1
|
Wang X, Ge M, He X. Effect of Green Synthesized Fe 3O 4NP Priming on Alfalfa Seed Germination Under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1236. [PMID: 40284124 PMCID: PMC12030557 DOI: 10.3390/plants14081236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Drought stress is one of the key environmental factors restricting the germination of alfalfa seeds (Medicago sativa L.). Nanopriming is an innovative seed-priming technology able to meet economic, agronomic, and environmental needs in agriculture. However, the use of conventional nanomaterials is hampered by high costs, environmental risks, and biotoxicity. In this study, we synthesized iron oxide nanoparticles (Fe3O4NPs) using seasonal Ginkgo biloba leaf extracts (collected from August to November) obtained via an enzymatic ultrasonic-assisted method. The synthesized Fe3O4NPs were characterized using SEM, EDS, DLS, FTIR, UV-Vis, and XRD. To investigate the effects of Fe3O4NP priming on alfalfa seed germination under drought stress, germination and pot experiments were conducted with five Fe3O4NP priming concentrations (unprimed, 0, 20, 40, and 60 mg/L) and three PEG-6000 concentrations (0%, 10%, and 15%) to simulate normal, moderate, and severe drought conditions. The results showed that leaf extracts collected in November exhibited the highest flavonoid content (12.8 mg/g), successfully yielding bioactive-capped spherical Fe3O4NPs with a particle size of 369.5 ± 100.6 nm. Germination experiments revealed that under severe drought stress (15% PEG-6000), the 40 mg/L Fe3O4NP treatment most effectively enhanced seed vigor, increasing the germination rate, vigor index, and α-amylase activity by 22.1%, 189.4%, and 35.5% (p < 0.05), respectively, compared to controls. Under moderate drought stress (10% PEG-6000), the 20 mg/L Fe3O4NP treatment optimally improved germination traits, increasing the germination rate by 25.5% and seedling elongation by 115.6%. The pot experiments demonstrated morphological adaptations in alfalfa seedlings: under moderate drought stress, the 40 mg/L Fe3O4NPs significantly increased lateral root numbers, while under severe drought stress, the 60 mg/L Fe3O4NPs increased the root surface area by 20.5% and preserved the roots' structural integrity compared to controls. These findings highlight that Fe3O4NPs synthesized via Ginkgo leaf extracts and enzymatic ultrasonic methods exhibit promising agricultural potential. The optimal Fe3O4NP priming concentrations enhanced seed vigor, germination traits, and drought resistance by modulating root morphology, with concentration-specific efficacy under varying drought intensities.
Collapse
Affiliation(s)
| | | | - Xueqing He
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Caguana T, Cruzat C, Herrera D, Peña D, Arévalo V, Vera M, Chong P, Novoa N, Arrué R, Vanegas E. Metal Nanoparticles Obtained by Green Hydrothermal and Solvothermal Synthesis: Characterization, Biopolymer Incorporation, and Antifungal Evaluation Against Pseudocercospora fijiensis. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:379. [PMID: 40072182 PMCID: PMC11901758 DOI: 10.3390/nano15050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/15/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Nanoparticles (NPs) have generated significant interest in various fields due to the unique properties that materials exhibit at the nanoscale. This study presents a comparative analysis of copper nanoparticles (Cu-NPs) and cobalt nanoparticles (Co-NPs) synthesized via conventional solvothermal and green hydrothermal synthesis using ethylene glycol and Medicago sativa extract, respectively. The conventional solvothermal synthesis showed higher efficiency for both Cu-NPs and Co-NPs with yields of 32.5% and 26.7%, respectively. Characterization through UV-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) revealed that while solvothermal synthesis produced larger particles (76.5 nm for Cu-NPs, 86.8 nm for Co-NPs), the green hydrothermal method yielded smaller particles (53.8 nm for Cu-NPs, 67.7 nm for Co-NPs) with better control over particle size distribution and spherical morphology, showing minimal agglomeration. UV-vis confirmed metal oxide formation, while FTIR showed complex patterns in NPs (green hydrothermal), indicating plant extract compounds. Antifungal evaluation against Pseudocercospora fijiensis showed complete inhibition at 2000 ppm for both NP types, with no mycelial growth after 30 days. When integrated into chitosan, solvothermal NPs produced rougher surfaces, and scanning electron microscope (SEM) confirmed the presence of copper and cobalt in the nanocomposites. This study provides insights into the synthesis of nanoparticles using an environmentally friendly process and their microbiological applications for future use in organic agriculture.
