapes consists of similar expressed genes but distinct wiring of co-expressed modules associated with environmental conditions. Grapevine is an important fruit crop worldwide, with high economic value and widespread distribution. Commercial production is based on Vitis vinifera, and, to a lesser extent, on hybrids with American grapes, such as V. labrusca. Wild grape relatives are important sources of resistance against biotic and abiotic factors; however, their global gene expression patterns remain poorly characterized. We associated genome-wide transcript profiling to phenotypic analyses to investigate the responses of cultivated and wild vines to vineyard conditions. The expressed genes in the Vitis reference transcriptome are largely shared by wild grapes, V. labrusca hybrids and vinifera cultivars. In contrast, significant differential regulation between wild and vinifera genotypes represents 80% of gene expression variation, regardless of the environment. In wild grapes, genes associated to regulatory processes are downregulated, whereas those involved in metabolic pathways are upregulated, in comparison to vinifera. Photosynthesis-related ontologies are overrepresented in the induced genes, in agreement with higher contents of chlorophyll in wild grapes. Co-regulated gene network analyses provide evidence of more complex transcriptome organization in vinifera. In wild grapes, genes involved in signaling pathways of stress-related hormones are overrepresented in modules associated with the environment. Consensus network analyses revealed high preservation within co-regulated gene modules between cultivated and wild grapes, but divergent relationships among the expression clusters. In conclusion, the distinct phenotypes of wild and cultivated grapes are underlain by differences in gene expression, but also by distinct higher-order organization of the transcriptome and contrasting association of co-expressed gene clusters with the environment.
Collapse
Affiliation(s)
- Thor V M Fajardo
- Embrapa Uva e Vinho (Brazilian Agricultural Research Corporation, Grape and Wine Research Center), Rua Livramento, 515, Bento Gonçalves, RS, 95701-008, Brazil
| | - Vera Quecini
- Embrapa Uva e Vinho (Brazilian Agricultural Research Corporation, Grape and Wine Research Center), Rua Livramento, 515, Bento Gonçalves, RS, 95701-008, Brazil.
| |
Collapse
|
22
|
Secondary Metabolism and Defense Responses Are Differently Regulated in Two Grapevine Cultivars during Ripening. Int J Mol Sci 2021; 22:ijms22063045. [PMID: 33802641 PMCID: PMC8002507 DOI: 10.3390/ijms22063045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/31/2022] Open
Abstract
Vitis vinifera ‘Nebbiolo’ is one of the most important wine grape cultivars used to produce prestigious high-quality wines known throughout the world, such as Barolo and Barbaresco. ‘Nebbiolo’ is a distinctive genotype characterized by medium/high vigor, long vegetative and ripening cycles, and limited berry skin color rich in 3′-hydroxylated anthocyanins. To investigate the molecular basis of these characteristics, ‘Nebbiolo’ berries collected at three different stages of ripening (berry pea size, véraison, and harvest) were compared with V. vinifera ‘Barbera’ berries, which are rich in 3′,5′-hydroxylated anthocyanins, using transcriptomic and analytical approaches. In two consecutive seasons, the two genotypes confirmed their characteristic anthocyanin profiles associated with a different modulation of their transcriptomes during ripening. Secondary metabolism and response to stress were the functional categories that most differentially changed between ‘Nebbiolo’ and ‘Barbera’. The profile rich in 3′-hydroxylated anthocyanins of ‘Nebbiolo’ was likely linked to a transcriptional downregulation of key genes of anthocyanin biosynthesis. In addition, at berry pea size, the defense metabolism was more active in ‘Nebbiolo’ than ‘Barbera’ in absence of biotic attacks. Accordingly, several pathogenesis-related proteins, WRKY transcription factors, and stilbene synthase genes were overexpressed in ‘Nebbiolo’, suggesting an interesting specific regulation of defense pathways in this genotype that deserves to be further explored.
Collapse
|
23
|
Ethephon Activates the Transcription of Senescence-Associated Genes and Nitrogen Mobilization in Grapevine Leaves ( Vitis vinifera cv. Riesling). PLANTS 2021; 10:plants10020333. [PMID: 33572361 PMCID: PMC7916130 DOI: 10.3390/plants10020333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 01/17/2023]
Abstract
Nitrogen (N) remobilization in the context of leaf senescence is of considerable importance for the viability of perennial plants. In late-ripening crops, such as Vitis vinifera, it may also affect berry ripening and fruit quality. Numerous studies on the model plant Arabidopsis thaliana have confirmed an involvement of the plant hormone ethylene in the regulation of senescence. However, ethylene research on grapevine was mostly focused on its involvement in berry ripening and stress tolerance until now. To investigate the effect of ethylene on the initiation, regulation, and progress of senescence-dependent N mobilization in grapevine leaves, we treated field-grown Vitis vinifera cv. Riesling vines with 25 mM ethephon at the end of berry ripening. Ethephon induced premature chlorophyll degradation and caused a shift of the leaf transcriptome equivalent to developmental leaf senescence. The upregulated metabolic processes covered the entire N remobilization process chain, altered the amino acid composition in the leaves, and resulted in an average 60% decrease in leaf N. Our findings increase the fundamental knowledge about the initiation and manipulation of leaf N remobilization in perennial woody plants by ethephon. This offers a methodological approach to the targeted induction of senescence and thus to an improvement in the N supply of grapes.
