1
|
Dias C, Brandao TRS, Salsinha AS, Amaro AL, Vasconcelos MW, Ferrante A, Pintado M. Recovery of ripening capacity in 'Rocha' pears treated with 1-MCP through the application of 1-NAA: Physiological and molecular analysis insights. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109921. [PMID: 40344821 DOI: 10.1016/j.plaphy.2025.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/02/2025] [Accepted: 04/12/2025] [Indexed: 05/11/2025]
Abstract
Storing 'Rocha' pear treated with 1-methylcyclopropene (1-MCP) in controlled atmosphere is a common commercial strategy to extend pear storage time and prevent postharvest disorders. However, this strategy represents a challenge to the fruit industry because 1-MCP treatment obstructs the normal fruit ripening, potentially affecting the quality to consumers. To explore possible mechanisms to reactivate ripening, 'Rocha' pears treated with 1-MCP were exposed to 2 and 4 mM 1-naphthaleneacetic acid (1-NAA) and stored at 20 ± 2 °C for 15 days. Typical ripening indicators, such as firmness, skin color, ethylene and aroma volatiles production, sugar content, and the genetic expression of ethylene-related enzymes (ACS and ACO) and receptors (PcETR1, PcETR2, and PcETR5) were determined over the 15 days of storage. A PCA analysis incorporating both physiological and biochemical data showed that 1-NAA promoted the recovery of ripening capacity in 1-MCP treated pears. Treating pears with 1-NAA led to increased activity of genes like PcACS1, PcACS4, and PcETR2, which are involved in ethylene signalling and production. This resulted in higher levels of ethylene and compounds associated with ripening, as well as softer texture, more yellow color, and higher sucrose content. The boost in ethylene-related gene activity likely heightened ethylene sensitivity and production in the treated pears. Consequently, these fruits showed accelerated softening, color change, and aroma development. This suggests that 1-NAA treatment can reverse the ripening inhibition caused by 1-MCP, possibly by enhancing ethylene sensitivity and production. This mechanism could enable consistent ripening of 'Rocha' pears after they are taken out of cold storage, and it may have similar effects on other fruits.
Collapse
Affiliation(s)
- Cindy Dias
- Universidade Católica Portuguesa, CBQF- Centro de Biotecnologia e Química Fina- Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Teresa R S Brandao
- Universidade Católica Portuguesa, CBQF- Centro de Biotecnologia e Química Fina- Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Ana S Salsinha
- Universidade Católica Portuguesa, CBQF- Centro de Biotecnologia e Química Fina- Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Ana L Amaro
- Universidade Católica Portuguesa, CBQF- Centro de Biotecnologia e Química Fina- Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF- Centro de Biotecnologia e Química Fina- Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal
| | - António Ferrante
- Institute of Crop Science, Sant'Anna School of Advanced Studies of Pisa, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF- Centro de Biotecnologia e Química Fina- Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, 4169-005, Portugal.
| |
Collapse
|
2
|
Rafiq M, Guo M, Shoaib A, Yang J, Fan S, Xiao H, Chen K, Xie Z, Cheng C. Unraveling the Hormonal and Molecular Mechanisms Shaping Fruit Morphology in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:974. [PMID: 40265904 PMCID: PMC11944449 DOI: 10.3390/plants14060974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
The importance of fruit shape studies extends beyond fundamental plant biology, as it holds significant implications for breeding. Understanding the genetic and hormonal regulation of fruit morphology can facilitate targeted breeding strategies to enhance yield, quality, and stress resistance, ultimately contributing to sustainable farming and nutrition security. The diversity in fruit shapes is the result of complex hormone regulation and molecular pathways that affect key traits, including carpel number, fruit length, and weight. Fruit shape is a quality attribute that directly influences consumer preference, marketability and the ease of post-harvest processing. This article focuses on investigations carried out on molecular, genetic and hormonal regulation mechanisms of fruit shape, color, maturation in fruit plants and key genetic pathways such as CLV-WUS and OVATE, as well as their roles in shaping non-climacteric fruits such as strawberries, grapes and raspberries. Plant hormones, especially abscisic acid (ABA) and indole-3-acetic acid (IAA), play a crucial role in enhancing desirable traits such as color and taste, while regulating anthocyanin synthesis and growth time. In addition, the dynamic interactions between auxin, gibberellin, and ethylene are crucial for the ripening process. Jasmonate enhances stress response, brassinosteroids promote ripening and cytokinins promote early fruit development. In addition, this review also studied the fruit morphology of species such as tomatoes and cucumbers, emphasizing the importance of the CLV-WUS pathway, which regulates the number of carpels through genes such as WUSCHEL (WUS), FRUITFULL1 (FUL1), and auxin response factor 14 (ARF14). The weight of fresh fruit is affected by microRNAs such as miRNA156, which emphasizes the importance of post transcriptional regulation. The involvement of transcription factors such as SISHN1, CaOvate, and CISUN25-26-27a further emphasizes the complexity of hormone regulation. Understanding these regulatory mechanisms can enhance our understanding of fruit development and have a profound impact on agricultural practices and crop improvement strategies aimed at meeting the growing global demand for high-quality agricultural products.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Min Guo
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Amna Shoaib
- Department of Plant Pathology, Faculty of Agriculture, University of the Punjab, Lahore 54590, Pakistan
| | - Jiaxin Yang
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Siqing Fan
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Haijing Xiao
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Kai Chen
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Zhaoqi Xie
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| | - Chunsong Cheng
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.R.)
- Lushan Xinglin Institute for Medicinal Plants, Jiujiang Xinglin Key Laboratory for Traditional Chinese Medicines, Jiujiang 332900, China
| |
Collapse
|
3
|
Lizzio A, Battaglia V, Lahoz E, Reverberi M, Petriccione M. Selection of stable reference genes in prunus persica fruit infected with monilinia laxa for normalisation of RT-qPCR gene expression data. Sci Rep 2025; 15:6731. [PMID: 40000833 PMCID: PMC11861962 DOI: 10.1038/s41598-025-90506-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Reverse transcription-quantitative PCR (RT-qPCR) is a powerful tool for quantifying gene expression. However, reference genes (RGs) for gene expression analysis in peach (Prunus persica) during interactions with Monilinia laxa, a major fungal pathogen that causes brown rot, have not been established. In this study, we analysed 12 candidate RGs in this pathosystem by analysing samples from 12 to 144 HAI. The stability of the RGs was evaluated using the ΔCq method and BestKeeper, NormFinder, and geNorm algorithms. Our results identified AKT3, RNA pol II (RPII) and SNARE (using geNorm), RPII, AKT3 and TEF2 (using NormFinder), AKT3, SNARE and RPII (using BestKeeper) and RPII, MUB6 and AKT3 (using the ΔCq method) as the most stable RGs for mRNA normalisation in this pathosystem across all tested samples. The geNorm algorithm was used to determine the optimal number of suitable RGs required for proper normalisation under these experimental conditions, indicating that the three RGs were sufficient for normalisation. Analysis of the results obtained using different algorithms showed that AKT3, RPII, and SNARE were the three most stable RGs. Furthermore, to confirm the validity of the reference genes, the expression levels of six genes of interest, involved in different metabolic pathways, were normalized in inoculated and uninoculated peach fruit. These findings provide a set of RGs for accurate RT-qPCR analysis in studies involving peach and M. laxa interactions, facilitating deeper insights into the molecular mechanisms underlying this important plant-pathogen relationship.
