1
|
Ma Y, Li Y, Wang F, Qing Q, Deng C, Wang H, Song Y. Screening and Identification of Drought-Tolerant Genes in Tomato ( Solanum lycopersicum L.) Based on RNA-Seq Analysis. PLANTS (BASEL, SWITZERLAND) 2025; 14:1471. [PMID: 40431035 PMCID: PMC12114640 DOI: 10.3390/plants14101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/27/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025]
Abstract
Drought is one of the major abiotic stresses that inhibits plant growth and development. Therefore, it is critical to explore drought resistance genes in crops to obtain high-quality breeding materials. In this study, the drought-sensitive tomato line "FQ118" and the resistant line "FQ119" were treated with PEG-6000 and, at 0 h (CK), 6 h, 24 h, 36 h and 48 h, the plants were evaluated for growth and physiological indicators, and leaf tissues were collected for RNA-seq. The growth indicators (growth trend, dry and fresh weights above- and below-ground, etc.) and the antioxidant enzyme system reflect that "FQ119" has stronger drought tolerance. Through RNA-seq analysis, a total of 68,316 transcripts (37,908 genes) were obtained. The largest number of significant differentially expressed genes (DEGs) in the comparison of "FQ118" and "FQ119" was observed at 6 h and 48 h. KEGG analysis demonstrated the significant enrichment of certain pathways associated with drought stress, such as glycerolipid metabolism and galactose metabolism. Co-expression analysis revealed that 7 hub DEGs, including genes encoding a photosystem reaction center subunit protein, chlorophyll a-b binding protein, glyceraldehyde-3-phosphate dehydrogenase A (GAPDH), and others, were coenriched in both comparisons. In addition, three hub genes specific to the comparison during the 6-h processing stage, encoding oxygen-evolving enhancer protein 1, receptor-like serine/threonine-protein kinase and calcium-transporting ATPase, were identified. The above hub genes were related to plant resistance to drought stress, and RT‒qPCR verified that the overall magnitudes of the differences in expression between the two lines gradually increased over time. Virus-induced gene silencing (VIGS) experiments have demonstrated that GAPDH plays a relevant role in the drought resistance pathway. In addition, the differences in expression of 7 DEGs encoding transcription factors, including Dofs, WRKYs, MYBs, and MYCs, also tended to increase with increasing duration of drought treatment, as determined via qPCR. In summary, this study identified several valuable genes related to plant drought resistance by screening genes with differential transcription under drought stress. This in-depth gene mining may provide valuable references and resources for future breeding for drought resistance in tomato.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Crop Sciences, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.M.); (Y.L.); (F.W.)
| | - Yushan Li
- Institute of Crop Sciences, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.M.); (Y.L.); (F.W.)
| | - Fan Wang
- Institute of Crop Sciences, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.M.); (Y.L.); (F.W.)
| | - Quan Qing
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Q.Q.); (C.D.)
| | - Chengzhu Deng
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (Q.Q.); (C.D.)
| | - Hao Wang
- Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Yu Song
- Institute of Crop Sciences, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Y.M.); (Y.L.); (F.W.)
| |
Collapse
|
2
|
Jiang Z, van Zanten M, Sasidharan R. Mechanisms of plant acclimation to multiple abiotic stresses. Commun Biol 2025; 8:655. [PMID: 40269242 PMCID: PMC12019247 DOI: 10.1038/s42003-025-08077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
Plants frequently encounter a range of abiotic stresses and their combinations. Even though stresses rarely occur in isolation, research on plant stress resilience typically focuses on single environmental stressors. Plant responses to abiotic stress combinations are often distinct from corresponding individual stresses. Factors determining the outcomes of combined stresses are complex and multifaceted. In this review, we summarize advancements in our understanding of the mechanisms underlying plant responses to co-occurring (combined and sequential) abiotic stresses, focusing on morphological, physiological, developmental, and molecular aspects. Comprehensive understanding of plant acclimation, including the signaling and response mechanisms to combined and individual stresses, can contribute to the development of strategies for enhancing plant resilience in dynamic environments.
Collapse
Affiliation(s)
- Zhang Jiang
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Wang L, Wang Y, Deng C, Eggleston I, Gao S, Li A, Alvarez Reyes WR, Cai K, Qiu R, Haynes CL, White JC, Xing B. Optimizing SiO 2 Nanoparticle Structures to Enhance Drought Resistance in Tomato ( Solanum lycopersicum L.): Insights into Nanoparticle Dissolution and Plant Stress Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9983-9993. [PMID: 40200726 DOI: 10.1021/acs.jafc.5c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Drought stress significantly limits crop productivity and poses a critical threat to global food security. Silica nanoparticles (SiO2NPs) have shown a potential to mitigate drought stress, but the role of the nanostructure on overall efficacy remains unclear. This study evaluated solid (SSiO2NPs), porous (PSiO2NPs), and hollow (HSiO2NPs) SiO2NPs for their effects on drought-stressed tomatoes (Solanum lycopersicum L.). Silicic acid release rates followed the order: HSiO2NPs > PSiO2NPs > SSiO2NPs > Bulk-SiO2. Compared to untreated controls, foliar application of PSiO2NPs and HSiO2NPs under drought stress significantly improved shoot Si concentrations and plants' dry weight. These treatments also enhanced antioxidant enzyme activities (catalase, peroxidase, and superoxide dismutase) and phytohormone-targeted metabolome levels (jasmonic acid, salicylic acid, and auxin), contributing to greater drought tolerance. Conversely, SSiO2NPs, silicic acid, and Bulk-SiO2 had minimal impact on plant dry weight or physiological responses. These results highlight the importance of nanoparticles architecture in alleviating drought stress and promoting sustainable agriculture.
Collapse
Affiliation(s)
- Lei Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Chaoyi Deng
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Ian Eggleston
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Shang Gao
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Aoze Li
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Wilanyi R Alvarez Reyes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Okon K, Zubik-Duda M, Nosalewicz A. Light-driven modulation of plant response to water deficit. A review. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP24295. [PMID: 40261980 DOI: 10.1071/fp24295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
The dependence of agriculture on water availability is an important premise justifying attempts to enhance water use efficiency for plant production. Photosynthetic efficiency, directly impacts biomass production, is dependent on both water availability and the quality and quantity of light. Understanding how these factors interact is crucial for improving crop yields. Many overlapping signalling pathways and functions of common bioactive molecules that shape plant responses to both water deficit and light have been identified and discussed in this review. Separate or combined action of these environmental factors include the generation of reactive oxygen species, biosynthesis of abscisic acid, stomatal functioning, chloroplast movement and alterations in the levels of photosynthetic pigments and bioactive molecules. Plant response to water deficit depends on light intensity and its characteristics, with differentiated impacts from UV, blue, and red light bands determining the strength and synergistic or antagonistic nature of interactions. Despite its significance, the combined effects of these environmental factors remain insufficiently explored. The findings highlight the potential for optimising horticultural production through controlled light conditions and regulated deficit irrigation. Future research should assess light and water manipulation strategies to enhance resource efficiency and crop nutritional value.
Collapse
Affiliation(s)
- K Okon
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - M Zubik-Duda
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - A Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
5
|
Shirdel M, Eshghi S, Shahsavandi F, Fallahi E. Arbuscular mycorrhiza inoculation mitigates the adverse effects of heat stress on yield and physiological responses in strawberry plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109629. [PMID: 39946910 DOI: 10.1016/j.plaphy.2025.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 03/11/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) form a beneficial symbiotic relationship with plant roots, providing them with ample water and nutrients, especially under stressful conditions. It is inevitable to experience heat stress (HS) due to climate changes. The objective of this study was to investigate the possible role of AMF (with AMF = +AMF and without AMF = -AMF) on the strawberry cvs. ('Paros' and 'Queen Eliza')-resilience to HS at temperatures (control (23), 30, 35, 40, and 45 °C). The experiment was completely randomised and designed as a factorial arrangement with four replicates. The findings indicated that as the temperature increased, there was an increase in electrolyte leakage, proline, soluble carbohydrate contents and the activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). The presence of AMF at high temperatures improved the relative water content (RWC), maximum quantum efficiency yield of photosystem II (Fv/Fm), chlorophyll a, b, and total chlorophyll compared to the -AMF. AMF promoted root colonization and the content of phosphorus and potassium, which was more in the cv. 'Paros' than the cv. 'Queen Eliza'. Primary and secondary fruit weights and plant yield were reduced by HS; however, the AMF effectively increased average fruit weight and yield in comparison to plants without AMF. Yield was positively correlated with RWC and Fv/Fm, and root colonization was positively associated with phosphorus concentration. Adding AMF to rhizosphere improved plant growth and nutrient uptake and increased strawberry-resilience to HS. They have achieved this by increasing antioxidative activity, proline, soluble carbohydrates, and RWC. The symbiotic relationship with AMF greatly enhanced the strawberry's ability to tolerate HS.
Collapse
Affiliation(s)
- Mohsen Shirdel
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Fatemeh Shahsavandi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
6
|
Hu W, Loka DA, Luo Y, Yu H, Wang S, Zhou Z. CYTOKININ DEHYDROGENASE suppression increases intrinsic water-use efficiency and photosynthesis in cotton under drought. PLANT PHYSIOLOGY 2025; 197:kiaf081. [PMID: 39977242 DOI: 10.1093/plphys/kiaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Drought reduces endogenous cytokinin (CK) content and disturbs plant water balance and photosynthesis. However, the effect of higher endogenous CK levels (achieved by suppressing cytokinin dehydrogenase [CKX] genes) on plant water status and photosynthesis under drought stress is unknown. Here, pot experiments were conducted with wild-type (WT) cotton (Gossypium hirsutum) and 2 GhCKX suppression lines (CR-3 and CR-13) to explore the effect of higher endogenous CK levels on leaf water utilization and photosynthesis under drought stress. The GhCKX suppression lines had a higher leaf net photosynthetic rate (AN) and intrinsic water-use efficiency (iWUE) than WT under drought. This increase was attributed to the decoupling of stomatal conductance (gs) and mesophyll conductance (gm) in the suppression lines in response to drought. GhCKX suppression increased gm but maintained gs relative to WT under drought, and the increased gm was associated with altered anatomical traits, including decreased cell wall thickness (Tcw) and increased surface area of chloroplast-facing intercellular airspaces per unit leaf area (Sc/S), as well as altered cell wall composition, especially decreased cellulose levels. This study provides evidence that increased endogenous CK levels can simultaneously enhance AN and iWUE in cotton under drought conditions and establishes a potential mechanism for this effect. These findings provide a potential strategy for breeding drought-tolerant crops or exploring alternative methods to promote crop drought tolerance.
Collapse
Affiliation(s)
- Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Dimitra A Loka
- Institute of Industrial and Forage Crops, Hellenic Agricultural Organization, Larisa 41335, Greece
| | - Yuanyu Luo
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Huilian Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Shanshan Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| |
Collapse
|
7
|
Akhigbe R, Oyedokun P, Akhigbe T, Hamed M, Fidelis F, Omole A, Adeogun A, Akangbe M, Oladipo A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem Biophys Rep 2025; 41:101889. [PMID: 39717849 PMCID: PMC11664087 DOI: 10.1016/j.bbrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
A global decline in male fertility has been reported, and climate change is considered a major cause of this. Climate change refers to long-term shifts in temperatures and weather patterns, and results from greenhouse gas emissions like carbon dioxide and methane that act as a blanket wrapped around the earth, trapping heat and elevating temperatures. Sad to say, the consequences of climatic variation are beyond the dramatic elevated temperature, they include cold stress, increased malnutrition, air pollution, cardiovascular diseases respiratory tract infections, cancer, sexually transmitted infections, mental stress, and heat waves. These negative effects of climate change impair male reproductive function through multiple pathways, like ROS-sensitive signaling, suppression of steroidogenic markers, and direct damage to testicular cells. The present study aimed to describe the impact of the consequences of climate change on male reproductive health with details of the various mechanisms involved. This will provide an in-depth understanding of the pathophysiological and molecular basis of the possible climatic variation-induced decline in male fertility, which will aid in the development of preventive measures to abate the negative effects of climate change on male reproductive function.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - P.A. Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy (Ejigbo Campus), Osogbo, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - F.B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A.I. Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa, USA
| | - A.E. Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M.D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A.A. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
8
|
Aydin A, Yerlikaya BA, Yerlikaya S, Yilmaz NN, Kavas M. CRISPR-mediated mutation of cytokinin signaling genes (SlHP2 and SlHP3) in tomato: Morphological, physiological, and molecular characterization. THE PLANT GENOME 2025; 18:e20542. [PMID: 39779650 PMCID: PMC11711121 DOI: 10.1002/tpg2.20542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Synergistic and antagonistic relationships between cytokinins and other plant growth regulators are important in response to changing environmental conditions. Our study aimed to determine the functions of SlHP2 and SlHP3, two members of cytokinin signaling in tomato, in drought stress response using CRISPR/Cas9-mediated mutagenesis. Ten distinct genome-edited lines were generated via Agrobacterium tumefaciens-mediated gene transfer and confirmed through Sanger sequencing. Stress experiments were conducted with two of these lines (slhp2,3-10 and slhp2,3-11), which harbored homozygous mutations in both genes. The responses of two lines carrying homozygous mutations in both genes under polyethylene glycol (PEG)-induced stress were examined using morphological, physiological, biochemical, and molecular methods. The genome-edited lines demonstrated enhanced water retention, reduced stomatal density, and less oxidative damage compared to the wild-type plants under PEG-induced stress. Moreover, the slhp2,3 double mutant plants exhibited improved root growth, showcasing their superior drought tolerance over wild-type plants by accessing deeper water sources and maintaining hydration in water-limited environments. To investigate the involvement of cytokinin signaling regulators and genes associated with stomatal formation and differentiation, the expression of genes (Speechless [SPCH], FAMA, MUTE, TMM, HB25, HB31, RR6, RR7, and Solyc02g080860) was assessed. The results revealed that all regulators were downregulated, with SPCH, TMM, RR7, and RR6 showing significant reductions under PEG-induced stress. These results emphasize the promise of utilizing CRISPR/Cas9 to target cytokinin signaling pathways, enhancing drought tolerance in tomatoes through improvements in water retention and root growth, along with a reduction in stomatal density and malondialdehyde content.
