1
|
Chan BK, Stanley GL, Kortright KE, Vill AC, Modak M, Ott IM, Sun Y, Würstle S, Grun CN, Kazmierczak BI, Rajagopalan G, Harris ZM, Britto CJ, Stewart J, Talwalkar JS, Appell CR, Chaudary N, Jagpal SK, Jain R, Kanu A, Quon BS, Reynolds JM, Teneback CC, Mai QA, Shabanova V, Turner PE, Koff JL. Personalized inhaled bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa in cystic fibrosis. Nat Med 2025:10.1038/s41591-025-03678-8. [PMID: 40301561 DOI: 10.1038/s41591-025-03678-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Bacteriophage (phage) therapy, which uses lytic viruses as antimicrobials, is a potential strategy to address the antimicrobial resistance crisis. Cystic fibrosis, a disease complicated by recurrent Pseudomonas aeruginosa pulmonary infections, is an example of the clinical impact of antimicrobial resistance. Here, using a personalized phage therapy strategy that selects phages for a predicted evolutionary trade-off, nine adults with cystic fibrosis (eight women and one man) of median age 32 (range 22-46) years were treated with phages on a compassionate basis because their clinical course was complicated by multidrug-resistant or pan-drug-resistant Pseudomonas that was refractory to prior courses of standard antibiotics. The individuals received a nebulized cocktail or single-phage therapy without adverse events. Five to 18 days after phage therapy, sputum Pseudomonas decreased by a median of 104 CFU ml-1, or a mean difference of 102 CFU ml-1 (P = 0.006, two-way analysis of variance with Dunnett's multiple-comparisons test), without altering sputum microbiome, and an analysis of sputum Pseudomonas showed evidence of trade-offs that decreased antibiotic resistance or bacterial virulence. In addition, an improvement of 6% (median) and 8% (mean) predicted FEV1 was observed 21-35 days after phage therapy (P = 0.004, Wilcoxon signed-rank t-test), which may reflect the combined effects of decreased bacterial sputum density and phage-driven trade-offs. These results show that a personalized, nebulized phage therapy trade-off strategy may affect clinical and microbiologic endpoints, which must be evaluated in larger clinical trials.
Collapse
Affiliation(s)
- Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Gail L Stanley
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Kaitlyn E Kortright
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Albert C Vill
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Mrinalini Modak
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Isabel M Ott
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Ying Sun
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Silvia Würstle
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Infectious Diseases, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Casey N Grun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Barbara I Kazmierczak
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Govindarajan Rajagopalan
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Zachary M Harris
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jill Stewart
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jaideep S Talwalkar
- Department of Internal Medicine, Section General Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Casey R Appell
- Department of Kinesiology & Sports Management, Texas Tech University, Lubbock, TX, USA
| | - Nauman Chaudary
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Sugeet K Jagpal
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Raksha Jain
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adaobi Kanu
- Department of Pediatrics, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX, USA
| | - Bradley S Quon
- Faculty of Medicine, Centre for Heart Lung Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - John M Reynolds
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Charlotte C Teneback
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Quynh-Anh Mai
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Veronika Shabanova
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan L Koff
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Harwood K, Duffull S, Lai T, Lei A, Manning S, Pell C, Ranganathan S, Robinson P, Rogers G, Sandaradura I, Satzke C, Shanthikumar S, Taylor S, Gwee A. Relationship between sputum bacterial load and lung function in children with cystic fibrosis receiving tobramycin. Respir Med 2025; 240:108042. [PMID: 40090524 DOI: 10.1016/j.rmed.2025.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chronic pulmonary infection with pathogens such as Pseudomonas aeruginosa is associated with lung function decline and increased mortality in people with cystic fibrosis (CF). The relationship between sputum bacterial load and the severity of pulmonary exacerbations remains unclear. This study aimed to explore the relationship between sputum bacterial load and clinical response to antibiotic treatment of pulmonary exacerbations in children with CF. METHODS Multicentre prospective longitudinal study of children with CF receiving IV tobramycin for a pulmonary exacerbation who had prior isolation of Gram-negative bacteria and able to expectorate sputum. Lung function (FEV1) and sputum bacterial load were assessed. Bacterial load was performed using quantitative PCR on either intact (live) bacterial cells or all bacterial DNA (live + dead) and targeted either P. aeruginosa only or all bacteria. RESULTS Twelve children (14 admissions) were enrolled and each provided ≥2 sputum samples; 11 children (13 admissions) also had ≥2 FEV1 measurements. In 10 admissions where FEV1 improved, five showed a reduction in all live bacteria, with a median reduction by 8.65 × 106 copies/g (73 % reduction). Live P. aeruginosa was detected in 8/10 children and in seven, a median reduction of 2.99 × 107 copies/g (90 % reduction) was observed. Improved FEV1 correlated with greater reductions in live + dead P. aeruginosa (ρ = -0.63, p = 0.04). CONCLUSION A greater reduction in total sputum P. aeruginosa bacterial load (live + dead) was associated with improved lung function (FEV1) in children with CF receiving tobramycin.
