1
|
|
Pan Y, Liu Z, Wang Y, Zhang L, Chua N, Dai L, Chen J, Ho CL. Evaluation of the Anti-Inflammatory and Anti-Oxidative Effects of Therapeutic Human Lactoferrin Fragments. Front Bioeng Biotechnol 2021; 9:779018. [PMID: 34917601 DOI: 10.3389/fbioe.2021.779018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Chronic inflammation is considered a pressing health issue that needs resolving. Inflammatory disease such as inflammatory bowel disease requires a long-term medical regimen to prevent disease progression. Conventionally, lactoferrin is used to treat mild gastrointestinal tract and skin inflammation. Protease-digested lactoferrin fragments often exhibit improved therapeutic properties compared to full-length lactoferrin (flHLF). However, there are no studies on the use of protease-digested lactoferrin fragments to treat inflammation. Herein, we assess the anti-inflammatory properties of engineered recombinant lactoferrin fragments (rtHLF4, rteHLF1, and rpHLF2) on non-malignant colonic fibroblast cells and colorectal cancer cells. We found that rtHLF4 is 10 times more effective to prevent inflammation compared to flHLF. These results were investigated by looking into the reactive oxygen species (ROS) production, angiogenesis activity, and cellular proliferation of the treated cells. We have demonstrated in this study the anti-inflammatory properties of the flHLF and the various lactoferrin fragments. These results complement the anti-cancer properties of these proteins that were demonstrated in an earlier study.
Collapse
Affiliation(s)
- Yu Pan
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Zhao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yijie Wang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Linshen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Niying Chua
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Chinese Academy of Sciences, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Shenzhen, China
| | - Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
2
|
|
Abstract
Trillions of beneficial and hostile microorganisms live in the human respiratory and gastrointestinal tracts, which act as gatekeepers in maintaining human health, i.e., protecting the body from pathogens by colonizing mucosal surfaces with microbiota-derived antimicrobial metabolites such as short-chain fatty acids or host-derived cytokines and chemokines. It is widely accepted that the microbiome interacts with each other and with the host in a mutually beneficial relationship. Microbiota in the respiratory tract may also play a crucial role in immune homeostasis, maturation, and maintenance of respiratory physiology. Anti-TB antibiotics may cause dysbiosis in the lung and intestinal microbiota, affecting colonization resistance and making the host more susceptible to Mycobacterium tuberculosis (M. tuberculosis) infection. This review discusses recent advances in our understanding of the lung microbiota composition, the lungs and intestinal microbiota related to respiratory health and diseases, microbiome sequencing and analysis, the bloodstream, and the lymphatic system that underpin the gut-lung axis in M. tuberculosis-infected humans and animals. We also discuss the gut-lung axis interactions with the immune system, the role of the microbiome in TB pathogenesis, and the impact of anti-TB antibiotic therapy on the microbiota in animals, humans, and drug-resistant TB individuals.
Collapse
|
3
|
|
Wan J, Wang X, Zhang Y, Xue X, Li Y, Liu Z, Han S, Chen M, Nie Y, Shi Y, Liang J, Wu K. 5-Aminosalicylic Acid Prevents Disease Behavior Progression and Intestinal Resection in Colonic and Ileocolonic Crohn's Disease Patients: A Retrospective Study. Can J Gastroenterol Hepatol 2021; 2021:1412663. [PMID: 34422708 DOI: 10.1155/2021/1412663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND AIMS The efficacy of 5-aminosalicylic acid (5-ASA) in the long-term outcome of Crohn's disease (CD) patients was uncertain. This study aimed to evaluate the efficacy of the 5-ASA in preventing disease behavior progression and intestinal resection in CD patients. METHODS CD patients were prospectively enrolled from January 2008 to September 2019 in Xijing Hospital. Disease behavior progression was defined as the development of stricturing (B2) or penetrating disease (B3) in patients with nonstricturing/nonpenetrating disease (B1) at diagnosis. Cox regression analyses were used to investigate the associations between disease location progression, disease behavior progression, and intestinal resection and multiple covariates. RESULTS In total, 122 CD patients were followed up for 4.3 years. At the time of diagnosis, disease location was ileal in 19.7% (24/122), colonic in 41.0% (50/122), and ileocolonic in 39.3% (48/122). A total of 87 (71.3%) patients had B1 at diagnosis. The disease behavior progression and intestinal resection rates were 42.5% (37/87) and 29.5% (36/122). The use of 5-ASA reduced the risk of disease behavior progression (HR 0.30, 95% CI 0.14-0.61, P = 0.001) and intestinal resection (HR 0.33, 95% CI 0.17-0.90, P = 0.027) in colonic and ileocolonic CD patients. Patients who presented with ileal disease at diagnosis did not have the same protective effects when taking 5-ASA (P > 0.05). CONCLUSIONS The use of 5-ASA could improve the long-term outcome of CD patients with colon involvement. The result emphasized the importance of early use of 5-ASA in the daily management of colonic involved CD.