Collapse
Affiliation(s)
- Abdullah Aydin
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Bayram Ali Yerlikaya
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Seher Yerlikaya
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Nisa Nur Yilmaz
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| | - Musa Kavas
- Department of Agricultural Biotechnology, Faculty of AgricultureOndokuz Mayis UniversitySamsunTurkey
| |
Collapse
|
9
|
Zhou R, Yu X, Li Y, Ji Y, Song X, Kristensen HL, Ottosen CO, Jiang F, Wu Z. Elevated temperature has more pronounced effect on anthesis tomato plant than cadmium stress and reduced nitrogen supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109498. [PMID: 39826348 DOI: 10.1016/j.plaphy.2025.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Plants are often exposed to combined stress, e.g. heat and cadmium (Cd) stress under natural conditions. Nitrogen (N) fertilizer is usually applied in excess, even though it is an essential nutrition for plants. We aimed to clarify the effects of elevated temperature, Cd stress, reduced N fertilizer and their interaction on leaf physiology and metabolism of anthesis tomato plants. Tomato plants at anthesis stage were subjected to unique combinations of elevated temperature (34 °C/30 °C), Cd stress (0.1 mM CdCl2) and half N (N = 95 ppm) treatment. The elevated temperature generally decreased leaf intracellular CO2 concentration and stomatal conductance, but increased transpiration rate with no significant changes in net photosynthetic rate, as compared with control. The plants under elevated temperature exhibited higher chlorophyll content as well as lower anthocyanin than under control temperature. The temperature had significant impacts on open flowers in the 1st inflorescence counting from bottom, open flower percentage in the 1st inflorescence, fresh and dry weight of flowers. Temperature played a predominant role in the changes of metabolites among the three factors based on metabolome. The Cd stress and reduced N supply also affected leaf metabolites of tomato plants, even though the effects on metabolites and physiology were less than that of elevated temperature. Trend analysis of the metabolites showed eight types in tomatoes under eight treatments. Biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, linoleic acid metabolism and ABC transporters pathways positively responded to the elevated temperature. Moreover, there were significant interactions between the three factors (temperature, CdCl2 and N) on tomato physiological and morphological parameters. We concluded that the physiological and metabolic responses of tomato plants were more pronounced to the elevated temperatures as compared with cadmium stress and reduced nitrogen fertilizer. This study can support the understanding of complex regulatory mechanisms in plants responding to multiple environmental changes due to climate change, management practice and environmental pollution.
Collapse
Affiliation(s)
- Rong Zhou
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, China; Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark.
| | - Xiaqing Yu
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, China.
| | - Yankai Li
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, China.
| | - Yanhai Ji
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China.
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| | | | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark.
| | - Fangling Jiang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, China.
| | - Zhen Wu
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Jiangsu, Nanjing, 210095, China.
| |
Collapse
|
10
|
Zhang X, Li G, Wei P, Du B, Liu S, Dai J. Synergistic Regulation at Physiological, Transcriptional, and Metabolic Levels in Dendrobium huoshanense Plants Under Combined Drought and High-Temperature Stress. Genes (Basel) 2025; 16:287. [PMID: 40149439 PMCID: PMC11942376 DOI: 10.3390/genes16030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background: With global warming and climate change, the occurrence of abiotic stresses has become increasingly prevalent. Drought often occurs with high temperatures, especially in arid and semi-arid regions. However, the molecular mechanisms of plants responding to combined drought and high-temperature stress remains unclear. Results: Through integrative physiological, transcriptomic, and metabolomic analyses, we systematically investigated the adaptive mechanisms of Dendrobium huoshanense under combined drought and high-temperature stress. Our findings revealed that combined drought and high-temperature stress led to significant reductions in photosynthetic efficiency and increased oxidative damage in Dendrobium huoshanense, with high-temperature stress being the primary contributor to these adverse effects. The joint analysis shows that three core pathways-signal transduction, lipid metabolism, and secondary metabolite biosynthesis-were identified as critical for antioxidant defense and stress adaptation. Conclusions: These findings not only deepen our understanding of plant responses to combined drought and high-temperature stress but also provide new directions for future research on the cultivation and resistance improvement of Dendrobium huoshanense.
Collapse
Affiliation(s)
- Xingen Zhang
- Generic Technology Research Center for Anhui Traditional Chinese Medicine Industry, West Anhui University, Lu’an 237012, China;
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Guohui Li
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Peipei Wei
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Shifan Liu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| | - Jun Dai
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (G.L.); (P.W.); (B.D.); (S.L.)
| |
Collapse
|
11
|
Nicholes V, Khan M, Lemon N, Vila P, Campany C. Acclimation of functional traits leads to biomass increases in leafy green species grown in aquaponics. AOB PLANTS 2025; 17:plaf005. [PMID: 40007953 PMCID: PMC11851069 DOI: 10.1093/aobpla/plaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
As human population size continues to increase and climate change effects worsen, future food security has become a primary concern for agricultural industries worldwide. Yields of traditional agricultural methods are commonly limited by water and nutrient availability and many crop yields are predicted to decline. Alternative farming practices like aquaponics, which can alleviate these negative yield pressures, may become critical to reaching food production targets. Aquaponics approaches involve the cyclic joint production of fish and hydroponic plants where the fish efflux provides nutrients to plants that then purify the water to be recycled to the fish tanks. In this study, we investigated the acclimation of physiology and functional traits of plants grown in aquaponics versus soil for three leafy green species. We compared gas exchange, stomatal anatomy, water-use efficiency, and foliar chemistry on newly formed leaves across weekly measurements. Increased photosynthetic rate, driven by higher stomatal conductance and increases in tissue nitrogen, led to higher biomass production in aquaponics for all species. Aquaponics plants adjusted stomatal behavior and to a lesser degree stomatal anatomy to become less water-use efficient than plants grown in soil. Collectively, our findings demonstrate the ability of plants to acclimate quickly to aquaponics growing systems that largely remove water and nutrient limitations to plant growth. The increased biomass production of broccoli, pak choi, and salanova by 185%, 116%, and 362% in aquaponics compared to soil-grown plants demonstrates the potential of small-scale aquaponics systems as an efficient and sustainable alternative farming practice.
Collapse
Affiliation(s)
- Victoria Nicholes
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
- Department of Biology, West Virginia University, Life Sciences Bldg, PO Box 6057, Morgantown, WV, 26506, USA
| | - Malik Khan
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| | - Nicholas Lemon
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| | - Peter Vila
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| | - Courtney Campany
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| |
Collapse
|
12
|
Liu W, Liu J, Zhang M, Zhang J, Sun B, He C, He P, Zhang W. 1+1<2: Combined effect of low temperature stress and salt stress on Sesuvium portulacastrum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109404. [PMID: 39675257 DOI: 10.1016/j.plaphy.2024.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
To expedite the deployment of Sesuvium portulacastrum floating bed technology in Hangzhou Bay and the Yangtze River Estuary, and to overcome the cryogenic constraint, our study concentrated on investigating the impacts of both individual and combined stress factors, particularly low temperature and salinity, on its application. We detected the S. portulacastrum related enzyme activity and other biological macromolecules under low temperature stress, salt stress and combined stress. And we also analyzed the stress resistance mechanism under different stress conditions by transcriptomic technology. It was discovered that moderate salt stress could enhance plant tolerance to low temperature, indicating the presence of an antagonistic relationship between salinity and low temperature. The biological mechanism underlying this phenomenon lies in the fact that combined stresses induce the up-regulation of various genes and activate more pathways compared to single stress. Among these pathways, the linoleic acid metabolic pathway stands out as unique to combined stress conditions. This research represents the inaugural endeavor to investigate the impact of low temperature stress and combined stress on S.portulacastrum, offering a pivotal reference for the utilization of this plant in ecological restoration and management within the East China Sea. More valuable is that such conclusions may be extended to the coastal ecological governance of many high latitude countries, which is of great significance for global ecological environment improvement.
Collapse
Affiliation(s)
- Wei Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Meijing Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianlin Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Wentao Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Gao H, Wu F. Physiological and transcriptomic analysis of tomato in response to sub-optimal temperature stress. PLANT SIGNALING & BEHAVIOR 2024; 19:2332018. [PMID: 38511566 PMCID: PMC10962623 DOI: 10.1080/15592324.2024.2332018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
Tomato (Solanum lycopersicum L.) is one of the most important economic crops in China. However, its quality and yield are susceptible to the adverse effects of low temperatures. In our study, two tomato cultivars, showing different tolerance to low temperatures, namely the cold-sensitive tomato cultivar (S708) and cold-tolerant tomato cultivar (T722), were grown at optimal (25/18°C) and sub-optimal (15/10°C) temperature conditions for 5 days. Our study aimed to explore the effect of sub-optimal temperature on fresh weight, chlorophyll content and chlorophyll fluorescence, soluble sugars and proline content of two tomato cultivars. Moreover, we employed RNA-Seq to analyze the transcriptomic response of tomato roots to sub-optimal temperature. The results revealed that S708 showed a more significant reduction in fresh weight, chlorophyll content, photochemical efficiency of PSII (YII), maximum quantum yield of PSII (Fv/Fm), photochemical quenching (qP) and electron transport rate (ETR) compared to T722 under the sub-optimal temperature condition. Notably, T722 maintained higher level of soluble sugars and proline in comparison to S708 uner sub-optimal temperature. RNA-seq data showed that up-regulated DEGs in both tomato cultivars were involved in "plant-pathogen interaction", "MAPK signaling pathway", "plant hormone signal transduction", and "phosphatidylinositol signaling system". Furthermore, "Amino sugar and nucleotide sugar metabolism" pathway was enriched only in T722. Moreover, under sub-optimal temperature, transcription factor genes and osmoregulation genes showed varying degrees of response in both tomato cultivars. Conclusion: In summary, our results offer detailed insights into the response characteristics of tomato to sub-optimal temperature, providing valuable references for the practical management of tomato crops under sub-optimal temperature condition.
Collapse
Affiliation(s)
- Huan Gao
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Fengzhi Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Liu M, Liu X, Song Y, Hu Y, Yang C, Li J, Jin S, Gu K, Yang Z, Huang W, Su J, Wang L. Tobacco production under global climate change: combined effects of heat and drought stress and coping strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1489993. [PMID: 39670262 PMCID: PMC11635999 DOI: 10.3389/fpls.2024.1489993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
With the intensification of global climate change, high-temperature and drought stress have emerged as critical environmental stressors affecting tobacco plants' growth, development, and yield. This study provides a comprehensive review of tobacco's physiological and biochemical responses to optimal temperature conditions and limited irrigation across various growth stages. It assesses the effects of these conditions on yield and quality, along with the synergistic interactions and molecular mechanisms associated with these stressors. High-temperature and drought stress induces alterations in both enzymatic and non-enzymatic antioxidant activities, lead to the accumulation of reactive oxygen species (ROS), and promote lipid peroxidation, all of which adversely impact physiological processes such as photosynthetic gas exchange, respiration, and nitrogen metabolism, ultimately resulting in reduced biomass, productivity, and quality. The interaction of these stressors activates novel plant defense mechanisms, contributing to exacerbated synergistic damage. Optimal temperature conditions enhance the activation of heat shock proteins (HSPs) and antioxidant-related genes at the molecular level. At the same time, water stress triggers the expression of genes regulated by both abscisic acid-dependent and independent signaling pathways. This review also discusses contemporary agricultural management strategies, applications of genetic engineering, and biotechnological and molecular breeding methods designed to mitigate adverse agroclimatic responses, focusing on enhancing tobacco production under heat and drought stress conditions.