Collapse
Affiliation(s)
- Kiera Harwood
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia.
| | | | - Tony Lai
- The Children's Hospital at Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Alice Lei
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Sarah Manning
- Microbiome and Host Health, South Australian Health and Medical Research Institute, South Australia, Australia
| | - Casey Pell
- Translational Microbiology Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Sarath Ranganathan
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Respiratory Diseases Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Phil Robinson
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Respiratory Diseases Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Geraint Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, South Australia, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Indy Sandaradura
- The Children's Hospital at Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Catherine Satzke
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Translational Microbiology Group, Murdoch Children's Research Institute, Parkville, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Shivanthan Shanthikumar
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Respiratory Diseases Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Steven Taylor
- Microbiome and Host Health, South Australian Health and Medical Research Institute, South Australia, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Amanda Gwee
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia; Department of General Medicine and Infectious Diseases, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
3
|
Weyant RB, Waddell BJ, Acosta N, Izydorczyk C, Conly JM, Church DL, Surette MG, Rabin HR, Thornton CS, Parkins MD. Clinical epidemiology and impact of Haemophilus influenzae airway infections in adults with cystic fibrosis. BMC Infect Dis 2024; 24:1209. [PMID: 39465381 PMCID: PMC11520053 DOI: 10.1186/s12879-024-10050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Haemophilus influenzae is prevalent within the airways of persons with cystic fibrosis (pwCF). H. influenzae is often associated with pulmonary exacerbations (PEx) in pediatric cohorts, but in adults, studies have yielded conflicting reports around the impact(s) on clinical outcomes such as lung function decline. Accordingly, we sought to discern the prevalence, natural history, and clinical impact of H. influenzae in adult pwCF. METHODS This single-centre retrospective cohort study reviewed all adult pwCF with H. influenzae sputum cultures between 2002 and 2016. From this cohort, persistently infected subjects (defined as: ≥2 samples with the same pulsotype and > 50% sputum culture-positive for H. influenzae in each year) were matched (1:2) to controls without H. influenzae. Demographic and clinical status (baseline health or during periods of PEx) were obtained at each visit that H. influenzae was cultured. Yearly biobank isolates were typed using pulsed-field gel electrophoresis (PFGE) to assess relatedness. RESULTS Over the study period, 30% (n = 70/240) of pwCF were culture positive for H. influenzae, of which 38 (54%) were culture-positive on multiple occasions and 12 (17%) had persistent infection. One hundred and thirty-seven isolates underwent PFGE, with 94 unique pulsotypes identified. Two (1.5%) were serotype f with the rest non-typeable (98.5%). H. influenzae isolation was associated with an increased risk of PEx (RR = 1.61 [1.14-2.27], p = 0.006), however, this association was lost when we excluded those who irregularly produced sputum (i.e. only during a PEx). Annual lung function decline did not differ across cohorts. CONCLUSIONS Isolation of H. influenzae was common amongst adult pwCF but often transient. H. influenzae infection was not associated with acute PEx or chronic lung function decline.
Collapse
Affiliation(s)
- R Benson Weyant
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Barbara J Waddell
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Conrad Izydorczyk
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - John M Conly
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Deirdre L Church
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Harvey R Rabin
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Christina S Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada
| | - Michael D Parkins
- Department of Medicine, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada.
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary and Alberta Health Services, Calgary, Canada.
- Departments of Medicine and Microbiology, Immunology and Infectious Diseases Southern Alberta Adult Cystic Fibrosis Clinic, Division of Infectious Diseases, Alberta Health Services, Calgary, Canada.
| |
Collapse
|
4
|
Almulhem M, Ward C, Haq I, Gray RD, Brodlie M. Definitions of pulmonary exacerbation in people with cystic fibrosis: a scoping review. BMJ Open Respir Res 2024; 11:e002456. [PMID: 39147400 PMCID: PMC11331921 DOI: 10.1136/bmjresp-2024-002456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Pulmonary exacerbations (PExs) are clinically important in people with cystic fibrosis (CF). Multiple definitions have been used for PEx, and this scoping review aimed to identify the different definitions reported in the literature and to ascertain which signs and symptoms are commonly used to define them. METHODS A search was performed using Embase, MEDLINE, Cochrane Library, Scopus and CINAHL. All publications reporting clinical trials or prospective observational studies involving definitions of PEx in people with CF published in English from January 1990 to December 2022 were included. Data were then extracted for qualitative thematic analysis. RESULTS A total of 14 039 records were identified, with 7647 titles and abstracts screened once duplicates were removed, 898 reviewed as full text and 377 meeting the inclusion criteria. Pre-existing definitions were used in 148 publications. In 75% of papers, an objective definition was used, while 25% used a subjective definition, which subcategorised into treatment-based definitions (76%) and those involving clinician judgement (24%). Objective definitions were subcategorised into three groups: those based on a combination of signs and symptoms (50%), those based on a predefined combination of signs and symptoms plus the initiation of acute treatment (47%) and scores involving different clinical features each with a specific weighting (3%). The most common signs and symptoms reported in the definitions were, in order, sputum production, cough, lung function, weight/appetite, dyspnoea, chest X-ray changes, chest sounds, fever, fatigue or lethargy and haemoptysis. CONCLUSION We have identified substantial variation in the definitions of PEx in people with CF reported in the literature. There is a requirement for the development of internationally agreed-upon, standardised and validated age-specific definitions. Such definitions would allow comparison between studies and effective meta-analysis to be performed and are especially important in the highly effective modulator therapy era in CF care.