Collapse
|
4
|
|
Chen LM, Bao CH, Wu Y, Liang SH, Wang D, Wu LY, Huang Y, Liu HR, Wu HG. Tryptophan-kynurenine metabolism: a link between the gut and brain for depression in inflammatory bowel disease. J Neuroinflammation 2021; 18:135. [PMID: 34127024 DOI: 10.1186/s12974-021-02175-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD), which mainly includes ulcerative colitis (UC) and Crohn's disease (CD), is a group of chronic bowel diseases that are characterized by abdominal pain, diarrhea, and bloody stools. IBD is strongly associated with depression, and its patients have a higher incidence of depression than the general population. Depression also adversely affects the quality of life and disease prognosis of patients with IBD. The tryptophan-kynurenine metabolic pathway degrades more than 90% of tryptophan (TRP) throughout the body, with indoleamine 2,3-dioxygenase (IDO), the key metabolic enzyme, being activated in the inflammatory environment. A series of metabolites of the pathway are neurologically active, among which kynerunic acid (KYNA) and quinolinic acid (QUIN) are molecules of great interest in recent studies on the mechanisms of inflammation-induced depression. In this review, the relationship between depression in IBD and the tryptophan-kynurenine metabolic pathway is overviewed in the light of recent publications.
Collapse
Affiliation(s)
- Li-Ming Chen
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Chun-Hui Bao
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China. .,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China.
| | - Yu Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
| | - Shi-Hua Liang
- Faculty of Economics and Business, University of Groningen, Nettelbosje 2, Groningen, 9747 AE, The Netherlands
| | - Di Wang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China
| | - Lu-Yi Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Yan Huang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Hui-Rong Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China.,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China
| | - Huan-Gan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110 Ganhe Road, Shanghai, 200437, China. .,Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, No. 650 South Wanping Road, Shanghai, 200030, China.
| |
Collapse
|
5
|
|
Wei SC, Sollano J, Hui YT, Yu W, Santos Estrella PV, Llamado LJQ, Koram N. Epidemiology, burden of disease, and unmet needs in the treatment of ulcerative colitis in Asia. Expert Rev Gastroenterol Hepatol 2021; 15:275-89. [PMID: 33107344 DOI: 10.1080/17474124.2021.1840976] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Ulcerative colitis (UC) is an idiopathic, chronic inflammatory disease of the colon, characterized by relapsing and remitting symptoms. Although traditionally viewed as a Western disease, the incidence and prevalence of UC is increasing in developing regions, including Asian countries. AREAS COVERED A PubMed search identified articles describing epidemiology, disease burden, patient demographics, clinical characteristics, risk factors, and treatment of UC across Asia. We review the epidemiology and disease course of UC across Asia, including region-specific factors that may aid development of more cost-effective treatment approaches tailored to the needs of Asian populations. EXPERT OPINION The opinion of non-Pfizer-affiliated practicing gastroenterologists is that epidemiological data from the last four decades have shown 1.5-fold to almost 20-fold increases in the incidence and prevalence of UC in some Asian countries, although prevalence remains generally lower than in the West. As the prevalence of UC rises, so will overall healthcare costs. Disparities in healthcare systems and funding mean that different Asian countries face unique challenges in how best to use available resources, including selection from a growing number of emerging treatment options. More clinical trial and real-world data are required to help define treatment approaches that will most benefit Asian populations.