Collapse
Affiliation(s)
- Agata Lizzio
- CREA Council for Agricultural Research and Economics, Fruit and Citrus Crops (CREA-OFA), Olive, Caserta, Italy.
- CREA Council for Agricultural Research and Economics, Cereal and Industrial Crops (CREA-CI), Caserta, Italy.
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, RM, Italy.
| | - Valerio Battaglia
- CREA Council for Agricultural Research and Economics, Cereal and Industrial Crops (CREA-CI), Caserta, Italy
| | - Ernesto Lahoz
- CREA Council for Agricultural Research and Economics, Cereal and Industrial Crops (CREA-CI), Caserta, Italy
| | - Massimo Reverberi
- Department of Environmental Biology, "Sapienza" University of Rome, Rome, RM, Italy
| | - Milena Petriccione
- CREA Council for Agricultural Research and Economics, Fruit and Citrus Crops (CREA-OFA), Olive, Caserta, Italy
| |
Collapse
|
4
|
Zhang Z, Han H, Zhao J, Liu Z, Deng L, Wu L, Niu J, Guo Y, Wang G, Gou X, Li C, Li C, Liu CM. Peptide hormones in plants. MOLECULAR HORTICULTURE 2025; 5:7. [PMID: 39849641 PMCID: PMC11756074 DOI: 10.1186/s43897-024-00134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
Peptide hormones are defined as small secreted polypeptide-based intercellular communication signal molecules. Such peptide hormones are encoded by nuclear genes, and often go through proteolytic processing of preproproteins and post-translational modifications. Most peptide hormones are secreted out of the cell to interact with membrane-associated receptors in neighboring cells, and subsequently activate signal transductions, leading to changes in gene expression and cellular responses. Since the discovery of the first plant peptide hormone, systemin, in tomato in 1991, putative peptide hormones have continuously been identified in different plant species, showing their importance in both short- and long-range signal transductions. The roles of peptide hormones are implicated in, but not limited to, processes such as self-incompatibility, pollination, fertilization, embryogenesis, endosperm development, stem cell regulation, plant architecture, tissue differentiation, organogenesis, dehiscence, senescence, plant-pathogen and plant-insect interactions, and stress responses. This article, collectively written by researchers in this field, aims to provide a general overview for the discoveries, functions, chemical natures, transcriptional regulations, and post-translational modifications of peptide hormones in plants. We also updated recent discoveries in receptor kinases underlying the peptide hormone sensing and down-stream signal pathways. Future prospective and challenges will also be discussed at the end of the article.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Lei Deng
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junpeng Niu
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Guodong Wang
- College of Life Sciences, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, Engineering Research Center of High Value Utilization of Western China Fruit Resources of Ministry of Education, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Chun-Ming Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
5
|
Chandrasekaran U, Hong WJ, Kim H. Subtilases: a major prospect to the genome editing in horticultural crops. FRONTIERS IN PLANT SCIENCE 2025; 15:1532074. [PMID: 39845485 PMCID: PMC11752874 DOI: 10.3389/fpls.2024.1532074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025]
Abstract
Plant peptides, synthesized from larger precursor proteins, often undergo proteolytic cleavage and post-translational modifications to form active peptide hormones. This process involves several proteolytic enzymes (proteases). Among these, SBTs (serine proteases) are a major class of proteolytic enzymes in plants and play key roles in various regulatory mechanisms, including plant immune response, fruit development and ripening, modulating root growth, seed development and germination, and organ abscission. However, current knowledge about SBTs is largely limited to 'in vitro cleavage assays,' with few studies exploring loss of function analyses for more in depth characterization. Research focused on economically significant horticultural crops, like tomato and pepper, remains scarce. Given this, leveraging SBTs for horticultural crop improvement through advanced gene-editing tools is critical for enhancing crop resilience to stress and pathogens. Over the past five years, research on proteolytic enzymes, especially SBTs, has increased markedly, yet reports involving loss- or gain-of function analyses aimed at improving crop yield and quality are still limited. This review summarizes recent findings on SBT enzymes, which act as 'protein scissors' in activating peptide hormones, and discusses the potential for using selected SBTs in CRISPR-Cas9 gene editing to enhance the growth and resilience of economically important Solanaceae crops, with a focus on pepper.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Institute of Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Woo Jong Hong
- Department of Smart Farm Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hyeran Kim
- Institute of Life Sciences, Kangwon National University, Chuncheon, Republic of Korea
- Department of Biological Sciences, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
6
|
Rahman FU, Zhu Q, Zhang K, Kang X, Wang X, Chen W, Li X, Zhu X. Transcriptome and metabolome analyses provide insights into the fruit softening disorder of papaya fruit under postharvest heat stress. Food Chem 2024; 460:140771. [PMID: 39128369 DOI: 10.1016/j.foodchem.2024.140771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024]
Abstract
Heat stress in summer causes softening disorder in papaya but the molecular mechanism is not clear. In this study, papaya fruit stored at 35 °C showed a softening disorder termed rubbery texture. Analysis of the transcriptome and metabolome identified numerous differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) between the fruit stored at 25 °C and 35 °C. The DEGs and DAMs related to lignin biosynthesis were upregulated, while those related to ethylene biosynthesis, sucrose metabolism, and cell wall degradation were downregulated under heat stress. Co-expression network analysis highlighted the correlation between the DEGs and metabolites associated with lignin biosynthesis, ethylene biosynthesis, and cell wall degradation under heat stress. Finally, the correlation analysis identified the key factors regulating softening disorder under heat stress. The study's findings reveal that heat stress inhibited papaya cell wall degradation and ethylene production, delaying fruit ripening and softening and ultimately resulting in a rubbery texture.
Collapse
Affiliation(s)
- Faiz Ur Rahman
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qiunan Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Keyuan Zhang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xinmiao Kang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiangting Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
7
|
Hastwell AH, Chu X, Liu Y, Ferguson BJ. The parallel narrative of RGF/GLV/CLEL peptide signalling. TRENDS IN PLANT SCIENCE 2024; 29:1342-1355. [PMID: 39322488 DOI: 10.1016/j.tplants.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Plant peptide families share distinct characteristics, and many members are in homologous signalling pathways controlling development and responses to external signals. The root meristem growth factor (RGF) peptides/GOLVEN (GLV)/CLAVATA3-ESR-related like (CLEL) are a family of short signalling peptides that are derived from a precursor protein and undergo post-translational modifications. Their role in root meristem development is well established and recent efforts have identified subtilase processing pathways and several downstream signalling components. This discovery has enabled the convergence of previously distinct pathways and enhanced our understanding of plant developmental processes. Here, we review the structure-function relationship of RGF peptides, the post-translational modification pathways, and the downstream signalling mechanisms and highlight components of these pathways that are known in non-RGF-mediated pathways.