Collapse
Affiliation(s)
- Maryam Almulhem
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Christopher Ward
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Iram Haq
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Robert D Gray
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Crisan CV, Pettis ML, Goldberg JB. Antibacterial potential of Stenotrophomonas maltophilia complex cystic fibrosis isolates. mSphere 2024; 9:e0033524. [PMID: 38980073 PMCID: PMC11288042 DOI: 10.1128/msphere.00335-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024] Open
Abstract
Over 160,000 people worldwide suffer from cystic fibrosis (CF), a genetic condition that causes mucus to accumulate in internal organs. Lung decline is a significant health burden for people with CF (pwCF), and chronic bacterial pulmonary infections are a major cause of death. Stenotrophomonas maltophilia complex (Smc) is an emerging, multidrug-resistant CF pathogen that can cause pulmonary exacerbations and result in higher mortality. However, little is known about the antagonistic interactions that occur between Smc isolates from pwCF and competitor bacteria. We obtained 13 Smc isolates from adult and pediatric pwCF located in the United States or Australia. We co-cultured these isolates with Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. We also performed whole-genome sequencing of these Smc isolates and compared their genomes using average nucleotide identity analyses. We observed that some Smc CF isolates can engage in antagonistic interactions with P. aeruginosa and S. aureus but recovered a substantial number of P. aeruginosa and S. aureus cells following co-cultures with all tested Smc isolates. By contrast, we discovered that most Smc CF isolates display strong antibacterial properties against E. coli cells and reduce recovery below detectable limits. Finally, we demonstrate that Smc CF strains from this study belong to diverse phylogenetic lineages. IMPORTANCE Antagonism toward competitor bacteria may be important for the survival of Stenotrophomonas maltophilia complex (Smc) in external environments, for the elimination of commensal species and colonization of upper respiratory tracts to enable early infections, and for competition against other pathogens after establishing chronic infections. These intermicrobial interactions could facilitate the acquisition of Smc by people with cystic fibrosis from environmental or nosocomial sources. Elucidating the mechanisms used by Smc to eliminate other bacteria could lead to new insights into the development of novel treatments.
Collapse
Affiliation(s)
- Cristian V. Crisan
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Children’s Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Abolhasani FS, Moein M, Rezaie N, Sheikhimehrabadi P, Shafiei M, Afkhami H, Modaresi M. Occurrence of COVID-19 in cystic fibrosis patients: a review. Front Microbiol 2024; 15:1356926. [PMID: 38694803 PMCID: PMC11061495 DOI: 10.3389/fmicb.2024.1356926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic ailment caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. This autosomal recessive disorder is characterized by diverse pathobiological abnormalities, such as the disorder of CFTR channels in mucosal surfaces, caused by inadequate clearance of mucus and sputum, in addition to the malfunctioning of mucous organs. However, the primary motive of mortality in CF patients is pulmonary failure, which is attributed to the colonization of opportunistic microorganisms, formation of resistant biofilms, and a subsequent decline in lung characteristics. In December 2019, the World Health Organization (WHO) declared the outbreak of the radical coronavirus disease 2019 (COVID-19) as a worldwide public health crisis, which unexpectedly spread not only within China but also globally. Given that the respiration system is the primary target of the COVID-19 virus, it is crucial to investigate the impact of COVID-19 on the pathogenesis and mortality of CF patients, mainly in the context of acute respiratory distress syndrome (ARDS). Therefore, the goal of this review is to comprehensively review the present literature on the relationship between cystic fibrosis, COVID-19 contamination, and development of ARDS. Several investigations performed during the early stages of the virus outbreak have discovered unexpected findings regarding the occurrence and effectiveness of COVID-19 in individuals with CF. Contrary to initial expectancies, the rate of infection and the effectiveness of the virus in CF patients are lower than those in the overall population. This finding may be attributed to different factors, including the presence of thick mucus, social avoidance, using remedies that include azithromycin, the fairly younger age of CF patients, decreased presence of ACE-2 receptors, and the effect of CFTR channel disorder on the replication cycle and infectivity of the virus. However, it is important to notice that certain situations, which include undergoing a transplant, can also doubtlessly boost the susceptibility of CF patients to COVID-19. Furthermore, with an increase in age in CF patients, it is vital to take into account the prevalence of the SARS-CoV-2 virus in this population. Therefore, ordinary surveillance of CF patients is vital to evaluate and save the population from the capability of transmission of the virus given the various factors that contribute to the spread of the SARS-CoV-2 outbreak in this precise organization.