Collapse
Affiliation(s)
- Tania Caguana
- Master Program in Environmental Sciences, Faculty of Chemical Sciences, Eco Campus Balzay, University of Cuenca, Cuenca 010207, Ecuador;
| | - Christian Cruzat
- N@NO-CEA Group, Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador; (D.H.); (D.P.); (V.A.); (E.V.)
| | - David Herrera
- N@NO-CEA Group, Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador; (D.H.); (D.P.); (V.A.); (E.V.)
| | - Denisse Peña
- N@NO-CEA Group, Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador; (D.H.); (D.P.); (V.A.); (E.V.)
| | - Valeria Arévalo
- N@NO-CEA Group, Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador; (D.H.); (D.P.); (V.A.); (E.V.)
| | - Mayra Vera
- TECNO-CEA Group, Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador;
| | - Pablo Chong
- Centro de Investigaciones Biotecnológicas del Ecuador, Laboratorio de Biología Molecular, Campus Gustavo Galindo, ESPOL Polytechnic University, Km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador;
| | - Néstor Novoa
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070386, Chile;
| | - Ramón Arrué
- Facultad de Medicina y Ciencia, Departamento de Ciencias Biológicas y Químicas, Universidad San Sebastian, Lientur 1457, Concepción 4070386, Chile;
| | - Eulalia Vanegas
- N@NO-CEA Group, Center for Environmental Studies, Department of Applied Chemistry and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador; (D.H.); (D.P.); (V.A.); (E.V.)
| |
Collapse
|
3
|
Antunes DR, Forini MMLH, Coqueiro YA, Pontes MS, Lima PHC, Cavalcante LAF, Sanches AO, Caires ARL, Santiago EF, Grillo R. Effect of hyaluronic acid-stabilized silver nanoparticles on lettuce (Lactuca sativa L.) seed germination. CHEMOSPHERE 2024; 364:143080. [PMID: 39146989 DOI: 10.1016/j.chemosphere.2024.143080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Nanotechnology has brought significant advancements to agriculture through the development of engineered nanomaterials (ENPs). Silver nanoparticles (AgNPs) capped with polysaccharides have been applied in agricultural diagnostics, crop pest management, and seed priming. Hyaluronic acid (HA), a natural polysaccharide with bactericidal properties, has been considered a growth regulator for plant tissues and an inducer of systemic resistance against plant diseases. Additionally, HA has been employed as a stabilizing agent for AgNPs. This study investigated the synthesis and effects of hyaluronic acid-stabilized silver nanoparticles (HA-AgNPs) as a seed priming agent on lettuce (Lactuca sativa L.) seed germination. HA-AgNPs were characterized using several techniques, exhibiting spherical morphology and good colloidal stability. Germination assays conducted with 0.1, 0.04, and 0.02 g/L of HA-AgNPs showed a concentration-dependent reduction in seed germination. Conversely, lower concentrations of HA-AgNPs significantly increased germination rates, survival, tolerance indices, and seed water absorption compared to silver ions (Ag+). SEM/EDS indicated more significant potential for HA-AgNPs internalization compared to Ag+. Therefore, these findings are innovative and open new avenues for understanding the impact of Ag+ and HA-AgNPs on seed germination.
Collapse
Affiliation(s)
- Débora R Antunes
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Mariana M L H Forini
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Yasmin A Coqueiro
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Montcharles S Pontes
- Plant Resources Study Group, Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil; Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Pedro H C Lima
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Luiz A F Cavalcante
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Alex O Sanches
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil
| | - Anderson R L Caires
- Optics and Photonics Group, Institute of Physics, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Etenaldo F Santiago
- Plant Resources Study Group, Natural Resources Program, Center for Natural Resources Study (CERNA), Mato Grosso do Sul State University (UEMS), Dourados, MS, Brazil
| | - Renato Grillo
- São Paulo State University (UNESP), Department of Physics and Chemistry, Faculty of Engineering, Ilha Solteira, SP, Brazil.
