1
|
Peng Y, Li Q, Gong Y, Yang Q, Dong Q, Han Y. RcPLATZ8 as a novel negative regulator of flowering in Rosa chinensis. PLANT CELL REPORTS 2025; 44:125. [PMID: 40397162 DOI: 10.1007/s00299-025-03513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025]
Abstract
KEY MESSAGE Comprehensive analysis of the RcPLATZ gene family in Rosa chinensis reveals RcPLATZ8 as a novel negative regulator of flowering, offering insights for targeted breeding to manipulate flowering traits. Flowering regulation in Rosa chinensis is essential for improving ornamental and commercial traits, but its molecular mechanisms remain poorly understood. In this study, we identified and characterized ten members of the PLANT AT-RICH SEQUENCE AND ZINC-BINDING (PLATZ) protein family in R. chinensis through genome-wide analysis and protein domain validation using the Pfam database. Among these, we focused on RcPLATZ8, a novel negative regulator of flowering. Expression analysis via RT-qPCR revealed that RcPLATZ8 is predominantly expressed in floral organs, including stamens, pistils, and petals, and exhibits significant responsiveness to key plant hormones, such as abscisic acid (ABA), gibberellins (GA), and jasmonic acid (JA). Functional assays showed that overexpression of RcPLATZ8 in Arabidopsis resulted in delayed flowering and increased leaf number, whereas silencing RcPLATZ8 in R. chinensis led to early flowering. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) identified that RcPLATZ8 is part of the 'red module,' which is strongly associated with flowering-time regulatory genes, including SHORT VEGETATIVE PHASE (SVP). These findings provide new insights into the molecular regulation of flowering in roses, demonstrating that RcPLATZ8 may plays a key role in integrating hormonal signals and floral development. Our study not only expands the functional understanding of the PLATZ family but also offers potential strategies for molecular breeding aimed at improving flowering traits for horticultural applications.
Collapse
Affiliation(s)
- Yifang Peng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qi Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yao Gong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qian Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qijing Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Floriculture, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Wang J, Li H, Tang W, Liang K, Zhao C, Yu F, Qiu F. A candidate association study of transcription factors in maize revealed the ZmPLATZ15-ZmEREB200 module as a key regulator of waterlogging tolerance at the seedling stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109664. [PMID: 40010256 DOI: 10.1016/j.plaphy.2025.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Soil waterlogging is a major abiotic stress that severely impairs maize growth and development by inducing hypoxic conditions that disrupt essential physiological processes. Transcription factors (TFs) play crucial roles in modulating plant responses to waterlogging stress by regulating the expression of stress-related genes that enhance or diminish stress tolerance. In this study, we conducted an association analysis to identify 11 TFs closely associated with waterlogging stress in maize. Notably, the PLATZ family emerged as a novel and significant contributor to waterlogging stress. Overexpression of ZmPLATZ15 resulted in increased sensitivity to waterlogging at maize seedlings. Conversely, ZmEREB200, a member of the maize Group VII ERF (ZmERFVII) family, was significantly downregulated in the ZmPLATZ15 overexpression lines under waterlogging stress. Promoter analysis revealed that ZmPLATZ15 regulates ZmEREB200 by binding to the A/T-rich motifs in the ZmEREB200 promoter. Interestingly, overexpression of ZmEREB200 was found to enhance waterlogging tolerance at maize seedlings. To further elucidate their roles, we analyzed the transcriptomic profiles of ZmPLATZ15 and ZmEREB200 overexpression lines under waterlogging stress. The overlapping differentially expressed genes in both ZmPLATZ15 and ZmEREB200 overexpression lines were significantly enriched in pathways associated with redox balance and salicylic acid metabolism, both of which are crucial for modulating waterlogging tolerance at maize seedlings. Metabolomic analysis revealed that antioxidant enzyme activity, salicylic acid, and glutathione levels were decreased in OE-ZmPLATZ15, while these metabolites were significantly increased in OE-ZmEREB200. These contrasting metabolic responses in overexpression lines may underlie their different tolerances to waterlogging stress. Our findings provide valuable insights into the regulatory mechanisms underlying maize's response to waterlogging stress and highlight the potential of TFs as tools for developing maize varieties with enhanced waterlogging tolerance.
Collapse
Affiliation(s)
- Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanyu Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenbin Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenxu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Zhang H, Liu L, Li Z, Wang S, Huang L, Lin S. PLATZ transcription factors and their emerging roles in plant responses to environmental stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112400. [PMID: 39880126 DOI: 10.1016/j.plantsci.2025.112400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Plant A/T-rich sequence- and zinc-binding (PLATZ) family proteins represent a novel class of plant-specific transcription factors that bind to A/T-rich sequences. Advances in high-throughput sequencing and bioinformatics analyses have facilitated the identification of numerous PLATZ proteins across various plant species. Over the last decade, accumulating evidence from omics analyses, genetics studies, and gain- and loss-of function investigations has indicated that PLATZ proteins play crucial roles in the complex regulatory networks governing plant development and adaptation to environmental stress. Recently, an excellent review has been published highlighting the roles of PLATZ proteins in controlling plant developmental processes. However, a comprehensive review specifically addressing the molecular mechanisms by which these proteins drive their functions in plant responses to environmental cues is currently lacking. In this review, we summarize the characteristics and identification of PLATZ proteins, emphasizing their significance in stress responses. We also highlight the crosstalk between PLATZ proteins and phytohormones. Furthermore, we discuss the downstream target genes, interacting partners, and upstream regulatory mechanisms associated with PLATZ proteins, providing a thorough understanding of their multifaceted roles in plants.
Collapse
Affiliation(s)
- Hongxia Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Lu Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Zhenzhen Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Shuo Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
4
|
Fan B, Ren M, Chen G, Zhou X, Cheng G, Yang J, Sun H. Exploring the Roles of the Plant AT-Rich Sequence and Zinc-Binding ( PLATZ) Gene Family in Tomato ( Solanum lycopersicum L.) Under Abiotic Stresses. Int J Mol Sci 2025; 26:1682. [PMID: 40004146 PMCID: PMC11855065 DOI: 10.3390/ijms26041682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
PLATZ transcription factors represent a novel class of zinc finger proteins unique to plants and play critical roles in plant growth and stress responses. This study performs a bioinformatic analysis on the PLATZ transcription factor family in tomato. In the tomato genome, 20 PLATZ transcription factors were identified, distributed across nine chromosomes, including two tandem duplication clusters and two segmental duplication events. Phylogenetic analysis classified tomato PLATZ family members into five subgroups, with consistent gene structures and motif distributions within the same subfamily. The stress-responsive and hormone signaling elements were widely distributed in the promoters of SlPLATZs. The qRT-PCR results showed that most tested SlPLATZs were highly expressed in flowers and significantly expressed under different abiotic stresses (PEG, low temperature, and salt treatments) and hormone treatments (ABA and SA). In addition, we determined that SlPLATZ13/17/18/19 showed transcriptional inhibitory activities via yeast and dual-luciferase reporter assays. The interactions between SlPLATZ17, SlDREB2, and SlDREB31 were preliminarily confirmed via yeast two-hybrid assays. Overall, this study provides a valuable theoretical foundation for functional function research on PLATZ transcription factors, particularly in response to abiotic stresses.
Collapse
Affiliation(s)
- Bei Fan
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
| | - Min Ren
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
| | - Guoliang Chen
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Xue Zhou
- Yan’an Academy of Agricultural Sciences, Agriculture and Rural Bureau of Yan’an City, Yan’an 716000, China;
| | - Guoting Cheng
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Jinyu Yang
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
| | - Huiru Sun
- College of Life Sciences, Yan’an University, Yan’an 716000, China; (B.F.); (M.R.); (G.C.); (G.C.)
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China
| |
Collapse
|
5
|
Kumari A, Sopory SK, Joshi R. Unraveling the intricate tapestry of bamboo transcription factors in abiotic stress signaling and resilience with special reference to moso bamboo family. Biochim Biophys Acta Gen Subj 2025; 1869:130755. [PMID: 39740732 DOI: 10.1016/j.bbagen.2024.130755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
The abiotic stress tolerance mechanism in plants is regulated by multiple physiological, biochemical, and molecular processes; hence, omics approaches to underpin these mechanisms are essential. It is clear that transcription factors (TFs) are one of the fundamental molecular switches that play a crucial role in modulating, regulating, and orchestrating plants in response to various climatic vagaries. Several reports are available now, focusing on understanding the roles of TFs, including those in Poaceae family in regulating different biological processes and stress responses. However, research on bamboo TFs' regulatory role in providing abiotic stress tolerance is limited. Hence the present review offers innovative insights into unraveling the molecular regulation of known family of TFs in different species of bamboo which have been identified as regulators of transcript abundance in numerous genes responsive to various abiotic stresses. Additionally, this review highlights recent discoveries concerning bamboo TFs, encompassing their classification, promoter analysis and functional dynamics in response to different abiotic stresses. Attempt has also been made to delve into the molecular interplay and cross-talk among these TFs during abiotic stresses, thus proposing potential strategies for enhancing the intricate regulatory networks involved in the adaptive responses of bamboo species.