Collapse
Affiliation(s)
- Fatemeh Sadat Abolhasani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Moein
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, School of Medicine, Shahed University, Tehran, Iran
| | - Mohammadreza Modaresi
- Pediatric Pulmonary Disease and Sleep Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, Tehran, Iran
- Cystic Fibrosis Research Center, Iran CF Foundation (ICFF), Tehran, Iran
| |
Collapse
|
7
|
Bowron LA, Acosta N, Thornton CS, Carpentero J, Waddell BJM, Bharadwaj L, Ebbert K, Castañeda-Mogollón D, Conly JM, Rabin HR, Surette MG, Parkins MD. The airway microbiome of persons with cystic fibrosis correlates with acquisition and microbiological outcomes of incident Stenotrophomonas maltophilia infection. Front Microbiol 2024; 15:1353145. [PMID: 38690371 PMCID: PMC11059027 DOI: 10.3389/fmicb.2024.1353145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/27/2024] [Indexed: 05/02/2024] Open
Abstract
Rationale Chronic infection with Stenotrophomonas maltophilia in persons with cystic fibrosis (pwCF) has been linked to an increased risk of pulmonary exacerbations and lung function decline. We sought to establish whether baseline sputum microbiome associates with risk of S. maltophilia incident infection and persistence in pwCF. Methods pwCF experiencing incident S. maltophilia infections attending the Calgary Adult CF Clinic from 2010-2018 were compared with S. maltophilia-negative sex, age (+/-2 years), and birth-cohort-matched controls. Infection outcomes were classified as persistent (when the pathogen was recovered in ≥50% of cultures in the subsequent year) or transient. We assessed microbial communities from prospectively biobanked sputum using V3-V4 16S ribosomal RNA (rRNA) gene sequencing, in the year preceding (Pre) (n = 57), at (At) (n = 22), and after (Post) (n = 31) incident infection. We verified relative abundance data using S. maltophilia-specific qPCR and 16S rRNA-targeted qPCR to assess bioburden. Strains were typed using pulse-field gel electrophoresis. Results Twenty-five pwCF with incident S. maltophilia (56% female, median 29 years, median FEV1 61%) with 33 total episodes were compared with 56 uninfected pwCF controls. Demographics and clinical characteristics were similar between cohorts. Among those with incident S. maltophilia infection, sputum communities did not cluster based on infection timeline (Pre, At, Post). Communities differed between the infection cohort and controls (n = 56) based on Shannon Diversity Index (SDI, p = 0.04) and clustered based on Aitchison distance (PERMANOVA, p = 0.01) prior to infection. At the time of incident S. maltophilia isolation, communities did not differ in SDI but clustered based on Aitchison distance (PERMANOVA, p = 0.03) in those that ultimately developed persistent infection versus those that were transient. S. maltophilia abundance within sputum was increased in samples from patients (Pre) relative to controls, measuring both relative (p = 0.004) and absolute (p = 0.001). Furthermore, S. maltophilia abundance was increased in sputum at incident infection in those who ultimately developed persistent infection relative to those with transient infection, measured relatively (p = 0.04) or absolute (p = 0.04), respectively. Conclusion Microbial community composition of CF sputum associates with S. maltophilia infection acquisition as well as infection outcome. Our study suggests sputum microbiome may serve as a surrogate for identifying infection risk and persistence risk.
Collapse
Affiliation(s)
- Lauren A. Bowron
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Christina S. Thornton
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jennifer Carpentero
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Barbara-Jean M. Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Lalit Bharadwaj
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Kirsten Ebbert
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Daniel Castañeda-Mogollón
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - John M. Conly
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Harvey R. Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
The natural history and genetic diversity of Haemophilus influenzae infecting the airways of adults with cystic fibrosis. Sci Rep 2022; 12:15765. [PMID: 36131075 PMCID: PMC9492733 DOI: 10.1038/s41598-022-19240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Haemophilus influenzae is a Gram-negative pathobiont, frequently recovered from the airways of persons with cystic fibrosis (pwCF). Previous studies of H. influenzae infection dynamics and transmission in CF predominantly used molecular methods, lacking resolution. In this retrospective cohort study, representative yearly H. influenzae isolates from all pwCF attending the Calgary Adult CF Clinic with H. influenzae positive sputum cultures between 2002 and 2016 were typed by pulsed-field gel electrophoresis. Isolates with shared pulsotypes common to ≥ 2 pwCF were sequenced by Illumina MiSeq. Phylogenetic and pangenomic analyses were used to assess genetic relatedness within shared pulsotypes, and epidemiological investigations were performed to assess potential for healthcare associated transmission. H. influenzae infection was observed to be common (33% of patients followed) and dynamic in pwCF. Most infected pwCF exhibited serial infections with new pulsotypes (75% of pwCF with ≥ 2 positive cultures), with up to four distinct pulsotypes identified from individual patients. Prolonged infection by a single pulsotype was only rarely observed. Intra-patient genetic diversity was observed at the single-nucleotide polymorphism and gene content levels. Seven shared pulsotypes encompassing 39% of pwCF with H. influenzae infection were identified, but there was no evidence, within our sampling scheme, of direct patient-to-patient infection transmission.