Collapse
Affiliation(s)
- Ming Liu
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xianglu Liu
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yuxiao Song
- Institute of Grain Crops, Agricultural Science Extension Research Institute of Dali Bai Autonomous Prefecture, Dali, Yunnan, China
| | - Yanxia Hu
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Chengwei Yang
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Juan Li
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Shuangzhen Jin
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Kaiyuan Gu
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zexian Yang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenwu Huang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jiaen Su
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Longchang Wang
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
15
|
Gelgelo K, Kechero Y, Andualem D. Seasonal and altitudinal dynamics in secondary metabolite composition of Commelina forage species in Konso zone, southern Ethiopia. PLoS One 2024; 19:e0314358. [PMID: 39591467 PMCID: PMC11594514 DOI: 10.1371/journal.pone.0314358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Exploring the type and amounts of the secondary metabolites (SMs) in a given fodder species was considered as a meaningful act for safe and profitable utilization of that particular feedstuff in the livestock industry. This study was conducted in the Konso zone, southern Ethiopia, to explore the secondary metabolite composition of Commelina species in two seasons and at two different altitudes. Samples were collected from the two altitudes and seasons. A completely randomized design was used in a factorial arrangement (five species (C. benghalensis, C. imberbis, C. diffusa, C. albescens, and C. africana), two altitudes, and two seasons) with three repetitions per treatment. The SM contents of the Commelina species were reasonably influenced by both seasonal and altitudinal changes. The mean alkaloid (3.67%), total phenols (9.76 mg GAE/g), flavonoid (3.81 mg CE/g) and condensed tannin (1.10 mg CE/g) values for the herb species in wet season inclined (p < 0.001) to 7.02%, 14.07 mg GAE/g, 7.68 mg CE/g and 2.38 mg CE/g, respectively, in dry season. The wet season saponin concentration of the species (2.65 g/Kg) significantly decreased (p < 0.001) to 1.28 g/Kg in the dry season. Similarly, the lowland saponin (2.26 g/Kg), alkaloid (3.70%), total phenols (10.89 mg GAE/g), flavonoid (4.71 mg CE/g), and condensed tannin (0.98 mg CE/g) contents were increased (p < 0.01) to 3.03 g/Kg, 5.47%, 13.61 mg GAE/g, 6.37 mg CE/g, and 1.81 mg CE/g, respectively, in the midlands. Alkaloids, total phenols, flavonoids and condensed tannin concentrations showed positive correlations with each other (P<0.05) and with seasonal (P<0.001) and altitudinal changes (P<0.001) as well. The findings of this study suggested that the SM concentrations of Commelina species were within the limits tolerable for ruminants. In conclusion, Commelina species could serve as a safe and beneficial forage herb to boost nutrient intake, improve nutrient use efficiency and hinder methane emissions, for animals consuming them, in areas where they are available in abundance.
Collapse
Affiliation(s)
- Kebede Gelgelo
- Department of Animal Sciences, College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Yisehak Kechero
- Department of Animal Sciences, College of Agricultural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Dereje Andualem
- Department of Animal and Range Sciences, College of Agriculture and Natural Resources, Dilla University, Dilla, Ethiopia
| |
Collapse
|
16
|
Tahir NAR, Rasul KS, Lateef DD, Aziz RR, Ahmed JO. In Vitro Evaluation of Iraqi Kurdistan Tomato Accessions Under Drought Stress Conditions Using Polyethylene Glycol-6000. Life (Basel) 2024; 14:1502. [PMID: 39598299 PMCID: PMC11595924 DOI: 10.3390/life14111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Drought is one of the major abiotic stresses that affect plant growth and productivity, and plant stress responses are affected by both the intensity of stress and genotype. In Iraqi Kurdistan, tomato plants play a significant role in the country's economy. Due to climate change, which causes soil moisture to diminish, the crop's growth and yield have been dropping in recent years. Accordingly, the effects of simulated drought stress on germination parameters were assessed in 64 tomato accessions gathered from the Iraqi Kurdistan region in order to identify sensitive and tolerant accessions. In this respect, the responses associated with drought stress were observed phenotypically and biochemically. Germination percentage (GP) and morphological characteristics such as root length (RL), shoot length (SL), and shoot fresh weight (SFW) were significantly reduced in both stress treatments with polyethylene glycol (PEG-6000) (7.5% PEG and 15% PEG). On the other hand, significant changes in biochemical profiles such as proline content (PC), soluble sugar content (SSC), total phenolic content (TPC), antioxidant activity (AC), guaiacol peroxidase (GPA), catalase (CAT), and lipid peroxidation (LP) in tomato accessions were detected; all biochemical traits were increased in most tomato accessions under the PEG-induced treatments compared to the control treatment (0.0% PEG). Three tomato accessions (AC61 (Raza Pashayi), AC9 (Wrdi Be Tow), and AC63 (Sandra)) were found to be the most tolerant accessions under all drought conditions, whereas the performances of the other tested accessions (AC13 (Braw), AC30 (Yadgar), and AC8 (Israili)) were inferior. The OMIC analysis identified the biomarker parameters for differentiating the highly, moderately, and low tolerant groups as PC, SSC, and TPC. This study shows that early PEG-6000 screening for drought stress may help in choosing a genotype that is suitable for growth in water-stressed environments. Hence, Raza Pashayi, Wrdi Be Tow, and Sandra accessions, which had great performances under drought conditions, can be candidates for selection in a breeding program to improve the growth of plants and production in the areas that face water limits.
Collapse
Affiliation(s)
- Nawroz Abdul-razzak Tahir
- Food Science and Quality Control Department, Bakrajo Technical Institute, Sulaimani Polytechnic University, Sulaymaniyah 46001, Kurdistan Region, Iraq;
| | - Kamaran Salh Rasul
- Horticulture Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaymaniyah 46001, Kurdistan Region, Iraq;
| | - Djshwar Dhahir Lateef
- Biotechnology and Crop Science Department, College of Agricultural Engineering Sciences, University of Sulaimani, Sulaymaniyah 46001, Kurdistan Region, Iraq;
| | - Rebwar Rafat Aziz
- Gardens Unit, University of Sulaimani, Sulaymaniyah 46001, Kurdistan Region, Iraq;
| | - Jalal Omer Ahmed
- Food Science and Quality Control Department, Bakrajo Technical Institute, Sulaimani Polytechnic University, Sulaymaniyah 46001, Kurdistan Region, Iraq;
| |
Collapse
|
17
|
Ouonkap SVY, Palaniappan M, Pryze K, Jong E, Foteh Ali M, Styler B, Althiab Almasaud R, Harkey AF, Reid RW, Loraine AE, Smith SE, Pease JB, Muday GK, Palanivelu R, Johnson MA. Enhanced pollen tube performance at high temperature contributes to thermotolerant fruit and seed production in tomato. Curr Biol 2024; 34:5319-5333.e5. [PMID: 39510073 DOI: 10.1016/j.cub.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/16/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Rising temperature extremes during critical reproductive periods threaten the yield of major grain and fruit crops. Flowering plant reproduction depends on the ability of pollen grains to generate a pollen tube, which elongates through the pistil to deliver sperm cells to female gametes for double fertilization. We used tomato as a model fruit crop to determine how high temperature affects the pollen tube growth phase, taking advantage of cultivars noted for fruit production in exceptionally hot growing seasons. We found that exposure to high temperature solely during the pollen tube growth phase limits fruit biomass and seed set more significantly in thermosensitive cultivars than in thermotolerant cultivars. Importantly, we found that pollen tubes from the thermotolerant Tamaulipas cultivar have enhanced growth in vivo and in vitro under high temperature. Analysis of the pollen tube transcriptome's response to high temperature allowed us to define two response modes (enhanced induction of stress responses and higher basal levels of growth pathways repressed by heat stress) associated with reproductive thermotolerance. Importantly, we define key components of the pollen tube stress response, identifying enhanced reactive oxygen species (ROS) homeostasis and pollen tube callose synthesis and deposition as important components of reproductive thermotolerance in Tamaulipas. Our work identifies the pollen tube growth phase as a viable target to enhance reproductive thermotolerance and delineates key pathways that are altered in crop varieties capable of fruiting under high-temperature conditions.
Collapse
Affiliation(s)
- Sorel V Yimga Ouonkap
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA
| | - Meenakshisundaram Palaniappan
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA; Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, India
| | - Kelsey Pryze
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA
| | - Emma Jong
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA
| | - Mohammad Foteh Ali
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA
| | - Benjamin Styler
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA
| | - Rasha Althiab Almasaud
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA
| | - Alexandria F Harkey
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA
| | - Robert W Reid
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Steven E Smith
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell Street, Tucson, AZ 85721, USA
| | - James B Pease
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA; Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Gloria K Muday
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA
| | - Ravishankar Palanivelu
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA.
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA.
| |
Collapse
|
18
|
Maslard C, Arkoun M, Leroy F, Girodet S, Salon C, Prudent M. Decoding the Double Stress Puzzle: Investigating Nutrient Uptake Efficiency and Root Architecture in Soybean Under Heat- and Water-Stresses. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39558463 DOI: 10.1111/pce.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/20/2024]
Abstract
In the context of climate change, associated with increasingly frequent water deficits and heat waves, there is an urgent need to maintain the performance of soybean, a leading legume crop worldwide, before its yield declines. The objective of this study was to explore which plant traits improve soybean tolerance to heat and/or water stress, with a focus on traits involved in plant architecture and nutrient uptake. For this purpose, two soybean genotypes were grown under controlled conditions in a high-throughput phenotyping platform where either optimal conditions, heat waves, water stress or both heat waves and water stresses were applied during the vegetative stage. By correlating architectural to functional traits, related to water, carbon allocation and nutrient absorption, we were able to explain the stress susceptibility level of the two genotypes. We have shown that water flow in the plant is central to the uptake and allocation of mineral elements in the plant, despite its modulation by stress and in a genotype-dependent manner. This cross-analysis of plant ecophysiology and plant nutrition under different stresses provides new information, especially on the importance of mineral elements in the different plant organs, and can inform future crop design, particularly under changing climatic conditions.
Collapse
Affiliation(s)
- Corentin Maslard
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, Saint Malo, France
| | - Mustapha Arkoun
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, Saint Malo, France
| | - Fanny Leroy
- Plateforme PLATIN', US EMerode, Normandie Université, Unicaen, Caen, France
| | - Sylvie Girodet
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Christophe Salon
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Marion Prudent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
19
|
Asante J, Opoku VA, Hygienus G, Andersen MN, Asare PA, Adu MO. Photosynthetic efficiency and water retention in okra (Abelmoschus esculentus) contribute to tolerance to single and combined effects of drought and heat stress. Sci Rep 2024; 14:28090. [PMID: 39543368 PMCID: PMC11564765 DOI: 10.1038/s41598-024-79178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
The co-occurrence of drought and heat significantly hampers plant productivity. Although their impacts are well studied, these studies have been based on the effects of individual stressors rather than their combined influence. Okra is crucial for food and nutritional security and livelihoods in many regions, yet it remains under-researched and unimproved. Okra has been proven to be sensitive to both drought and heat stress. This study employed a cost-effective phenotyping method to assess key traits characterising the diversity of okra morphophysiological responses to independent and interactive heat-drought stresses. This study aimed to understand okra responses to stress, identify stress-resilient traits, and characterise okra genotypes. We also addressed the need to examine interactive stress effects, which mirror real-world scenarios more accurately than single-stress studies. Sixty-three okra genotypes were subjected to heat, drought, or concurrent heat-drought stress at the seedling stage in improvised climate-controlled chambers. The germplasm exhibited significant variations in response to the various stresses. The broad-sense heritability was high (> 0.60) for traits such as chlorophyll content, plant biomass, performance indices, electrolyte leakage, and total leaf area. Drought stress alone had a more pronounced effect than heat stress alone, and the adverse impact was worsened under combined heat and drought stress. The interactive impact of drought and heat was more likely additive than antagonistic or synergistic. A positive and strong relationship was observed between photosynthetic efficiency parameters such as the Fv/Fm ratio, chlorophyll content, relative water index, and biomass parameters such as dry shoot weight. The 63 okra genotypes were classified into three distinct clusters, suggesting potential for future breeding efforts. Okra genotype considered to be tolerant or climate resilient (such as GH170, V1060831, GH174, V1060874, and GH106) to drought and heat, maintained enhanced photosynthetic efficiency and high internal water potential, possibly reducing osmotic and oxidative damage. This study revealed some mechanisms underlying the adaptation of okra genotypes to independent and combined heat and drought stress. The results provide a basis for breeding efforts to develop climate-resilient okra varieties.