Collapse
Affiliation(s)
- Anita Kumari
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
6
|
Yang T, Xu XT, Tang LJ, Wei WT, Zhao YY, Liu JX, Yao XF, Zhao H, Liu CM, Bai AN. Genome-Wide Study of Plant-Specific PLATZ Transcription Factors and Functional Analysis of OsPLATZ1 in Regulating Caryopsis Development of Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:151. [PMID: 39861505 PMCID: PMC11768212 DOI: 10.3390/plants14020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Plant A/T-rich sequence- and zinc-binding protein (PLATZ) is a type of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. This family is essential for plant growth, development, and stress response. In this study, 15 OsPLATZs were identified in the rice genome with complete PLATZ-conserved domains by CD-search, similar to those found in angiosperms. Multi-species phylogenetic analysis showed that PLATZs were conserved in photosynthetic organisms, and an evolutionary branch unique to angiosperms was identified among members of the PLATZ family. Fifteen OsPLATZs were represented by five groups, each with distinct characteristics. An analysis of protein structures and sequence motifs showed that OsPLATZs were similar within groups, but varied between them. The expression profile and qRT-PCR results showed that OsPLATZs had distinct expression patterns in different tissues, with some responding to stress induction. Most of the OsPLATZs localized to the nuclei, and were predicted to bind to DNA sequences by AlphaFold3, suggesting that they likely function as conventional transcription factors. We also identified OsPLATZ1, a caryopsis-specific gene that regulates grain filling and caryopsis development in rice. This research lays the foundation for exploring the structural diversity, evolutionary traits, expression profile, and possible roles of PLATZ transcription factors in rice.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (T.Y.); (X.-T.X.); (L.-J.T.); (W.-T.W.); (Y.-Y.Z.); (J.-X.L.); (X.-F.Y.); (C.-M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Tong Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (T.Y.); (X.-T.X.); (L.-J.T.); (W.-T.W.); (Y.-Y.Z.); (J.-X.L.); (X.-F.Y.); (C.-M.L.)
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Li-Jun Tang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (T.Y.); (X.-T.X.); (L.-J.T.); (W.-T.W.); (Y.-Y.Z.); (J.-X.L.); (X.-F.Y.); (C.-M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Tao Wei
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (T.Y.); (X.-T.X.); (L.-J.T.); (W.-T.W.); (Y.-Y.Z.); (J.-X.L.); (X.-F.Y.); (C.-M.L.)
- School of Agriculture, Yunnan University, Kunming 650504, China
| | - Yuan-Yuan Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (T.Y.); (X.-T.X.); (L.-J.T.); (W.-T.W.); (Y.-Y.Z.); (J.-X.L.); (X.-F.Y.); (C.-M.L.)
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Xin Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (T.Y.); (X.-T.X.); (L.-J.T.); (W.-T.W.); (Y.-Y.Z.); (J.-X.L.); (X.-F.Y.); (C.-M.L.)
| | - Xue-Feng Yao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (T.Y.); (X.-T.X.); (L.-J.T.); (W.-T.W.); (Y.-Y.Z.); (J.-X.L.); (X.-F.Y.); (C.-M.L.)
| | - Heng Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (T.Y.); (X.-T.X.); (L.-J.T.); (W.-T.W.); (Y.-Y.Z.); (J.-X.L.); (X.-F.Y.); (C.-M.L.)
| | - Ai-Ning Bai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (T.Y.); (X.-T.X.); (L.-J.T.); (W.-T.W.); (Y.-Y.Z.); (J.-X.L.); (X.-F.Y.); (C.-M.L.)
| |
Collapse
|
7
|
Gu F, Ren Y, Manzoor MA, Wang T, Huang R, Chen N, Song C, Zhang Y. Plant AT-rich protein and zinc-binding protein (PLATZ) family in Dendrobium huoshanense: identification, evolution and expression analysis. BMC PLANT BIOLOGY 2024; 24:1276. [PMID: 39736596 DOI: 10.1186/s12870-024-06009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/23/2024] [Indexed: 01/01/2025]
Abstract
PLATZ (plant A/T-rich protein and zinc-binding protein) transcription factors are essential for plant growth, development, and responses to abiotic stress. The regulatory role of PLATZ genes in the environmental adaptation of D. huoshanense is inadequately comprehended. The genome-wide identification of D. huoshanense elucidates the functions and regulatory processes of the gene family. Our investigation encompassed the examination of PLATZ gene structures and chromosome distribution, the construction of the phylogenetic tree with its relatives, and the analysis of the cis-acting elements and expression profiles potentially implicated in growth and stress responses. Eleven DhPLATZs were classified into three clades (I, II, and III) according to their evolutionary homology. The distribution of these genes over six chromosomes indicated that both whole genome duplication (WGD) and segmental duplication events have contributed to the expansion of this gene family. The Ka/Ks analysis revealed a pattern of purifying selection after duplication occurrences, suggesting little alterations in functional divergence. The collinearity and microsynteny results revealed that the three DhPLATZ genes shared the same conserved domains as the paralogs from D. huoshanense and D. chrysotoxum. Expression profiling and quantitative analysis demonstrated that DhPLATZ genes had unique expression patterns in response to phytohormones and cold stress. Subcellular localization indicated that three DhPLATZ genes were expressed in the nucleus, suggesting their role as transcription factors. These findings enhance our understanding of PLATZ genes' involvement in D. huoshanense species and underscore their significance as important areas for further research.
Collapse
Affiliation(s)
- Fangli Gu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Yanshuang Ren
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 201109, China
| | - Tingting Wang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Renshu Huang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Naifu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, China.
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
8
|
Feng X, Zhu G, Meng Q, Zeng J, He X, Liu W. Comprehensive analysis of PLATZ family genes and their responses to abiotic stresses in Barley. BMC PLANT BIOLOGY 2024; 24:982. [PMID: 39420254 PMCID: PMC11488246 DOI: 10.1186/s12870-024-05690-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Plant A/T-rich protein and zinc-binding protein (PLATZ) transcription factors are pivotal regulators in various aspects of plant biology, including growth, development, and responses to environmental stresses. While PLATZ genes have been extensively studied and functionally characterized in various plants, limited information is available for these genes in barley. RESULTS Here, we discovered a total of 11 PLATZ genes distributed across seven chromosomes in barley. Based on phylogenetic and conserved motif analysis, we classified PLATZ into five subfamilies, comprising 3, 1, 2, 1 and 4 genes, respectively. Analysis of gene structure demonstrated that these 11 HvPLATZ genes typically possessed two to four exons. Most HvPLATZ genes were found to possess at least one ABRE cis-element in their promoter regions, and a few of them also contained LTR, CAT-box, MRE, and DRE cis-elements. Then, we conducted an exploration of the expression patterns of HvPLATZs, which displayed notable differences across various tissues and in response to abiotic stresses. Functional analysis of HvPLATZ6 and HvPLATZ8 in yeast cells showed that they may be involved in drought tolerance. Additionally, we constructed a regulatory network including miRNA-targeted gene predictions and identified two miRNAs targeting two HvPLATZs, such as hvu-miR5053 and hvu-miR6184 targeting HvPLATZ2, hvu-miR6184 targeting HvPLATZ10. CONCLUSION In summary, these findings provide valuable insights for future functional verification of HvPLATZs and contribute to a deeper understanding of the role of HvPLATZs in response to stress conditions in barley.
Collapse
Affiliation(s)
- Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Gehao Zhu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Quan Meng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianbin Zeng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan He
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, School of Life Sciences, Ministry of Education, Shandong University, Qingdao, Shandong Province, 266237, China.
| |
Collapse
|
9
|
Wang P, Teng H, Qiao D, Liang F, Zhu K, Miao M, Hua B. The Role of PLATZ6 in Raffinose Family Oligosaccharides Loading of Leaves via PLATZ Family Characterization in Cucumber. PLANTS (BASEL, SWITZERLAND) 2024; 13:2825. [PMID: 39409694 PMCID: PMC11478475 DOI: 10.3390/plants13192825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024]
Abstract
The plant AT protein and zinc-binding protein (PLATZ) genes, a novel cluster of plant-specific zinc-finger-dependent DNA-binding proteins, play a crucial role in regulating stress response and plant development. However, there has been little study focus on the role of the cucumber PLATZ family in assimilating loading in leaves. (1) In this study, a total of 12 PLATZ genes were identified from the cucumber genome. The cucumber PLATZ genes were clustered into five groups, and unevenly distributed on five chromosomes. A single pair of cucumber PLATZ genes underwent segmental duplication. (2) The results of genome-wide expression analysis suggested that the cucumber PLATZ genes were widely expressed in a wide range of cucumber tissues, with three PLATZ (PLATZ2, PLATZ6, and PLATZ12) genes exhibiting high expression in the vascular tissues of cucumber leaves. PLATZ2, PLATZ6, and PLATZ12 proteins were primarily located in cytomembrane and nucleus. (3) In VIGS-PLATZ6 plants, the expression of Galactinol synthase 1 (GolS1) and STACHYOSE SYNTHASE (STS), two genes involved in the synthesis of raffinose family oligosaccharides (RFOs) were observed to be decreased in cucumber leaves. In conclusion, the comprehensive analysis of the cucumber PLATZ family and the preliminary functional verification of PLATZ6 lay the foundation for the molecular and physiological functions of cucumber PLATZ genes.
Collapse
Affiliation(s)
- Peiqi Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (P.W.); (H.T.); (D.Q.); (F.L.); (M.M.)
| | - Haofeng Teng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (P.W.); (H.T.); (D.Q.); (F.L.); (M.M.)
| | - Dan Qiao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (P.W.); (H.T.); (D.Q.); (F.L.); (M.M.)
| | - Fei Liang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (P.W.); (H.T.); (D.Q.); (F.L.); (M.M.)