Collapse
|
9
|
Thornton CS, Acosta N, Surette MG, Parkins MD. Exploring the Cystic Fibrosis Lung Microbiome: Making the Most of a Sticky Situation. J Pediatric Infect Dis Soc 2022; 11:S13-S22. [PMID: 36069903 PMCID: PMC9451016 DOI: 10.1093/jpids/piac036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 01/02/2023]
Abstract
Chronic lower respiratory tract infections are a leading contributor to morbidity and mortality in persons with cystic fibrosis (pwCF). Traditional respiratory tract surveillance culturing has focused on a limited range of classic pathogens; however, comprehensive culture and culture-independent molecular approaches have demonstrated complex communities highly unique to each individual. Microbial community structure evolves through the lifetime of pwCF and is associated with baseline disease state and rates of disease progression including occurrence of pulmonary exacerbations. While molecular analysis of the airway microbiome has provided insight into these dynamics, challenges remain including discerning not only "who is there" but "what they are doing" in relation to disease progression. Moreover, the microbiome can be leveraged as a multi-modal biomarker for both disease activity and prognostication. In this article, we review our evolving understanding of the role these communities play in pwCF and identify challenges in translating microbiome data to clinical practice.
Collapse
Affiliation(s)
- Christina S Thornton
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada,Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael D Parkins
- Corresponding Author: Michael D. Parkins, MD, MSc, FRCPC, Associate Professor, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada; Snyder Institute for Chronic Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. E-mail:
| |
Collapse
|
10
|
Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur J Pharmacol 2022; 919:174821. [DOI: 10.1016/j.ejphar.2022.174821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
11
|
Pseudomonas aeruginosa in the Cystic Fibrosis Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:347-369. [DOI: 10.1007/978-3-031-08491-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Five-year Surveillance of Antimicrobial Resistance Changes and Epidemiological Characteristics in Pseudomonas aeruginosa: A Retrospective Study in a Chinese City Hospital. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm118107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: In recent years, the widespread use of antibiotics has resulted in increased rates of antibiotic resistance (ABR). Pseudomonas aeruginosa is one of the most important opportunistic pathogens causing hospital-acquired infections. Pseudomonas aeruginosa has continuously increased resistance to commonly used clinical antimicrobial drugs, bringing great difficulties to clinical treatment. Objectives: This retrospective study investigated the epidemiological characteristics of P. aeruginosa and changes in ABR over a 5-year period at a hospital in Shandong Province, China. Methods: Pseudomonas aeruginosa strains were collected from 2015 to 2019. The antimicrobial susceptibility testing employed the Kirby-Bauer disk diffusion method and the broth microdilution method (VITEK-2 compact system), according to the guidelines by the Clinical and Laboratory Standards Institute. Data were analyzed using WHONET 5.6 and SPSS V. 21.0 software. Results: A total of 3,324 P. aeruginosa strains were isolated from clinical specimens (604, 631, 700, 595, and 794 strains from 2015 to 2019, respectively). The highest P. aeruginosa detection rates were from respiratory tract specimens (72.54%). The highest resistance was seen in aztreonam, followed by ciprofloxacin, levofloxacin, and imipenem. The isolation rates for carbapenem-resistant P. aeruginosa (CRPA) and multidrug-resistant P. aeruginosa (MDRPA) ranged from 15.21 - 18.38% and 17.31 - 27.31%, respectively. Also, the isolation rates for extensively drug-resistant P. aeruginosa (XDRPA) ranged from 1.86 - 3.52%. Conclusions: The main sources of the P. aeruginosa isolates were older adult patients with chronic respiratory diseases. The isolation rates for CRPA, MDRPA, and XDRPA strains decreased over the 5-year period. However, the drug resistance situation remains a serious concern. Hence, continued infection control and antimicrobial stewardship and basic and clinical research on bacterial resistance are essential.
Collapse
|
13
|
Abstract
Drugs called CFTR modulators improve the physiologic defect underlying cystic fibrosis (CF) and alleviate many disease manifestations. However, studies to date indicate that chronic lung infections that are responsible for most disease-related mortality generally persist. Here, we investigated whether combining the CFTR modulator ivacaftor with an intensive 3.5-month antibiotic course could clear chronic Pseudomonas aeruginosa or Staphylococcus aureus lung infections in subjects with R117H-CFTR, who are highly ivacaftor-responsive. Ivacaftor alone improved CFTR activity, and lung function and inflammation within 48 h, and reduced P. aeruginosa and S. aureus pathogen density by ∼10-fold within a week. Antibiotics produced an additional ∼10-fold reduction in pathogen density, but this reduction was transient in subjects who remained infected. Only 1/5 P. aeruginosa-infected and 1/7 S. aureus-infected subjects became persistently culture-negative after the combined treatment. Subjects appearing to clear infection did not have particularly favorable baseline lung function or inflammation, pathogen density or antibiotic susceptibility, or bronchiectasis scores on CT scans, but they did have remarkably low sweat chloride values before and after ivacaftor. All persistently P. aeruginosa-positive subjects remained infected by their pretreatment strain, whereas subjects persistently S. aureus-positive frequently lost and gained strains. This work suggests chronic CF infections may resist eradication despite marked and rapid modulator-induced improvements in lung infection and inflammation parameters and aggressive antibiotic treatment.