Collapse
|
24
|
Rienth M, Vigneron N, Darriet P, Sweetman C, Burbidge C, Bonghi C, Walker RP, Famiani F, Castellarin SD. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario-A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:643258. [PMID: 33828576 PMCID: PMC8020818 DOI: 10.3389/fpls.2021.643258] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 05/20/2023]
Abstract
Temperature, water, solar radiation, and atmospheric CO2 concentration are the main abiotic factors that are changing in the course of global warming. These abiotic factors govern the synthesis and degradation of primary (sugars, amino acids, organic acids, etc.) and secondary (phenolic and volatile flavor compounds and their precursors) metabolites directly, via the regulation of their biosynthetic pathways, or indirectly, via their effects on vine physiology and phenology. Several hundred secondary metabolites have been identified in the grape berry. Their biosynthesis and degradation have been characterized and have been shown to occur during different developmental stages of the berry. The understanding of how the different abiotic factors modulate secondary metabolism and thus berry quality is of crucial importance for breeders and growers to develop plant material and viticultural practices to maintain high-quality fruit and wine production in the context of global warming. Here, we review the main secondary metabolites of the grape berry, their biosynthesis, and how their accumulation and degradation is influenced by abiotic factors. The first part of the review provides an update on structure, biosynthesis, and degradation of phenolic compounds (flavonoids and non-flavonoids) and major aroma compounds (terpenes, thiols, methoxypyrazines, and C13 norisoprenoids). The second part gives an update on the influence of abiotic factors, such as water availability, temperature, radiation, and CO2 concentration, on berry secondary metabolism. At the end of the paper, we raise some critical questions regarding intracluster berry heterogeneity and dilution effects and how the sampling strategy can impact the outcome of studies on the grapevine berry response to abiotic factors.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
- *Correspondence: Markus Rienth
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Philippe Darriet
- Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux, France
- Institut des Sciences de la Vigne et du Vin CS 50008, Villenave d'Ornon, France
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista Burbidge
- Agriculture and Food (Commonwealth Scientific and Industrial Research Organisation), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Faculty of Land and Food Systems, Wine Research Centre, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Zhong H, Zhang F, Pan M, Wu X, Zhang W, Han S, Xie H, Zhou X, Wang M, Ai CM, He T. Comparative phenotypic and transcriptomic analysis of Victoria and flame seedless grape cultivars during berry ripening. FEBS Open Bio 2020; 10:2616-2630. [PMID: 33090714 PMCID: PMC7714085 DOI: 10.1002/2211-5463.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/07/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Grape berry development is a highly coordinated and intricate process. Herein, we analyzed the phenotypic and transcriptomic patterns of Victoria (VT) and Flame Seedless (FS) grape varieties during berry development. Physiological analysis and transcriptomic sequencing were performed at four berry developmental phases. VT berry size was comparatively larger to the FS variety. At maturity, 80 days postanthesis (DPA), the FS soluble solids were 61.8% higher than VT. Further, 4889 and 2802 differentially expressed genes were identified from VT and FS 40 DPA to 80 DPA development stages, respectively. VvSWEET15, VvHXK, and MYB44 genes were up‐regulated during the postanthesis period, while bHLH14, linked to glucose metabolism, was gradually down‐regulated during berry development. These genes may have significant roles in berry development, ripening, and sugar accumulation.
Collapse
Affiliation(s)
- Haixia Zhong
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China.,Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Fuchun Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Mingqi Pan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xinyu Wu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wen Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Shouan Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hui Xie
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Xiaoming Zhou
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Min Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Caikasimu Maikeer Ai
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tianming He
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
26
|
Toups HS, Cochetel N, Gray D, Cramer GR. VviERF6Ls: an expanded clade in Vitis responds transcriptionally to abiotic and biotic stresses and berry development. BMC Genomics 2020; 21:472. [PMID: 32646368 PMCID: PMC7350745 DOI: 10.1186/s12864-020-06811-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023] Open
Abstract
Background VviERF6Ls are an uncharacterized gene clade in Vitis with only distant Arabidopsis orthologs. Preliminary data indicated these transcription factors may play a role in berry development and extreme abiotic stress responses. To better understand this highly duplicated, conserved clade, additional members of the clade were identified in four Vitis genotypes. A meta-data analysis was performed on publicly available microarray and RNA-Seq data (confirmed and expanded with RT-qPCR), and Vitis VviERF6L1 overexpression lines were established and characterized with phenotyping and RNA-Seq. Results A total of 18 PN40024 VviERF6Ls were identified; additional VviERF6Ls were identified in Cabernet Sauvignon, Chardonnay, and Carménère. The amino acid sequences of VviERF6Ls were found to be highly conserved. VviERF6L transcripts were detected in numerous plant organs and were differentially expressed in response to numerous abiotic stresses including water deficit, salinity, and cold as well as biotic stresses such as red blotch virus, N. parvum, and E. necator. VviERF6Ls were differentially expressed across stages of berry development, peaking in the pre-veraison/veraison stage and retaining conserved expression patterns across different vineyards, years, and Vitis cultivars. Co-expression network analysis identified a scarecrow-like transcription factor and a calmodulin-like gene with highly similar expression profiles to the VviERF6L clade. Overexpression of VviERF6L1 in a Seyval Blanc background did not result in detectable morphological phenotypes. Genes differentially expressed in response to VviERF6L1 overexpression were associated with abiotic and biotic stress responses. Conclusions VviERF6Ls represent a large and distinct clade of ERF transcription factors in grapevine. The high conservation of protein sequence between these 18 transcription factors may indicate these genes originate from a duplication event in Vitis. Despite high sequence similarity and similar expression patterns, VviERF6Ls demonstrate unique levels of expression supported by similar but heterogeneous promoter sequences. VviERF6L gene expression differed between Vitis species, cultivars and organs including roots, leaves and berries. These genes respond to berry development and abiotic and biotic stresses. VviERF6L1 overexpression in Vitis vinifera results in differential expression of genes related to phytohormone and immune system signaling. Further investigation of this interesting gene family is warranted.
Collapse
Affiliation(s)
- Haley S Toups
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Noé Cochetel
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Dennis Gray
- Precision Bred LLC, 16676 Sparrow Hawk Lane, Sonora, CA, 95370, USA
| | - Grant R Cramer
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| |
Collapse
|
27
|
Wong DCJ. Network aggregation improves gene function prediction of grapevine gene co-expression networks. PLANT MOLECULAR BIOLOGY 2020; 103:425-441. [PMID: 32266646 DOI: 10.1007/s11103-020-01001-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/21/2020] [Indexed: 05/08/2023]
Abstract
Aggregation across multiple networks highlights robust co-expression interactions and improves the functional connectivity of grapevine gene co-expression networks. In recent years, the rapid accumulation of transcriptome datasets from diverse experimental conditions has enabled the widespread use of gene co-expression network (GCN) analysis in plants. In grapevine, GCN analysis has shown great promise for gene function prediction, however, measurable progress is currently lacking. Using accumulated microarray datasets from the grapevine whole-genome array (33 experiments, 1359 samples), we explored how meta-analysis through aggregation influences the functional connectivity (performance) of derived networks using guilt-by-association neighbor voting. Two annotation schemes, i.e. MapMan BIN and Pfam, at two sparsity thresholds, i.e. top 100 (stringent) and 300 (relaxed) ranked genes were evaluated. We observed that aggregating across multiple networks improves performance dramatically, with the aggregate outperforming the majority of functional terms across individual networks. Network sparsity and size (i.e. the number of samples and aggregates) were key factors influencing performance while the choice of annotation scheme had little. Systematic comparison with various state-of-the-art microarray and RNA-seq networks was also performed, however, none outperformed the aggregate microarray network despite having good predictive performance. Repeating these series of tests using a functional enrichment-based performance metric also showed remarkably consistent findings with guilt-by-association neighbor voting. To demonstrate its functionality, we explore the function and transcriptional regulation of grapevine EXPANSIN genes. We envisage that network aggregation will offer new and unique opportunities for gene function prediction in future grapevine functional genomics studies. To this end, we make the aggregate networks and associated metadata publicly available at VTC-Agg (https://sites.google.com/view/vtc-agg).