Collapse
Affiliation(s)
- April H Hastwell
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Xitong Chu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhan Liu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
8
|
He L, Wu L, Li J. Sulfated peptides and their receptors: Key regulators of plant development and stress adaptation. PLANT COMMUNICATIONS 2024; 5:100918. [PMID: 38600699 PMCID: PMC11211552 DOI: 10.1016/j.xplc.2024.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Four distinct types of sulfated peptides have been identified in Arabidopsis thaliana. These peptides play crucial roles in regulating plant development and stress adaptation. Recent studies have revealed that Xanthomonas and Meloidogyne can secrete plant-like sulfated peptides, exploiting the plant sulfated peptide signaling pathway to suppress plant immunity. Over the past three decades, receptors for these four types of sulfated peptides have been identified, all of which belong to the leucine-rich repeat receptor-like protein kinase subfamily. A number of regulatory proteins have been demonstrated to play important roles in their corresponding signal transduction pathways. In this review, we comprehensively summarize the discoveries of sulfated peptides and their receptors, mainly in Arabidopsis thaliana. We also discuss their known biological functions in plant development and stress adaptation. Finally, we put forward a number of questions for reference in future studies.
Collapse
Affiliation(s)
- Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liangfan Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Hill RD, Igamberdiev AU, Stasolla C. Preserving root stem cell functionality under low oxygen stress: the role of nitric oxide and phytoglobins. PLANTA 2023; 258:89. [PMID: 37759033 DOI: 10.1007/s00425-023-04246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
MAIN CONCLUSION The preservation of quiescent center stem cell integrity in hypoxic roots by phytoglobins is exercised through their ability to scavenge nitric oxide and attenuate its effects on auxin transport and cell degradation. Under low oxygen stress, the retention or induction of phytoglobin expression maintains cell viability while loss or lack of induction of phytoglobin leads to cell degradation. Plants have evolved unique attributes to ensure survival in the environment in which they must exist. Common among the attributes is the ability to maintain stem cells in a quiescent (or low proliferation) state in unfriendly environments. From the seed embryo to meristematic regions of the plant, quiescent stem cells exist to regenerate the organism when environmental conditions are suitable to allow plant survival. Frequently, plants dispose of mature cells or organs in the process of acclimating to the stresses to ensure survival of meristems, the stem cells of which are capable of regenerating cells and organs that have been sacrificed, a feature not generally available to mammals. Most of the research on plant stress responses has dealt with how mature cells respond because of the difficulty of specifically examining plant meristem responses to stress. This raises the question as to whether quiescent stem cells behave in a similar fashion to mature cells in their response to stress and what factors within these critical cells determine whether they survive or degrade when exposed to environmental stress. This review attempts to examine this question with respect to the quiescent center (QC) stem cells of the root apical meristem. Emphasis is put on how varying levels of nitric oxide, influenced by the expression of phytoglobins, affect QC response to hypoxic stress.
Collapse
Affiliation(s)
- Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Claudio Stasolla
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
10
|
Gao H, Wu X, Yang X, Sun M, Xiao Y, Peng F. Silicon inhibits gummosis in peach via ethylene and PpERF-PpPG1 pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111362. [PMID: 35753620 DOI: 10.1016/j.plantsci.2022.111362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Silicon (Si) is abundant in nature, and it has been proved to be beneficial for the healthy growth and development of many plant species, improve plant stress resistance. Gummosis in peach is an invasive disease that causes widespread and serious damage. Mechanical damage and ethylene (ETH) can induce gummosis in peach shoots in the field. In this research, we found that Si as a chemical substance or signal to enhance plant resistance can reduce the synthesis of ETH, thereby inhibiting gummosis in peach. The results showed that Si can decrease the rate of gummosis, reduce the expression level of PpACS1 (1-aminocyclopropane -1-carboxylate synthase gene) and reduce the enzyme activity of polygalacturonase (PG). It was further discovered that Si can regulate the gene expression of PpERF21 and PpERF27. Yeast one-hybrid and dual-luciferase reporter assays showed that PpERF21 and PpERF27, through direct interaction with the promoter of PpPG1, inhibited the transcriptional activation of PpPG1. Overexpression of PpERF21 and PpERF27 effectively reduced fruit colloid production when bacterial cells harbouring the expression vector were used to instantaneously infect peach fruit. These results show that Si can inhibit the synthesis of ETH and mediate PpERF21 and PpERF27 expression to inhibit the expression of PpPG1, thereby inhibiting gummosis in peach.
Collapse
Affiliation(s)
- Huaifeng Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Xuelian Wu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Xiaoqing Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Maoxiang Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| |
Collapse
|
11
|
PpSAUR43, an Auxin-Responsive Gene, Is Involved in the Post-Ripening and Softening of Peaches. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Auxin’s role in the post-ripening of peaches is widely recognized as important. However, little is known about the processes by which auxin regulates fruit post-ripening. As one of the early auxin-responsive genes, it is critical to understand the role of small auxin-up RNA (SAUR) genes in fruit post-ripening and softening. Herein, we identified 72 PpSAUR auxin-responsive factors in the peach genome and divided them into eight subfamilies based on phylogenetic analysis. Subsequently, the members related to peach post-ripening in the PpSAUR gene family were screened, and we targeted PpSAUR43. The expression of PpSAUR43 was decreased with fruit post-ripening in melting flesh (MF) fruit and was high in non-melting flesh (NMF) fruit. The overexpression of PpSAUR43 showed a slower rate of firmness decline, reduced ethylene production, and a delayed fruit post-ripening process. The MADS-box gene family plays an important regulatory role in fruit ripening. In this study, we showed with yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BIFC) experiments that PpSAUR43 can interact with the MADS-box transcription factor PpCMB1(PpMADS2), which indicates that PpSAUR43 may inhibit fruit ripening by suppressing the function of the PpCMB1 protein. Together, these results indicate that PpSAUR43 acts as a negative regulator involved in the peach post-ripening process.
Collapse
|
12
|
Guo ZH, Zhang YJ, Yao JL, Xie ZH, Zhang YY, Zhang SL, Gu C. The NAM/ATAF1/2/CUC2 transcription factor PpNAC.A59 enhances PpERF.A16 expression to promote ethylene biosynthesis during peach fruit ripening. HORTICULTURE RESEARCH 2021; 8:209. [PMID: 34593759 PMCID: PMC8484547 DOI: 10.1038/s41438-021-00644-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 05/02/2023]
Abstract
Peach is a typical climacteric fruit that releases ethylene during fruit ripening. Several studies have been conducted on the transcriptional regulation of ethylene biosynthesis in peach fruit. Herein, an ethylene response factor, PpERF.A16, which was induced by exogenous ethylene, could enhance ethylene biosynthesis by directly inducing the expression of 1-aminocyclopropane-1-carboxylic acid synthase (PpACS1) and 1-aminocyclopropane-1-carboxylic acid oxidase (PpACO1) genes. Moreover, the NAM/ATAF1/2/CUC2 (NAC) transcription factor (TF) PpNAC.A59 was coexpressed with PpERF.A16 in all tested peach cultivars. Interestingly, PpNAC.A59 can directly interact with the promoter of PpERF.A16 to induce its expression but not enhance LUC activity driven by any promoter of PpACS1 or PpACO1. Thus, PpNAC.A59 can indirectly mediate ethylene biosynthesis via the NAC-ERF signaling cascade to induce the expression of both PpACS1 and PpACO1. These results enrich the genetic network of fruit ripening in peach and provide new insight into the ripening mechanism of other perennial fruits.