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (P.W.); (H.T.); (D.Q.); (F.L.); (M.M.)
| | - Bing Hua
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (P.W.); (H.T.); (D.Q.); (F.L.); (M.M.)
| |
Collapse
|
10
|
Wang Z, Zhang S, Chen B, Xu X. Functional Characterization of the Gibberellin (GA) Receptor ScGID1 in Sugarcane. Int J Mol Sci 2024; 25:10688. [PMID: 39409017 PMCID: PMC11477236 DOI: 10.3390/ijms251910688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Sugarcane smut caused by Sporisorium scitamineum represents the most destructive disease in the sugarcane industry, causing host hormone disruption and producing a black whip-like sorus in the apex of the stalk. In this study, the gibberellin metabolic pathway was found to respond to S. scitamineum infection, and the contents of bioactive gibberellins were significantly reduced in the leaves of diseased plants. The gibberellin receptor gene ScGID1 was identified and significantly downregulated. ScGID1 localized in both the nucleus and cytoplasm and had the highest expression level in the leaves. Eight proteins that interact with ScGID1 were screened out using a yeast two-hybrid assay. Novel DELLA proteins named ScGAI1a and ScGA20ox2, key enzymes in GA biosynthesis, were both found to interact with ScGID1 in a gibberellin-independent manner. Transcription factor trapping with a yeast one-hybrid system identified 50 proteins that interacted with the promoter of ScGID1, among which ScS1FA and ScPLATZ inhibited ScGID1 transcription, while ScGDSL promoted transcription. Overexpression of ScGID1 in transgenic Nicotiana benthamiana plants could increase plant height and promote flowering. These results not only contribute to improving our understanding of the metabolic regulatory network of sugarcane gibberellin but also expand our knowledge of the interaction between sugarcane and pathogens.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Shujun Zhang
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
| | - Baoshan Chen
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| | - Xiongbiao Xu
- Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (Z.W.); (S.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Province and Ministry Co-Sponsored Collaborative Innovation Center of Canesugar Industry, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
Cai K, Song X, Yue W, Liu L, Ge F, Wang J. Identification and Functional Characterization of Abiotic Stress Tolerance-Related PLATZ Transcription Factor Family in Barley ( Hordeum vulgare L.). Int J Mol Sci 2024; 25:10191. [PMID: 39337676 PMCID: PMC11432580 DOI: 10.3390/ijms251810191] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Plant AT-rich sequence and zinc-binding proteins (PLATZs) are a novel category of plant-specific transcription factors involved in growth, development, and abiotic stress responses. However, the PLATZ gene family has not been identified in barley. In this study, a total of 11 HvPLATZs were identified in barley, and they were unevenly distributed on five of the seven chromosomes. The phylogenetic tree, incorporating PLATZs from Arabidopsis, rice, maize, wheat, and barley, could be classified into six clusters, in which HvPLATZs are absent in Cluster VI. HvPLATZs exhibited conserved motif arrangements with a characteristic PLATZ domain. Two segmental duplication events were observed among HvPLATZs. All HvPLATZs were core genes present in 20 genotypes of the barley pan-genome. The HvPLATZ5 coding sequences were conserved among 20 barley genotypes, whereas HvPLATZ4/9/10 exhibited synonymous single nucleotide polymorphisms (SNPs); the remaining ones showed nonsynonymous variations. The expression of HvPLATZ2/3/8 was ubiquitous in various tissues, whereas HvPLATZ7 appeared transcriptionally silent; the remaining genes displayed tissue-specific expression. The expression of HvPLATZs was modulated by salt stress, potassium deficiency, and osmotic stress, with response patterns being time-, tissue-, and stress type-dependent. The heterologous expression of HvPLATZ3/5/6/8/9/10/11 in yeast enhanced tolerance to salt and osmotic stress, whereas the expression of HvPLATZ2 compromised tolerance. These results advance our comprehension and facilitate further functional characterization of HvPLATZs.
Collapse
Affiliation(s)
- Kangfeng Cai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- National Barley Improvement Centre, Hangzhou 310021, China
| | - Xiujuan Song
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Advanced Agricultural Sciences, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Wenhao Yue
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- National Barley Improvement Centre, Hangzhou 310021, China
| | - Lei Liu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- National Barley Improvement Centre, Hangzhou 310021, China
| | - Fangying Ge
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Advanced Agricultural Sciences, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Junmei Wang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- National Barley Improvement Centre, Hangzhou 310021, China
| |
Collapse
|
12
|
Rehman A, Tian C, Li X, Wang X, Li H, He S, Jiao Z, Qayyum A, Du X, Peng Z. GhiPLATZ17 and GhiPLATZ22, zinc-dependent DNA-binding transcription factors, promote salt tolerance in upland cotton. PLANT CELL REPORTS 2024; 43:140. [PMID: 38740586 DOI: 10.1007/s00299-024-03178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE The utilization of transcriptome analysis, functional validation, VIGS, and DAB techniques have provided evidence that GhiPLATZ17 and GhiPLATZ22 play a pivotal role in improving the salt tolerance of upland cotton. PLATZ (Plant AT-rich sequences and zinc-binding proteins) are known to be key regulators in plant growth, development, and response to salt stress. In this study, we comprehensively analyzed the PLATZ family in ten cotton species in response to salinity stress. Gossypium herbaceum boasts 25 distinct PLATZ genes, paralleled by 24 in G. raimondii, 25 in G. arboreum, 46 in G. hirsutum, 48 in G. barbadense, 43 in G. tomentosum, 67 in G. mustelinum, 60 in G. darwinii, 46 in G. ekmanianum, and a total of 53 PLATZ genes attributed to G. stephensii. The PLATZ gene family shed light on the hybridization and allopolyploidy events that occurred during the evolutionary history of allotetraploid cotton. Ka/Ks analysis suggested that the PLATZ gene family underwent intense purifying selection during cotton evolution. Analysis of synteny and gene collinearity revealed a complex pattern of segmental and dispersed duplication events to expand PLATZ genes in cotton. Cis-acting elements and gene expressions revealed that GhiPLATZ exhibited salt stress resistance. Transcriptome analysis, functional validation, virus-induced gene silencing (VIGS), and diaminobenzidine staining (DAB) demonstrated that GhiPLATZ17 and GhiPLATZ22 enhance salt tolerance in upland cotton. The study can potentially advance our understanding of identifying salt-resistant genes in cotton.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Chunyan Tian
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiawen Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyang Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Zhen Jiao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
| | - Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
| |
Collapse
|
13
|
Wang X, Yuan W, Yuan X, Jiang C, An Y, Chen N, Huang L, Lu M, Zhang J. Comparative analysis of PLATZ transcription factors in six poplar species and analysis of the role of PtrPLATZ14 in leaf development. Int J Biol Macromol 2024; 263:130471. [PMID: 38417753 DOI: 10.1016/j.ijbiomac.2024.130471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Plant AT-rich sequence and zinc-binding (PLATZ) proteins are a class of plant-specific transcription factor that play a crucial role in plant growth, development, and stress response. However, the evolutionary relationship of the PLATZ gene family across the Populus genus and the biological functions of the PLATZ protein require further investigation. In this study, we identified 133 PLATZ genes from six Populus species belonging to four Populus sections. Synteny analysis of the PLATZ gene family indicated that whole genome duplication events contributed to the expansion of the PLATZ family. Among the nine paralogous pairs, the protein structure of PtrPLATZ14/18 pair exhibited significant differences with others. Through gene expression patterns and co-expression networks, we discovered divergent expression patterns and sub-networks, and found that the members of pair PtrPLATZ14/18 might play different roles in the regulation of macromolecule biosynthesis and modification. Furthermore, we found that PtrPLATZ14 regulates poplar leaf development by affecting cell size control genes PtrGRF/GIF and PtrTCP. In conclusion, our study provides a theoretical foundation for exploring the evolution relationships and functions of the PLATZ gene family within Populus species and provides insights into the function and potential mechanism of PtrPLATZ14 in leaf morphology that were diverse across the Populus genus.
Collapse
Affiliation(s)
- Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Wenya Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuening Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yi An
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Ningning Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Lichao Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Mengzhu Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
14
|
Guérin C, Behr M, Sait J, Mol A, El Jaziri M, Baucher M. Evidence for poplar PtaPLATZ18 in the regulation of plant growth and vascular tissues development. FRONTIERS IN PLANT SCIENCE 2023; 14:1302536. [PMID: 38186608 PMCID: PMC10768006 DOI: 10.3389/fpls.2023.1302536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024]
Abstract
Introduction Plant A/T-rich protein and zinc-binding protein (PLATZ) are plant-specific transcription factors playing a role in plant development and stress response. To assess the role of PLATZs in vascular system development and wood formation in poplar, a functional study for PtaPLATZ18, whose expression was associated with the xylem, was carried out. Methods Poplar dominant repressor lines for PtaPLATZ18 were produced by overexpressing a PtaPLATZ18-SRDX fusion. The phenotype of three independent transgenic lines was evaluated at morphological, biochemical, and molecular levels and compared to the wild type. Results The PtaPLATZ18-SRDX lines showed increased plant height resulting from higher internode length. Besides, a higher secondary xylem thickness was also evidenced in these dominant repression lines as compared to the wild type suggesting an activation of cambial activity. A higher amount of lignin was evidenced within wood tissue as compared to the wild type, indicating an alteration in cell wall composition within xylem cell types. This latter phenotype was linked to an increased expression of genes involved in lignin biosynthesis and polymerization. Discussion The phenotype observed in the PtaPLATZ18-SRDX lines argues that this transcription factor targets key regulators of plant growth and vascular tissues development.