Collapse
Affiliation(s)
- Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital , Taipei, Taiwan
| | - Jose Sollano
- Faculty of Medicine and Surgery, University of Santo Tomas , Manila, Philippines
| | - Yee Tak Hui
- Department of Medicine, Queen Elizabeth Hospital , Hong Kong, Hong Kong
| | - Wei Yu
- Pfizer Inc , Beijing, China
| | | | | | | |
Collapse
|
6
|
|
Tsai YW, Fu SH, Dong JL, Chien MW, Liu YW, Hsu CY, Sytwu HK. Adipokine-Modulated Immunological Homeostasis Shapes the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2020; 21:E9564. [PMID: 33334069 DOI: 10.3390/ijms21249564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inflammatory colon diseases, which are a global health concern, include a variety of gastrointestinal tract disorders, such as inflammatory bowel disease and colon cancer. The pathogenesis of these colon disorders involves immune alterations with the pronounced infiltration of innate and adaptive immune cells into the intestines and the augmented expression of mucosal pro-inflammatory cytokines stimulated by commensal microbiota. Epidemiological studies during the past half century have shown that the proportion of obese people in a population is associated with the incidence and pathogenesis of gastrointestinal tract disorders. The advancement of understanding of the immunological basis of colon disease has shown that adipocyte-derived biologically active substances (adipokines) modulate the role of innate and adaptive immune cells in the progress of intestinal inflammation. The biomedical significance in immunological homeostasis of adipokines, including adiponectin, leptin, apelin and resistin, is clear. In this review, we highlight the existing literature on the effect and contribution of adipokines to the regulation of immunological homeostasis in inflammatory colon diseases and discuss their crucial roles in disease etiology and pathogenesis, as well as the implications of these results for new therapies in these disorders.
Collapse
Affiliation(s)
- Yi-Wen Tsai
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung, No. 222, Maijin Road, Keelung 204, Taiwan;
- College of Medicine, Chang-Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
| | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
| | - Jia-Ling Dong
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
| | - Yu-Wen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Molecular Cell Biology, Taiwan International Graduate Program, No. 128, Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Chao-Yuan Hsu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (S.-H.F.); (M.-W.C.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Correspondence: (C.-Y.H.); (H.-K.S.)
| | - Huey-Kang Sytwu
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan; (S.-H.F.); (M.-W.C.)
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan, Miaoli 350, Taiwan; (J.-L.D.); (Y.-W.L.)
- Graduate Institute of Life Sciences, National Defense Medical Center, No. 161, Section 6, Min Chuan East Road, Neihu, Taipei 114, Taiwan
- Correspondence: (C.-Y.H.); (H.-K.S.)
| |
Collapse
|
7
|
|
Bilski J, Wojcik D, Danielak A, Mazur-bialy A, Magierowski M, Tønnesen K, Brzozowski B, Surmiak M, Magierowska K, Pajdo R, Ptak-belowska A, Brzozowski T. Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Curr Pharm Des 2020; 26:2936-50. [DOI: 10.2174/1381612826666200427090127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease, are multifactorial, chronic, disabling, and progressive diseases characterised by cyclical nature, alternating between active and quiescent states. While the aetiology of IBD is not fully understood, this complex of diseases involve a combination of factors including the genetic predisposition and changes in microbiome as well as environmental risk factors such as high-fat and low-fibre diets, reduced physical activity, air pollution and exposure to various toxins and drugs such as antibiotics. The prevalence of both IBD and obesity is increasing in parallel, undoubtedly proving the existing interactions between these risk factors common to both disorders to unravel poorly recognized cell signaling and molecular alterations leading to human IBD. Therefore, there is still a significant and unmet need for supportive and adjunctive therapy for IBD patients directed against the negative consequences of visceral obesity and bacterial dysbiosis. Among the alternative therapies, a moderate-intensity exercise can benefit the health and well-being of IBD patients and improve both the healing of human IBD and experimental animal colitis. Intestinal alkaline phosphatase (IAP) plays an essential role in the maintenance of intestinal homeostasis intestinal and the mechanism of mucosal defence. The administration of exogenous IAP could be recommended as a therapeutic strategy for the cure of diseases resulting from the intestinal barrier dysfunction such as IBD. Curcumin, a natural anti-inflammatory agent, which is capable of stimulating the synthesis of endogenous IAP, represents another alternative approach in the treatment of IBD. This review was designed to discuss potential “nonpharmacological” alternative and supplementary therapeutic approaches taking into account epidemiological and pathophysiological links between obesity and IBD, including changes in the functional parameters of the intestinal mucosa and alterations in the intestinal microbiome.