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
28
|
Smit SJ, Vivier MA, Young PR. Comparative (Within Species) Genomics of the Vitis vinifera L. Terpene Synthase Family to Explore the Impact of Genotypic Variation Using Phased Diploid Genomes. Front Genet 2020; 11:421. [PMID: 32431727 PMCID: PMC7216305 DOI: 10.3389/fgene.2020.00421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/03/2020] [Indexed: 01/20/2023] Open
Abstract
The Vitis vinifera L. terpene synthase (VviTPS) family was comprehensively annotated on the phased diploid genomes of three closely related cultivars: Cabernet Sauvignon, Carménère and Chardonnay. VviTPS gene regions were grouped to chromosomes, with the haplotig assemblies used to identify allelic variants. Functional predictions of the VviTPS subfamilies were performed using enzyme active site phylogenies resulting in the putative identification of the initial substrate and cyclization mechanism of VviTPS enzymes. Subsequent groupings into conserved catalytic mechanisms was coupled with an analysis of cultivar-specific gene duplications, resulting in the identification of conserved and unique VviTPS clusters. These findings are presented as a collection of interactive networks where any VviTPS of interest can be queried through BLAST, allowing for a rapid identification of VviTPS-subfamily, enzyme mechanism and degree of connectivity (i.e., extent of duplication). The comparative genomic analyses presented expands our understanding of the VviTPS family and provides numerous new gene models from three diploid genomes.
Collapse
Affiliation(s)
| | | | - Philip Richard Young
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
29
|
Griesser M, Savoi S, Supapvanich S, Dobrev P, Vankova R, Forneck A. Phytohormone profiles are strongly altered during induction and symptom development of the physiological ripening disorder berry shrivel in grapevine. PLANT MOLECULAR BIOLOGY 2020; 103:141-157. [PMID: 32072393 PMCID: PMC7170833 DOI: 10.1007/s11103-020-00980-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/13/2020] [Indexed: 05/08/2023]
Abstract
The process of grape berry ripening follows three phases with distinct metabolic processes and complex regulations via phytohormones. The physiological ripening disorder berry shrivel (BS) is characterized by reduced sugar accumulation, low anthocyanin contents, and high acidity in affected berries. The processes leading to BS induction are unknown, but recent transcriptional data on reduced expression of switch genes hint towards a disturbed ripening onset. Herein we investigated the phytohormone composition throughout grape berry ripening in healthy and BS berries in Vitis vinifera L. cultivar Blauer Zweigelt. Thereby we hypothesize that phytohormones are key players for BS induction and suppress the expression of switch genes at veraison. The presented metabolomics and RNAseq data describe two distinct phytohormone profiles in BS berries, differing between pre- and post-veraison with a clear ethylene precursor (aminocyclopropane-1-carboxylic acid, ACC) peak before veraison. Exogenous application of ACC led to BS symptoms, while ethephone application led to berry abscission. During post-veraison, we observed high ABA-glucose ester (ABA-GE) and low indole-3-acetate aspartate (IAA-Asp) and isopentenyladenine (iP) contents in BS berries and the transcriptional induction of several phytohormone pathways. The presented descriptive data provide valuable knowledge to further decipher the role of phytohormones in BS induction and BS symptom development.
Collapse
Affiliation(s)
- Michaela Griesser
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria.
| | - Stefania Savoi
- AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, 2 Place Pierre Viala, 34060, Montpellier, France
| | - Suriyan Supapvanich
- Department of Agricultural Education, Faculty of Industrial Education and Technology, King Mongkut's Institute of Technology Ladkrabang, 1 Chalongkrung Road, Ladkrabang, Bangkok, 10520, Thailand
| | - Petre Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Radomira Vankova
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Astrid Forneck
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 24, Tulln, 3430, Vienna, Austria
| |
Collapse
|
30
|
Li X, He L, An X, Yu K, Meng N, Duan C, Pan QH. VviWRKY40, a WRKY Transcription Factor, Regulates Glycosylated Monoterpenoid Production by VviGT14 in Grape Berry. Genes (Basel) 2020; 11:genes11050485. [PMID: 32365554 PMCID: PMC7290806 DOI: 10.3390/genes11050485] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022] Open
Abstract
Glycosylated volatile precursors are important, particularly in wine grape berries, as they contribute to the final aroma in wines by releasing volatile aglycones during yeast fermentation and wine storage. Previous study demonstrated that VviGT14 was functioned as a critical monoterpene glucosyltransferase in grape berry, while the transcriptional regulation mechanism of VviGT14 was still unknown. Here we identified VviWRKY40 as a binding factor of VviGT14 promoter by both DNA pull-down and yeast one-hybrid screening, followed by a series of in vitro verification. VviWRKY40 expression pattern negatively correlated with that of VviGT14 in grape berries. And the suppressor role of VviWRKY40 was further confirmed by using the dual luciferase assay with Arabidopsis protoplast and grape cell suspension system. Furthermore, the grape suspension cell ABA treatment study showed that ABA downregulated VviWRKY40 transcript level but promoted that of VviGT14, indicating that VviWRKY40 was at the downstream of ABA signal transduction network to regulate monoterpenoid glycosylation. These data extend our knowledge of transcriptional regulation of VviGT14, and provide new targets for grape breeding to alter monoterpenoid composition.
Collapse
Affiliation(s)
- Xiangyi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Lei He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiaohui An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Keji Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Nan Meng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Changqing Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.L.); (L.H.); (X.A.); (K.Y.); (N.M.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737136
| |
Collapse
|
31
|
Schmidtke LM, Antalick G, Šuklje K, Blackman JW, Boccard J, Deloire A. Cultivar, site or harvest date: the gordian knot of wine terroir. Metabolomics 2020; 16:52. [PMID: 32303865 DOI: 10.1007/s11306-020-01673-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The complex interactions of vine cultivars, and localised regional climate associated with specific vineyard sites are important attributes to the concept of terroir and significant contributors to grape maturity and wine sensory profiles. An improved understanding of the influence of each factor and their interactions is a challenging conundrum, and will enable more efficient production targeting specific wine styles. OBJECTIVES To characterise the metabolic flux of grape berries and resulting wines to characterise the relative impact of site specific climate, cultivar, and grape maturity based upon berry sugar accumulation models that consistently target specific wine styles. METHODS A spatial and temporal study of grape and wine composition was undertaken for two important cultivars in two distinct regions of New South Wales. Measures of composition and wine sensory ratings were simultaneously analysed using a multiblock algorithm taking advantage of the ANOVA framework to identify important contributions to wine style arising from grape maturity, vineyard site and cultivar. RESULTS A consistent flux of grape and wine constituents is evident for wine made from sequentially harvested grapes from the same vineyard with increasing levels of grape maturity. Contributions of region and vineyard site to wine style could also be elucidated. Differences in metabolite flux in grapes and resulting wines between cultivars growing in similar conditions are evident. CONCLUSIONS The combination of a metabolomics and multiblock data decomposition approach may be successfully used to profile and elucidate the contribution of abiotic factors to grape and wine composition and provide improved understanding of the terroir concept.