Collapse
Affiliation(s)
| | | | | | | | | | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
15
|
Dong X, Luo H, Bi W, Chen H, Yu S, Zhang X, Dai Y, Cheng X, Xing Y, Fan X, Zhu Y, Guo Y, Meng D. Transcriptome-wide identification and characterization of genes exhibit allele-specific imprinting in maize embryo and endosperm. BMC PLANT BIOLOGY 2023; 23:470. [PMID: 37803280 PMCID: PMC10557216 DOI: 10.1186/s12870-023-04473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Genomic imprinting refers to a subset of genes that are expressed from only one parental allele during seed development in plants. Studies on genomic imprinting have revealed that intraspecific variations in genomic imprinting expression exist in naturally genetic varieties. However, there have been few studies on the functional analysis of allele-specific imprinted genes. RESULTS Here, we generated three reciprocal crosses among the B73, Mo17 and CAU5 inbred lines. Based on the transcriptome-wide analysis of allele-specific expression using RNA sequencing technology, 305 allele-specific imprinting genes (ASIGs) were identified in embryos, and 655 ASIGs were identified in endosperms from three maize F1 hybrids. Of these ASIGs, most did not show consistent maternal or paternal bias between the same tissue from different hybrids or different tissues from one hybrid cross. By gene ontology (GO) analysis, five and eight categories of GO exhibited significantly higher functional enrichments for ASIGs identified in embryo and endosperm, respectively. These functional categories indicated that ASIGs are involved in intercellular nutrient transport, signaling pathways, and transcriptional regulation of kernel development. Finally, the mutation and overexpression of one ASIG (Zm305) affected the length and width of the kernel. CONCLUSION In this study, our data will be helpful in gaining further knowledge of genes exhibiting allele-specific imprinting patterns in seeds. The gain- and loss-of-function phenotypes of ASIGs associated with agronomically important seed traits provide compelling evidence for ASIGs as crucial targets to optimize seed traits in crop plants.
Collapse
Affiliation(s)
- Xiaomei Dong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Haishan Luo
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wenjing Bi
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Hanyu Chen
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Shuai Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yuxin Dai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xipeng Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Yupeng Xing
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Shenyang City Key Laboratory of Maize Genomic Selection Breeding, Shenyang, 110866, Liaoning, China
| | - Xiaoqin Fan
- Manas Agricultural Experimental Station of Xinjiang Academy of Agricultural Sciences, Changji, 832200, Xinjiang, China
| | - Yanbin Zhu
- National Key Laboratory of Maize Biological Breeding, Key Laboratory of Genetics and Breeding of Main Crops in Northeast Region, Ministry of Agriculture and Rural Affairs, Liaoning Dongya Seed Industry Co., Ltd, Shenyang, Liaoning, 110164, China
| | - Yanling Guo
- National Key Laboratory of Maize Biological Breeding, Key Laboratory of Genetics and Breeding of Main Crops in Northeast Region, Ministry of Agriculture and Rural Affairs, Liaoning Dongya Seed Industry Co., Ltd, Shenyang, Liaoning, 110164, China
| | - Dexuan Meng
- College of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
16
|
Pelayo MA, Morishita F, Sawada H, Matsushita K, Iimura H, He Z, Looi LS, Katagiri N, Nagamori A, Suzuki T, Širl M, Soukup A, Satake A, Ito T, Yamaguchi N. AGAMOUS regulates various target genes via cell cycle-coupled H3K27me3 dilution in floral meristems and stamens. THE PLANT CELL 2023; 35:2821-2847. [PMID: 37144857 PMCID: PMC10396370 DOI: 10.1093/plcell/koad123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
The MADS domain transcription factor AGAMOUS (AG) regulates floral meristem termination by preventing maintenance of the histone modification lysine 27 of histone H3 (H3K27me3) along the KNUCKLES (KNU) coding sequence. At 2 d after AG binding, cell division has diluted the repressive mark H3K27me3, allowing activation of KNU transcription prior to floral meristem termination. However, how many other downstream genes are temporally regulated by this intrinsic epigenetic timer and what their functions are remain unknown. Here, we identify direct AG targets regulated through cell cycle-coupled H3K27me3 dilution in Arabidopsis thaliana. Expression of the targets KNU, AT HOOK MOTIF NUCLEAR LOCALIZED PROTEIN18 (AHL18), and PLATZ10 occurred later in plants with longer H3K27me3-marked regions. We established a mathematical model to predict timing of gene expression and manipulated temporal gene expression using the H3K27me3-marked del region from the KNU coding sequence. Increasing the number of del copies delayed and reduced KNU expression in a polycomb repressive complex 2- and cell cycle-dependent manner. Furthermore, AHL18 was specifically expressed in stamens and caused developmental defects when misexpressed. Finally, AHL18 bound to genes important for stamen growth. Our results suggest that AG controls the timing of expression of various target genes via cell cycle-coupled dilution of H3K27me3 for proper floral meristem termination and stamen development.
Collapse
Affiliation(s)
- Margaret Anne Pelayo
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Fumi Morishita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Haruka Sawada
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kasumi Matsushita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hideaki Iimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Zemiao He
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Liang Sheng Looi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Naoya Katagiri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Asumi Nagamori
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan
| | - Marek Širl
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Aleš Soukup
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 12844, Czech Republic
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku 819-0395, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Nobutoshi Yamaguchi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| |
Collapse
|
17
|
Qi J, Wang H, Wu X, Noman M, Wen Y, Li D, Song F. Genome-wide characterization of the PLATZ gene family in watermelon (Citrullus lanatus L.) with putative functions in biotic and abiotic stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107854. [PMID: 37356384 DOI: 10.1016/j.plaphy.2023.107854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Plant AT-rich sequence and zinc-binding (PLATZ) proteins are plant-specific transcription factors involved in growth, development, and stress responses. Here, we conducted a genome-wide characterization of the watermelon ClPLATZ family and examined its expression responsiveness to defense hormones and pathogen infection along with putative functions in biotic and abiotic stress responses. The watermelon genome contains 12 putative ClPLATZ genes, encoding proteins with a characteristic PLATZ domain, and their promoters contain various cis-elements related to plant growth, development, phytohormones and stress response. The ClPLATZ genes, except ClPLATZ6, are differentially expressed in response to defense hormones (e.g., salicylic acid and methyl jasmonate) and fungal infections caused by Fusarium oxysporum f. sp. niveum and Stagonosporopsis cucurbitacearum. Most ClPLATZ proteins interact with other proteins (viz., ClDP, ClRPT2a, and ClRPC53). Among ClPLATZ proteins, ClPLATZ8, 9, 10, and 11 are predominately localized in the nucleus. ClPLATZ3 and 8 positively, but ClPLATZ11 negatively regulate resistance against Pseudomonas syringe pv. tomato DC3000 in transgenic Arabidopsis lines. ClPLATZ8 and 11 positively regulate stress tolerance to NaCl and mannitol during seed germination in transgenic Arabidopsis. In conclusion, the characterization of the ClPLATZ family provides insights into the biological functions of ClPLATZ genes in growth, development, and stress response in watermelon. Further, the involvement of certain ClPLATZ genes in biotic and abiotic stress response in transgenic Arabidopsis suggests their potential application in engineering stress-tolerant crops.
Collapse
Affiliation(s)
- Jiahui Qi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hui Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinyi Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Muhammad Noman
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ya Wen
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dayong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Fengming Song
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
18
|
Zhang L, Yang T, Wang Z, Zhang F, Li N, Jiang W. Genome-Wide Identification and Expression Analysis of the PLATZ Transcription Factor in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2632. [PMID: 37514247 PMCID: PMC10384190 DOI: 10.3390/plants12142632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The PLATZ (plant AT protein and zinc-binding protein) transcription factor family is involved in the regulation of plant growth and development and plant stress response. In this study, 24 SlPLATZs were identified from the cultivated tomato genome and classified into four groups based on the similarity of conserved patterns among members of the same subfamily. Fragment duplication was an important way to expand the SlPLATZ gene family in tomatoes, and the sequential order of tomato PLATZ genes in the evolution of monocotyledonous and dicotyledonous plants and the roles they played were hypothesized. Expression profiles based on quantitative real-time reverse transcription PCR showed that SlPLATZ was involved in the growth of different tissues in tomatoes. SlPLATZ21 acts mainly in the leaves. SlPLATZ9, SlPLATZ21, and SlPLATZ23 were primarily involved in the red ripening, expanding, and mature green periods of fruit, respectively. In addition, SlPLATZ1 was found to play an important role in salt stress. This study will lay the foundation for the analysis of the biological functions of SlPLATZ genes and will also provide a theoretical basis for the selection and breeding of new tomato varieties and germplasm innovation.