Collapse
Affiliation(s)
- Jan Bilski
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Dagmara Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agnieszka Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katherine Tønnesen
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Bartosz Brzozowski
- Gastroenterology and Hepatology Clinic, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Surmiak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Katarzyna Magierowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Robert Pajdo
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
8
|
|
Liu Z, Xie W, Li M, Liu J, Liang X, Li T. Intrarectally administered polaprezinc attenuates the development of dextran sodium sulfate-induced ulcerative colitis in mice. Exp Ther Med 2019; 18:4927-34. [PMID: 31798714 DOI: 10.3892/etm.2019.8155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023] Open
Abstract
Polaprezinc (PZ), a chelate of zinc and L-carnosine, has been widely used in the treatment of gastric ulcers since 1994. In recent years, researchers have found PZ to have a beneficial effect on various experimentally induced models of colitis in mice. In the present study, 6% dextran sodium sulfate (DSS) was used to induce a model of ulcerative colitis (UC) in Institute of Cancer Research mice. The therapeutic effect and mechanism of PZ action in a model of UC was studied in order to provide an experimental basis for the clinical application of PZ in UC treatment. The effect of PZ on UC was evaluated in five groups of mice: A vehicle control only group, a DSS model control group (DSS, 6%), a validated treatment control group (DSS 6% + Mesalamine), a low-dose PZ treatment group (DSS 6% + PZ 60 mg/kg) and a high-dose PZ group (DSS 6% + PZ 120 mg/kg). After the animals were sacrificed, blood was collected and the serum levels of NF-κB and tumor necrosis factor-α (TNF-α) were measured. Changes in histology were observed by light microscopy. The protein levels of AKT, phosphorylated AKT and heat shock protein 70 (HSP70) were determined by western blot analysis. The results suggested that PZ reduced the DSS-induced increase in the inflammatory proteins TNF-α and NF-κB in the UC model. The high-dose of PZ also increased the HSP70 protein level, inhibited AKT phosphorylation in a DSS-induced UC animal model, and decreased white blood cell and neutrophil % counts compared to levels in an untreated DSS control group. Histopathology indicated that the mice of the DSS model group had irregular colonic villi, a large number of inflammatory cells and mucosal damage, whereas mice of the group treated with PZ had small intestinal villus morphology and their villi showed signs of recovery from the damage of UC. The results of the present study indicated that PZ significantly alleviates DSS-induced UC in mice, relieves diarrhea, and inhibits the phosphorylation of inflammatory factors and the inflammatory AKT signaling pathway.
Collapse
Affiliation(s)
- Zhaoyang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wenbo Xie
- Jilin Province Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 130000, P.R. China
| | - Mingru Li
- Jilin Province Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 130000, P.R. China
| | - Jing Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiao Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Tao Li
- Institute of Basic Medical Sciences of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
9
|
|
Bilski J, Mazur-Bialy A, Wojcik D, Surmiak M, Magierowski M, Sliwowski Z, Pajdo R, Kwiecien S, Danielak A, Ptak-Belowska A, Brzozowski T. Role of Obesity, Mesenteric Adipose Tissue, and Adipokines in Inflammatory Bowel Diseases. Biomolecules. 2019;9. [PMID: 31779136 DOI: 10.3390/biom9120780] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of disorders which include ulcerative colitis and Crohn's disease. Obesity is becoming increasingly more common among patients with inflammatory bowel disease and plays a role in the development and course of the disease. This is especially true in the case of Crohn's disease. The recent results indicate a special role of visceral adipose tissue and particularly mesenteric adipose tissue, also known as "creeping fat", in pathomechanism, leading to intestinal inflammation. The involvement of altered adipocyte function and the deregulated production of adipokines, such as leptin and adiponectin, has been suggested in pathogenesis of IBD. In this review, we discuss the epidemiology and pathophysiology of obesity in IBD, the influence of a Western diet on the course of Crohn's disease and colitis in IBD patients and animal's models, and the potential role of adipokines in these disorders. Since altered body composition, decrease of skeletal muscle mass, and development of pathologically changed mesenteric white adipose tissue are well-known features of IBD and especially of Crohn's disease, we discuss the possible crosstalk between adipokines and myokines released from skeletal muscle during exercise with moderate or forced intensity. The emerging role of microbiota and the antioxidative and anti-inflammatory enzymes such as intestinal alkaline phosphatase is also discussed, in order to open new avenues for the therapy against intestinal perturbations associated with IBD.