Collapse
Affiliation(s)
- L M Schmidtke
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia.
| | - G Antalick
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia
- Wine Research Centre, Univerza v Novi Gorici, Vipavska 13, 5000, Nova Gorica, Slovenia
| | - K Šuklje
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia
- Department of Fruit Growing, Viticulture and Oenology, Agricultural Institute of Slovenia, Hacquetova 17, 1000, Ljubljana, Slovenia
| | - J W Blackman
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia
| | - J Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland
| | - A Deloire
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia
- L'Institut Agro (SupAgro), 2 Place P. Viala, 34060, Montpellier, France
| |
Collapse
|
32
|
Foria S, Copetti D, Eisenmann B, Magris G, Vidotto M, Scalabrin S, Testolin R, Cipriani G, Wiedemann-Merdinoglu S, Bogs J, Di Gaspero G, Morgante M. Gene duplication and transposition of mobile elements drive evolution of the Rpv3 resistance locus in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 99:895-909. [PMID: 31571285 DOI: 10.1111/tpj.14370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/19/2019] [Accepted: 03/19/2019] [Indexed: 05/17/2023]
Abstract
A wild grape haplotype (Rpv3-1) confers resistance to Plasmopara viticola. We mapped the causal factor for resistance to an interval containing a TIR-NB-LRR (TNL) gene pair that originated 1.6-2.6 million years ago by a tandem segmental duplication. Transient coexpression of the TNL pair in Vitis vinifera leaves activated pathogen-induced necrosis and reduced sporulation compared with control leaves. Even though transcripts of the TNL pair from the wild haplotype appear to be partially subject to nonsense-mediated mRNA decay, mature mRNA levels in a homozygous resistant genotype were individually higher than the mRNA trace levels observed for the orthologous single-copy TNL in sensitive genotypes. Allelic expression imbalance in a resistant heterozygote confirmed that cis-acting regulatory variation promotes expression in the wild haplotype. The movement of transposable elements had a major impact on the generation of haplotype diversity, altering the DNA context around similar TNL coding sequences and the GC-content in their proximal 5'-intergenic regions. The wild and domesticated haplotypes also diverged in conserved single-copy intergenic DNA, but the highest divergence was observed in intraspecific and not in interspecific comparisons. In this case, introgression breeding did not transgress the genetic boundaries of the domesticated species, because haplotypes present in modern varieties sometimes predate speciation events between wild and cultivated species.
Collapse
Affiliation(s)
- Serena Foria
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Dario Copetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Birgit Eisenmann
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Gabriele Magris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Michele Vidotto
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Simone Scalabrin
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | | | - Jochen Bogs
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Technische Hochschule Bingen, 55411, Bingen am Rhein, Germany
| | | | - Michele Morgante
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
33
|
Gao J, Zhang Y, Li Z, Liu M. Role of ethylene response factors (ERFs) in fruit ripening. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyz042] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
The ethylene response factors (ERFs) belong to the APETALA2/ethylene response factor (AP2/ERF) superfamily and act downstream of the ethylene signalling pathway to regulate the expression of ethylene responsive genes. In different species, ERFs have been reported to be involved in plant development, flower abscission, fruit ripening, and defense responses. In this review, based on the new progress made by recent studies, we summarize the specific role and mode of action of ERFs in regulating different aspects of ripening in both climacteric and non-climacteric fruits, and provide new insights into the role of ethylene in non-climacteric fruit ripening.
Collapse
Affiliation(s)
- Jin Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu
| | - Yaoxin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu
| |
Collapse
|
34
|
Pagliarani C, Boccacci P, Chitarra W, Cosentino E, Sandri M, Perrone I, Mori A, Cuozzo D, Nerva L, Rossato M, Zuccolotto P, Pezzotti M, Delledonne M, Mannini F, Gribaudo I, Gambino G. Distinct Metabolic Signals Underlie Clone by Environment Interplay in "Nebbiolo" Grapes Over Ripening. FRONTIERS IN PLANT SCIENCE 2019; 10:1575. [PMID: 31867031 PMCID: PMC6904956 DOI: 10.3389/fpls.2019.01575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 05/05/2023]
Abstract
Several research studies were focused to understand how grapevine cultivars respond to environment; nevertheless, the biological mechanisms tuning this phenomenon need to be further deepened. Particularly, the molecular processes underlying the interplay between clones of the same cultivar and environment were poorly investigated. To address this issue, we analyzed the transcriptome of berries from three "Nebbiolo" clones grown in different vineyards, during two ripening seasons. RNA-sequencing data were implemented with analyses of candidate genes, secondary metabolites, and agronomical parameters. This multidisciplinary approach helped to dissect the complexity of clone × environment interactions, by identifying the molecular responses controlled by genotype, vineyard, phenological phase, or a combination of these factors. Transcripts associated to sugar signalling, anthocyanin biosynthesis, and transport were differently modulated among clones, according to changes in berry agronomical features. Conversely, genes involved in defense response, such as stilbene synthase genes, were significantly affected by vineyard, consistently with stilbenoid accumulation. Thus, besides at the cultivar level, clone-specific molecular responses also contribute to shape the agronomic features of grapes in different environments. This reveals a further level of complexity in the regulation of genotype × environment interactions that has to be considered for orienting viticultural practices aimed at enhancing the quality of grape productions.