Collapse
Affiliation(s)
- Lifang Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zepeng Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Fulin Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Weijie Jiang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Li J, Zhao Y, Zhang Y, Ye F, Hou Z, Zhang Y, Hao L, Li G, Shao J, Tan M. Genome-wide analysis of MdPLATZ genes and their expression during axillary bud outgrowth in apple (Malus domestica Borkh.). BMC Genomics 2023; 24:329. [PMID: 37322464 DOI: 10.1186/s12864-023-09399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Branching is a plastic character that affects plant architecture and spatial structure. The trait is controlled by a variety of plant hormones through coordination with environmental signals. Plant AT-rich sequence and zinc-binding protein (PLATZ) is a transcription factor that plays an important role in plant growth and development. However, systematic research on the role of the PLATZ family in apple branching has not been conducted previously. RESULTS In this study, a total of 17 PLATZ genes were identified and characterized from the apple genome. The 83 PLATZ proteins from apple, tomato, Arabidopsis, rice, and maize were classified into three groups based on the topological structure of the phylogenetic tree. The phylogenetic relationships, conserved motifs, gene structure, regulatory cis-acting elements, and microRNAs of the MdPLATZ family members were predicted. Expression analysis revealed that MdPLATZ genes exhibited distinct expression patterns in different tissues. The expression patterns of the MdPLATZ genes were systematically investigated in response to treatments that impact apple branching [thidazuron (TDZ) and decapitation]. The expression of MdPLATZ1, 6, 7, 8, 9, 15, and 16 was regulated during axillary bud outgrowth based on RNA-sequencing data obtained from apple axillary buds treated by decapitation or exogenous TDZ application. Quantitative real-time PCR analysis showed that MdPLATZ6 was strongly downregulated in response to the TDZ and decapitation treatments, however, MdPLATZ15 was significantly upregulated in response to TDZ, but exhibited little response to decapitation. Furthermore, the co-expression network showed that PLATZ might be involved in shoot branching by regulating branching-related genes or mediating cytokinin or auxin pathway. CONCLUSION The results provide valuable information for further functional investigation of MdPLATZ genes in the control of axillary bud outgrowth in apple.
Collapse
Affiliation(s)
- Jiuyang Li
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yongliang Zhao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yaohui Zhang
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Feng Ye
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Zhengcun Hou
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Yuhang Zhang
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Longjie Hao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Guofang Li
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China
| | - Jianzhu Shao
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China.
| | - Ming Tan
- College of Horticulture, Hebei Agricultural University, Hebei, 071000, China.
| |
Collapse
|
20
|
Liu M, Wang C, Ji Z, Lu J, Zhang L, Li C, Huang J, Yang G, Yan K, Zhang S, Zheng C, Wu C. Regulation of drought tolerance in Arabidopsis involves the PLATZ4-mediated transcriptional repression of plasma membrane aquaporin PIP2;8. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37025007 DOI: 10.1111/tpj.16235] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Plant A/T-rich protein and zinc-binding protein (PLATZ) transcription factors play important roles in plant growth, development and abiotic stress responses. However, how PLATZ influences plant drought tolerance remains poorly understood. The present study showed that PLATZ4 increased drought tolerance in Arabidopsis thaliana by causing stomatal closure. Transcriptional profiling analysis revealed that PLATZ4 affected the expression of a set of genes involved in water and ion transport, antioxidant metabolism, small peptides and abscisic acid (ABA) signaling. Among these genes, the direct binding of PLATZ4 to the A/T-rich sequences in the plasma membrane intrinsic protein 2;8 (PIP2;8) promoter was identified. PIP2;8 consistently reduced drought tolerance in Arabidopsis through inhibiting stomatal closure. PIP2;8 was localized in the plasma membrane, exhibited water channel activity in Xenopus laevis oocytes and acted epistatically to PLATZ4 in regulating the drought stress response in Arabidopsis. PLATZ4 increased ABA sensitivity through upregulating the expression of ABSCISIC ACID INSENSITIVE 3 (ABI3), ABI4 and ABI5. The transcripts of PLATZ4 were induced to high levels in vegetative seedlings under drought and ABA treatments within 6 and 3 h, respectively. Collectively, these findings reveal that PLATZ4 positively influences plant drought tolerance through regulating the expression of PIP2;8 and genes involved in ABA signaling.
Collapse
Affiliation(s)
- Miao Liu
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Chunyan Wang
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhen Ji
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Junyao Lu
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Lei Zhang
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Chunlong Li
- Hubei Hongshan Laboratory, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Kang Yan
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Changai Wu
- State Key Laboratory of Crop Biology, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
21
|
Genome-wide identification of PLATZ genes related to cadmium tolerance in Populus trichocarpa and characterization of the role of PtPLATZ3 in phytoremediation of cadmium. Int J Biol Macromol 2023; 228:732-743. [PMID: 36563811 DOI: 10.1016/j.ijbiomac.2022.12.176] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Plant AT-rich sequence and zinc-binding (PLATZ) proteins are a class of plant-specific zinc finger transcription factors that perform critical functions in plant development and resistance. However, the function of PLATZs in heavy metal tolerance has not yet been investigated. Moreover, only a few PLATZ proteins have been functionally characterized in tree species. In this study, we identified 18 PtPLATZ genes in Populus trichocarpa, an important woody model plant, and classified them into five groups. PtPLATZ genes attributed to the same clade usually possess similar exon-intron structures containing two or three introns, as well as a similar motif composition. Furthermore, chromosomal location analysis indicated an uneven distribution of PtPLATZ genes on 13 of the 19 Populus chromosomes. Promoter cis-acting element prediction and gene expression analysis showed that PtPLATZ genes were highly responsive to heavy metal stress. Heterologous yeast expression revealed that PtPLATZ1, PtPLATZ2, PtPLATZ3, PtPLATZ4, PtPLATZ8 and PtPLATZ9 are significantly involved in Cd tolerance. In addition, transgenic expression of PtPLATZ3 significantly enhanced Cd tolerance and accumulation, slowed the decline in chlorophyll content, maintained membrane integrity in Populus, and increased the expression of genes related to Cd tolerance and accumulation. In conclusion, our results suggest the potential of PtPLATZ3 to improve Cd tolerance and accumulation in Populus, which is of great significance for phytoremediation.
Collapse
|
22
|
Genome-Wide Identification and Phylogenetic and Expression Analyses of the PLATZ Gene Family in Medicago sativa L. Int J Mol Sci 2023; 24:ijms24032388. [PMID: 36768707 PMCID: PMC9916490 DOI: 10.3390/ijms24032388] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
The PLATZ family is a novel class of plant-specific zinc finger transcription factors with important roles in plant growth and development and abiotic stress responses. PLATZ members have been identified in many plants, including Oryza sativa, Zea mays, Triticum aestivum, Fagopyrum tataricum, and Arabidopsis thaliana; however, due to the complexity of the alfalfa reference genome, the members of the PLATZ gene family in alfalfa (Medicago sativa L.) have not been systematically identified and analyzed. In this study, 55 Medicago sativa PLATZ genes (MsPLATZs) were identified in the alfalfa "Xinjiangdaye" reference genome. Basic bioinformatic analysis was performed, including the characterization of sequence lengths, protein molecular weights, genomic positions, and conserved motifs. Expression analysis reveals that 7 MsPLATZs are tissue-specifically expressed, and 10 MsPLATZs are expressed in all examined tissues. The transcriptomic expression of these genes is obvious, indicating that these MsPLATZs have different functions in the growth and development of alfalfa. Based on transcriptome data analysis and real-time quantitative PCR (RT-qPCR), we identified 22, 22, and 21 MsPLATZ genes that responded to salt, cold, and drought stress, respectively, with 20 MsPLATZs responding to all three stresses. This study lays a foundation for further exploring the functions of MsPLATZs, and provides ideas for the improvement of alfalfa varieties and germplasm innovation.
Collapse
|
23
|
Chao Z, Chen Y, Ji C, Wang Y, Huang X, Zhang C, Yang J, Song T, Wu J, Guo L, Liu C, Han M, Wu Y, Yan J, Chao D. A genome-wide association study identifies a transporter for zinc uploading to maize kernels. EMBO Rep 2023; 24:e55542. [PMID: 36394374 PMCID: PMC9827554 DOI: 10.15252/embr.202255542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
The Zn content in cereal seeds is an important trait for crop production as well as for human health. However, little is known about how Zn is loaded to plant seeds. Here, through a genome-wide association study (GWAS), we identify the Zn-NA (nicotianamine) transporter gene ZmYSL2 that is responsible for loading Zn to maize kernels. High promoter sequence variation in ZmYSL2 most likely drives the natural variation in Zn concentrations in maize kernels. ZmYSL2 is specifically localized on the plasma membrane facing the maternal tissue of the basal endosperm transfer cell layer (BETL) and functions in loading Zn-NA into the BETL. Overexpression of ZmYSL2 increases the Zn concentration in the kernels by 31.6%, which achieves the goal of Zn biofortification of maize. These findings resolve the mystery underlying the loading of Zn into plant seeds, providing an efficient strategy for breeding or engineering maize varieties with enriched Zn nutrition.