Collapse
Affiliation(s)
- Justice Asante
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Vincent Agyemang Opoku
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Godswill Hygienus
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | - Paul Agu Asare
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Michael Osei Adu
- Department of Crop Science, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| |
Collapse
|
20
|
Sharma V, Mahadevaiah SS, Latha P, Gowda SA, Manohar SS, Jadhav K, Bajaj P, Joshi P, Anitha T, Jadhav MP, Sharma S, Janila P, Bhat RS, Varshney RK, Pandey MK. Dissecting genomic regions and underlying candidate genes in groundnut MAGIC population for drought tolerance. BMC PLANT BIOLOGY 2024; 24:1044. [PMID: 39497063 PMCID: PMC11536578 DOI: 10.1186/s12870-024-05749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Groundnut is mainly grown in the semi-arid tropic (SAT) regions worldwide, where abiotic stress like drought is persistent. However, a major research gap exists regarding exploring the genetic and genomic underpinnings of tolerance to drought. In this study, a multi-parent advanced generation inter-cross (MAGIC) population was developed and evaluated for five seasons at two locations for three consecutive years (2018-19, 2019-20 and 2020-21) under drought stress and normal environments. RESULTS Phenotyping data of drought tolerance related traits, combined with the high-quality 10,556 polymorphic SNPs, were used to perform multi-locus model genome-wide association study (GWAS) analysis. We identified 37 significant marker-trait associations (MTAs) (Bonferroni-corrected) accounting, 0.91- 9.82% of the phenotypic variance. Intriguingly, 26 significant MTAs overlap on four chromosomes (Ah03, Ah07, Ah10 and Ah18) (harboring 70% of MTAs), indicating genomic hotspot regions governing drought tolerance traits. Furthermore, important candidate genes associated with leaf senescence (NAC transcription factor), flowering (B3 domain-containing transcription factor, Ulp1 protease family, and Ankyrin repeat-containing protein), involved in chlorophyll biosynthesis (FAR1 DNA-binding domain protein), stomatal regulation (Rop guanine nucleotide exchange factor; Galacturonosyltransferases), and associated with yield traits (Fasciclin-like arabinogalactan protein 11 and Fasciclin-like arabinogalactan protein 21) were found in the vicinity of significant MTAs genomic regions. CONCLUSION The findings of our investigation have the potential to provide a basis for significant MTAs validation, gene discovery and development of functional markers, which could be employed in genomics-assisted breeding to develop climate-resilient groundnut varieties.
Collapse
Affiliation(s)
- Vinay Sharma
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | | | - Putta Latha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - S Anjan Gowda
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Surendra S Manohar
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Kanchan Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Pushpesh Joshi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | - T Anitha
- Regional Agricultural Research Station, Acharya N G Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Mangesh P Jadhav
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University (CCSU) , Meerut, India
| | - Pasupuleti Janila
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Ramesh S Bhat
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| | - Manish K Pandey
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India.
| |
Collapse
|
21
|
Chua LC, Lau OS. Stomatal development in the changing climate. Development 2024; 151:dev202681. [PMID: 39431330 PMCID: PMC11528219 DOI: 10.1242/dev.202681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Stomata, microscopic pores flanked by symmetrical guard cells, are vital regulators of gas exchange that link plant processes with environmental dynamics. The formation of stomata involves the multi-step progression of a specialized cell lineage. Remarkably, this process is heavily influenced by environmental factors, allowing plants to adjust stomatal production to local conditions. With global warming set to alter our climate at an unprecedented pace, understanding how environmental factors impact stomatal development and plant fitness is becoming increasingly important. In this Review, we focus on the effects of carbon dioxide, high temperature and drought - three environmental factors tightly linked to global warming - on stomatal development. We summarize the stomatal response of a variety of plant species and highlight the existence of species-specific adaptations. Using the model plant Arabidopsis, we also provide an update on the molecular mechanisms involved in mediating the plasticity of stomatal development. Finally, we explore how knowledge on stomatal development is being applied to generate crop varieties with optimized stomatal traits that enhance their resilience against climate change and maintain agricultural productivity.
Collapse
Affiliation(s)
- Li Cong Chua
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| |
Collapse
|
22
|
Mateus P, Sousa F, Martins M, Sousa B, Afonso A, Oliveira F, Moutinho-Pereira J, Fidalgo F, Soares C. The ectomycorrhizal fungus Paxillus involutus positively modulates Castanea sativa Miller (var. Marsol) responses to heat and drought co-exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108999. [PMID: 39098185 DOI: 10.1016/j.plaphy.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Castanea sativa Miller, a high-valuable crop for Mediterranean countries, is facing frequent and prolonged periods of heat and drought, severely affecting chestnut production. Aiming to tackle this problem, this study unraveled the influence of mycorrhizal association with the fungi Paxillus involutus (Batsch) on young chestnut plants' responses to combined heat (42 °C; 4 h/day) and drought (no irrigation until soil moisture reached 25%) over 21 days of stress exposure. Heat stress had no harmful effects on growth, photosynthesis, nor induced oxidative stress in either mycorrhizal (MR) or non-mycorrhizal (NMR) chestnut plants. However, drought (alone or combined) reduced the growth of NMR plants, affecting water content, leaf production, and foliar area, while also hampering net CO2 assimilation and carbon relations. The mycorrhizal association, however, mitigated the detrimental effects of both stresses, resulting in less susceptibility and fewer growth limitations in MR chestnut plants, which were capable of ensuring a proper carbon flow. Evaluation of the oxidative metabolism revealed increased lipid peroxidation and hydrogen peroxide levels in NMR plants under water scarcity, supporting their higher susceptibility to stress. Conversely, MR plants activated defense mechanisms by accumulating antioxidant metabolites (ascorbate, proline and glutathione), preventing oxidative damage, especially under the combined stress. Overall, drought was the most detrimental condition for chestnut growth, with heat exacerbating stress susceptibility. Moreover, mycorrhizal association with P. involutus substantially alleviated these effects by improving growth, water relations, photosynthesis, and activating defense mechanisms. Thus, this research highlights mycorrhization's potential to enhance C. sativa resilience against climate change, especially at early developmental stages.
Collapse
Affiliation(s)
- Pedro Mateus
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Filipa Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; CITAB- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Andreia Afonso
- Deifil Green-Biotechnology Lda, Rua do Talho nº 80 - Serzedelo, 4830-704, Póvoa de Lanhoso, Portugal
| | - Fátima Oliveira
- Deifil Green-Biotechnology Lda, Rua do Talho nº 80 - Serzedelo, 4830-704, Póvoa de Lanhoso, Portugal
| | - José Moutinho-Pereira
- CITAB- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
23
|
Chen Y, Zhang R, Wang R, Li J, Wu B, Zhang H, Xiao G. Overexpression of OsRbohH Enhances Heat and Drought Tolerance through ROS Homeostasis and ABA Mediated Pathways in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2494. [PMID: 39273977 PMCID: PMC11397177 DOI: 10.3390/plants13172494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Respiratory burst oxidase homologs (Rbohs) are the primary producers of reactive oxygen species (ROS), which have been demonstrated to play critical roles in plant responses to abiotic stress. Here, we explored the function of OsRbohH in heat and drought stress tolerance by generating overexpression lines (OsRbohH-OE). OsRbohH was highly induced by various abiotic stress and hormone treatments. Compared to wild-type (WT) controls, OsRbohH-OE plants exhibited enhanced tolerance to heat and drought, as determined by survival rate analyses and total chlorophyll content. Histochemical staining revealed that OsRbohH-OE accumulated less ROS. This is consistent with the observed increase in catalase (CAT) and peroxidase (POD) activities, as well as a reduced electrolyte leakage rate and malondialdehyde (MDA) content. Moreover, OsRbohH-OE exhibited enhanced sensitivity to exogenous abscisic acid (ABA), accompanied by altered expression levels of ABA synthesis and catabolic genes. Further analysis indicated that transgenic lines had lower transcripts of ABA signaling-related genes (OsDREB2A, OsLEA3, OsbZIP66, and OsbZIP72) under heat but higher levels under drought than WT. In conclusion, these results suggest that OsRbohH is a positive regulator of heat and drought tolerance in rice, which is probably performed through OsRbohH-mediated ROS homeostasis and ABA signaling.
Collapse
Affiliation(s)
- Yating Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rui Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Rujie Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiangdi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Bin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
24
|
Poudyal D, Krishna Joshi B, Chandra Dahal K. Insights into the responses of Akabare chili landraces to drought, heat, and their combined stress during pre-flowering and fruiting stages. Heliyon 2024; 10:e36239. [PMID: 39253214 PMCID: PMC11382091 DOI: 10.1016/j.heliyon.2024.e36239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Drought, heat, and their combined stress have increasingly become common phenomena in horticulture, significantly reducing chili production worldwide. The current study aimed to phenotype Akabare chili landraces (Capsicum spp.) in climate chambers subjected to drought and heat treatments during their early generative stage, focusing on PSII efficacy (Fv/Fm), net photosynthetic rate (P N), stomatal conductance (g s), leaf cooling, and biomass production. Six landraces were examined under heat and control conditions at 40/32 °C for 4 days and at 30/22 °C under drought and control conditions followed by a 5-day recovery under control conditions (30/22 °C, irrigated). Two landraces with higher (>0.77) and two with lower (<0.763) Fv/Fm during the stress treatments were later evaluated in the field under 55-day-long drought stress at the fruiting stage. In both treatments, stress-tolerant landraces maintained high Fv/Fm, P N, and better leaf cooling leading to improved biomass compared to the sensitive landraces. Agro-morpho-physiological responses of the tolerant and sensitive landraces during the early generative stage echoed those during the fruiting stage in the field. A climate chamber experiment revealed a 13.9 % decrease in total biomass under heat stress, a further 21.5 % reduction under drought stress, and a substantial 38.7 % decline under combine stress. In field conditions, drought stress reduced total biomass by 28.1 % and total fruit dry weight by 26.2 %. Tolerant landraces showed higher Fv/Fm, demonstrated better wilting scores, displayed a higher chlorophyll content index (CCI), and accumulated more biomass. This study validated lab-based results through field trials and identified two landraces, C44 and DKT77, as potential stress-tolerant genotypes. It recommends Fv/Fm, P N, and CCI as physiological markers for the early detection of stress tolerance.
Collapse
Affiliation(s)
- Damodar Poudyal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618, Kathmandu, Nepal
| | - Bal Krishna Joshi
- National Agriculture Genetic Resources Center, Nepal Agricultural Research Council, 44700, Khumaltar, Lalitpur, Nepal
| | - Kishor Chandra Dahal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618, Kathmandu, Nepal
| |
Collapse
|
25
|
Ouonkap SVY, Palaniappan M, Pryze K, Jong E, Ali MF, Styler B, Almasaud RA, Harkey AF, Reid RW, Loraine AE, Smith SE, Muday GK, Pease JB, Palanivelu R, Johnson MA. Enhanced pollen tube performance at high temperature contributes to thermotolerant fruit production in tomato. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606234. [PMID: 39149357 PMCID: PMC11326152 DOI: 10.1101/2024.08.01.606234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rising temperature extremes during critical reproductive periods threaten the yield of major grain and fruit crops. Flowering plant reproduction depends on development of sufficient numbers of pollen grains and on their ability to generate a cellular extension, the pollen tube, which elongates through the pistil to deliver sperm cells to female gametes for double fertilization. These critical phases of the life cycle are sensitive to temperature and limit productivity under high temperature (HT). Previous studies have investigated the effects of HT on pollen development, but little is known about how HT applied during the pollen tube growth phase affects fertility. Here, we used tomato as a model fruit crop to determine how HT affects the pollen tube growth phase, taking advantage of cultivars noted for fruit production in exceptionally hot growing seasons. We found that exposure to HT solely during the pollen tube growth phase limits fruit biomass and seed set more significantly in thermosensitive cultivars than in thermotolerant cultivars. Importantly, we found that pollen tubes from the thermotolerant Tamaulipas cultivar have enhanced growth in vivo and in vitro under HT. Analysis of the pollen tube transcriptome's response to HT allowed us to develop hypotheses for the molecular basis of cellular thermotolerance in the pollen tube and we define two response modes (enhanced induction of stress responses, and higher basal levels of growth pathways repressed by heat stress) associated with reproductive thermotolerance. Importantly, we define key components of the pollen tube stress response identifying enhanced ROS homeostasis and pollen tube callose synthesis and deposition as important components of reproductive thermotolerance in Tamaulipas. Our work identifies the pollen tube growth phase as a viable target to enhance reproductive thermotolerance and delineates key pathways that are altered in crop varieties capable of fruiting under HT conditions.