Collapse
Affiliation(s)
- Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Council for Agricultural Research and Economics, Centre of Viticultural and Enology Research (CREA-VE), Conegliano, Italy
| | | | - Marco Sandri
- DMS StatLab, University of Brescia, Brescia, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Alessia Mori
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Danila Cuozzo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
- Council for Agricultural Research and Economics, Centre of Viticultural and Enology Research (CREA-VE), Conegliano, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Paola Zuccolotto
- Big&Open Data Innovation Laboratory, University of Brescia, Brescia, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Franco Mannini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Italy
| |
Collapse
|
35
|
Wang J, Abbey T, Kozak B, Madilao LL, Tindjau R, Del Nin J, Castellarin SD. Evolution over the growing season of volatile organic compounds in Viognier (Vitis vinifera L.) grapes under three irrigation regimes. Food Res Int 2019; 125:108512. [DOI: 10.1016/j.foodres.2019.108512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022]
|
36
|
Delfino P, Zenoni S, Imanifard Z, Tornielli GB, Bellin D. Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data. BMC Genomics 2019; 20:739. [PMID: 31615398 PMCID: PMC6794750 DOI: 10.1186/s12864-019-6124-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High temperature during grape berry ripening impairs the quality of fruits and wines. Veraison time, which marks ripening onset, is a key factor for determining climatic conditions during berry ripening. Understanding its genetic control is crucial to successfully breed varieties more adapted to a changing climate. Quantitative trait loci (QTL) studies attempting to elucidate the genetic determinism of developmental stages in grapevine have identified wide genomic regions. Broad scale transcriptomic studies, by identifying sets of genes modulated during berry development and ripening, also highlighted a huge number of putative candidates. RESULTS With the final aim of providing an overview about available information on the genetic control of grapevine veraison time, and prioritizing candidates, we applied a meta-QTL analysis for grapevine phenology-related traits and checked for co-localization of transcriptomic candidates. A consensus genetic map including 3130 markers anchored to the grapevine genome assembly was compiled starting from 39 genetic maps. Two thousand ninety-three QTLs from 47 QTL studies were projected onto the consensus map, providing a comprehensive overview about distribution of available QTLs and revealing extensive co-localization especially across phenology related traits. From 141 phenology related QTLs we generated 4 veraison meta-QTLs located on linkage group (LG) 1 and 2, and 13 additional meta-QTLs connected to the veraison time genetic control, among which the most relevant were located on LG 14, 16 and 18. Functional candidates in these intervals were inspected. Lastly, taking advantage of available transcriptomic datasets, expression data along berry development were integrated, in order to pinpoint among positional candidates, those differentially expressed across the veraison transition. CONCLUSION Integration of meta-QTLs analysis on available phenology related QTLs and data from transcriptomic dataset allowed to strongly reduce the number of candidate genes for the genetic control of the veraison transition, prioritizing a list of 272 genes, among which 78 involved in regulation of gene expression, signal transduction or development.
Collapse
Affiliation(s)
- Pietro Delfino
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.,Present address: Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Zahra Imanifard
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | | | - Diana Bellin
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
37
|
Hart RS, Jolly NP, Ndimba BK. Characterisation of hybrid yeasts for the production of varietal Sauvignon blanc wine – A review. J Microbiol Methods 2019; 165:105699. [DOI: 10.1016/j.mimet.2019.105699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
38
|
Šuklje K, Carlin S, Antalick G, Blackman JW, Deloire A, Vrhovsek U, Schmidtke LM. Regional Discrimination of Australian Shiraz Wine Volatome by Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10273-10284. [PMID: 31418566 DOI: 10.1021/acs.jafc.9b03563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shiraz wine volatomes from two Australian geographical indications (GIs), that is, Orange and Riverina, were compared using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Shiraz wines were made in triplicate from grapes harvested at two harvest dates from six vineyards in the two GIs. A total of 133 compounds showed a significant trend between wines from the cooler Orange GI and warmer Riverina. Compounds associated with wines from the cooler climate were grape-derived volatiles, such as monoterpenes, sesquiterpenes, green leaf volatiles, and some norisoprenoids. Fermentation-derived compounds, such as esters and S-containing compounds, showed no specific trend related to grape origin. In addition, wines could be also clearly separated according to the harvest date, irrespective of the climate, with C6 compounds, higher alcohol acetates, and other esters contributing utmost to the differentiation of samples, whereas terpenoids and norisoprenoids did not have an influence. This study demonstrated the plasticity of wine volatome related to grape origin and also the maturity level (harvest date), irrespective of climate.
Collapse
Affiliation(s)
| | - Silvia Carlin
- Department of Food Quality and Nutrition , Fondazione Edmund Mach, Research and Innovation Centre , San Michele all'Adige 38010 , Trentino , Italy
| | | | | | | | - Urska Vrhovsek
- Department of Food Quality and Nutrition , Fondazione Edmund Mach, Research and Innovation Centre , San Michele all'Adige 38010 , Trentino , Italy
| | | |
Collapse
|
39
|
Sun X, Zhang L, Wong DCJ, Wang Y, Zhu Z, Xu G, Wang Q, Li S, Liang Z, Xin H. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:988-1002. [PMID: 31063661 DOI: 10.1111/tpj.14378] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 05/08/2023]
Abstract
Cold stress is a major limiting factor in grape (Vitis) productivity. In this study, we characterized a cold-responsive ethylene response factor (ERF) transcription factor, VaERF092, from Amur grape (Vitis amurensis). VaERF092 expression was induced by both low temperatures and the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC), but was suppressed by treatment with the ethylene inhibitor aminoethoxyvinylglycine (AVG) under cold conditions. Ectopic expression of VaERF092 in Arabidopsis thaliana enhanced cold tolerance. Co-expression network analysis of V. vinifera genes indicated that WRKY33 might be a downstream target of VaERF092. This hypothesis was supported by the fact that VaWRKY33 was expressed temporally after VaERF092 expression and could also be induced by cold and ACC, and inhibited by AVG. Yeast one-hybrid, transient β-glucuronidase (GUS) and dual-luciferase reporter assays provided evidence for an interaction between VaERF092 and a GCC-box element in the VaWRKY33 promoter. In addition, heterologous overexpression of VaWRKY33 in A. thaliana resulted in enhanced cold tolerance. VaERF092- and VaWRKY33 overexpressing grape calli showed lower low-temperature exothermic values than the empty vector (EV) calli, indicating enhanced tolerance to cold. Together, these results indicated that VaERF092 regulates VaWRKY33 through binding to its promoter GCC-box, leading to enhanced cold stress tolerance.