Collapse
|
10
|
|
Yang M, Jia W, Wang D, Han F, Niu W, Zhang H, Shih DQ, Zhang X. Effects and Mechanism of Constitutive TL1A Expression on Intestinal Mucosal Barrier in DSS-Induced Colitis. Dig Dis Sci 2019; 64:1844-56. [PMID: 30949903 DOI: 10.1007/s10620-019-05580-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The role of TL1A in the intestinal mucosa barrier in inflammatory bowel disease (IBD) is still unclear. This study was aimed to investigate the expression levels of tight junction protein (TJ), myosin light chain kinase (MLCK), MyD88 and tumor necrosis factor (TNF) receptor-associated factor-6 (TRAF6) and how TL1A influences the intestinal barrier in IBD. METHODS The mouse models of IBD were built using FMS-TL1A-GFP-transgenic mice and wild-type mice. The morphological and histopathological changes, bacterial translocation, permeability of colonic mucosa, and LPS level were assessed. Caco-2 cells were used to further investigate the association between TL1A and TNF-α and LPS. The protein level and mRNA changes of TJ proteins including ZO-1, occluding, JAMA, claudin-1, claudin-2, and claudin-3 were investigated using Western blot and real-time PCR. Protein changes of MLCK, MyD88 and TNF receptor-associated factor-6 (TRAF6), and TNF-α mRNA in the mouse colon were further assessed. RESULTS The IBD models were successfully built. Cooper HS score and histopathological score of the colon were higher in DSS/WT group than in control/WT group (P < 0.05), higher in DSS/Tg group than in control/Tg group (P < 0.05), and higher in DSS/Tg group than in DSS/WT group. PAS, colonic permeability of the colon, and FITC-D examination showed the similar results and trends. Compared with control/WT group, the levels of TL1A and claudin-2 were higher and the levels of ZO-1, occludin, JAMA, claudin-1, and claudin-3 were lower in DSS/WT group (P < 0.05). Compared with control/Tg group, the levels of TL1A and claudin-2 were higher and the levels of ZO-1, occludin, JAMA, claudin-1, and claudin-3 were lower in DSS/Tg group. Compared with Caco-2 + TNF-α group, the expression level of occludin and claudin-1 in Caco-2 + LV-TNFSF15 + TNF-α group was significantly lower (P < 0.05); p-MLC level was significantly higher. Compared with Caco-2 + LPS group, the expression level of occludin and claudin-1 significantly decreased in Caco-2 + LV-TNFSF15 + LPS group; MyD88 and TRAF6 expression level significantly increased. CONCLUSION The results suggested that TL1A could impair intestinal epithelial barrier in the mouse model of IBD and might regulate TJ expression via MLCK/p-MLC pathway and LPS-mediated MyD88/TRAF6 pathway.
Collapse
Affiliation(s)
- Mingyue Yang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Wenxiu Jia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Dong Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Fei Han
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Weiwei Niu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Hong Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - David Q Shih
- Cedars-Sinai Inflammatory Bowel and Immunobiology Research Institute, Los Angeles, USA
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
11
|
|
Bähler C, Vavricka SR, Schoepfer AM, Brüngger B, Reich O. Trends in prevalence, mortality, health care utilization and health care costs of Swiss IBD patients: a claims data based study of the years 2010, 2012 and 2014. BMC Gastroenterol 2017; 17:138. [PMID: 29197335 DOI: 10.1186/s12876-017-0681-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background Real-life data on inflammatory bowel disease (IBD) prevalence and costs are scarce. The aims of this study were to provide an overview of the prevalence, mortality, health care utilization and costs of IBD patients in Switzerland in the years 2010, 2012, and 2014. Methods Based on claims data of the Helsana-Group, prevalence of IBD was assessed for 2010, 2012 and 2014. Mortality rates, costs (inpatient, outpatient, medication costs) and utilization (visits, hospitalizations) were compared between patients with and without IBD, and between IBD patients treated with and without biologics. Results were extrapolated to the Swiss general population using national census data. Multivariate linear regression was used to identify socio-demographic and regional factors influencing total costs. Results The overall extrapolated prevalence rates of IBD were 0.32% in 2010, 0.38% in 2012, and 0.41% in 2014. Mortality rate didn’t differ between the IBD and non-IBD population. Costs increased annually by 6% in IBD versus 2.4% in non-IBD subjects, which was solely due to increased outpatient costs. Almost one-fourth of IBD patients were hospitalized at least once a year. Costs were higher in IBD patients treated with biologics (OR = 3.98, CI: 3.72-4.27, p < 0.001) when compared to IBD patients without biologic therapies. Over 70% of the total costs in IBD patients treated with biologics were due to drug costs, compared with 28% in patients without use of biologic therapies, whereas inpatient costs didn’t differ. Conclusions The prevalence of IBD seems to be increasing in Switzerland. Outpatient costs increased substantially, while no decrease in inpatient costs was found. Treatment of IBD is more and more based on biologic therapies. Electronic supplementary material The online version of this article (10.1186/s12876-017-0681-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline Bähler
- Department of Health Sciences, Helsana Group, P.O. Box 8081, Zürich, Switzerland.