Collapse
Affiliation(s)
| | | | | | - Emma Jong
- School of Plant Sciences; University of Arizona
| | | | - Benjamin Styler
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| | | | | | - Robert W Reid
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Ann E Loraine
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Steven E Smith
- School of Natural Resources and the Environment; University of Arizona
| | | | - James B Pease
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University
| | | | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| |
Collapse
|
26
|
Zhou R, Jiang F, Liu Y, Yu X, Song X, Wu Z, Cammarano D. Environmental changes impact on vegetables physiology and nutrition - Gaps between vegetable and cereal crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173180. [PMID: 38740212 DOI: 10.1016/j.scitotenv.2024.173180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Projected changes in climate patterns, increase of weather extreme, water scarcity, and land degradation are going to challenge agricultural production and food security. Currently, studies concerning effects of climate change on agriculture mainly focus on yield and quality of cereal crops. In contrast, there has been little attention on the effects of environmental changes on vegetables that are necessary and key nutrition component for human beings, but quite sensitive to these climatic changes. Therefore, we reviewed the main changes of environmental factors under the current scenario as well as the impacts of these factors on the physiological responses and nutritional alteration of vegetables and the key findings based on modelling. The gaps between cereal crops and vegetables were pinpointed and the actions to take in the future were proposed. The review will enhance our understanding concerning the effects of environmental changes on production, physiological responses, nutrition, and modelling of vegetable plants.
Collapse
Affiliation(s)
- Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark.
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Song
- School of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Davide Cammarano
- Department of Agroecology, iClimate, CBIO, Aarhus University, Tjele 8830, Denmark.
| |
Collapse
|
27
|
Wadood A, Hameed A, Akram S, Ghaffar M. Unraveling the impact of water deficit stress on nutritional quality and defense response of tomato genotypes. FRONTIERS IN PLANT SCIENCE 2024; 15:1403895. [PMID: 38957600 PMCID: PMC11217520 DOI: 10.3389/fpls.2024.1403895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Water deficit stress triggers various physiological and biochemical changes in plants, substantially affecting both overall plant defense response and thus nutritional quality of tomatoes. The aim of this study was to assess the antioxidant defense response and nutritional quality of different tomato genotypes under water deficit stress. In this study, six tomato genotypes were used and subjected to water deficit stress by withholding water for eight days under glass house conditions. Various physiological parameters from leaves and biochemical parameters from tomato fruits were measured to check the effect of antioxidant defense response and nutritional value. Multi-trait genotype-ideotype distance index (MGIDI) was used for the selection of genotypes with improved defense response and nutritional value under water deficit stress condition. Results indicated that all physiological parameters declined under stress conditions compared to the control. Notably, NBH-362 demonstrated resilience to water deficit stress, improving both defense response and nutritional quality which is evident by an increase in proline (16.91%), reducing sugars (20.15%), total flavonoids (10.43%), superoxide dismutase (24.65%), peroxidase (14.7%), and total antioxidant capacity (29.9%), along with a decrease in total oxidant status (4.38%) under stress condition. Overall, the findings suggest that exposure to water deficit stress has the potential to enhance the nutritional quality of tomatoes. However, the degree of this enhancement is contingent upon the distinct genetic characteristics of various tomato genotypes. Furthermore, the promising genotype (NBH-362) identified in this study holds potential for future utilization in breeding programs.
Collapse
Affiliation(s)
- Ayesha Wadood
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Amjad Hameed
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Saba Akram
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Maria Ghaffar
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| |
Collapse
|
28
|
Khan Q, Wang Y, Xia G, Yang H, Luo Z, Zhang Y. Deleterious Effects of Heat Stress on the Tomato, Its Innate Responses, and Potential Preventive Strategies in the Realm of Emerging Technologies. Metabolites 2024; 14:283. [PMID: 38786760 PMCID: PMC11122942 DOI: 10.3390/metabo14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhang
- Department of Landscape and Horticulture‚ Ecology College‚ Lishui University‚ Lishui 323000‚ China; (Q.K.); (Y.W.); (G.X.); (H.Y.); (Z.L.)
| |
Collapse
|
29
|
Li Y, Jiang F, He Z, Liu Y, Chen Z, Ottosen CO, Mittler R, Wu Z, Zhou R. Higher Intensity of Salt Stress Accompanied by Heat Inhibits Stomatal Conductance and Induces ROS Accumulation in Tomato Plants. Antioxidants (Basel) 2024; 13:448. [PMID: 38671895 PMCID: PMC11047744 DOI: 10.3390/antiox13040448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Under natural conditions, abiotic stresses that limit plant growth and development tend to occur simultaneously, rather than individually. Due to global warming and climate change, the frequency and intensity of heat and salt stresses are becoming more frequent. Our aim is to determine the response mechanisms of tomato to different intensities of combined heat and salt stresses. The physiological and morphological responses and photosynthesis/reactive oxygen species (ROS)-related genes of tomato plants were compared under a control, heat stress, salt stress (50/100/200/400 mM NaCl), and a combination of salt and heat stresses. The stomatal conductance (gs) of tomato leaves significantly increased at a heat + 50 mM NaCl treatment on day 4, but significantly decreased at heat + 100/200/400 mM NaCl treatments, compared with the control on days 4 and 8. The O2·- production rate of tomato plants was significantly higher at heat + 100/200/400 mM NaCl than the control, which showed no significant difference between heat + 50 mM NaCl treatment and the control on days 4 and 8. Ascorbate peroxidase 2 was significantly upregulated by heat + 100/200/400 mM NaCl treatment as compared with heat + 50 mM NaCl treatment on days 4 and 8. This study demonstrated that the dominant effect ratio of combined heat and salt stress on tomato plants can shift from heat to salt, when the intensity of salt stress increased from 50 mM to 100 mM or above. This study provides important information for tomato tolerance improvement at combined heat and salt stresses.
Collapse
Affiliation(s)
- Yankai Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (F.J.); (Z.H.); (Y.L.); (Z.C.)
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (F.J.); (Z.H.); (Y.L.); (Z.C.)
| | - Zhenxiang He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (F.J.); (Z.H.); (Y.L.); (Z.C.)
| | - Yi Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (F.J.); (Z.H.); (Y.L.); (Z.C.)
| | - Zheng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (F.J.); (Z.H.); (Y.L.); (Z.C.)
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark;
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA;
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (F.J.); (Z.H.); (Y.L.); (Z.C.)
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (F.J.); (Z.H.); (Y.L.); (Z.C.)
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark;
| |
Collapse
|
30
|
Mumithrakamatchi AK, Alagarswamy S, Anitha K, Djanaguiraman M, Kalarani MK, Swarnapriya R, Marimuthu S, Vellaikumar S, Kanagarajan S. Melatonin imparts tolerance to combined drought and high-temperature stresses in tomato through osmotic adjustment and ABA accumulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1382914. [PMID: 38606062 PMCID: PMC11007154 DOI: 10.3389/fpls.2024.1382914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
In recent years, environmental stresses viz., drought and high-temperature negatively impacts the tomato growth, yield and quality. The effects of combined drought and high-temperature (HT) stresses during the flowering stage were investigated. The main objective was to assess the effects of foliar spray of melatonin under both individual and combined drought and HT stresses at the flowering stage. Drought stress was imposed by withholding irrigation, whereas HT stress was imposed by exposing the plants to an ambient temperature (AT)+5°C temperature. The drought+HT stress was imposed by exposing the plants to drought first, followed by exposure to AT+5°C temperature. The duration of individual and combined drought or HT stress was 10 days. The results showed that drought+HT stress had a significant negative effect compared with individual drought or HT stress alone. However, spraying 100 µM melatonin on the plants challenged with individual or combined drought and HT stress showed a significant increase in total chlorophyll content [drought: 16%, HT: 14%, and drought+HT: 11%], Fv/Fm [drought: 16%, HT: 15%, and drought+HT: 13%], relative water content [drought: 10%, HT: 2%, and drought+HT: 8%], and proline [drought: 26%, HT: 17%, and drought+HT: 14%] compared with their respective stress control. Additionally, melatonin positively influenced the stomatal and trichome characteristics compared with stress control plants. Also, the osmotic adjustment was found to be significantly increased in the melatonin-sprayed plants, which, in turn, resulted in an increased number of fruits, fruit set percentage, and fruit yield. Moreover, melatonin spray also enhanced the quality of fruits through increased lycopene content, carotenoid content, titratable acidity, and ascorbic acid content, compared with the stress control. Overall, this study highlights the usefulness of melatonin in effectively mitigating the negative effects of drought, HT, and drought+HT stress, thus leading to an increased drought and HT stress tolerance in tomato.
Collapse
Affiliation(s)
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Kuppusamy Anitha
- Department of Crop Physiology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | | | | | | | - Subramanian Marimuthu
- Department of Agronomy, Agricultural College and Research Institute (AC&RI), Eachangkottai, Thanjavur, India
| | - Sampathrajan Vellaikumar
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
- School of Science and Technology, The Life Science Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
31
|
Bjerring Jensen N, Vrobel O, Akula Nageshbabu N, De Diego N, Tarkowski P, Ottosen CO, Zhou R. Stomatal effects and ABA metabolism mediate differential regulation of leaf and flower cooling in tomato cultivars exposed to heat and drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2156-2175. [PMID: 38207009 DOI: 10.1093/jxb/erad498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Co-occurring heat and drought stresses challenge crop performance. Stomata open to promote evaporative cooling during heat stress, but close to retain water during drought stress, which resulted in complex stomatal regulation under combined heat and drought. We aimed to investigate stomatal regulation in leaves and flowers of perennial, indeterminate cultivars of tomatoes subjected to individual and combined heat and drought stress followed by a recovery period, measuring morphological, physiological, and biochemical factors involved in stomatal regulation. Under stress, stomata of leaves were predominantly affected by drought, with lower stomatal density and stomatal closing, resulting in significantly decreased photosynthesis and higher leaf temperature. Conversely, stomata in sepals seemed affected mainly by heat during stress. The differential patterns in stomatal regulation in leaves and flowers persisted into the recovery phase as contrasting patterns in stomatal density. We show that flower transpiration is regulated by temperature, but leaf transpiration is regulated by soil water availability during stress. Organ-specific patterns of stomatal development and abscisic acid metabolism mediated this phenomenon. Our results throw light on the dual role of stomata in heat and drought tolerance of vegetative and generative organs, and demonstrate the importance of considering flower surfaces in the phenotyping of stomatal reactions to stress.
Collapse
Affiliation(s)
- Nikolaj Bjerring Jensen
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Nagashree Akula Nageshbabu
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Carl-Otto Ottosen
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
| | - Rong Zhou
- Department of Food Science, Plant, Food & Climate, Aarhus University, Agro Food Park 48, DK-8200, Aarhus N, Denmark
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
32
|
Li Y, Jiang F, Niu L, Wang G, Yin J, Song X, Ottosen CO, Rosenqvist E, Mittler R, Wu Z, Zhou R. Synergistic regulation at physiological, transcriptional and metabolic levels in tomato plants subjected to a combination of salt and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1656-1675. [PMID: 38055844 DOI: 10.1111/tpj.16580] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
With global warming and climate change, abiotic stresses often simultaneously occur. Combined salt and heat stress was a common phenomenon that was severe, particularly in arid/semi-arid lands. We aimed to reveal the systematic responsive mechanisms of tomato genotypes with different salt/heat susceptibilities to combined salt and heat stress. Morphological and physiological responses of salt-tolerant/sensitive and heat-tolerant/sensitive tomatoes at control, heat, salt and combined stress were investigated. Based on leaf Fv /Fm and H2 O2 content, samples from tolerant genotype at the four treatments for 36 h were taken for transcriptomics and metabolomics. We found that plant height, dry weight and net photosynthetic rate decreased while leaf Na+ concentration increased in all four genotypes under salt and combined stress than control. Changes in physiological indicators such as photosynthetic parameters and defence enzyme activities in tomato under combined stress were regulated by the expression of relevant genes and the accumulation of key metabolites. We screened five key pathways in tomato responding to a combination of salt and heat stress, such as oxidative phosphorylation (map00190). Synergistic regulation at morphological, physiological, transcriptional and metabolic levels in tomato plants was induced by combined stress. Heat stress was considered as a dominant stressor for tomato plants under the current combined stress. The oxidative phosphorylation pathway played a key role in tomato in response to combined stress, where tapped key genes (e.g. alternative oxidase, Aox1a) need further functional analysis. Our study will provide a valuable resource important for studying stress combination and improving tomato tolerance.