| |
Collapse
|
4
|
Park C, Kim J, Kang J, Lee B, Lee H, Park C, Yoon J, Song C, Kim H, Yeo WH, Cho SJ. Coatable strain sensors for nonplanar surfaces. NANOSCALE 2024; 16:14143-14154. [PMID: 39011622 DOI: 10.1039/d4nr01324g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Rapidly fabricating flexible and stretchable sensors on nonplanar surfaces is crucial for wearable device applications. We employed a novel fabrication method, incorporating molds and gels into electroless plating, to enable direct printing of sensors on a wide array of surfaces, from those with up to 100 μm profile heights to hydrogels with a Young's modulus of 100 kPa. This coatable strain (CS) sensor offers several potential advantages. Firstly, it is designed to circumvent the typical limitations of limited flexibility, plastic deformation, and low repeatability found in viscoelastic polymers by being directly coated onto the surface without requiring a substrate. Secondly, it potentially increases the effective contact area and signal-to-noise ratio by eliminating voids between the sensor and the surface. Finally, the CS sensor can obtain any desired patterning at room temperature in a matter of minutes, significantly reducing energy and time consumption. In this study, we demonstrated the versatility of the CS sensor by applying it to a range of substrates, showcasing its adaptability to diverse materials, surface roughness levels, and Young's modulus values. Our primary focus was on plant growth monitoring, a challenging application that showcased the sensor's efficacy on surfaces like needles, hairy leaves, and fruits. These applications, traditionally difficult for conventional polymer-based sensors, serve to illustrate the CS sensor's potential in a range of complex environmental contexts. The successful deployment of the CS sensor in these settings suggests its broader applicability in various scientific and technological fields, potentially contributing to significant developments in the area of wearable devices and beyond.
Collapse
Affiliation(s)
- Chan Park
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Jungmin Kim
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Jeongbeam Kang
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Byeongjun Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Cheoljeong Park
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Jongwon Yoon
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Chiwon Song
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering and Wearable Intelligent Systems and Healthcare Center, Georgia Institute of Technology, GA, 30332, Atlanta, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering and Wearable Intelligent Systems and Healthcare Center, Georgia Institute of Technology, GA, 30332, Atlanta, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, 34134, Yuseong-gu, Daejeon, The Republic of Korea.
| |
Collapse
|
5
|
Gontrani L, Bauer EM, Casoli L, Ricci C, Lembo A, Donia DT, Quaranta S, Carbone M. Inulin-Coated ZnO Nanoparticles: A Correlation between Preparation and Properties for Biostimulation Purposes. Int J Mol Sci 2024; 25:2703. [PMID: 38473955 DOI: 10.3390/ijms25052703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Within the framework of plant biostimulation, a pivotal role is played by the achievement of low-cost, easily prepared nanoparticles for priming purposes. Therefore, in this report, two different synthetic strategies are described to engineer zinc oxide nanoparticles with an inulin coating. In both protocols, i.e., two-step and gel-like one-pot protocols, nanoparticles with a highly pure ZnO kernel are obtained when the reaction is carried out at T ≥ 40 °C, as ascertained by XRD and ATR/FTIR studies. However, a uniformly dispersed, highly homogeneous coating is achieved primarily when different temperatures, i.e., 60 °C and 40 °C, are employed in the two phases of the step-wise synthesis. In addition, a different binding mechanism, i.e., complexation, occurs in this case. When the gel-like process is employed, a high degree of coverage by the fructan is attained, leading to micrometric coated aggregates of nanometric particles, as revealed by SEM investigations. All NPs from the two-step synthesis feature electronic bandgaps in the 3.25-3.30 eV range in line with previous studies, whereas the extensive coating causes a remarkable 0.4 eV decrease in the bandgap. Overall, the global analysis of the investigations indicates that the samples synthesized at 60 °C and 40 °C are the best suited for biostimulation. Proof-of-principle assays upon Vicia faba seed priming with Zn5 and Zn5@inu indicated an effective growth stimulation of seedlings at doses of 100 mgKg-1, with concomitant Zn accumulation in the leaves.