Collapse
|
14
|
Zain NMM, Webb K, Stewart I, Halliday N, Barrett DA, Nash EF, Whitehouse JL, Honeybourne D, Smyth AR, Forrester DL, Knox AJ, Williams P, Fogarty A, Cámara M, Bruce KD, Barr HL. 2-Alkyl-4-quinolone quorum sensing molecules are biomarkers for culture-independent Pseudomonas aeruginosa burden in adults with cystic fibrosis. J Med Microbiol 2021; 70. [PMID: 34596013 DOI: 10.1099/jmm.0.001420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Pseudomonas aeruginosa produces quorum sensing signalling molecules including 2-alkyl-4-quinolones (AQs), which regulate virulence factor production in the cystic fibrosis (CF) airways.Hypothesis/Gap statement. Culture can lead to condition-dependent artefacts which may limit the potential insights and applications of AQs as minimally-invasive biomarkers of bacterial load.Aim. We aimed to use culture-independent methods to explore the correlations between AQ levels and live P. aeruginosa load in adults with CF.Methodology. Seventy-five sputum samples at clinical stability and 48 paired sputum samples obtained at the beginning and end of IV antibiotics for a pulmonary exacerbation in adults with CF were processed using a viable cell separation technique followed by quantitative P. aeruginosa polymerase chain reaction (qPCR). Live P. aeruginosa qPCR load was compared with the concentrations of three AQs (HHQ, NHQ and HQNO) detected in sputum, plasma and urine.Results. At clinical stability and the beginning of IV antibiotics for pulmonary exacerbation, HHQ, NHQ and HQNO measured in sputum, plasma and urine were consistently positively correlated with live P. aeruginosa qPCR load in sputum, compared to culture. Following systemic antibiotics live P. aeruginosa qPCR load decreased significantly (P<0.001) and was correlated with a reduction in plasma NHQ (plasma: r=0.463, P=0.003).Conclusion. In adults with CF, AQ concentrations correlated more strongly with live P. aeruginosa bacterial load measured by qPCR compared to traditional culture. Prospective studies are required to assess the potential of systemic AQs as biomarkers of P. aeruginosa bacterial burden.
Collapse
Affiliation(s)
- Nur Masirah M Zain
- Institute of Pharmaceutical Science, King's College London, London, UK.,Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Nottingham, UK
| | - Karmel Webb
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Nottingham, UK.,Division of Epidemiology and Public Health, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Iain Stewart
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Nottingham, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Nigel Halliday
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David A Barrett
- Centre for Analytical Bioscience, Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Edward F Nash
- West Midlands Adult CF Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Joanna L Whitehouse
- West Midlands Adult CF Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - David Honeybourne
- West Midlands Adult CF Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Alan R Smyth
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Nottingham, UK.,Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham, UK
| | - Douglas L Forrester
- University of Queensland, Northside Clinical Unit, Brisbane, Queensland, Australia.,Thoracic Programme, The Prince Charles Hospital, Brisbane, Australia
| | - Alan J Knox
- Division of Respiratory Medicine, University of Nottingham, City Hospital Campus, Nottingham, UK.,Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Nottingham, UK
| | - Paul Williams
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andrew Fogarty
- Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Nottingham, UK.,Division of Epidemiology and Public Health, University of Nottingham, City Hospital Campus, Nottingham, UK
| | - Miguel Cámara
- National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Kenneth D Bruce
- Institute of Pharmaceutical Science, King's College London, London, UK.,Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Nottingham, UK
| | - Helen L Barr
- Wolfson Cystic Fibrosis Centre, Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK.,Nottingham NIHR Biomedical Research Centre, Nottingham MRC Molecular Pathology Node, Nottingham, UK
| |
Collapse
|
15
|
Acosta N, Thornton CS, Surette MG, Somayaji R, Rossi L, Rabin HR, Parkins MD. Azithromycin and the microbiota of cystic fibrosis sputum. BMC Microbiol 2021; 21:96. [PMID: 33784986 PMCID: PMC8008652 DOI: 10.1186/s12866-021-02159-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/01/2021] [Indexed: 01/04/2023] Open
Abstract
Background Azithromycin is commonly prescribed drug for individuals with cystic fibrosis (CF), with demonstrated benefits in reducing lung function decline, exacerbation occurrence and improving nutrition. As azithromycin has antimicrobial activity against components of the uncultured microbiome and increasingly the CF microbiome is implicated in disease pathogenesis – we postulated azithromycin may act through its manipulation. Herein we sought to determine if the CF microbiome changed following azithromycin use and if clinical benefit observed during azithromycin use associated with baseline community structure. Results Drawing from a prospectively collected biobank we identified patients with sputum samples prior to, during and after initiating azithromycin and determined the composition of the CF microbial community by sequencing the V3-V4 region of the 16S rRNA gene. We categorized patients as responders if their rate of lung function decline improved after azithromycin initiation. Thirty-eight adults comprised our cohort, nine who had not utilized azithromycin in at least 3 years, and 29 who were completely naïve. We did not observe a major impact in the microbial community structure of CF sputum in the 2 years following azithromycin usage in either alpha or beta-diversity metrics. Seventeen patients (45%) were classified as Responders – demonstrating reduced lung function decline after azithromycin. Responders who were naïve to azithromycin had a modest clustering effect distinguishing them from those who were non-Responders, and had communities enriched with several organisms including Stenotrophomonas, but not Pseudomonas. Conclusions Azithromycin treatment did not associate with subsequent large changes in the CF microbiome structure. However, we found that baseline community structure associated with subsequent azithromycin response in CF adults. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02159-5.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Christina S Thornton
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Laura Rossi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada. .,Department of Medicine, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Sweeney E, Sabnis A, Edwards AM, Harrison F. Effect of host-mimicking medium and biofilm growth on the ability of colistin to kill Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:1171-1180. [PMID: 33253080 PMCID: PMC7819359 DOI: 10.1099/mic.0.000995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In vivo biofilms cause recalcitrant infections with extensive and unpredictable antibiotic tolerance. Here, we demonstrate increased tolerance of colistin by Pseudomonas aeruginosa when grown in medium that mimics cystic fibrosis (CF) sputum versus standard medium in in vitro biofilm assays, and drastically increased tolerance when grown in an ex vivo CF model versus the in vitro assay. We used colistin conjugated to the fluorescent dye BODIPY to assess the penetration of the antibiotic into ex vivo biofilms and showed that poor penetration partly explains the high doses of drug necessary to kill bacteria in these biofilms. The ability of antibiotics to penetrate the biofilm matrix is key to their clinical success, but hard to measure. Our results demonstrate both the importance of reduced entry into the matrix in in vivo-like biofilm, and the tractability of using a fluorescent tag and benchtop fluorimeter to assess antibiotic entry into biofilms. This method could be a relatively quick, cheap and useful addition to diagnostic and drug development pipelines, allowing the assessment of drug entry into biofilms, in in vivo-like conditions, prior to more detailed tests of biofilm killing.
Collapse
Affiliation(s)
- Esther Sweeney
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Akshay Sabnis
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Andrew M Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Rd, London SW7 2AZ, UK
| | - Freya Harrison
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
17
|
Accelerated Approval or Risk Reduction? How Response Biomarkers Advance Therapeutics through Clinical Trials in Cystic Fibrosis. Trends Mol Med 2020; 26:1068-1077. [PMID: 32868171 DOI: 10.1016/j.molmed.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
Progress in the development of new therapies for cystic fibrosis (CF) has benefited from therapeutically responsive biomarkers to streamline drug development. Paradoxically, these response biomarkers have been proven to be essential even in the presence of data demonstrating a lack of correlation with clinical outcomes across individuals with CF. This finding is unsurprising, particularly in the setting of a rare disease given complex disease processes and an often-limited pool of clinically effective therapies by which to link biomarkers and clinical responsiveness. While many response biomarkers will be unable to progress from their status as markers of biological efficacy to either established correlates of clinical efficacy or surrogate endpoints, they remain critical to the overall success of therapeutic development.
Collapse
|
18
|
Valentini TD, Lucas SK, Binder KA, Cameron LC, Motl JA, Dunitz JM, Hunter RC. Bioorthogonal non-canonical amino acid tagging reveals translationally active subpopulations of the cystic fibrosis lung microbiota. Nat Commun 2020; 11:2287. [PMID: 32385294 PMCID: PMC7210995 DOI: 10.1038/s41467-020-16163-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Culture-independent studies of cystic fibrosis lung microbiota have provided few mechanistic insights into the polymicrobial basis of disease. Deciphering the specific contributions of individual taxa to CF pathogenesis requires comprehensive understanding of their ecophysiology at the site of infection. We hypothesize that only a subset of CF microbiota are translationally active and that these activities vary between subjects. Here, we apply bioorthogonal non-canonical amino acid tagging (BONCAT) to visualize and quantify bacterial translational activity in expectorated sputum. We report that the percentage of BONCAT-labeled (i.e. active) bacterial cells varies substantially between subjects (6-56%). We use fluorescence-activated cell sorting (FACS) and genomic sequencing to assign taxonomy to BONCAT-labeled cells. While many abundant taxa are indeed active, most bacterial species detected by conventional molecular profiling show a mixed population of both BONCAT-labeled and unlabeled cells, suggesting heterogeneous growth rates in sputum. Differentiating translationally active subpopulations adds to our evolving understanding of CF lung disease and may help guide antibiotic therapies targeting bacteria most likely to be susceptible.