Collapse
Affiliation(s)
- Zhi-Hua Guo
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - You-Jia Zhang
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jia-Long Yao
- New Zealand Institute of Plant & Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Zhi-Hua Xie
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yu-Yan Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, 210014, Nanjing, China
| | - Shao-Ling Zhang
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chao Gu
- College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
13
|
Nilo-Poyanco R, Moraga C, Benedetto G, Orellana A, Almeida AM. Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genomics 2021; 22:17. [PMID: 33413072 PMCID: PMC7788829 DOI: 10.1186/s12864-020-07299-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fruit ripening in Prunus persica melting varieties involves several physiological changes that have a direct impact on the fruit organoleptic quality and storage potential. By studying the proteomic differences between the mesocarp of mature and ripe fruit, it would be possible to highlight critical molecular processes involved in the fruit ripening. RESULTS To accomplish this goal, the proteome from mature and ripe fruit was assessed from the variety O'Henry through shotgun proteomics using 1D-gel (PAGE-SDS) as fractionation method followed by LC/MS-MS analysis. Data from the 131,435 spectra could be matched to 2740 proteins, using the peach genome reference v1. After data pre-treatment, 1663 proteins could be used for comparison with datasets assessed using transcriptomic approaches and for quantitative protein accumulation analysis. Close to 26% of the genes that code for the proteins assessed displayed higher expression at ripe fruit compared to other fruit developmental stages, based on published transcriptomic data. Differential accumulation analysis between mature and ripe fruit revealed that 15% of the proteins identified were modulated by the ripening process, with glycogen and isocitrate metabolism, and protein localization overrepresented in mature fruit, as well as cell wall modification in ripe fruit. Potential biomarkers for the ripening process, due to their differential accumulation and gene expression pattern, included a pectin methylesterase inhibitor, a gibbellerin 2-beta-dioxygenase, an omega-6 fatty acid desaturase, a homeobox-leucine zipper protein and an ACC oxidase. Transcription factors enriched in NAC and Myb protein domains would target preferentially the genes encoding proteins more abundant in mature and ripe fruit, respectively. CONCLUSIONS Shotgun proteomics is an unbiased approach to get deeper into the proteome allowing to detect differences in protein abundance between samples. This technique provided a resolution so that individual gene products could be identified. Many proteins likely involved in cell wall and sugar metabolism, aroma and color, change their abundance during the transition from mature to ripe fruit.
Collapse
Affiliation(s)
- Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile
| | - Carol Moraga
- Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
- Inria Grenoble Rhône-Alpes, 38334, Montbonnot, France
| | - Gianfranco Benedetto
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
- Center for Genome Regulation, Blanco Encalada, 2085, Santiago, Chile
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
- Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
| |
Collapse
|
14
|
Furumizu C, Sawa S. The RGF/GLV/CLEL Family of Short Peptides Evolved Through Lineage-Specific Losses and Diversification and Yet Conserves Its Signaling Role Between Vascular Plants and Bryophytes. FRONTIERS IN PLANT SCIENCE 2021; 12:703012. [PMID: 34354727 PMCID: PMC8329595 DOI: 10.3389/fpls.2021.703012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 05/12/2023]
Abstract
Short secreted plant peptides act as key signaling molecules and control a plethora of developmental and physiological processes. The ROOT GROWTH FACTOR (RGF)/GOLVEN (GLV)/CLE-Like (CLEL) family of peptides was discovered to be involved in root development in Arabidopsis thaliana. In contrast to active research efforts, which have been revealing receptors and downstream signaling components, little attention has been paid to evolutionary processes that shaped the RGF signaling system as we know it in angiosperms today. As a first step toward understanding how RGF signaling emerged and evolved, this study aimed to elucidate the phylogenetic distribution and functional conservation of RGF-like sequences. Using publicly available, genome and transcriptome data, RGF-like sequences were searched in 27 liverworts, 22 mosses, 8 hornworts, 23 lycophytes, 23 ferns, 38 gymnosperms, and 8 angiosperms. This led to the identification of more than four hundreds of RGF-like sequences in all major extant land plant lineages except for hornworts. Sequence comparisons within and between taxonomic groups identified lineage-specific characters. Notably, one of the two major RGF subgroups, represented by A. thaliana RGF6/GLV1/CLEL6, was found only in vascular plants. This subgroup, therefore, likely emerged in a common ancestor of vascular plants after its divergence from bryophytes. In bryophytes, our results infer independent losses of RGF-like sequences in mosses and hornworts. On the other hand, a single, highly similar RGF-like sequence is conserved in liverworts, including Marchantia polymorpha, a genetically tractable model species. When constitutively expressed, the M. polymorpha RGF-like sequence (MpRGF) affected plant development and growth both in A. thaliana and M. polymorpha. This suggests that MpRGF can exert known RGF-like effects and that MpRGF is under transcriptional control so that its potent activities are precisely controlled. These data suggest that RGFs are conserved as signaling molecules in both vascular plants and bryophytes and that lineage-specific diversification has increased sequence variations of RGFs. All together, our findings form a basis for further studies into RGF peptides and their receptors, which will contribute to our understandings of how peptide signaling pathways evolve.
Collapse
|
15
|
Wang X, Meng J, Deng L, Wang Y, Liu H, Yao JL, Nieuwenhuizen NJ, Wang Z, Zeng W. Diverse Functions of IAA-Leucine Resistant PpILR1 Provide a Genic Basis for Auxin-Ethylene Crosstalk During Peach Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2021; 12:655758. [PMID: 34054901 PMCID: PMC8149794 DOI: 10.3389/fpls.2021.655758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/20/2021] [Indexed: 05/09/2023]
Abstract
Auxin and ethylene play critical roles in the ripening of peach (Prunus persica) fruit; however, the interaction between these two phytohormones is complex and not fully understood. Here, we isolated a peach ILR gene, PpILR1, which encodes an indole-3-acetic acid (IAA)-amino hydrolase. Functional analyses revealed that PpILR1 acts as a transcriptional activator of 1-amino cyclopropane-1-carboxylic acid synthase (PpACS1), and hydrolyzes auxin substrates to release free auxin. When Cys137 was changed to Ser137, PpILR1 failed to show hydrolase activity but continued to function as a transcriptional activator of PpACS1 in tobacco and peach transient expression assays. Furthermore, transgenic tomato plants overexpressing PpILR1 exhibited ethylene- and strigolactone-related phenotypes, including premature pedicel abscission, leaf and petiole epinasty, and advanced fruit ripening, which are consistent with increased expression of genes involved in ethylene biosynthesis and fruit ripening, as well as suppression of branching and growth of internodes (related to strigolactone biosynthesis). Collectively, these results provide novel insights into the role of IAA-amino acid hydrolases in plants, and position the PpILR1 protein at the junction of auxin and ethylene pathways during peach fruit ripening. These results could have substantial implications on peach fruit cultivation and storage in the future.