Collapse
Affiliation(s)
- Lorenzo Gontrani
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Elvira Maria Bauer
- Institute of Structure of Matter-Italian National Research Council (ISM-CNR), Strada Provinciale 35d, n. 9, 00015 Monterotondo, Italy
| | - Lorenzo Casoli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Cosimo Ricci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Angelo Lembo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Domenica Tommasa Donia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Simone Quaranta
- Institute for the Study of Nanostructured Materials-Italian National Research Council (ISMN-CNR), Strada Provinciale 35 d, n. 9, 00010 Montelibretti, Italy
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
6
|
Rehman G, Umar M, Shah N, Hamayun M, Ali A, Khan W, Khan A, Ahmad S, Alrefaei AF, Almutairi MH, Moon YS, Ali S. Green Synthesis and Characterization of Silver Nanoparticles Using Azadirachta indica Seeds Extract: In Vitro and In Vivo Evaluation of Anti-Diabetic Activity. Pharmaceuticals (Basel) 2023; 16:1677. [PMID: 38139804 PMCID: PMC10748007 DOI: 10.3390/ph16121677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a non-communicable, life-threatening syndrome that is present all over the world. The use of eco-friendly, cost-effective, and green-synthesised nanoparticles as a medicinal therapy in the treatment of DM is an attractive option. OBJECTIVE In the present study, silver nanoparticles (AI-AgNPs) were biosynthesized through the green synthesis method using Azadirachta indica seed extract to evaluate their anti-diabetic potentials. METHODS These nanoparticles were characterized by using UV-visible spectroscopy, Fourier transform infrared spectrophotometers (FTIR), scanning electron microscopy (SEM), DLS, and X-ray diffraction (XRD). The biosynthesized AI-AgNPs and crude extracts of Azadirachta indica seeds were evaluated for anti-diabetic potentials using glucose adsorption assays, glucose uptake by yeast cells assays, and alpha-amylase inhibitory assays. RESULTS Al-AgNPs showed the highest activity (75 ± 1.528%), while crude extract showed (63 ± 2.5%) glucose uptake by yeast at 80 µg/mL. In the glucose adsorption assay, the highest activity of Al-AgNPs was 10.65 ± 1.58%, while crude extract showed 8.32 ± 0.258% at 30 mM, whereas in the alpha-amylase assay, Al-AgNPs exhibited the maximum activity of 73.85 ± 1.114% and crude extract 65.85 ± 2.101% at 100 µg/mL. The assay results of AI-AgNPs and crude showed substantial dose-dependent activities. Further, anti-diabetic potentials were also investigated in streptozotocin-induced diabetic mice. Mice were administered with AI-AgNPs (10 to 40 mg/kg b.w) for 30 days. CONCLUSIONS The results showed a considerable drop in blood sugar levels, including pancreatic and liver cell regeneration, demonstrating that AI-AgNPs have strong anti-diabetic potential.
Collapse
Affiliation(s)
- Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Muhammad Umar
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (N.S.); (W.K.)
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (N.S.); (W.K.)
| | - Arif Khan
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Sajjad Ahmad
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; (M.U.); (A.A.); (A.K.); (S.A.)
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.H.A.)
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.F.A.); (M.H.A.)
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
7
|
Eevera T, Kumaran S, Djanaguiraman M, Thirumaran T, Le QH, Pugazhendhi A. Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming. ENVIRONMENTAL RESEARCH 2023; 236:116849. [PMID: 37558116 DOI: 10.1016/j.envres.2023.116849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
The foremost challenge in farming is the storage of seeds after harvest and maintaining seed quality during storage. In agriculture, studies showed positive impacts of nanotechnology on plant development, seed storage, endurance under various types of stress, detection of seed damages, and seed quality. Seed's response varies with different types of nanoparticles depending on its physical and biochemical properties and plant species. Herein, we aim to cover the impact of nanoparticles on seed coating, dormancy, germination, seedling, nutrition, plant growth, stress conditions protection, and storage. Although the seed treatment by nanopriming has been shown to improve seed germination, seedling development, stress tolerance, and seedling growth, their full potential was not realized at the field level. Sustainable nano-agrochemicals and technology could provide good seed quality with less environmental toxicity. The present review critically discusses eco-friendly strategies that can be employed for the nanomaterial seed treatment and seed enhancement process to increase seedling vigor under different conditions. Also, an integrated approach involving four innovative concepts, namely green co-priming, nano-recycling of agricultural wastes, nano-pairing, and customized nanocontainer storage, has been proposed to acclimatize nanotechnology in farming.
Collapse
Affiliation(s)
- Tamilmani Eevera
- Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Shanmugam Kumaran
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur, 613 403, Tamil Nadu, India
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Thanabalu Thirumaran
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
8
|
Arshad S, Anwar N, Rauf M, Anwar Z, Shah M, Hamayun M, Ud-Din J, Gul H, Nasim S, Lee IJ, Arif M. Biological synthesis of hybrid silver nanoparticles by Periploca aphylla Dcne. From nanotechnology to biotechnology applications. Front Chem 2022; 10:994895. [PMID: 36505740 PMCID: PMC9727244 DOI: 10.3389/fchem.2022.994895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Nanotechnology is one of the advanced technologies that have almost universal implications in every field of science. The importance is due to the unique properties of nanoparticles; however, green synthesized nanoparticles are considered eco-friendly. The current project was rationalized to prepare green-synthesized biogenic Periploca aphylla Dcne. silver nanoparticles (Pe-AgNPs) and poly (ethylene glycol) methacrylate coated AgNPs nanocomposites (PEGMA-AgNPs) with higher potential for their application in plant tissue culture for enhancing the biomass of Stevia rebaudiana calli. The increased biomass accumulation (17.61 g/3 plates) was observed on a medium containing virgin Pe-AgNPs 40th days after incubation, while the maximum increase was found by supplementing virgin Pe-AgNPs and PEGMA capped AgNPs (19.56 g/3 plates), compared with control (12.01 g/3 plates). In this study, PEGMA capped AgNPs supplementation also induced the maximum increase in total phenolics content (2.46 mg GAE/g-FW), total flavonoids content (3.68 mg QE/g-FW), SOD activity (53.78 U/ml protein), GSH content (139.75 μg/g FW), antioxidant activity (54.3 mg AAE/g FW), FRAP (54 mg AAE/g FW), and DPPH (76.3%) in S. rebaudiana calli compared with the control. It was concluded that virgin Pe-AgNPs and PEGMA capped AgNPs (hybrid polymer) are potent growth regulator agents and elicitors that can be exploited in the biotechnology field for growth promotion and induction of essential bioactive compounds and secondary metabolites from various commercially important and medicinally valuable plants such as S. rebaudiana without laborious field cultivation.