Collapse
Affiliation(s)
- Zhen‐Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuan‐Yuan Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ya‐Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chu‐Ying Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Life Science, Henan UniversityKaifengChina
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jia‐Chen Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liang‐Xing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chu‐Bin Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mei‐Ling Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yong‐Rui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Dai‐Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
24
|
Wai AH, Rahman MM, Waseem M, Cho LH, Naing AH, Jeon JS, Lee DJ, Kim CK, Chung MY. Comprehensive Genome-Wide Analysis and Expression Pattern Profiling of PLATZ Gene Family Members in Solanum Lycopersicum L. under Multiple Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3112. [PMID: 36432841 PMCID: PMC9697139 DOI: 10.3390/plants11223112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 05/29/2023]
Abstract
PLATZ (plant AT-rich sequence and zinc-binding) family proteins with two conserved zinc-dependent DNA-binding motifs are transcription factors specific to the plant kingdom. The functions of PLATZ proteins in growth, development, and adaptation to multiple abiotic stresses have been investigated in various plant species, but their role in tomato has not been explored yet. In the present work, 20 non-redundant Solanum lycopersicum PLATZ (SlPLATZ) genes with three segmentally duplicated gene pairs and four tandemly duplicated gene pairs were identified on eight tomato chromosomes. The comparative modeling and gene ontology (GO) annotations of tomato PLATZ proteins indicated their probable roles in defense response, transcriptional regulation, and protein metabolic processes as well as their binding affinity for various ligands, including nucleic acids, peptides, and zinc. SlPLATZ10 and SlPLATZ17 were only expressed in 1 cm fruits and flowers, respectively, indicating their preferential involvement in the development of these organs. The expression of SlPLATZ1, SlPLATZ12, and SlPLATZ19 was up- or down-regulated following exposure to various abiotic stresses, whereas that of SlPLATZ11 was induced under temperature stresses (i.e., cold and heat stress), revealing their probable function in the abiotic stress tolerance of tomato. Weighted gene co-expression network analysis corroborated the aforementioned findings by spotlighting the co-expression of several stress-associated genes with SlPLATZ genes. Confocal fluorescence microscopy revealed the localization of SlPLATZ−GFP fusion proteins in the nucleus, hinting at their functions as transcription factors. These findings provide a foundation for a better understanding of the structure and function of PLATZ genes and should assist in the selection of potential candidate genes involved in the development and abiotic stress adaptation in tomato.
Collapse
Affiliation(s)
- Antt Htet Wai
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon 57922, Republic of Korea
- Department of Biology, Yangon University of Education, Kamayut Township 11041, Yangon Region, Myanmar
| | - Md Mustafizur Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51600, Pakistan
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si 50463, Gyeongsangnam-do, Republic of Korea
| | - Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Do-jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon 57922, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon 57922, Republic of Korea
| |
Collapse
|
25
|
Zhang K, Lan Y, Wu M, Wang L, Liu H, Xiang Y. PhePLATZ1, a PLATZ transcription factor in moso bamboo (Phyllostachys edulis), improves drought resistance of transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:121-134. [PMID: 35835078 DOI: 10.1016/j.plaphy.2022.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the most serious environmental stresses. Plant AT-rich sequence and zinc-binding (PLATZ) proteins perform indispensable functions to regulate plant growth and development and to respond to environmental stress. In this present study, we identified PhePLATZ1 in moso bamboo and found that its expression was up-regulated in response to 20% PEG-6000 and abscisic acid (ABA) treatments. Next, transgenic PhePLATZ1-overexpressing Arabidopsis lines were generated. Overexpression of PhePLATZ1 improved drought stress resistance of transgenic plants by mediating osmotic regulation, enhancing water retention capacity and reducing membrane and oxidative damage. These findings were corroborated by analysing physiological indicators including chlorophyll, relative water content, leaf water loss rate, electrolyte leakage, H2O2, proline, malondialdehyde content and the enzyme activities of peroxidase and catalase. Subsequent seed germination and seedling root length experiments that included exposure to exogenous ABA treatments showed that ABA sensitivity decreased in transgenic plants relative to wild-type plants. Moreover, transgenic PhePLATZ1-overexpressing plants promoted stomatal closure in response to ABA treatment, suggesting that PhePLATZ1 might play a positive regulatory role in the drought resistance of plants via the ABA signaling pathway. In addition, the transgenic PhePLATZ1-OE plants showed altered expression of some stress-related genes when grown under drought conditions. Taken together, these findings improve our understanding of the drought response of moso bamboo and provide a key candidate gene for the molecular breeding of this species for drought tolerance.
Collapse
Affiliation(s)
- Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
26
|
Li H, Luo L, Wang Y, Zhang J, Huang Y. Genome-Wide Characterization and Phylogenetic Analysis of GSK Genes in Maize and Elucidation of Their General Role in Interaction with BZR1. Int J Mol Sci 2022; 23:8056. [PMID: 35897632 PMCID: PMC9330802 DOI: 10.3390/ijms23158056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a nonreceptor serine/threonine protein kinase that is involved in diverse processes, including cell development, photomorphogenesis, biotic and abiotic stress responses, and hormone signaling. In contrast with the deeply researched GSK family in Arabidopsis and rice, maize GSKs' common bioinformatic features and protein functions are poorly understood. In this study, we identified 11 GSK genes in the maize (Zea mays L.) genome via homologous alignment, which we named Zeama;GSKs (ZmGSKs). The results of ZmGSK protein sequences, conserved motifs, and gene structures showed high similarities with each other. The phylogenetic analyses showed that a total of 11 genes from maize were divided into four clades. Furthermore, semi-quantitative RT-PCR analysis of the GSKs genes showed that ZmGSK1, ZmGSK2, ZmGSK4, ZmGSK5, ZmGSK8, ZmGSK9, ZmGSK10, and ZmGSK11 were expressed in all tissues; ZmGSK3, ZmGSK6, and ZmGSK7 were expressed in a specific organization. In addition, GSK expression profiles under hormone treatments demonstrated that the ZmGSK genes were induced under BR conditions, except for ZmGSK2 and ZmGSK5. ZmGSK genes were regulated under ABA conditions, except for ZmGSK1 and ZmGSK8. Finally, using the yeast two-hybrid and BiFC assay, we determined that clads II (ZmGSK1, ZmGSK4, ZmGSK7, ZmGSK8, and ZmGSK11) could interact with ZmBZR1. The results suggest that clade II of ZmGSKs is important for BR signaling and that ZmGSK1 may play a dominant role in BR signaling as the counterpart to BIN2. This study provides a foundation for the further study of GSK3 functions and could be helpful in devising strategies for improving maize.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yayun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yubi Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (H.L.); (L.L.); (Y.W.)
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
27
|
Han X, Rong H, Tian Y, Qu Y, Xu M, Xu LA. Genome-Wide Identification of PLATZ Transcription Factors in Ginkgo biloba L. and Their Expression Characteristics During Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:946194. [PMID: 35812908 PMCID: PMC9262033 DOI: 10.3389/fpls.2022.946194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 05/20/2023]
Abstract
Plant AT-rich protein and zinc-binding protein (PLATZ) is a class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. PLATZ plays an important role in seed development, water tolerance, and cell proliferation in early plant growth. In this study, 11 GbPLATZs were identified from the ginkgo genome with complete PLATZ-conserved domains, which represents a smaller number compared with angiosperms. Multi-species phylogenetic analysis showed that PLATZ genes were conserved in seed plants, and the 11 members were represented by four groups, among which groups I and II were closely related. Analysis of gene structures, sequence module characteristics, and expression patterns showed that GbPLATZs were similar within and differed between groups. RNA-seq and qRT-PCR results showed that GbPLATZs had distinct expression patterns. Most genes were associated with seed development, among which six genes were highly related. Subcellular localization experiments showed that six GbPLATZ proteins related to seed development were localized in the nucleus, suggesting that they might function as traditional transcription factors. This study provides a basis for understanding the structural differentiation, evolutionary characteristics, expression profile, and potential functions of PLATZ transcription factors in Ginkgo biloba.
Collapse
Affiliation(s)
| | | | | | | | | | - Li-an Xu
- Key Laboratory of Forestry Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
28
|
Li T, Kong F, Dong Q, Xu D, Liu G, Lei Y, Yang H, Zhou Y, Li C. Dynamic Transcriptome-Based Weighted Gene Co-expression Network Analysis Reveals Key Modules and Hub Genes Associated With the Structure and Nutrient Formation of Endosperm for Wax Corn. FRONTIERS IN PLANT SCIENCE 2022; 13:915400. [PMID: 35755662 PMCID: PMC9218491 DOI: 10.3389/fpls.2022.915400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The endosperm of corn kernel consists of two components, a horny endosperm, and a floury endosperm. In the experiment, a kind of floury endosperm corn was identified. The result of phenotypic trait analysis and determination of amino acid content showed that the floury endosperm filled with the small, loose, and scattered irregular spherical shape starch granules and contained higher content of amino acid. The starch biochemical properties are similar between floury corns and regular flint corn. By using dynamically comparative transcriptome analysis of endosperm at 20, 25, and 30 DAP, a total of 113.42 million raw reads and 50.508 thousand genes were obtained. By using the weighted gene co-expression network analysis, 806 genes and six modules were identified. And the turquoise module with 459 genes was proved to be the key module closely related to the floury endosperm formation. Nine zein genes in turquoise module, including two zein-alpha A20 (Zm00001d019155 and Zm00001d019156), two zein-alpha A30 (Zm00001d048849 and Zm00001d048850), one 50 kDa gamma-zein (Zm00001d020591), one 22 kDa alpha-zein 14 (Zm00001d048817), one zein-alpha 19D1 (Zm00001d030855), one zein-alpha 19B1 (Zm00001d048848), and one FLOURY 2 (Zm00001d048808) were identified closely related the floury endosperm formation. Both zein-alpha 19B1 (Zm00001d048848) and zein-alpha A30 (Zm00001d048850) function as source genes with the highest expression level in floury endosperm. These results may provide the supplementary molecular mechanism of structure and nutrient formation for the floury endosperm of maize.