Collapse
Affiliation(s)
- Xiaobei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Junren Meng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Li Deng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Hui Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | | | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- Zhiqiang Wang
| | - Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Wenfang Zeng
| |
Collapse
|
16
|
Vall-Llaura N, Giné-Bordonaba J, Usall J, Larrigaudière C, Teixidó N, Torres R. Ethylene biosynthesis and response factors are differentially modulated during the interaction of peach petals with Monilinia laxa or Monilinia fructicola. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110599. [PMID: 32900437 DOI: 10.1016/j.plantsci.2020.110599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Monilinia spp. may infect stone fruit at any growth stage, although susceptibility to brown rot depends on both host properties and climatological conditions. This said, no studies deciphering the host response in the interaction between peach blossoms and Monilinia spp. are yet available. This study presents an in-depth characterization of the role of ethylene in the interaction of 'Merrill O'Henry' peach petals (Prunus persica (L.) Batch) with Monilinia laxa and M. fructicola. We investigated the physiological responses of the host and the fungi to the application of ethylene and 1-methylcyclopropene (1-MCP) as well as the molecular patterns associated with the biosynthetic and ethylene-dependent responses during the interaction of both Monilinia species with the host. The incidence of both species was differentially affected by 1-MCP and ethylene; M. laxa was favoured by the enhanced host ethylene production associated with the treatments whereas M. fructicola reduced its infection capacity. Such differences were host-dependent as treatments did not affect growth or colony morphology of Monilinia spp. Besides, host ethylene production was altered in M. laxa inoculated petals, either by the fungus or the host itself. Molecular analysis revealed some important ERFs that could be involved in the different ability of both species to activate a cascade response of peach petals against these pathogens.
Collapse
Affiliation(s)
- Núria Vall-Llaura
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Jordi Giné-Bordonaba
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Josep Usall
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Christian Larrigaudière
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Neus Teixidó
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| | - Rosario Torres
- XaRTA-Postharvest, Institute of Agrifood Research and Technology (IRTA), Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| |
Collapse
|
17
|
Balsells-Llauradó M, Silva CJ, Usall J, Vall-llaura N, Serrano-Prieto S, Teixidó N, Mesquida-Pesci SD, de Cal A, Blanco-Ulate B, Torres R. Depicting the battle between nectarine and Monilinia laxa: the fruit developmental stage dictates the effectiveness of the host defenses and the pathogen's infection strategies. HORTICULTURE RESEARCH 2020; 7:167. [PMID: 33082973 PMCID: PMC7527454 DOI: 10.1038/s41438-020-00387-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/21/2020] [Accepted: 07/27/2020] [Indexed: 05/21/2023]
Abstract
Infections by the fungus Monilinia laxa, the main cause of brown rot in Europe, result in considerable losses of stone fruit. Herein, we present a comprehensive transcriptomic approach to unravel strategies deployed by nectarine fruit and M. laxa during their interaction. We used M. laxa-inoculated immature and mature fruit, which was resistant and susceptible to brown rot, respectively, to perform a dual RNA-Seq analysis. In immature fruit, host responses, pathogen biomass, and pathogen transcriptional activity peaked at 14-24 h post inoculation (hpi), at which point M. laxa appeared to switch its transcriptional response to either quiescence or death. Mature fruit experienced an exponential increase in host and pathogen activity beginning at 6 hpi. Functional analyses in both host and pathogen highlighted differences in stage-dependent strategies. For example, in immature fruit, M. laxa unsuccessfully employed carbohydrate-active enzymes (CAZymes) for penetration, which the fruit was able to combat with tightly regulated hormone responses and an oxidative burst that challenged the pathogen's survival at later time points. In contrast, in mature fruit, M. laxa was more dependent on proteolytic effectors than CAZymes, and was able to invest in filamentous growth early during the interaction. Hormone analyses of mature fruit infected with M. laxa indicated that, while jasmonic acid activity was likely useful for defense, high ethylene activity may have promoted susceptibility through the induction of ripening processes. Lastly, we identified M. laxa genes that were highly induced in both quiescent and active infections and may serve as targets for control of brown rot.
Collapse
Affiliation(s)
- Marta Balsells-Llauradó
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia Spain
| | - Christian J. Silva
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Josep Usall
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia Spain
| | - Núria Vall-llaura
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia Spain
| | - Sandra Serrano-Prieto
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia Spain
| | - Neus Teixidó
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia Spain
| | | | - Antonieta de Cal
- Department of Plant Protection, INIA, Ctra. de La Coruña Km. 7, 28040 Madrid, Community of Madrid Spain
| | - Barbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616 USA
| | - Rosario Torres
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia Spain
| |
Collapse
|
18
|
Zeng W, Niu L, Wang Z, Wang X, Wang Y, Pan L, Lu Z, Cui G, Weng W, Wang M, Meng X, Wang Z. Application of an antibody chip for screening differentially expressed proteins during peach ripening and identification of a metabolon in the SAM cycle to generate a peach ethylene biosynthesis model. HORTICULTURE RESEARCH 2020; 7:31. [PMID: 32194967 PMCID: PMC7072073 DOI: 10.1038/s41438-020-0249-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/27/2019] [Accepted: 01/07/2020] [Indexed: 05/21/2023]
Abstract
Peach (Prunus persica) is a typical climacteric fruit that produces ethylene rapidly during ripening, and its fruit softens quickly. Stony hard peach cultivars, however, do not produce large amounts of ethylene, and the fruit remains firm until fully ripe, thus differing from melting flesh peach cultivars. To identify the key proteins involved in peach fruit ripening, an antibody-based proteomic analysis was conducted. A mega-monoclonal antibody (mAb) library was generated and arrayed on a chip (mAbArray) at a high density, covering ~4950 different proteins of peach. Through the screening of peach fruit proteins with the mAbArray chip, differentially expressed proteins recognized by 1587 mAbs were identified, and 33 corresponding antigens were ultimately identified by immunoprecipitation and mass spectrometry. These proteins included not only important enzymes involved in ethylene biosynthesis, such as ACO1, SAHH, SAMS, and MetE, but also novel factors such as NUDT2. Furthermore, protein-protein interaction analysis identified a metabolon containing SAHH and MetE. By combining the antibody-based proteomic data with the transcriptomic and metabolic data, a mathematical model of ethylene biosynthesis in peach was constructed. Simulation results showed that MetE is an important regulator during peach ripening, partially through interaction with SAHH.