Collapse
Affiliation(s)
- Yankai Li
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fangling Jiang
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lifei Niu
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ge Wang
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jian Yin
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, N 8200, Denmark
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, 2630, Denmark
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Bond Life Sciences Center, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Zhen Wu
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong Zhou
- Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus, N 8200, Denmark
| |
Collapse
|
33
|
David-Rogeat N, Broadley MR, Stavridou E. Heat and salinity stress on the African eggplant F1 Djamba, a Kumba cultivar. FRONTIERS IN PLANT SCIENCE 2024; 15:1323665. [PMID: 38469326 PMCID: PMC10926531 DOI: 10.3389/fpls.2024.1323665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 03/13/2024]
Abstract
Climate change is expected to increase soil salinity and heat-wave intensity, duration, and frequency. These stresses, often present in combination, threaten food security as most common crops do not tolerate them. The African eggplant (Solanum aethiopicum L.) is a nutritious traditional crop found in sub-Saharan Africa and adapted to local environments. Its wider use is, however, hindered by the lack of research on its tolerance. This project aimed to describe the effects of salinity (100 mM NaCl solution) combined with elevated temperatures (27/21°C, 37/31°C, and 42/36°C). High temperatures reduced leaf biomass while cell membrane stability was reduced by salinity. Chlorophyll levels were boosted by salinity only at the start of the stress with only the different temperatures significantly impacted the levels at the end of the experiment. Other fluorescence parameters such as maximum quantum yield and non-photochemical quenching were only affected by the temperature change. Total antioxidants were unchanged by either stress despite a decrease of phenols at the highest temperature. Leaf sodium concentration was highly increased by salinity but phosphorus and calcium were unchanged by this stress. These findings shed new light on the tolerance mechanisms of the African eggplant under salinity and heat. Further research on later developmental stages is needed to understand its potential in the field in areas affected by these abiotic stresses.
Collapse
Affiliation(s)
- Noémie David-Rogeat
- Department of Plant Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Crop Science and Production Systems, NIAB, Kent, United Kingdom
| | - Martin R. Broadley
- Department of Plant Sciences, School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- Rothamsted Research, Harpenden, United Kingdom
| | | |
Collapse
|
34
|
Ma S, Sun C, Su W, Zhao W, Zhang S, Su S, Xie B, Kong L, Zheng J. Transcriptomic and physiological analysis of atractylodes chinensis in response to drought stress reveals the putative genes related to sesquiterpenoid biosynthesis. BMC PLANT BIOLOGY 2024; 24:91. [PMID: 38317086 PMCID: PMC10845750 DOI: 10.1186/s12870-024-04780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Atractylodes chinensis (DC) Koidz., a dicotyledonous and hypogeal germination species, is an important medicinal plant because its rhizome is enriched in sesquiterpenes. The development and production of A. chinensis are negatively affected by drought stress, especially at the seedling stage. Understanding the molecular mechanism of A. chinensis drought stress response plays an important role in ensuring medicinal plant production and quality. In this study, A. chinensis seedlings were subjected to drought stress treatment for 0 (control), 3 (D3), and 9 days (D9). For the control, the sample was watered every two days and collected on the second morning after watering. The integration of physiological and transcriptomic analyses was carried out to investigate the effects of drought stress on A. chinensis seedlings and to reveal the molecular mechanism of its drought stress response. RESULTS The malondialdehyde, proline, soluble sugar, and crude protein contents and antioxidative enzyme (superoxide dismutase, peroxidase, and catalase) activity were significantly increased under drought stress compared with the control. Transcriptomic analysis indicated a total of 215,665 unigenes with an average length of 759.09 bp and an N50 of 1140 bp. A total of 29,449 differentially expressed genes (DEGs) were detected between the control and D3, and 14,538 DEGs were detected between the control and D9. Under drought stress, terpenoid backbone biosynthesis had the highest number of unigenes in the metabolism of terpenoids and polyketides. To identify candidate genes involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, we observed 22 unigene-encoding enzymes in the terpenoid backbone biosynthetic pathway and 15 unigene-encoding enzymes in the sesquiterpenoid and triterpenoid biosynthetic pathways under drought stress. CONCLUSION Our study provides transcriptome profiles and candidate genes involved in sesquiterpenoid and triterpenoid biosynthesis in A. chinensis in response to drought stress. Our results improve our understanding of how drought stress might affect sesquiterpenoid and triterpenoid biosynthetic pathways in A. chinensis.
Collapse
Affiliation(s)
- Shanshan Ma
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Chengzhen Sun
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Wennan Su
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Wenjun Zhao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Sai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Shuyue Su
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Boyan Xie
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Lijing Kong
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China
| | - Jinshuang Zheng
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology, Qinhuangdao, Hebei, 066004, China.
| |
Collapse
|
35
|
Chaouachi L, Marín-Sanz M, Barro F, Karmous C. Study of the genetic variability of durum wheat ( Triticum durum Desf.) in the face of combined stress: water and heat. AOB PLANTS 2024; 16:plad085. [PMID: 38204894 PMCID: PMC10781440 DOI: 10.1093/aobpla/plad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The devastating effects and extent of abiotic stress on cereal production continue to increase globally, affecting food security in several countries, including Tunisia. Heat waves and the scarcity of rainfall strongly affect durum wheat yields. The present study aims to screen for tolerance to combined water and heat stresses in durum wheat at the juvenile stage. Three combined treatments were tested, namely: T0 (100% field capacity (FC) at 24 °C), T1 (50% FC at 30 °C), and T2 (25% FC at 35 °C). The screening was carried out based on morphological, physiological, and biochemical criteria. The results showed that the combined stress significantly affected all the measured parameters. The relative water content (RWC) decreased by 37.6% under T1 compared to T0. Quantum yield (Fv/m) and photosynthetic efficiency (Fv/0) decreased under severe combined stress (T2) by 37.15% and 37.22%, respectively. Under T2 stress, LT increased by 63.7%. A significant increase in osmoprotective solutes was also observed, including proline, which increased by 154.6% under T2. Correlation analyses of the combination of water and heat stress confirm that the traits RWC, chlorophyll b content, Fv/m, proline content, Fv/0 and leaf temperature can be used as reliable screening criteria for the two stresses combined. The principal component analysis highlighted that Aouija tolerates the two levels of stresses studied, while the genotypes Karim and Hmira are the most sensitive. The results show that the tolerance of durum wheat to combined water and heat stress involves several adaptation mechanisms proportional to the stress intensity.
Collapse
Affiliation(s)
- Latifa Chaouachi
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture-Spanish National Research Council (IAS-CSIC), 14004 Córdoba, Spain
| | - Chahine Karmous
- Laboratory of Genetics and Cereal Breeding (LR14 AGR01), National Institute of Agronomy of Tunisia, Carthage University, 1082 Tunis, Tunisia
| |
Collapse
|
36
|
Poudyal D, Joshi BK, Zhou R, Ottosen CO, Dahal KC. Evaluating the physiological responses and identifying stress tolerance of Akabare chili landraces to individual and combined drought and heat stresses. AOB PLANTS 2023; 15:plad083. [PMID: 38106642 PMCID: PMC10721449 DOI: 10.1093/aobpla/plad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Abstract. Akabare chili (Capsicum annuum) contributes to Nepalese rural livelihoods but suffers from low productivity due to various abiotic stresses including drought and heat. This study aimed to assess the physiological responses of Akabare chili landraces to heat and drought stress, individually and together, and to identify stress-tolerant genotypes in the early vegetative stage. Selected eight Akabare chili landraces and chili variety 'Jwala' were subjected to control (30/22 °C day/night) and heat stress (40/32 °C) conditions with irrigation, and drought stress (30/22 °C) and combined drought-heat stress conditions without irrigation for 7 days, followed by a 5-day recovery under control condition. Stress-tolerant landraces showed better performance compared to sensitive ones in terms of efficacy of PS II (Fv/Fm), transpiration rate (E), net photosynthetic rate (PN), stomatal conductance (gs), leaf temperature depression, water use efficiency (WUE) and the ratio of stomata pore area to stomata area under stress conditions, resulting in improved biomass. Although all genotypes performed statistically similar under control conditions, their responses Fv/Fm, PN, E, gs and WUE were significantly reduced under thermal stress, further reduced under drought stress, and severely declined under the combination of both. Total biomass exhibited a 57.48 % reduction due to combined stress, followed by drought (37.8 %) and heat (21.4 %) compared to the control. Among the landraces, C44 showed the most significant gain in biomass (35 %), followed by DKT77 (33.48 %), while the lowest gain percentage was observed for C64C and PPR77 during the recovery phase (29 %). The tolerant landraces also showed a higher percentage of leaf cooling, chlorophyll content and leaf relative water content with fewer stomata but broader openings of pores. The study identifies potential stress-tolerant Akabare chili landraces and discusses the stress-tolerant physiological mechanisms to develop resilient crop varieties in changing climates.
Collapse
Affiliation(s)
- Damodar Poudyal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618 Kathmandu, Nepal
| | - Bal Krishna Joshi
- National Agriculture Genetic Resource Center, Nepal Agriculture Research Council, Khumaltar, 44700 Lalitpur, Nepal
| | - Rong Zhou
- College of Horticulture, Nanjing Agriculture University, Weigang No.1, 210095 Nanjing, China
| | - Carl-Otto Ottosen
- Department of Food Science, Aarhus University, Agro Food Park 48, 8200 Aarhus N, Denmark
| | - Kishor Chandra Dahal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618 Kathmandu, Nepal
| |
Collapse
|
37
|
Prabhakar R, Gupta A, Singh R, Sane AP. Suppression of SlDREB3 increases leaf ABA responses and promotes drought tolerance in transgenic tomato plants. Biochem Biophys Res Commun 2023; 681:136-143. [PMID: 37774571 DOI: 10.1016/j.bbrc.2023.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Drought susceptibility is a major yield limiting factor in agricultural crops especially in hybrids/varieties that have been bred for high yields. We show that manipulation of the SlDREB3 gene in tomato alters ABA responses and thereby sensitivity of stomatal closure to ABA. SlDREB3 suppression lines show ABA hypersensitivity and rapid stomatal closure in response to ABA while over-expression lines show reduced sensitivity to ABA and open stomata even at high ABA levels with rapid water loss after 10 days of water stress. This is accompanied with high ROS levels and increased membrane damage due to senescence of leaves and drastically reduced survival in drought. The relative water content (RWC) of OEx lines is much reduced even when grown under well-watered conditions. In contrast, suppression lines show greater tolerance to water stress and almost complete survival to 10-day water stress. They show much reduced ROS levels, reduced membrane damage, higher RWC and reduced leaf water loss. These changes are associated with higher expression of ABA signalling pathway genes in suppression lines while these are highly reduced in OEx lines. The studies suggest that control of ABA signalling by SlDREB3 can help in withstanding severe drought.