Collapse
|
29
|
Li J, Feng S, Zhang Y, Xu L, Luo Y, Yuan Y, Yang Q, Feng B. Genome-wide identification and expression analysis of the plant-specific PLATZ gene family in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2022; 22:160. [PMID: 35365087 PMCID: PMC8974209 DOI: 10.1186/s12870-022-03546-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/22/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant AT-rich sequence and zinc-binding (PLATZ) proteins belong to a novel class of plant-specific zinc-finger-dependent DNA-binding proteins that play essential roles in plant growth and development. Although the PLATZ gene family has been identified in several species, systematic identification and characterization of this gene family has not yet been carried out for Tartary buckwheat, which is an important medicinal and edible crop with high nutritional value. The recent completion of Tartary buckwheat genome sequencing has laid the foundation for this study. RESULTS A total of 14 FtPLATZ proteins were identified in Tartary buckwheat and were classified into four phylogenetic groups. The gene structure and motif composition were similar within the same group, and evident distinctions among different groups were detected. Gene duplication, particularly segmental duplication, was the main driving force in the evolution of FtPLATZs. Synteny analysis revealed that Tartary buckwheat shares more orthologous PLATZ genes with dicotyledons, particularly soybean. In addition, the expression of FtPLATZs in different tissues and developmental stages of grains showed evident specificity and preference. FtPLATZ3 may be involved in the regulation of grain size, and FtPLATZ4 and FtPLATZ11 may participate in root development. Abundant and variable hormone-responsive cis-acting elements were distributed in the promoter regions of FtPLATZs, and almost all FtPLATZs were significantly regulated after exogenous hormone treatments, particularly methyl jasmonate treatment. Moreover, FtPLATZ6 was significantly upregulated under all exogenous hormone treatments, which may indicate that this gene plays a critical role in the hormone response of Tartary buckwheat. CONCLUSIONS This study lays a foundation for further exploration of the function of FtPLATZ proteins and their roles in the growth and development of Tartary buckwheat and contributes to the genetic improvement of Tartary buckwheat.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Shan Feng
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Yuchuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yan Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yuhao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
30
|
Panibe JP, Wang L, Lee YC, Wang CS, Li WH. Identifying mutations in sd1, Pi54 and Pi-ta, and positively selected genes of TN1, the first semidwarf rice in Green Revolution. BOTANICAL STUDIES 2022; 63:9. [PMID: 35347474 PMCID: PMC8960516 DOI: 10.1186/s40529-022-00336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Taichung Native 1 (TN1) is the first semidwarf rice cultivar that initiated the Green Revolution. As TN1 is a direct descendant of the Dee-geo-woo-gen cultivar, the source of the sd1 semidwarf gene, the sd1 gene can be defined through TN1. Also, TN1 is susceptible to the blast disease and is described as being drought-tolerant. However, genes related to these characteristics of TN1 are unknown. Our aim was to identify and characterize TN1 genes related to these traits. RESULTS Aligning the sd1 of TN1 to Nipponbare sd1, we found a 382-bp deletion including a frameshift mutation. Sanger sequencing validated this deleted region in sd1, and we proposed a model of the sd1 gene that corrects errors in the literature. We also predicted the blast disease resistant (R) genes of TN1. Orthologues of the R genes in Tetep, a well-known resistant cultivar that is commonly used as a donor for breeding new blast resistant cultivars, were then sought in TN1, and if they were present, we looked for mutations. The absence of Pi54, a well-known R gene, in TN1 partially explains why TN1 is more susceptible to blast than Tetep. We also scanned the TN1 genome using the PosiGene software and identified 11 genes deemed to have undergone positive selection. Some of them are associated with drought-resistance and stress response. CONCLUSIONS We have redefined the deletion of the sd1 gene in TN1, a direct descendant of the Dee-geo-woo-gen cultivar, and have corrected some literature errors. Moreover, we have identified blast resistant genes and positively selected genes, including genes that characterize TN1's blast susceptibility and abiotic stress response. These new findings increase the potential of using TN1 to breed new rice cultivars.
Collapse
Affiliation(s)
- Jerome P. Panibe
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300 Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 115 Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Yi-Chen Lee
- Biodiversity Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung-Hsing University, Taichung, 40227 Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Wen-Hsiung Li
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300 Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 115 Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
31
|
Appels R, Wang P, Islam S. Integrating Wheat Nucleolus Structure and Function: Variation in the Wheat Ribosomal RNA and Protein Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:686586. [PMID: 35003148 PMCID: PMC8739226 DOI: 10.3389/fpls.2021.686586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
We review the coordinated production and integration of the RNA (ribosomal RNA, rRNA) and protein (ribosomal protein, RP) components of wheat cytoplasmic ribosomes in response to changes in genetic constitution, biotic and abiotic stresses. The components examined are highly conserved and identified with reference to model systems such as human, Arabidopsis, and rice, but have sufficient levels of differences in their DNA and amino acid sequences to form fingerprints or gene haplotypes that provide new markers to associate with phenotype variation. Specifically, it is argued that populations of ribosomes within a cell can comprise distinct complements of rRNA and RPs to form units with unique functionalities. The unique functionalities of ribosome populations within a cell can become central in situations of stress where they may preferentially translate mRNAs coding for proteins better suited to contributing to survival of the cell. In model systems where this concept has been developed, the engagement of initiation factors and elongation factors to account for variation in the translation machinery of the cell in response to stresses provided the precedents. The polyploid nature of wheat adds extra variation at each step of the synthesis and assembly of the rRNAs and RPs which can, as a result, potentially enhance its response to changing environments and disease threats.
Collapse
Affiliation(s)
- Rudi Appels
- AgriBio, Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
- Faculty of Veterinary and Agricultural Science, Melbourne, VIC, Australia
| | - Penghao Wang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Shahidul Islam
- Centre for Crop Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
32
|
VviPLATZ1 is a major factor that controls female flower morphology determination in grapevine. Nat Commun 2021; 12:6995. [PMID: 34848714 PMCID: PMC8632994 DOI: 10.1038/s41467-021-27259-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Plant genetic sex determinants that mediate the transition to dioecy are predicted to be diverse, as this type of mating system independently evolved multiple times in angiosperms. Wild Vitis species are dioecious with individuals producing morphologically distinct female or male flowers; whereas, modern domesticated Vitis vinifera cultivars form hermaphrodite flowers capable of self-pollination. Here, we identify the VviPLATZ1 transcription factor as a key candidate female flower morphology factor that localizes to the Vitis SEX-DETERMINING REGION. The expression pattern of this gene correlates with the formation reflex stamens, a prominent morphological phenotype of female flowers. After generating CRISPR/Cas9 gene-edited alleles in a hermaphrodite genotype, phenotype analysis shows that individual homozygous lines produce flowers with reflex stamens. Taken together, our results demonstrate that loss of VviPLATZ1 function is a major factor that controls female flower morphology in Vitis. Unlike wild Vitis species, which produce either female or male flowers, modern grapevine cultivars form hermaphrodite flowers for self-pollination. Here, the authors report that the VviPLATZ1 (plant AT-rich sequence-and zinc-binding protein1) transcription factor functions in controlling female flower morphology determination.
Collapse
|
33
|
Lee C, Chung CT, Hong WJ, Lee YS, Lee JH, Koh HJ, Jung KH. Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:748273. [PMID: 34819939 PMCID: PMC8606889 DOI: 10.3389/fpls.2021.748273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Global sea-level rise, the effect of climate change, poses a serious threat to rice production owing to saltwater intrusion and the accompanying increase in salt concentration. The reclaimed lands, comprising 22.1% of rice production in Korea, now face the crisis of global sea-level rise and a continuous increase in salt concentration. Here, we investigated the relationship between the decrease in seed quality and the transcriptional changes that occur in the developing rice seeds under salt stress. Compared to cultivation on normal land, the japonica rice cultivar, Samgwang, grown on reclaimed land showed a greatly increased accumulation of minerals, including sodium, magnesium, potassium, and sulfur, in seeds and a reduced yield, delayed heading, decreased thousand grain weight, and decreased palatability and amylose content. Samgwang showed phenotypical sensitivity to salt stress in the developing seeds. Using RNA-seq technology, we therefore carried out a comparative transcriptome analysis of the developing seeds grown on reclaimed and normal lands. In the biological process category, gene ontology enrichment analysis revealed that the upregulated genes were closely associated with the metabolism of biomolecules, including amino acids, carboxylic acid, lignin, trehalose, polysaccharide, and chitin, and to stress responses. MapMan analysis revealed the involvement of upregulated genes in the biosynthetic pathways of abscisic acid and melatonin and the relationship of trehalose, raffinose, and maltose with osmotic stress. Interestingly, many seed storage protein genes encoding glutelins and prolamins were upregulated in the developing seeds under salt stress, indicating the negative effect of the increase of storage proteins on palatability. Transcription factors upregulated in the developing seeds under salt stress included, in particular, bHLH, MYB, zinc finger, and heat shock factor, which could act as potential targets for the manipulation of seed quality under salt stress. Our study aims to develop a useful reference for elucidating the relationship between seed response mechanisms and decreased seed quality under salt stress, providing potential strategies for the improvement of seed quality under salt stress.