Collapse
Affiliation(s)
- Wenfang Zeng
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Liang Niu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | | | - Xiaobei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Yan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Lei Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Zhenhua Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | - Guochao Cui
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| | | | | | - Xun Meng
- Abmart, 200233 Shanghai, China
- Northwest University, 710127 Xi’an, China
| | - Zhiqiang Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 450009 Zhengzhou, China
| |
Collapse
|
19
|
Baró-Montel N, Vall-Llaura N, Giné-Bordonaba J, Usall J, Serrano-Prieto S, Teixidó N, Torres R. Double-sided battle: The role of ethylene during Monilinia spp. infection in peach at different phenological stages. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:324-333. [PMID: 31606717 DOI: 10.1016/j.plaphy.2019.09.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/09/2019] [Accepted: 09/29/2019] [Indexed: 05/10/2023]
Abstract
Controversy exists on whether ethylene is involved in determining fruit resistance or susceptibility against biotic stress. In this work, the hypothesis that ethylene biosynthesis in peaches at different phenological stages may be modulated by Monilinia spp. was tested. To achieve this, at 49 and 126 d after full bloom (DAFB), ethylene biosynthesis of healthy and infected 'Merryl O'Henry' peaches with three strains of Monilinia spp. (M. fructicola (CPMC6) and M. laxa (CPML11 and ML8L) that differ in terms of aggressiveness) was analysed at the biochemical and molecular level along the course of infection in fruit stored at 20 °C. At 49 DAFB, results evidenced that infected fruit showed inhibition of ethylene production in comparison with non-inoculated fruit, suggesting that the three Monilinia strains were somehow suppressing ethylene biosynthesis to modify fruit defences to successfully infect the host. On the contrary, at 126 DAFB ethylene production increased concomitantly with brown rot spread, and values for non-inoculated fruit were almost undetectable throughout storage at 20 °C. The expression of several target genes involved in the ethylene biosynthetic pathway confirmed that they were differentially expressed upon Monilinia infection, pointing to a strain-dependent regulation. Notably, Prunus persica 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) (PpACS) family was the most over-expressed over time, demonstrating a positive ethylene regulation, especially at 126 DAFB. At this phenological stage it was demonstrated the ability of Monilinia spp. to alter ethylene biosynthesis through PpACS1 and benefit from the consequences of an ethylene burst likely on cell wall softening. Overall, our results put forward that infection not only among different strains but also at each stage is achieved by different mechanisms, with ethylene being a key factor in determining peach resistance or susceptibility to brown rot.
Collapse
Affiliation(s)
- Núria Baró-Montel
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - Núria Vall-Llaura
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - Jordi Giné-Bordonaba
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - Josep Usall
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - Sandra Serrano-Prieto
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain.
| |
Collapse
|
20
|
Calcium chloride and 1-methylcyclopropene treatments delay postharvest and reduce decay of New Queen melon. Sci Rep 2019; 9:13563. [PMID: 31537851 PMCID: PMC6753129 DOI: 10.1038/s41598-019-49820-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/30/2019] [Indexed: 11/15/2022] Open
Abstract
In this study, newly harvested New Queen melons were treated with calcium chloride (CaCl2) and 1-methylcyclopropene (1-MCP) alone or in combination before storage. The results showed that the respiration rate, ethylene release, the activity and gene expression of pectinases such as polygalacturonase (PG), pectin methylesterase (PME) and pectate lyase (PL) in New Queen melons were dramatically decreased by treatments with 0.18 mol/L CaCl2 and/or 1 μL/L 1-MCP. Meanwhile, the climacteric behavior and flesh hardness reduction were inhibited. We also found that softer melon flesh was more conducive to the growth and reproduction of decay-causing microorganisms according to their growth curves in melons that were different in flesh hardness, suggesting inhibiting fruit softening can slow down the growth of microorganisms in fruit flesh, and thus reduce fruit decay rate. The combined use of CaCl2 and 1-MCP was more effective in suppressing respiration rate, ethylene release and protopectin hydrolysis, which could greatly delay the softening, reduce the decay rate, and extend the shelf life of New Queen melons.
Collapse
|
21
|
Recent Advances in Hormonal Regulation and Cross-Talk during Non-Climacteric Fruit Development and Ripening. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5020045] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fleshy fruits are characterized by having a developmentally and genetically controlled, highly intricate ripening process, leading to dramatic modifications in fruit size, texture, color, flavor, and aroma. Climacteric fruits such as tomato, pear, banana, and melon show a ripening-associated increase in respiration and ethylene production and these processes are well-documented. In contrast, the hormonal mechanism of fruit development and ripening in non-climacteric fruit, such as strawberry, grape, raspberry, and citrus, is not well characterized. However, recent studies have shown that non-climacteric fruit development and ripening, involves the coordinated action of different hormones, such as abscisic acid (ABA), auxin, gibberellins, ethylene, and others. In this review, we discuss and evaluate the recent research findings concerning the hormonal regulation of non-climacteric fruit development and ripening and their cross-talk by taking grape, strawberry, and raspberry as reference fruit species.
Collapse
|
22
|
Farcuh M, Toubiana D, Sade N, Rivero RM, Doron-Faigenboim A, Nambara E, Sadka A, Blumwald E. Hormone balance in a climacteric plum fruit and its non-climacteric bud mutant during ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:51-65. [PMID: 30824029 DOI: 10.1016/j.plantsci.2018.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 05/14/2023]
Abstract
Hormone balance plays a crucial role in the control of fruit ripening. We characterized and compared hormone balance in two Japanese plum cultivars (Prunus salicina Lindl.), namely Santa Rosa, a climacteric type, and Sweet Miriam, its non-climacteric bud-sport mutant. We assessed hormonal changes in gene expression associated with hormone biosynthesis, perception and signaling during ripening on-the tree and throughout postharvest storage and in response to ethylene treatments. Non-climacteric fruit displayed lower ethylene levels than climacteric fruit at all stages and lower auxin levels during the initiation of ripening on-the-tree and during most of post-harvest storage. Moreover, 1-MCP-induced ethylene decrease also resulted in low auxin contents in Santa Rosa, supporting the role of auxin in climacteric fruit ripening. The differences in auxin contents between Santa Rosa and Sweet Miriam fruit could be the consequence of different routed auxin biosynthesis pathways as indicated by the significant negative correlations between clusters of auxin metabolism-associated genes. Ethylene induced increased ABA levels throughout postharvest storage in both ripening types. Overall, ripening of Santa Rosa and Sweet Miriam fruit are characterized by distinct hormone accumulation pathways and interactions.
Collapse
Affiliation(s)
- Macarena Farcuh
- Department of Plant Sciences, University of California, Davis CA 95616, USA
| | - David Toubiana
- Department of Plant Sciences, University of California, Davis CA 95616, USA
| | - Nir Sade
- Department of Plant Sciences, University of California, Davis CA 95616, USA; Department of Molecular Biology & Ecology of Plants, Tel Aviv University, Tel Aviv, 69978 Israel
| | | | - Adi Doron-Faigenboim
- Department of Fruit Tree Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3B2, Canada
| | - Avi Sadka
- Department of Fruit Tree Sciences, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis CA 95616, USA.