Collapse
Affiliation(s)
- Rakhi Prabhakar
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Department of Biotechnology, Bundelkhand University, Jhansi, 284128, India
| | - Asmita Gupta
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rambir Singh
- Department of Biotechnology, Bundelkhand University, Jhansi, 284128, India; Department of Horticulture, Aromatic and Medicinal Plants, Mizoram University, Aizawl, 796004, India
| | - Aniruddha P Sane
- Plant Gene Expression Lab, CSIR-National Botanical Research Institute (Council of Scientific and Industrial Research), Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
38
|
Alharbi K, Khan AA, Sakit Alhaithloul HA, Al-Harbi NA, Al-Qahtani SM, Aloufi SS, Abdulmajeed AM, Muneer MA, Alghanem SMS, Zia-Ur-Rehman M, Usman M, Soliman MH. Synergistic effect of β-sitosterol and biochar application for improving plant growth of Thymus vulgaris under heat stress. CHEMOSPHERE 2023; 340:139832. [PMID: 37591372 DOI: 10.1016/j.chemosphere.2023.139832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Climate change has become the global concern due to its drastic effects on the environment. Agriculture sector is the backbone of food security which remains at the disposal of climate change. Heat stress is the is the most concerning effect of climate change which negatively affect the plant growth and potential yields. The present experiment was conducted to assess the effects of exogenously applied β-sitosterol (Bs at 100 mg/L) and eucalyptus biochar (Eb at 5%) on the antioxidants and nutritional status in Thymus vulgaris under heat stressed conditions. The pot experiment was conducted in completely randomize design in which thymus plants were exposed to heat stress (33 °C) and as a result, plants showed a substantial decline in morpho-physiological and biochemical parameters e.g., a reduction of 59.46, 75.51, 100.00, 34.61, 22.65, and 38.65% was found in plant height, shoot fresh weight, root fresh weight, dry shoot weight, dry root weight and leaf area while in Bs + Eb + heat stress showed 21.16, 56.81, 67.63, 23.09, 12.84, and 35.89% respectively as compared to control. In the same way photosynthetic pigments, transpiration rate, plant nutritional values and water potential increased in plants when treated with Bs and Eb in synergy. Application of Bs and Eb significantly decreased the electrolytic leakage of cells in heat stressed thymus plants. The production of reactive oxygen species was significantly decreased while the synthesis of antioxidants increased with the application of Bs and Eb. Moreover, the application Bs and Eb increased the concentration of minerals nutrients in the plant body under heat stress. Our results suggested that application of Bs along with Eb decreased the effect of heat stress by maintaining nutrient supply and enhanced tolerance by increasing the production of photosynthetic pigments and antioxidant activity.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Amir Abdullah Khan
- Department of Plant Biology and Ecology, Nankai University, Tianjin, 300071, China
| | | | - Nadi Awad Al-Harbi
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, 47512, Saudi Arabia
| | - Salem Mesfir Al-Qahtani
- Biology Department, University College of Tayma, University of Tabuk, Tabuk, 47512, Saudi Arabia
| | - Saeedah Sallum Aloufi
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Saudi Arabia
| | - Awatif M Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj, 46429, Tabuk, Saudi Arabia
| | - Muhammad Atif Muneer
- College of Resources and Environment, International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan.
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38000, Punjab, Pakistan
| | - Mona H Soliman
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu, 46429, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
39
|
Kitavi M, Gemenet DC, Wood JC, Hamilton JP, Wu S, Fei Z, Khan A, Buell CR. Identification of genes associated with abiotic stress tolerance in sweetpotato using weighted gene co-expression network analysis. PLANT DIRECT 2023; 7:e532. [PMID: 37794882 PMCID: PMC10546384 DOI: 10.1002/pld3.532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/22/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
Sweetpotato, Ipomoea batatas (L.), a key food security crop, is negatively impacted by heat, drought, and salinity stress. The orange-fleshed sweetpotato cultivar "Beauregard" was exposed to heat, salt, and drought treatments for 24 and 48 h to identify genes responding to each stress condition in leaves. Analysis revealed both common (35 up regulated, 259 down regulated genes in the three stress conditions) and unique sets of up regulated (1337 genes by drought, 516 genes by heat, and 97 genes by salt stress) and down regulated (2445 genes by drought, 678 genes by heat, and 204 genes by salt stress) differentially expressed genes (DEGs) suggesting common, yet stress-specific transcriptional responses to these three abiotic stressors. Gene Ontology analysis of down regulated DEGs common to both heat and salt stress revealed enrichment of terms associated with "cell population proliferation" suggestive of an impact on the cell cycle by the two stress conditions. To identify shared and unique gene co-expression networks under multiple abiotic stress conditions, weighted gene co-expression network analysis was performed using gene expression profiles from heat, salt, and drought stress treated 'Beauregard' leaves yielding 18 co-expression modules. One module was enriched for "response to water deprivation," "response to abscisic acid," and "nitrate transport" indicating synergetic crosstalk between nitrogen, water, and phytohormones with genes encoding osmotin, cell expansion, and cell wall modification proteins present as key hub genes in this drought-associated module. This research lays the groundwork for exploring to a further degree, mechanisms for abiotic stress tolerance in sweetpotato.
Collapse
Affiliation(s)
- Mercy Kitavi
- Research Technology Support Facility (RTSF)Michigan State UniversityEast LansingMichiganUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Dorcus C. Gemenet
- International Potato CenterLimaPeru
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF HouseNairobiKenya
| | - Joshua C. Wood
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
| | - Shan Wu
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNew YorkUSA
| | - Awais Khan
- International Potato CenterLimaPeru
- Present address:
Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant ScienceCornell UniversityGenevaNew YorkUSA
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
- Department of Crop & Soil SciencesUniversity of GeorgiaAthensGeorgiaUSA
- Institute of Plant Breeding, Genetics, & GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
40
|
Mirzayeva S, Huseynova I, Özmen CY, Ergül A. Physiology and Gene Expression Analysis of Tomato (Solanum lycopersicum L.) Exposed to Combined-Virus and Drought Stresses. THE PLANT PATHOLOGY JOURNAL 2023; 39:466-485. [PMID: 37817493 PMCID: PMC10580053 DOI: 10.5423/ppj.oa.07.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Crop productivity can be obstructed by various biotic and abiotic stresses and thus these stresses are a threat to universal food security. The information on the use of viruses providing efficacy to plants facing growth challenges owing to stress is lacking. The role of induction of pathogen-related genes by microbes is also colossal in drought-endurance acquisition. Studies put forward the importance of viruses as sustainable means for defending plants against dual stress. A fundamental part of research focuses on a positive interplay between viruses and plants. Notably, the tomato yellow leaf curl virus (TYLCV) and tomato chlorosis virus (ToCV) possess the capacity to safeguard tomato host plants against severe drought conditions. This study aims to explore the combined effects of TYLCV, ToCV, and drought stress on two tomato cultivars, Money Maker (MK, UK) and Shalala (SH, Azerbaijan). The expression of pathogen-related four cellulose synthase gene families (CesA/Csl) which have been implicated in drought and virus resistance based on gene expression analysis, was assessed using the quantitative real-time polymerase chain reaction method. The molecular tests revealed significant upregulation of Ces-A2, Csl-D3,2, and Csl-D3,1 genes in TYLCV and ToCV-infected tomato plants. CesA/Csl genes, responsible for biosynthesis within the MK and SH tomato cultivars, play a role in defending against TYLCV and ToCV. Additionally, physiological parameters such as "relative water content," "specific leaf weight," "leaf area," and "dry biomass" were measured in dual-stressed tomatoes. Using these features, it might be possible to cultivate TYLCV-resistant plants during seasons characterized by water scarcity.
Collapse
Affiliation(s)
- Samra Mirzayeva
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of Azerbaijan Republic, Baku AZ1073, Azerbaijan
| | - Irada Huseynova
- Institute of Molecular Biology & Biotechnologies, Ministry of Science and Education of Azerbaijan Republic, Baku AZ1073, Azerbaijan
| | | | - Ali Ergül
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| |
Collapse
|
41
|
Zong J, Chen P, Luo Q, Gao J, Qin R, Wu C, Lv Q, Zhao T, Fu Y. Transcriptome-Based WGCNA Analysis Reveals the Mechanism of Drought Resistance Differences in Sweetpotato ( Ipomoea batatas (L.) Lam.). Int J Mol Sci 2023; 24:14398. [PMID: 37762701 PMCID: PMC10531967 DOI: 10.3390/ijms241814398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) is a globally significant storage root crop, but it is highly susceptible to yield reduction under severe drought conditions. Therefore, understanding the mechanism of sweetpotato resistance to drought stress is helpful for the creation of outstanding germplasm and the selection of varieties with strong drought resistance. In this study, we conducted a comprehensive analysis of the phenotypic and physiological traits of 17 sweetpotato breeding lines and 10 varieties under drought stress through a 48 h treatment in a Hoagland culture medium containing 20% PEG6000. The results showed that the relative water content (RWC) and vine-tip fresh-weight reduction (VTFWR) in XS161819 were 1.17 and 1.14 times higher than those for the recognized drought-resistant variety Chaoshu 1. We conducted RNA-seq analysis and weighted gene co-expression network analysis (WGCNA) on two genotypes, XS161819 and 18-12-3, which exhibited significant differences in drought resistance. The transcriptome analysis revealed that the hormone signaling pathway may play a crucial role in determining the drought resistance in sweetpotato. By applying WGCNA, we identified twenty-two differential expression modules, and the midnight blue module showed a strong positive correlation with drought resistance characteristics. Moreover, twenty candidate Hub genes were identified, including g47370 (AFP2), g14296 (CDKF), and g60091 (SPBC2A9), which are potentially involved in the regulation of drought resistance in sweetpotato. These findings provide important insights into the molecular mechanisms underlying drought resistance in sweetpotato and offer valuable genetic resources for the development of drought-resistant sweetpotato varieties in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yufan Fu
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China; (J.Z.); (P.C.); (Q.L.); (J.G.); (R.Q.); (C.W.); (Q.L.); (T.Z.)
| |
Collapse
|
42
|
Xu X, Fonseca de Lima CF, Vu LD, De Smet I. When drought meets heat - a plant omics perspective. FRONTIERS IN PLANT SCIENCE 2023; 14:1250878. [PMID: 37674736 PMCID: PMC10478009 DOI: 10.3389/fpls.2023.1250878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Changes in weather patterns with emerging drought risks and rising global temperature are widespread and negatively affect crop growth and productivity. In nature, plants are simultaneously exposed to multiple biotic and abiotic stresses, but most studies focus on individual stress conditions. However, the simultaneous occurrence of different stresses impacts plant growth and development differently than a single stress. Plants sense the different stress combinations in the same or in different tissues, which could induce specific systemic signalling and acclimation responses; impacting different stress-responsive transcripts, protein abundance and modifications, and metabolites. This mini-review focuses on the combination of drought and heat, two abiotic stress conditions that often occur together. Recent omics studies indicate common or independent regulators involved in heat or drought stress responses. Here, we summarize the current research results, highlight gaps in our knowledge, and flag potential future focus areas.
Collapse
Affiliation(s)
- Xiangyu Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca de Lima
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
43
|
Chaganti C, Phule AS, Chandran LP, Sonth B, Kavuru VPB, Govindannagari R, Sundaram RM. Silicate solubilizing and plant growth promoting bacteria interact with biogenic silica to impart heat stress tolerance in rice by modulating physiology and gene expression. Front Microbiol 2023; 14:1168415. [PMID: 37520375 PMCID: PMC10374332 DOI: 10.3389/fmicb.2023.1168415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2023] [Indexed: 08/01/2023] Open
Abstract
Heat stress caused due to increasing warming climate has become a severe threat to global food production including rice. Silicon plays a major role in improving growth and productivity of rice by aiding in alleviating heat stress in rice. Soil silicon is only sparingly available to the crops can be made available by silicate solubilizing and plant-growth-promoting bacteria that possess the capacity to solubilize insoluble silicates can increase the availability of soluble silicates in the soil. In addition, plant growth promoting bacteria are known to enhance the tolerance to abiotic stresses of plants, by affecting the biochemical and physiological characteristics of plants. The present study is intended to understand the role of beneficial bacteria viz. Rhizobium sp. IIRR N1 a silicate solublizer and Gluconacetobacter diazotrophicus, a plant growth promoting bacteria and their interaction with insoluble silicate sources on morpho-physiological and molecular attributes of rice (Oryza sativa L.) seedlings after exposure to heat stress in a controlled hydroponic system. Joint inoculation of silicates and both the bacteria increased silicon content in rice tissue, root and shoot biomass, significantly increased the antioxidant enzyme activities (viz. superoxidase dismutase, catalase and ascorbate peroxidase) compared to other treatments with sole application of either silicon or bacteria. The physiological traits (viz. chlorophyll content, relative water content) were also found to be significantly enhanced in presence of silicates and both the bacteria after exposure to heat stress conditions. Expression profiling of shoot and root tissues of rice seedlings revealed that seedlings grown in the presence of silicates and both the bacteria exhibited higher expression of heat shock proteins (HSPs viz., OsHsp90, OsHsp100 and 60 kDa chaperonin), hormone-related genes (OsIAA6) and silicon transporters (OsLsi1 and OsLsi2) as compared to seedlings treated with either silicates or with the bacteria alone. The results thus reveal the interactive effect of combined application of silicates along with bacteria Rhizobium sp. IIRR N1, G. diazotrophicus inoculation not only led to augmented silicon uptake by rice seedlings but also influenced the plant biomass and elicited higher expression of HSPs, hormone-related and silicon transporter genes leading to improved tolerance of seedling to heat stress.