Collapse
Affiliation(s)
- Xiaoming Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Langlang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Yi Wang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhenfei Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Guangzhao Xu
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingfeng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
40
|
Savoi S, Herrera JC, Forneck A, Griesser M. Transcriptomics of the grape berry shrivel ripening disorder. PLANT MOLECULAR BIOLOGY 2019; 100:285-301. [PMID: 30941542 PMCID: PMC6542784 DOI: 10.1007/s11103-019-00859-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/21/2019] [Indexed: 05/08/2023]
Abstract
KEY MESSAGE The lower expression at veraison of several ripening master regulators "switch genes" can play a central role in the induction of the berry shrivel ripening physiological disorder in grapevine. Berry shrivel (BS) is a ripening physiological disorder affecting grape berry with visible symptoms appearing after veraison. Berry shrivel leads to shrinking berries with a reduced weight and a lower content of sugars and anthocyanins. In this study, for the first time a transcriptomic analysis coupled with selected metabolites quantification was undertaken to understand the metabolic modifications induced by the disorder. Different stages of berry development were considered including pre- and symptomatic berries. No metabolic alterations in the berry transcriptome and in the metabolite content was observed in pre-symptomatic and pre-veraison samples. Interestingly, at veraison, with still not visible symptoms appearing on the berry, a subset of genes, called switch genes previously suggested as master regulators of the ripening onset in grape berries, were strongly lower expressed in BS. Later during the ripening phase and with visible symptoms of the disorder, more than 3000 genes were differentially expressed. The genes up-regulated were related to hormone biosynthesis, response to stress and the phenylpropanoid pathway, while the genes down-regulated during ripening belonged mainly to the flavonoid pathway, and the sugar metabolism. In agreement, BS berries showed lower content of sugars and anthocyanins from the onset of veraison onward, while the amount of acids was not significantly affected. In conclusion, these results highlight a pivotal role of the switch genes in grapevine ripening, as well as their possible contribution to induce the ripening disorder berry shrivel, although it remains unclear whether this is part of the cause or consequences of the BS disorder.
Collapse
Affiliation(s)
- Stefania Savoi
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Jose Carlos Herrera
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Astrid Forneck
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, 3430, Tulln, Austria
| | - Michaela Griesser
- Division of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Straße 24, 3430, Tulln, Austria.
| |
Collapse
|
41
|
Bahena-Garrido SM, Ohama T, Suehiro Y, Hata Y, Isogai A, Iwashita K, Goto-Yamamoto N, Koyama K. The potential aroma and flavor compounds in Vitis sp. cv. Koshu and V. vinifera L. cv. Chardonnay under different environmental conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1926-1937. [PMID: 30270444 DOI: 10.1002/jsfa.9389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND Koshu, a hybrid of Vitis vinifera L. and V. davidii Foex, is the most popular indigenous cultivar for wine production in Japan. However, little is known about the potential aroma compounds it contains and how environmental factors affect these. In this study, we obtained comprehensive profiles of the volatile (both glycosidically bound and free) and phenolic compounds that occur in koshu berries, and compared these with similar profiles for V. vinifera cv. chardonnay. We then compared the response of these two cultivars to bunch shading and the ripening-related phytohormone abscisic acid (ABA). RESULTS Koshu berries contained significantly higher concentrations of phenolic compounds, such as hydroxycinnamic acid derivatives, and some volatile phenols, such as 4-vinyl guaiacol and eugenol, than chardonnay berries, which are thought to contribute to the characteristics of koshu wine. In addition, koshu berries had a distinctly different terpenoid composition from chardonnay berries. Shading reduced the concentration of norisoprenoid in both cultivars, as well as several phenolic compounds, particularly their volatile derivatives in koshu berries. The exogenous application of ABA induced ripening and increased the concentrations of lipid derivatives, such as hexanol, octanol, 1-nonanol, and 1-octen-3-ol. Multivariate and discriminant analyses showed that the potential aroma and flavor compounds in the berries could be discriminated clearly based on cultivar and environmental cues, such as light exposure. CONCLUSION The unique secondary metabolite profiles of koshu and their different responses to environmental factors could be valuable for developing various types of koshu wines and new cultivars with improved quality and cultural characteristics. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Tomoko Ohama
- Analytical Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Yuka Suehiro
- Department of Agriculture and Food Research, Research Institute of Environment, Agriculture and Fisheries, Osaka, Japan
| | - Yuko Hata
- Analytical Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Atsuko Isogai
- Analytical Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kazuhiro Iwashita
- Analytical Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Nami Goto-Yamamoto
- Analytical Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan
| | - Kazuya Koyama
- Analytical Research Division, National Research Institute of Brewing, Higashi-Hiroshima, Japan
| |
Collapse
|
42
|
Fasoli M, Richter CL, Zenoni S, Bertini E, Vitulo N, Dal Santo S, Dokoozlian N, Pezzotti M, Tornielli GB. Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine. PLANT PHYSIOLOGY 2018; 178:1187-1206. [PMID: 30224433 PMCID: PMC6236592 DOI: 10.1104/pp.18.00559] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/31/2018] [Indexed: 05/08/2023]
Abstract
Grapevine (Vitis vinifera) is a model for the investigation of physiological and biochemical changes during the formation and ripening of nonclimacteric fleshy fruits. However, the order and complexity of the molecular events during fruit development remain poorly understood. To identify the key molecular events controlling berry formation and ripening, we created a highly detailed transcriptomic and metabolomic map of berry development, based on samples collected every week from fruit set to maturity in two grapevine genotypes for three consecutive years, resulting in 219 samples. Major transcriptomic changes were represented by coordinated waves of gene expression associated with early development, veraison (onset of ripening)/midripening, and late-ripening and were consistent across vintages. The two genotypes were clearly distinguished by metabolite profiles and transcriptional changes occurring primarily at the veraison/midripening phase. Coexpression analysis identified a core network of transcripts as well as variations in the within-module connections representing varietal differences. By focusing on transcriptome rearrangements close to veraison, we identified two rapid and successive shared transitions involving genes whose expression profiles precisely locate the timing of the molecular reprogramming of berry development. Functional analyses of two transcription factors, markers of the first transition, suggested that they participate in a hierarchical cascade of gene activation at the onset of ripening. This study defined the initial transcriptional events that mark and trigger the onset of ripening and the molecular network that characterizes the whole process of berry development, providing a framework to model fruit development and maturation in grapevine.