| |
Collapse
|
23
|
Mukherjee S. Recent advancements in the mechanism of nitric oxide signaling associated with hydrogen sulfide and melatonin crosstalk during ethylene-induced fruit ripening in plants. Nitric Oxide 2019; 82:25-34. [DOI: 10.1016/j.niox.2018.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/11/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
|
24
|
Pérez-Llorca M, Muñoz P, Müller M, Munné-Bosch S. Biosynthesis, Metabolism and Function of Auxin, Salicylic Acid and Melatonin in Climacteric and Non-climacteric Fruits. FRONTIERS IN PLANT SCIENCE 2019; 10:136. [PMID: 30833953 PMCID: PMC6387956 DOI: 10.3389/fpls.2019.00136] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/28/2019] [Indexed: 05/20/2023]
Abstract
Climacteric and non-climacteric fruits are differentiated by the ripening process, in particular by the involvement of ethylene, high respiration rates and the nature of the process, being autocatalytic or not, respectively. Here, we focus on the biosynthesis, metabolism and function of three compounds (auxin, salicylic acid and melatonin) sharing not only a common precursor (chorismate), but also regulatory functions in plants, and therefore in fruits. Aside from describing their biosynthesis in plants, with a particular emphasis on common precursors and points of metabolic diversion, we will discuss recent advances on their role in fruit ripening and the regulation of bioactive compounds accumulation, both in climacteric and non-climacteric fruits.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Institute for Research on Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
- *Correspondence: Sergi Munné-Bosch,
| |
Collapse
|
25
|
Busatto N, Salvagnin U, Resentini F, Quaresimin S, Navazio L, Marin O, Pellegrini M, Costa F, Mierke DF, Trainotti L. The Peach RGF/GLV Signaling Peptide pCTG134 Is Involved in a Regulatory Circuit That Sustains Auxin and Ethylene Actions. FRONTIERS IN PLANT SCIENCE 2017; 8:1711. [PMID: 29075273 PMCID: PMC5641559 DOI: 10.3389/fpls.2017.01711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
Abstract
In vascular plants the cell-to-cell interactions coordinating morphogenetic and physiological processes are mediated, among others, by the action of hormones, among which also short mobile peptides were recognized to have roles as signals. Such peptide hormones (PHs) are involved in defense responses, shoot and root growth, meristem homeostasis, organ abscission, nutrient signaling, hormone crosstalk and other developmental processes and act as both short and long distant ligands. In this work, the function of CTG134, a peach gene encoding a ROOT GROWTH FACTOR/GOLVEN-like PH expressed in mesocarp at the onset of ripening, was investigated for its role in mediating an auxin-ethylene crosstalk. In peach fruit, where an auxin-ethylene crosstalk mechanism is necessary to support climacteric ethylene synthesis, CTG134 expression peaked before that of ACS1 and was induced by auxin and 1-methylcyclopropene (1-MCP) treatments, whereas it was minimally affected by ethylene. In addition, the promoter of CTG134 fused with the GUS reporter highlighted activity in plant parts in which the auxin-ethylene interplay is known to occur. Arabidopsis and tobacco plants overexpressing CTG134 showed abnormal root hair growth, similar to wild-type plants treated with a synthetic form of the sulfated peptide. Moreover, in tobacco, lateral root emergence and capsule size were also affected. In Arabidopsis overexpressing lines, molecular surveys demonstrated an impaired hormonal crosstalk, resulting in a re-modulated expression of a set of genes involved in both ethylene and auxin synthesis, transport and perception. These data support the role of pCTG134 as a mediator in an auxin-ethylene regulatory circuit and open the possibility to exploit this class of ligands for the rational design of new and environmental friendly agrochemicals able to cope with a rapidly changing environment.
Collapse
Affiliation(s)
- Nicola Busatto
- Department of Biology, University of Padova, Padova, Italy
- Department of Genomics and Crop Biology, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | | | | | | | | | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Fabrizio Costa
- Department of Genomics and Crop Biology, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Dale F. Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | | |
Collapse
|
26
|
Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. FRONTIERS IN PLANT SCIENCE 2017; 8:475. [PMID: 28421102 PMCID: PMC5378820 DOI: 10.3389/fpls.2017.00475] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
The complex juvenile/maturity transition during a plant's life cycle includes growth, reproduction, and senescence of its fundamental organs: leaves, flowers, and fruits. Growth and senescence of leaves, flowers, and fruits involve several genetic networks where the phytohormone ethylene plays a key role, together with other hormones, integrating different signals and allowing the onset of conditions favorable for stage progression, reproductive success and organ longevity. Changes in ethylene level, its perception, and the hormonal crosstalk directly or indirectly regulate the lifespan of plants. The present review focused on ethylene's role in the development and senescence processes in leaves, flowers and fruits, paying special attention to the complex networks of ethylene crosstalk with other hormones. Moreover, aspects with limited information have been highlighted for future research, extending our understanding on the importance of ethylene during growth and senescence and boosting future research with the aim to improve the qualitative and quantitative traits of crops.
Collapse
Affiliation(s)
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim UniversityAligarh, India
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di MilanoMilano, Italy
| | - Alice Trivellini
- Institute of Life Sciences, Scuola Superiore Sant’AnnaPisa, Italy
| | | | - M. I. R. Khan
- Crop and Environmental Sciences Division, International Rice Research InstituteManila, Philippines
| |
Collapse
|
27
|
Simpson CG, Cullen DW, Hackett CA, Smith K, Hallett PD, McNicol J, Woodhead M, Graham J. Mapping and expression of genes associated with raspberry fruit ripening and softening. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:557-572. [PMID: 27942774 DOI: 10.1007/s00122-016-2835-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/26/2016] [Indexed: 05/24/2023]
Abstract
QTL mapping identifies a range of underlying and unrelated genes with apparent roles in raspberry fruit ripening and softening that show characteristic developing fruit expression profiles. Fruit softening is an important agronomical trait that involves a complex interaction of plant cell processes. We have used both qualitative and quantitative scoring of fruit firmness, length, mass, and resistance to applied force to identify QTL in a raspberry mapping population. QTLs were located primarily on linkage group (LG) 3 with other significant loci on LG 1 and LG 5 and showed mostly additive effects between the two parents. The expression of key genes that underlie these QTLs with roles in cell-wall solubility, water uptake, polyamine synthesis, transcription, and cell respiration was tested across five stages of fruit development, from immature green to red ripe fruit, using real-time RT-qPCR. Gene expression patterns showed variable expression patterns across fruit development with a highly significant positive and negative correlation between genes, supporting precise regulation of expression of different cell processes throughout raspberry fruit development. Variable timing in expression was also found in some genes at different fruit development stages between soft and firm cultivars. Multiple processes have a role to play in fruit softening and this will require development of multiple marker combinations to genes that characterise raspberry fruit softening.
Collapse
Affiliation(s)
- Craig G Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Danny W Cullen
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Kay Smith
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Paul D Hallett
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 3UU, UK
| | - Jim McNicol
- Biomathematics and Statistics Scotland, Invergowrie, Dundee, DD2 5DA, UK
| | - Mary Woodhead
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Julie Graham
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
28
|
Jia H, Xie Z, Wang C, Shangguan L, Qian N, Cui M, Liu Z, Zheng T, Wang M, Fang J. Abscisic acid, sucrose, and auxin coordinately regulate berry ripening process of the Fujiminori grape. Funct Integr Genomics 2017; 17:441-457. [DOI: 10.1007/s10142-017-0546-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 10/23/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022]
|
29
|
Busatto N, Tadiello A, Trainotti L, Costa F. Climacteric ripening of apple fruit is regulated by transcriptional circuits stimulated by cross-talks between ethylene and auxin. PLANT SIGNALING & BEHAVIOR 2017; 12:e1268312. [PMID: 27935411 PMCID: PMC5289524 DOI: 10.1080/15592324.2016.1268312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 05/19/2023]
Abstract
Apple is a fleshy fruit distinguished by a climacteric type of ripening, since most of the relevant physiological changes are triggered and governed by the action of ethylene. After its production, this hormone is perceived by a series of receptors to regulate, through a signaling cascade, downstream ethylene related genes. The possibility to control the effect of ethylene opened new horizons to the improvement of the postharvest fruit quality. To this end, 1-methylcyclopropene (1-MCP), an ethylene antagonist, is routinely used to modulate the ripening progression increasing storage life. In a recent work published in The Plant Journal, the whole transcriptome variation throughout fruit development and ripening, with the adjunct comparison between normal and impaired postharvest ripening, has been illustrated. In particular, besides the expected downregulation of ethylene-regulated genes, we shed light on a regulatory circuit leading to de-repressing the expression of a specific set of genes following 1-MCP treatment, such as AUX/IAA, NAC and MADS. These findings suggested the existence of a possible ethylene/auxin cross-talk in apple, regulated by a transcriptional circuit stimulated by the interference at the ethylene receptor level.