Collapse
|
44
|
Charfeddine M, Chiab N, Charfeddine S, Ferjani A, Gargouri-Bouzid R. Heat, drought, and combined stress effect on transgenic potato plants overexpressing the StERF94 transcription factor. JOURNAL OF PLANT RESEARCH 2023; 136:549-562. [PMID: 36988761 DOI: 10.1007/s10265-023-01454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Despite their economic importance worldwide, potato plants are sensitive to various abiotic constraints, such as drought and high temperatures, which cause significant losses in yields and tuber quality. Moreover, because of the climate change phenomenon, plants are frequently subjected to combined stresses, mainly high temperatures and drought. In this context, breeding for tolerant varieties should consider not only plant response to drought or high temperature but also to combined stresses. In the current study, we studied transgenic potato plants overexpressing an ethylene response transcription factor (TF; StERF94) involved in abiotic stress response signaling pathways. Our previous results showed that these transgenic plants display tolerance to salt stress more than wildtype (WT). In this work, we aimed to investigate the effects of drought, heat, and combined stresses on transgenic potato plants overexpressing StERF94 TF under in vitro culture conditions. The obtained results revealed that StERF94 overexpression improved the tolerance of the transgenic plants to drought, heat, and combined stresses through better control of the leaf water and chlorophyll contents, activation of antioxidant enzymes, and an accumulation of proline, especially in the leaves. Indeed, the expression level of antioxidant enzyme-encoding genes (CuZnSOD, FeSOD, CAT1, and CAT2) was significantly induced by the different stress conditions in the transgenic potato plants compared with the WT plants. This study further confirms that StERF94 TF may be implicated in regulating the expression of target genes encoding antioxidant enzymes.
Collapse
Affiliation(s)
- Mariam Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Nour Chiab
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia.
| | - Safa Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Aziza Ferjani
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| |
Collapse
|
45
|
Dong S, Ling J, Song L, Zhao L, Wang Y, Zhao T. Transcriptomic Profiling of Tomato Leaves Identifies Novel Transcription Factors Responding to Dehydration Stress. Int J Mol Sci 2023; 24:9725. [PMID: 37298675 PMCID: PMC10253658 DOI: 10.3390/ijms24119725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Drought is among the most challenging environmental restrictions to tomatoes (Solanum lycopersi-cum), which causes dehydration of the tissues and results in massive loss of yield. Breeding for dehydration-tolerant tomatoes is a pressing issue as a result of global climate change that leads to increased duration and frequency of droughts. However, the key genes involved in dehydration response and tolerance in tomato are not widely known, and genes that can be targeted for dehydration-tolerant tomato breeding remains to be discovered. Here, we compared phenotypes and transcriptomic profiles of tomato leaves between control and dehydration conditions. We show that dehydration decreased the relative water content of tomato leaves after 2 h of dehydration treatment; however, it promoted the malondialdehyde (MDA) content and ion leakage ratio after 4 h and 12 h of dehydration, respectively. Moreover, dehydration stress triggered oxidative stress as we detected significant increases in H2O2 and O2- levels. Simultaneously, dehydration enhanced the activities of antioxidant enzymes including peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and phenylalanine ammonia-lyase (PAL). Genome-wide RNA sequencing of tomato leaves treated with or without dehydration (control) identified 8116 and 5670 differentially expressed genes (DEGs) after 2 h and 4 h of dehydration, respectively. These DEGs included genes involved in translation, photosynthesis, stress response, and cytoplasmic translation. We then focused specifically on DEGs annotated as transcription factors (TFs). RNA-seq analysis identified 742 TFs as DEGs by comparing samples dehydrated for 2 h with 0 h control, while among all the DEGs detected after 4 h of dehydration, only 499 of them were TFs. Furthermore, we performed real-time quantitative PCR analyses and validated expression patterns of 31 differentially expressed TFs of NAC, AP2/ERF, MYB, bHLH, bZIP, WRKY, and HB families. In addition, the transcriptomic data revealed that expression levels of six drought-responsive marker genes were upregulated by de-hydration treatment. Collectively, our findings not only provide a solid foundation for further functional characterization of dehydration-responsive TFs in tomatoes but may also benefit the improvement of dehydration/drought tolerance in tomatoes in the future.
Collapse
Affiliation(s)
- Shuchao Dong
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jiayi Ling
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225100, China
| | - Liuxia Song
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Liping Zhao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Yinlei Wang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Tongmin Zhao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.D.); (J.L.); (L.S.); (L.Z.); (Y.W.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
46
|
Mahlare MJS, Husselmann L, Lewu MN, Bester C, Lewu FB, Caleb OJ. Analysis of the Differentially Expressed Proteins and Metabolic Pathways of Honeybush ( Cyclopia subternata) in Response to Water Deficit Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112181. [PMID: 37299160 DOI: 10.3390/plants12112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023]
Abstract
Honeybush (Cyclopia spp.) is a rich source of antioxidant properties and phenolic compounds. Water availability plays a crucial role in plant metabolic processes, and it contributes to overall quality. Thus, this study aimed to investigate changes in molecular functions, cellular components, and biological processes of Cyclopia subternata exposed to different water stress conditions, which include well-watered (as Control, T1), semi-water stressed (T2), and water-deprived (T3) potted plants. Samples were also collected from a well-watered commercial farm first cultivated in 2013 (T13) and then cultivated in 2017 (T17) and 2019 (T19). Differentially expressed proteins extracted from C. subternata leaves were identified using LC-MS/MS spectrometry. A total of 11 differentially expressed proteins (DEPs) were identified using Fisher's exact test (p < 0.00100). Only α-glucan phosphorylase was found to be statistically common between T17 and T19 (p < 0.00100). Notably, α-glucan phosphorylase was upregulated in the older vegetation (T17) and downregulated in T19 by 1.41-fold. This result suggests that α-glucan phosphorylase was needed in T17 to support the metabolic pathway. In T19, five DEPs were upregulated, while the other six were downregulated. Based on gene ontology, the DEPs in the stressed plant were associated with cellular and metabolic processes, response to stimulus, binding, catalytic activity, and cellular anatomical entity. Differentially expressed proteins were clustered based on the Kyoto Encyclopedia of Genes and Genomes (KEGG), and sequences were linked to metabolic pathways via enzyme code and KEGG ortholog. Most proteins were involved in photosynthesis, phenylpropanoid biosynthesis, thiamine, and purine metabolism. This study revealed the presence of trans-cinnamate 4-monooxygenase, an intermediate for the biosynthesis of a large number of substances, such as phenylpropanoids and flavonoids.
Collapse
Affiliation(s)
- Mary-Jane S Mahlare
- Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington Campus, Private Bag X8, Wellington 7654, South Africa
| | - Lizex Husselmann
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Muinat N Lewu
- Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
| | - Cecilia Bester
- Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
| | - Francis B Lewu
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington Campus, Private Bag X8, Wellington 7654, South Africa
| | - Oluwafemi James Caleb
- Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
47
|
Lama S, Leiva F, Vallenback P, Chawade A, Kuktaite R. Impacts of heat, drought, and combined heat-drought stress on yield, phenotypic traits, and gluten protein traits: capturing stability of spring wheat in excessive environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1179701. [PMID: 37275246 PMCID: PMC10235758 DOI: 10.3389/fpls.2023.1179701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/07/2023]
Abstract
Wheat production and end-use quality are severely threatened by drought and heat stresses. This study evaluated stress impacts on phenotypic and gluten protein characteristics of eight spring wheat genotypes (Diskett, Happy, Bumble, SW1, SW2, SW3, SW4, and SW5) grown to maturity under controlled conditions (Biotron) using RGB imaging and size-exclusion high-performance liquid chromatography (SE-HPLC). Among the stress treatments compared, combined heat-drought stress had the most severe negative impacts on biomass (real and digital), grain yield, and thousand kernel weight. Conversely, it had a positive effect on most gluten parameters evaluated by SE-HPLC and resulted in a positive correlation between spike traits and gluten strength, expressed as unextractable gluten polymer (%UPP) and large monomeric protein (%LUMP). The best performing genotypes in terms of stability were Happy, Diskett, SW1, and SW2, which should be further explored as attractive breeding material for developing climate-resistant genotypes with improved bread-making quality. RGB imaging in combination with gluten protein screening by SE-HPLC could thus be a valuable approach for identifying climate stress-tolerant wheat genotypes.
Collapse
Affiliation(s)
- Sbatie Lama
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Fernanda Leiva
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ramune Kuktaite
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
48
|
Quan L, Chen K, Chen T, Li H, Li W, Cheng T, Xia F, Lou Z, Geng T, Sun D, Jiang W. Monitoring weed mechanical and chemical damage stress based on chlorophyll fluorescence imaging. FRONTIERS IN PLANT SCIENCE 2023; 14:1188981. [PMID: 37255557 PMCID: PMC10225704 DOI: 10.3389/fpls.2023.1188981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Currently, mechanical and chemical damage is the main way to carry out weed control. The use of chlorophyll fluorescence (CF) technology to nondestructively monitor the stress physiological state of weeds is significant to reveal the damage mechanism of mechanical and chemical stresses as well as complex stresses. Under simulated real field environmental conditions, different species and leaf age weeds (Digitaria sanguinalis 2-5 leaf age, and Erigeron canadensis 5-10 leaf age) were subjected to experimental treatments for 1-7 days, and fluorescence parameters were measured every 24 h using a chlorophyll fluorometer. The aim of this study was to investigate the changes in CF parameters of different species of weeds (Digitaria sanguinalis, Erigeron canadensis) at their different stress sites under chemical, mechanical and their combined stresses. The results showed that when weeds (Digitaria sanguinalis and Erigeron canadensis) were chemically stressed in different parts, their leaf back parts were the most severely stressed after 7 days, with photosynthetic inhibition reaching R=75%. In contrast, mechanical stress differs from its changes, and after a period of its stress, each parameter recovers somewhat after 1 to 2 days of stress, with heavy mechanical stress R=11%. Complex stress had the most significant effect on CF parameters, mainly in the timing and efficiency of changes in Fv/Fm, Fq'/Fm', ETR, Rfd, NPQ and Y(NO), with R reaching 71%-73% after only 3-4 days of complex stress, and its changes in complex stress were basically consistent with the pattern of changes in its chemical stress. The results of the study will help to understand the effects of mechanical and chemical stresses and combined stresses on CF parameters of weeds and serve as a guide for efficient weed control operations and conducting weed control in the future.
Collapse
Affiliation(s)
- Longzhe Quan
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Keyong Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianbao Chen
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Hailong Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenchang Li
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Tianyu Cheng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Fulin Xia
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Zhaoxia Lou
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Tianyu Geng
- College of Engineering, Anhui Agricultural University, Hefei, Anhui, China
| | - Deng Sun
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Wei Jiang
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
49
|
De Palma N, Yendo ACA, Vilasboa J, Chacon DS, Fett-Neto AG. Biochemical responses in leaf tissues of alkaloid producing Psychotria brachyceras under multiple stresses. JOURNAL OF PLANT RESEARCH 2023; 136:397-412. [PMID: 36809401 DOI: 10.1007/s10265-023-01441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Under natural conditions plants are generally subjected to complex scenarios of combined or sequential environmental stresses. Among the various components of plant biochemistry modulated by abiotic variables, a pivotal role is played by antioxidant systems, including specialized metabolites and their interaction with central pathways. To help address this knowledge gap, a comparative analysis of metabolic changes in leaf tissues of the alkaloid accumulating plant Psychotria brachyceras Müll Arg. under individual, sequential, and combined stress conditions was carried out. Osmotic and heat stresses were evaluated. Protective systems (accumulation of the major antioxidant alkaloid brachycerine, proline, carotenoids, total soluble protein, and activity of the enzymes ascorbate peroxidase and superoxide dismutase) were measured in conjunction with stress indicators (total chlorophyll, ChA/ChB ratio, lipid peroxidation, H2O2 content and electrolyte leakage). Metabolic responses had a complex profile in sequential and combined stresses compared to single ones, being also modified over time. Different stress application schemes affected alkaloid accumulation in distinct ways, exhibiting similar profile to proline and carotenoids, constituting a complementary triad of antioxidants. These complementary non-enzymatic antioxidant systems appeared to be essential for mitigating stress damage and re-establishing cellular homeostasis. The data herein provides clues that may aid the development of a key component framework of stress responses and their appropriate balance to modulate tolerance and yield of target specialized metabolites.
Collapse
Affiliation(s)
- Nicolás De Palma
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Anna Carolina Alves Yendo
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Johnatan Vilasboa
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Daisy Sotero Chacon
- Pharmacognosy Laboratory, Department of Pharmacy, Federal University of Rio Grande do Norte, CP 59000, Natal, RN, 59012-570, Brazil
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil.
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
50
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|