Collapse
Affiliation(s)
| | | | - Sara Zenoni
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | - Edoardo Bertini
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | - Nicola Vitulo
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | - Silvia Dal Santo
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | | | - Mario Pezzotti
- Biotechnology Department, University of Verona, 37134 Verona, Italy
| | | |
Collapse
|
43
|
Zhang Z, Li X. Genome-wide identification of AP2/ERF superfamily genes and their expression during fruit ripening of Chinese jujube. Sci Rep 2018; 8:15612. [PMID: 30353116 PMCID: PMC6199273 DOI: 10.1038/s41598-018-33744-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/07/2018] [Indexed: 02/06/2023] Open
Abstract
The Ethylene response factor (ERF) belongs to the APETALA2/ethylene response factor (AP2/ERF) superfamily, located at the end of the ethylene signalling pathway, and has important roles in regulating the ethylene-related response genes. Thus, identifying and charactering this transcription factor would be helpful to elucidate ethylene related fruit ripening regulation in Chinese jujube (Ziziphus jujuba Mill.). In the present study, 119 AP2/ERF genes, including 5 Related to ABI3/VPs (RAV), 17 AP2s, 57 ERFs, 39 dehydration-responsive element-binding (DREB) factors and 1 soloist gene, were identified from the jujube genome sequences. Genome localization, gene duplication, phylogenetic relationships and conserved motifs were simultaneously analysed. Using available transcriptomic data, 85 genes with differential transcripts in the flower, leaf and fruit were detected, suggesting a broad regulation of AP2/ERF genes in the growth and development of jujube. Among them, 44 genes were expressed in the fruit. As assessed by quantitative PCR, 15 up- and 23 downregulated genes corresponding to fruit full maturity were found, while in response to 100 μl l-1 ethylene, 6 up- and 16 downregulated genes were generated. By comparing the output, ZjERF54 and DREB39 were found to be the best candidate genes that positively participated in jujube fruit ripening, while ZjERF25 and ZjERF36, which had an ERF-associated amphiphilic repression (EAR) motif, were ripening repressors. These findings help to gain insights into AP2/ERF gene evolution and provide a useful resource to further understand the ethylene regulatory mechanisms underlying Chinese jujube fruit ripening.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingang Li
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Research Centre for Jujube Engineering and Technology of State Forestry Administration, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
44
|
Ma Q, Yang J. Transcriptome profiling and identification of the functional genes involved in berry development and ripening in Vitis vinifera. Gene 2018; 680:84-96. [PMID: 30257181 DOI: 10.1016/j.gene.2018.09.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 11/18/2022]
Abstract
The length of berry lag phase determines the overall time needed for grape berries to get mature, but the functional gene networks in this phase have not been well documented. In order to reveal the origin of the somatic variation and regulation mechanism of grape berry development and ripening, an early ripening mutant of Vitis vinifera with a shorter lag phase was used for transcriptome profiling. The RNA-seq results revealed that 2021 and 2470 genes were up- and down-regulated, respectively, in the early ripening mutant compared to the wild type. The GO and KEGG enrichment analysis indicated that the up-regulated genes belonged to several pathways and metabolisms, among which the most significant constituents were for biosynthesis of secondary metabolites and flavonoid biosynthesis. The down-regulated genes were involved in biosynthesis of secondary metabolites, plant hormone signal transduction, and photosynthesis. Many transcription factors including WRKYs, AP2-EREBPs, and MYBs were also differentially expressed, suggesting their regulatory roles in berry development and ripening. The transcriptomic comparisons suggested that the prominent up-regulation of an Arabidopsis SnRK3.23, CIPK23 or PKS17 homolog could have driven the early ripening phenotype in the mutant by activating the downstream VvABF2 transcription factor in the ABA signaling. At the same time, ethylene and auxin were also involved in this process. As a result, the major ripening related genes, e.g., MYBA1, MYBA2, VvUFGT, GRIP22, and STS were activated in the mutant. The results are of importance for future studies on manipulation of grape berry ripening time.
Collapse
Affiliation(s)
- Qian Ma
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Jingli Yang
- Shandong Key Laboratory of Plant Biotechnology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
45
|
Wong DCJ, Zhang L, Merlin I, Castellarin SD, Gambetta GA. Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine. BMC Genomics 2018; 19:248. [PMID: 29642857 PMCID: PMC5896048 DOI: 10.1186/s12864-018-4638-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/29/2018] [Indexed: 12/05/2022] Open
Abstract
Background The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family’s tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. Results A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Conclusions Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4638-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darren Chern Jan Wong
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 0Z4, Canada
| | - Li Zhang
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F- 33140, Villenave d'Ornon, France
| | - Isabelle Merlin
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F- 33140, Villenave d'Ornon, France
| | - Simone D Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 0Z4, Canada
| | - Gregory A Gambetta
- Bordeaux Science Agro, Institut des Sciences de la Vigne et du Vin, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F- 33140, Villenave d'Ornon, France.
| |
Collapse
|
46
|
Kambiranda D, Basha SM, Singh R, Snowden J, Mercer R. Proteome Profile of American Hybrid Grape cv. Blanc du Bois during Ripening Reveals Proteins Associated with Flavor Volatiles and Ethylene Production. Proteomics 2018; 18:e1700305. [PMID: 29359857 DOI: 10.1002/pmic.201700305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 01/13/2018] [Indexed: 12/15/2022]
Abstract
The study of key control points in ripening is essential to improve grape wine quality. Molecular basis of ripening is still far from being understood from the Pierce's disease (PD)-tolerant grapes predominantly grown in the southeastern United States. To identify proteins expressed during Blanc du Bois grape berry green and ripening stages, proteome analysis from five different stages revealed 1091, 1131, 1078, 1042, and 1066 proteins. Differential expression analysis revealed 551 common proteins across different stages of maturity that are involved in various biochemical and metabolic pathways. The proteins identified were associated with phenylpropanoids, isoquinoline alkaloids, fatty acids, unsaturated fatty acids, and furanones. Our data provide the first step to understand the complex biochemical changes during ripening of PD-tolerant American hybrid grapes that are popular for their aroma and flavor profile in the southeastern United States. Proteomics data are deposited to the ProteomeXchange PXD004157.
Collapse
Affiliation(s)
- Devaiah Kambiranda
- Southern University Agriculture Research and Extension Center, Baton Rouge, LA, USA
| | - Sheikh M Basha
- Center for Viticulture and Small Fruit Research, Florida A&M University, Tallahassee, FL, USA
| | - Rakesh Singh
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Janana Snowden
- Southern University Agriculture Research and Extension Center, Baton Rouge, LA, USA
| | - Roger Mercer
- Translational Science Laboratory, Florida State University College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
47
|
Wong DCJ, Ariani P, Castellarin S, Polverari A, Vandelle E. Co-expression network analysis and cis-regulatory element enrichment determine putative functions and regulatory mechanisms of grapevine ATL E3 ubiquitin ligases. Sci Rep 2018; 8:3151. [PMID: 29453355 PMCID: PMC5816651 DOI: 10.1038/s41598-018-21377-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Arabidopsis thaliana Toxicos en Levadura (ATL) proteins are a subclass of the RING-H2 zinc finger binding E3 ubiquitin ligases. The grapevine (Vitis vinifera) ATL family was recently characterized, revealing 96 members that are likely to be involved in several physiological processes through protein ubiquitination. However, the final targets and biological functions of most ATL E3 ligases are still unknown. We analyzed the co-expression networks among grapevine ATL genes across a set of transcriptomic data related to defense and abiotic stress, combined with a condition-independent dataset. This revealed strong correlations between ATL proteins and diverse signal transduction components and transcriptional regulators, in particular those involved in immunity. An enrichment analysis of cis-regulatory elements in ATL gene promoters and related co-expressed genes highlighted the importance of hormones in the regulation of ATL gene expression. Our work identified several ATL proteins as candidates for further studies aiming to decipher specific grapevine resistance mechanisms activated in response to pathogens.