Collapse
Affiliation(s)
- Nicola Busatto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Alice Tadiello
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | | | - Fabrizio Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
- CONTACT Costa Fabrizio Research and Innovation Centre, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all'Adige, Trento, Italy
| |
Collapse
|
30
|
Guo J, Cao K, Li Y, Yao JL, Deng C, Wang Q, Zhu G, Fang W, Chen C, Wang X, Guan L, Ding T, Wang L. Comparative Transcriptome and Microscopy Analyses Provide Insights into Flat Shape Formation in Peach ( Prunus persica). FRONTIERS IN PLANT SCIENCE 2017; 8:2215. [PMID: 29354151 PMCID: PMC5758543 DOI: 10.3389/fpls.2017.02215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/18/2017] [Indexed: 05/21/2023]
Abstract
Fruit shape is an important external characteristic that consumers use to select preferred fruit cultivars. In peach, the flat fruit cultivars have become more and more popular worldwide. Genetic markers closely linking to the flat fruit trait have been identified and are useful for marker-assisted breeding. However, the cellular and genetic mechanisms underpinning flat fruit formation are still poorly understood. In this study, we have revealed the differences in fruit cell number, cell size, and in gene expression pattern between the traditional round fruit and modern flat fruit cultivars. Flat peach cultivars possessed significantly lower number of cells in the vertical axis because cell division in the vertical direction stopped early in the flat fruit cultivars at 15 DAFB (day after full bloom) than in round fruit cultivars at 35 DAFB. This resulted in the reduction in vertical development in the flat fruit. Significant linear relationship was observed between fruit vertical diameter and cell number in vertical axis for the four examined peach cultivars (R2 = 0.9964) at maturation stage, and was also observed between fruit vertical diameter and fruit weight (R2 = 0.9605), which indicated that cell number in vertical direction contributed to the flat shape formation. Furthermore, in RNA-seq analysis, 4165 differentially expressed genes (DEGs) were detected by comparing RNA-seq data between flat and round peach cultivars at different fruit development stages. In contrast to previous studies, we discovered 28 candidate genes potentially responsible for the flat shape formation, including 19 located in the mapping site and 9 downstream genes. Our study indicates that flat and round fruit shape in peach is primarily determined by the regulation of cell production in the vertical direction during early fruit development.
Collapse
Affiliation(s)
- Jian Guo
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ke Cao
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yong Li
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Qi Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gengrui Zhu
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Changwen Chen
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinwei Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liping Guan
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Tiyu Ding
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lirong Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- *Correspondence: Lirong Wang,
| |
Collapse
|
31
|
Use of Nondestructive Devices to Support Pre- and Postharvest Fruit Management. HORTICULTURAE 2016. [DOI: 10.3390/horticulturae3010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A. A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage. PLANT MOLECULAR BIOLOGY 2016; 92:483-503. [PMID: 27714490 DOI: 10.1007/s11103-016-0526-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 08/06/2016] [Indexed: 05/14/2023]
Abstract
Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms.
Collapse
Affiliation(s)
- Clara Pons
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain.
| | - Cristina Martí
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Abhaya M Dandekar
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas (CSIC) -Universidad Politécnica de Valencia (UPV), 46022, Valencia, Spain
| |
Collapse
|
33
|
Ethylene-Induced Vinblastine Accumulation Is Related to Activated Expression of Downstream TIA Pathway Genes in Catharanthus roseus. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3708187. [PMID: 27314017 PMCID: PMC4903123 DOI: 10.1155/2016/3708187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 03/30/2016] [Accepted: 04/06/2016] [Indexed: 12/20/2022]
Abstract
We selected different concentrations of ethephon, to stress C. roseus. We used qRT-PCR and HPLC followed by PCA to obtain comprehensive profiling of the vinblastine biosynthesis in response to ethephon. Based on our findings, the results showed that the high concentration of ethephon had a positive effect at both transcriptional and metabolite level. Meanwhile, there was a remarkable decrease of hydrogen peroxide content and a promoted peroxidase activity in leaves. The loading plot combination with correlation analysis suggested that CrPrx1 could be regarded as a positive regulator and interacts with ethylene response factor (ERF) to play a key role in vinblastine content and peroxidase (POD) activity. This study provides the foundation for a better understanding of the regulation and accumulation of vinblastine in response to ethephon.
Collapse
|
34
|
Karagiannis E, Tanou G, Samiotaki M, Michailidis M, Diamantidis G, Minas IS, Molassiotis A. Comparative Physiological and Proteomic Analysis Reveal Distinct Regulation of Peach Skin Quality Traits by Altitude. FRONTIERS IN PLANT SCIENCE 2016; 7:1689. [PMID: 27891143 PMCID: PMC5102882 DOI: 10.3389/fpls.2016.01689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
The role of environment in fruit physiology has been established; however, knowledge regarding the effect of altitude in fruit quality traits is still lacking. Here, skin tissue quality characters were analyzed in peach fruit (cv. June Gold), harvested in 16 orchards located in low (71.5 m mean), or high (495 m mean) altitutes sites. Data indicated that soluble solids concentration and fruit firmness at commercial harvest stage were unaffected by alitute. Peach grown at high-altitude environment displayed higher levels of pigmentation and specific antioxidant-related activity in their skin at the commercial harvest stage. Skin extracts from distinct developmental stages and growing altitudes exhibited different antioxidant ability against DNA strand-scission. The effects of altitude on skin tissue were further studied using a proteomic approach. Protein expression analysis of the mature fruits depicted altered expression of 42 proteins that are mainly involved in the metabolic pathways of defense, primary metabolism, destination/storage and energy. The majority of these proteins were up-regulated at the low-altitude region. High-altitude environment increased the accumulation of several proteins, including chaperone ClpC, chaperone ClpB, pyruvate dehydrogenase E1, TCP domain class transcription factor, and lipoxygenase. We also discuss the altitude-affected protein variations, taking into account their potential role in peach ripening process. This study provides the first characterization of the peach skin proteome and helps to improve our understanding of peach's response to altitude.
Collapse
Affiliation(s)
- Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Georgia Tanou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | | | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Grigorios Diamantidis
- Laboratory of Agricultural Chemistry, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Ioannis S. Minas
- Department of Horticulture and Landscape Architecture, Colorado State UniversityFort Collins, CO, USA
- Western Colorado Research Center at Orchard Mesa, Colorado State UniversityGrand Junction, CO, USA
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
- *Correspondence: Athanassios Molassiotis
| |
Collapse
|