Collapse
Affiliation(s)
- Saba Arshad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Natasha Anwar
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan,*Correspondence: Mamoona Rauf, ; In-Jung Lee, ; Muhammad Arif,
| | - Zeeshan Anwar
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohib Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jalal Ud-Din
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Humaira Gul
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sahar Nasim
- Department of Botany, University of Malakand, Totakan, Pakistan
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea,*Correspondence: Mamoona Rauf, ; In-Jung Lee, ; Muhammad Arif,
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan,*Correspondence: Mamoona Rauf, ; In-Jung Lee, ; Muhammad Arif,
| |
Collapse
|
9
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Głowacka K, Horbowicz M. The Size-Dependent Effects of Silver Nanoparticles on Germination, Early Seedling Development and Polar Metabolite Profile of Wheat ( Triticum aestivum L.). Int J Mol Sci 2022; 23:13255. [PMID: 36362042 PMCID: PMC9657336 DOI: 10.3390/ijms232113255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 10/15/2023] Open
Abstract
The phytotoxicity of silver nanoparticles (Ag NPs) to plant seeds germination and seedlings development depends on nanoparticles properties and concentration, as well as plant species and stress tolerance degrees. In the present study, the effect of citrate-stabilized spherical Ag NPs (20 mg/L) in sizes of 10, 20, 40, 60, and 100 nm, on wheat grain germination, early seedlings development, and polar metabolite profile in 3-day-old seedlings were analyzed. Ag NPs, regardless of their sizes, did not affect the germination of wheat grains. However, the smaller nanoparticles (10 and 20 nm in size) decreased the growth of seedling roots. Although the concentrations of total polar metabolites in roots, coleoptile, and endosperm of seedlings were not affected by Ag NPs, significant re-arrangements of carbohydrates profiles in seedlings were noted. In roots and coleoptile of 3-day-old seedlings, the concentration of sucrose increased, which was accompanied by a decrease in glucose and fructose. The concentrations of most other polar metabolites (amino acids, organic acids, and phosphate) were not affected by Ag NPs. Thus, an unknown signal is released by small-sized Ag NPs that triggers affection of sugars metabolism and/or distribution.
Collapse
Affiliation(s)
- Lesław Bernard Lahuta
- Department of Plant Physiology, University of Warmia and Mazury, Genetics and Biotechnology, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
10
|
Silver Nanoparticle Effects on Antioxidant Response in Tobacco Are Modulated by Surface Coating. PLANTS 2022; 11:plants11182402. [PMID: 36145803 PMCID: PMC9504990 DOI: 10.3390/plants11182402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
The antimicrobial properties of silver and enhanced reactivity when applied in a nanoparticle form (AgNPs) led to their growing utilization in industry and various consumer products, which raises concerns about their environmental impact. Since AgNPs are prone to transformation, surface coatings are added to enhance their stability. AgNP phytotoxicity has been mainly attributed to the excess generation of reactive oxygen species (ROS), leading to the induction of oxidative stress. Herein, in vitro-grown tobacco (Nicotiana tabacum) plants were exposed to AgNPs stabilized with either polyvinylpyrrolidone (PVP) or cetyltrimethylammonium bromide (CTAB) as well as to ionic silver (AgNO3), applied in the same concentrations, either alone or in combination with cysteine, a strong silver ligand. The results show a higher accumulation of Ag in roots and leaves after exposure to AgNPs compared to AgNO3. This was correlated with a predominantly higher impact of nanoparticle than ionic silver form on parameters of oxidative stress, although no severe damage to important biomolecules was observed. Nevertheless, all types of treatments caused mobilization of antioxidant machinery, especially in leaves, although surface coatings modulated the activation of its specific components. Most effects induced by AgNPs or AgNO3 were alleviated with addition of cysteine.
Collapse
|