| | - Stephan R Vavricka
- Department Gastroenterology and Hepatology, Stadtspital Triemli, Birmensdorferstrasse 497, 8063, Zürich, Switzerland
| | - Alain M Schoepfer
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois/CHUV, Rue du Bugnon 44, 1011, Lausanne, Switzerland
| | - Beat Brüngger
- Department of Health Sciences, Helsana Group, P.O. Box 8081, Zürich, Switzerland
| | - Oliver Reich
- Department of Health Sciences, Helsana Group, P.O. Box 8081, Zürich, Switzerland
| |
Collapse
|
12
|
|
Zhang AF, Miao YL. Strategies for remission induction of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2017; 25(33): 2938-2944 [DOI: 10.11569/wcjd.v25.i33.2938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) is an abnormal immune-mediated, chronic, recurrent gastrointestinal inflammatory disorder, which is caused by a variety of factors, including ulcerative colitis (UC) and Crohn's disease (CD). IBD is characterized by alternating periods of relapse and remission. During the active period of IBD, clinicians usually formulate an appropriate medical management plan based on the disease activity, location, extent, and the medication history. In this way, remission can be induced as soon as possible. This paper summarizes the strategies for remission induction of IBD.
Collapse
Affiliation(s)
- Ai-Fen Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Kunming Medical University; Yunnan Institute of Digestive Disease, Kunming 650032, Yunnan Province, China
| | - Ying-Lei Miao
- Department of Gastroenterology, the First Affiliated Hospital of Kunming Medical University; Yunnan Institute of Digestive Disease, Kunming 650032, Yunnan Province, China
| |
Collapse
|
13
|
|
|
14
|
|
Kaplan GG, Ng SC. Globalisation of inflammatory bowel disease: perspectives from the evolution of inflammatory bowel disease in the UK and China. Lancet Gastroenterol Hepatol. 2016;1:307-316. [PMID: 28404201 DOI: 10.1016/s2468-1253(16)30077-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023]
Abstract
The UK and China provide unique historical perspectives on the evolution of the incidence of inflammatory bowel disease, which might provide insight into its pathogenesis. Historical records from the UK document the emergence of ulcerative colitis during the mid-1800s, which was later followed by the recognition of Crohn's disease in 1932. During the second half of the 20th century, the incidence of inflammatory bowel disease rose dramatically in high-income countries. Globalisation at the turn of the 21st century led to rapid economic development of newly industrialised countries such as China. In China, the modernisation of society was accompanied by the recognition of a sharp rise in the incidence of inflammatory bowel disease. The prevalence of inflammatory bowel disease is expected to continue to rise in high-income countries and is also likely to accelerate in the developing world. An understanding of the shared and different environmental determinants underpinning the pathogenesis of inflammatory bowel disease in western and eastern countries is essential to implement interventions that will blunt the rising global burden of inflammatory bowel disease.
Collapse
Affiliation(s)
- Gilaad G Kaplan
- Departments of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada.
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Diseases, LKS Institute of Health Science, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
15
|
|
Abstract
Antibiotic therapy has long term consequences in the intestinal microbiome. Clostridium difficile has a well-known role in antibiotic-associated diarrhea, but in addition, persistent infection with this organism may increase the risk for developing inflammatory bowel disease. Here, recent literature on how the intestinal microbiome is altered by antibiotic therapy is presented.
Collapse
Affiliation(s)
- Jorge Cervantes
- Connecticut Children's Medical Center, Division of Infectious Diseases and Immunology, Hartford, CT 06106, USA Department of Pediatrics, UConn Health, Farmington, CT 06032, USA
| |
Collapse
|