Collapse
Affiliation(s)
- Choonseok Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Chong-Tae Chung
- Crop Research Division, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Yang-Seok Lee
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Miryang, South Korea
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Research Institute for Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
34
|
Fu Y, Cheng M, Li M, Guo X, Wu Y, Wang J. Identification and Characterization of PLATZ Transcription Factors in Wheat. Int J Mol Sci 2020; 21:E8934. [PMID: 33255649 PMCID: PMC7728089 DOI: 10.3390/ijms21238934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
The PLATZ (plant AT-rich protein and zinc-binding protein) transcription factor family is a class of plant-specific zinc-dependent DNA-binding proteins. PLATZ has essential roles in seed endosperm development, as well as promoting cell proliferation duration in the earlier stages of the crops. In the present study, 62 TaPLATZ genes were identified from the wheat genome, and they were unequally distributed on 15 chromosomes. According to the phylogenetic analysis, 62 TaPLATZ genes were classified into six groups, including two groups that were unique in wheat. Members in the same groups shared similar exon-intron structures. The polyploidization, together with genome duplication of wheat, plays a crucial role in the expansion of the TaPLATZs family. Transcriptome data indicated a distinct divergence expression pattern of TaPLATZ genes that could be clustered into four modules. The TaPLATZs in Module b possessed a seed-specific expression pattern and displayed obvious high expression in the earlier development stage of seeds. Subcellular localization data of TaPLATZs suggesting that they likely perform a function as a conventional transcription factor. This study provides insight into understanding the structure divergence, evolutionary features, expression profiles, and potential function of PLATZ in wheat.
Collapse
Affiliation(s)
- Yuxin Fu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Mengping Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Ministry of Education, Chengdu 611130, China
| | - Maolian Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Ministry of Education, Chengdu 611130, China
| | - Xiaojiang Guo
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.F.); (M.C.); (M.L.); (X.G.)
- Key Laboratory for Crop Genetic Resources and Improvement in Southwest China, Sichuan Agricultural University, Ministry of Education, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Use in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
35
|
Liu S, Yang R, Liu M, Zhang S, Yan K, Yang G, Huang J, Zheng C, Wu C. PLATZ2 negatively regulates salt tolerance in Arabidopsis seedlings by directly suppressing the expression of the CBL4/SOS3 and CBL10/SCaBP8 genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5589-5602. [PMID: 32453821 DOI: 10.1093/jxb/eraa259] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/21/2020] [Indexed: 05/12/2023]
Abstract
Although the salt overly sensitive (SOS) pathway plays essential roles in conferring salt tolerance in Arabidopsis thaliana, the regulatory mechanism underlying SOS gene expression remains largely unclear. In this study, AtPLATZ2 was found to function as a direct transcriptional suppressor of CBL4/SOS3 and CBL10/SCaBP8 in the Arabidopsis salt stress response. Compared with wild-type plants, transgenic plants constitutively overexpressing AtPLATZ2 exhibited increased sensitivity to salt stress. Loss of function of PLATZ2 had no observed salt stress phenotype in Arabidopsis, while the double mutant of PLATZ2 and PLATZ7 led to weaker salt stress tolerance than wild-type plants. Overexpression of AtPLATZ2 in transgenic plants decreased the expression of CBL4/SOS3 and CBL10/SCaBP8 under both normal and saline conditions. AtPLATZ2 directly bound to A/T-rich sequences in the CBL4/SOS3 and CBL10/SCaBP8 promoters in vitro and in vivo, and inhibited CBL4/SOS3 promoter activity in the plant leaves. The salt sensitivity of #11 plants constitutively overexpressing AtPLATZ2 was restored by the overexpression of CBL4/SOS3 and CBL10/SCaBP8. Salt stress-induced Na+ accumulation in both the shoots and roots was more exaggerated in AtPLATZ2-overexpressing plants than in the wild type. The salt stress-induced Na+ accumulation in #11 seedlings was also rescued by the overexpression of CBL4/SOS3 and CBL10/SCaBP8. Furthermore, the transcription of AtPLATZ2 was induced in response to salt stress. Collectively, these results suggest that AtPLATZ2 suppresses plant salt tolerance by directly inhibiting CBL4/SOS3 and CBL10/SCaBP8, and functions redundantly with PLATZ7.
Collapse
Affiliation(s)
- Shasha Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Rui Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Miao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Kang Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, PR China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, PR China
| | | | | |
Collapse
|
36
|
Zhou SR, Xue HW. The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:847-864. [PMID: 31207036 DOI: 10.1111/jipb.12851] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/13/2019] [Indexed: 05/12/2023]
Abstract
Grain size is a major determinant of cereal grain yields; however, the relevant regulatory mechanisms controlling this trait have not been fully elucidated. The rice (Oryza sativa) mutant short grain6 (sg6) was identified based on its reduced grain length and weight. Here, we functionally characterized the role of SG6 in determining grain size through the regulation of spikelet hull cell division. SG6 encodes a previously uncharacterized plant AT-rich sequence and zinc-binding (PLATZ) protein that is ubiquitously localized throughout the cell and is preferentially expressed in the early developing panicles but not in the endosperm. The overexpression of SG6 resulted in significantly larger and heavier grains, as well as increased plant heights, which is consistent with its elevated spikelet hull cell division rate. Yeast two-hybrid analyses revealed that SG6 interacts with the core cell cycle machinery DP protein and several other putative cell division regulators, consistent with our transcriptomic analysis, which showed that SG6 activates the expression of many DNA replication and cell-cycle-related genes. These results confirm the crucial role of SG6 in determining grain size by regulating spikelet hull cell division and provide clues for understanding the functions of PLATZ family proteins and the network regulating cereal grain size.
Collapse
Affiliation(s)
- Shi-Rong Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, the Chinese Academy of Sciences, Shanghai, 200032, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
37
|
Azim JB, Khan MFH, Hassan L, Robin AHK. Genome-Wide Characterization and Expression Profiling of Plant-SpecificPLATZTranscription Factor Family Genes inBrassica rapaL. ACTA ACUST UNITED AC 2020. [DOI: 10.9787/pbb.2020.8.1.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jaber Bin Azim
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Fahim Hassan Khan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Lutful Hassan
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
38
|
Yuan N, Wang J, Zhou Y, An D, Xiao Q, Wang W, Wu Y. EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110203. [PMID: 31481208 DOI: 10.1016/j.plantsci.2019.110203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 05/21/2023]
Abstract
Embryo and endosperm originate from the double fertilization, but they have different developmental fates and biological functions. We identified a previously undescribed maize seed mutant, wherein the embryo appears to be more severely affected than the endosperm (embryo-specific, emb). In the W22 background, the emb embryo arrests at the transition stage whereas its endosperm appears nearly normal in size. At maturity, the embryo in W22-emb is apparently small or even invisible. In contrast, the emb endosperm develops into a relative normal size. We cloned the mutant gene on the Chromosome 7L and designated it emb-7L. This gene is generally expressed, but it has a relatively higher expression level in leaves. Emb-7L encodes a chloroplast-localized P-type pentatricopeptide repeat (PPR) protein, consistent with the severe chloroplast deficiency in emb-7L albino seedling leaves. Full transcriptome analysis of the leaves of WT and emb-7L seedlings reveals that transcription of chloroplast protein-encoding genes are dramatically variable with pre-mRNA intron splicing apparently affected in a tissue-dependent pattern and the chloroplast structure and activity were dramatically affected including chloroplast membrane and photosynthesis machinery component and synthesis of metabolic products (e.g., fatty acids, amino acids, starch).
Collapse
Affiliation(s)
- Ningning Yuan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong An
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Wang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
39
|
Wang A, Hou Q, Si L, Huang X, Luo J, Lu D, Zhu J, Shangguan Y, Miao J, Xie Y, Wang Y, Zhao Q, Feng Q, Zhou C, Li Y, Fan D, Lu Y, Tian Q, Wang Z, Han B. The PLATZ Transcription Factor GL6 Affects Grain Length and Number in Rice. PLANT PHYSIOLOGY 2019; 180:2077-2090. [PMID: 31138620 PMCID: PMC6670106 DOI: 10.1104/pp.18.01574] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/09/2019] [Indexed: 05/18/2023]
Abstract
Grain size is one of the key determinants of grain yield. Although a number of genes that control grain size in rice (Oryza sativa) have been identified, the overall regulatory networks behind this process remain poorly understood. Here, we report the map-based cloning and functional characterization of the quantitative trait locus GL6, which encodes a plant-specific plant AT-rich sequence- and zinc-binding transcription factor that regulates rice grain length and spikelet number. GL6 positively controls grain length by promoting cell proliferation in young panicles and grains. The null gl6 mutant possesses short grains, whereas overexpression of GL6 results in large grains and decreased grain number per panicle. We demonstrate that GL6 participates in RNA polymerase III transcription machinery by interacting with RNA polymerase III subunit C53 and transcription factor class C1 to regulate the expression of genes involved in rice grain development. Our findings reveal a further player involved in the regulation of rice grain size that may be exploited in future rice breeding.
Collapse
Affiliation(s)
- Ahong Wang
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Qingqing Hou
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhen Si
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jianghong Luo
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Danfeng Lu
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Jingjie Zhu
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Yingying Shangguan
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Jiashun Miao
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Yifan Xie
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Yongchun Wang
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Qiang Zhao
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Qi Feng
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Congcong Zhou
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Yan Li
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Danlin Fan
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Yiqi Lu
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Qilin Tian
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Zixuan Wang
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| | - Bin Han
- National Center for Gene Research, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 2000233, China
| |
Collapse
|
40
|
Pollier J, De Geyter N, Moses T, Boachon B, Franco-Zorrilla JM, Bai Y, Lacchini E, Gholami A, Vanden Bossche R, Werck-Reichhart D, Goormachtig S, Goossens A. The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:637-654. [PMID: 31009122 DOI: 10.1111/tpj.14347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.
Collapse
Affiliation(s)
- Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Nathan De Geyter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Tessa Moses
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | | | - Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Azra Gholami
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|