Collapse
Affiliation(s)
- Darren C J Wong
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| | - Pietro Ariani
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, 37134, Italy
| | - Simone Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Annalisa Polverari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, 37134, Italy.
| | - Elodie Vandelle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona, 37134, Italy.
| |
Collapse
|
48
|
Ariani P, Vandelle E, Wong D, Giorgetti A, Porceddu A, Camiolo S, Polverari A. Comprehensive Workflow for the Genome-wide Identification and Expression Meta-analysis of the ATL E3 Ubiquitin Ligase Gene Family in Grapevine. J Vis Exp 2017. [PMID: 29286420 DOI: 10.3791/56626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Classification and nomenclature of genes in a family can significantly contribute to the description of the diversity of encoded proteins and to the prediction of family functions based on several features, such as the presence of sequence motifs or of particular sites for post-translational modification and the expression profile of family members in different conditions. This work describes a detailed protocol for gene family characterization. Here, the procedure is applied to the characterization of the Arabidopsis Tóxicos in Levadura (ATL) E3 ubiquitin ligase family in grapevine. The methods include the genome-wide identification of family members, the characterization of gene localization, structure, and duplication, the analysis of conserved protein motifs, the prediction of protein localization and phosphorylation sites as well as gene expression profiling across the family in different datasets. Such procedure, which could be extended to further analyses depending on experimental purposes, could be applied to any gene family in any plant species for which genomic data are available, and it provides valuable information to identify interesting candidates for functional studies, giving insights into the molecular mechanisms of plant adaptation to their environment.
Collapse
Affiliation(s)
- Pietro Ariani
- Dipartimento di Biotecnologie, Università degli Studi di Verona
| | - Elodie Vandelle
- Dipartimento di Biotecnologie, Università degli Studi di Verona;
| | - Darren Wong
- Ecology and Evolution, Research School of Biology, The Australian National University
| | | | - Andrea Porceddu
- Dipartimento di Agraria, SACEG, Università degli Studi di Sassari
| | | | | |
Collapse
|
49
|
Vazquez-Hernandez M, Romero I, Escribano MI, Merodio C, Sanchez-Ballesta MT. Deciphering the Role of CBF/DREB Transcription Factors and Dehydrins in Maintaining the Quality of Table Grapes cv. Autumn Royal Treated with High CO 2 Levels and Stored at 0°C. FRONTIERS IN PLANT SCIENCE 2017; 8:1591. [PMID: 28970842 PMCID: PMC5609105 DOI: 10.3389/fpls.2017.01591] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/30/2017] [Indexed: 05/25/2023]
Abstract
C-repeat/dehydration-responsive element binding factors (CBF/DREB) are transcription factors which play a role in improving plant cold stress resistance and recognize the DRE/CRT element in the promoter of a set of cold regulated genes. Dehydrins (DHNs) are proteins that accumulate in plants in response to cold stress, which present, in some cases, CBF/DREB recognition sequences in their promoters and are activated by members of this transcription factor family. The application of a 3-day gaseous treatment with 20 kPa CO2 at 0°C to table grapes cv. Autumn Royal maintained the quality of the bunches during postharvest storage at 0°C, reducing weight loss and rachis browning. In order to determine the role of CBF/DREB genes in the beneficial effect of the gaseous treatment by regulating DHNs, we have analyzed the gene expression pattern of three VviDREBA1s (VviDREBA1-1, VviDREBA1-6, and VviDREBA1-7) as well as three VviDHNs (VviDHN1a, VviDHN2, and VviDHN4), in both alternative splicing forms. Results showed that the differences in VviDREBA1s expression were tissue and atmosphere composition dependent, although the application of high levels of CO2 caused a greater increase of VviDREBA1-1 in the skin, VviDREBA1-6 in the pulp and VviDREBA1-7 in the skin and pulp. Likewise, the application of high levels of CO2 regulated the retention of introns in the transcripts of the dehydrins studied in the different tissues analyzed. The DHNs promoter analysis showed that VviDHN2 presented the cis-acting DRE and CRT elements, whereas VviDHN1a presented only the DRE motif. Our electrophoretic mobility shift assays (EMSA) showed that VviDREBA1-1 was the only transcription factor that had in vitro binding capacity to the CRT element of the VviDHN2 promoter region, indicating that the transcriptional regulation of VviDHN1a and VviDHN4 would be carried out by activating other independent routes of these transcription factors. Our results suggest that the application of high CO2 levels to maintain table grape quality during storage at 0°C, leads to an activation of CBF/DREBs transcription factors. Among these factors, VviDREBA1-1 seems to participate in the transcriptional activation of VviDHN2 via CRT binding, with the unspliced form of this DHN being activated by high CO2 levels in all the tissues analyzed.
Collapse
Affiliation(s)
| | | | | | | | - M. T. Sanchez-Ballesta
- Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Ciudad Universitaria de MadridMadrid, Spain
| |
Collapse
|
50
|
Wong DCJ, Lopez Gutierrez R, Gambetta GA, Castellarin SD. Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine. DNA Res 2017; 24:311-326. [PMID: 28119334 PMCID: PMC5499852 DOI: 10.1093/dnares/dsw061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/13/2016] [Indexed: 11/29/2022] Open
Abstract
Coordinated transcriptional and metabolic reprogramming ensures a plant’s continued growth and survival under adverse environmental conditions. Transcription factors (TFs) act to modulate gene expression through complex cis-regulatory element (CRE) interactions. Genome-wide analysis of known plant CREs was performed for all currently predicted protein-coding gene promoters in grapevine (Vitis vinifera L.). Many CREs such as abscisic acid (ABA)-responsive, drought-responsive, auxin-responsive, and evening elements, exhibit bona fide CRE properties such as strong position bias towards the transcription start site (TSS) and over-representation when compared with random promoters. Genes containing these CREs are enriched in a large repertoire of plant biological pathways. Large-scale transcriptome analyses also show that these CREs are highly implicated in grapevine development and stress response. Numerous CRE-driven modules in condition-specific gene co-expression networks (GCNs) were identified and many of these modules were highly enriched for plant biological functions. Several modules corroborate known roles of CREs in drought response, pathogen defense, cell wall metabolism, and fruit ripening, whereas others reveal novel functions in plants. Comparisons with Arabidopsis suggest a general conservation in promoter architecture, gene expression dynamics, and GCN structure across species. Systems analyses of CREs provide insights into the grapevine cis-regulatory code and establish a foundation for future genomic studies in grapevine.
Collapse
Affiliation(s)
| | | | - Gregory Alan Gambetta
- Ecophysiologie et Génomique Fonctionnelle de la Vigne, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 33140 Villenave d'Ornon, France
| | | |
Collapse
|