Collapse
Affiliation(s)
- Talia D Valentini
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States
| | - Sarah K Lucas
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States
| | - Kelsey A Binder
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States
| | - Lydia C Cameron
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States
| | - Jason A Motl
- Academic Health Center, University Flow Cytometry Resource, University of Minnesota, 6th St SE, Minneapolis, MN, 55455, United States
| | - Jordan M Dunitz
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Minnesota, 420 Delaware St. SE, Minneapolis, MN, 55455, United States
| | - Ryan C Hunter
- Department of Microbiology & Immunology, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN, 55455, United States.
| |
Collapse
|
19
|
Acosta N, Waddell B, Heirali A, Somayaji R, Surette MG, Workentine ML, Rabin HR, Parkins MD. Cystic Fibrosis Patients Infected With Epidemic Pseudomonas aeruginosa Strains Have Unique Microbial Communities. Front Cell Infect Microbiol 2020; 10:173. [PMID: 32426295 PMCID: PMC7212370 DOI: 10.3389/fcimb.2020.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is the archetypal cystic fibrosis (CF) pathogen. However, the clinical course experienced by infected individuals varies markedly. Understanding these differences is imperative if further improvements in outcomes are to be achieved. Multiple studies have found that patients infected with epidemic P. aeruginosa (ePA) strains may have a worse clinical prognosis than those infected with unique, non-clonal strains. Additionally, the traditionally uncultured CF lung bacterial community (i.e., CF microbiome) may further influence the outcome. We sought to identify if these two important variables, not identified through routine culture, associate and together may contribute to disease pathogenesis. Patients were classified as being infected with Prairie Epidemic ePA (PES) or a non-clonal strain, unique PA strains (uPA), through a retrospective assessment of a comprehensive strain biobank using a combination of PFGE and PES-specific PCR. Patients were matched to age, sex, time-period controls and sputum samples from equivalent time periods were identified from a sputum biobank. Bacterial 16S rRNA gene profiling and Pseudomonas qPCR was used to characterize the respiratory microbiome. We identified 31 patients infected with PES and matched them with uPA controls. Patients infected with PES at baseline have lower microbial diversity (P = 0.02) and higher P. aeruginosa relative abundance (P < 0.005). Microbial community structure was found to cluster by PA strain type, although it was not the main determinant of community structure as additional factors were also found to be drivers of CF community structure. Communities from PES infected individuals were enriched with Pseudomonas, Streptococcus and Prevotella OTUs. The disproportionate disease experienced by ePA infected CF patients may be mediated through a combination of pathogen-pathogen factors as opposed to strictly enhanced virulence of infecting P. aeruginosa strains.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Barbara Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Alya Heirali
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael G Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Departments of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.,Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
20
|
Izydorczyk C, Waddell B, Edwards BD, Greysson-Wong J, Surette MG, Somayaji R, Rabin HR, Conly JM, Church DL, Parkins MD. Epidemiology of E. coli in Cystic Fibrosis Airways Demonstrates the Capacity for Persistent Infection but Not Patient-Patient Transmission. Front Microbiol 2020; 11:475. [PMID: 32265892 PMCID: PMC7100150 DOI: 10.3389/fmicb.2020.00475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/04/2020] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli is frequently isolated from the respiratory secretions of cystic fibrosis (CF) patients yet is not considered a classical CF pathogen. Accordingly, little is known about the natural history of this organism in the CF airways, as well as the potential for patient-to-patient transmission. Patients attending the Calgary Adult CF Clinic (CACFC) between January 1983 and December 2016 with at least one E. coli-positive sputum culture were identified by retrospective review. Annual E. coli isolates from the CACFC biobank from each patient were typed by pulsed-field gel electrophoresis (PFGE) and isolates belonging to shared pulsotypes were sequenced. Single nucleotide polymorphism (SNP) and phylogenetic analysis were used to investigate the natural history of E. coli infection and identify potential transmission events. Forty-five patients with E. coli-positive sputum cultures were identified. Most patients had a single infection episode with a single pulsotype, while replacement of an initial pulsotype with a second was observed in three patients. Twenty-four had E. coli recovered from their sputum more than once and 18 patients had persistent infections (E. coli carriage >6 months with ≥3 positive cultures). Shared pulsotypes corresponded to known extraintestinal pathogenic E. coli strains: ST-131, ST-73, and ST-1193. Phylogenetic relationships and SNP distances among isolates within shared pulsotypes were consistent with independent acquisition of E. coli by individual patients. Most recent common ancestor date estimates of isolates between patients were inconsistent with patient-to-patient transmission. E. coli infection in CF is a dynamic process that appears to be characterized by independent acquisition within our patient population and carriage of unique sets of strains over time by individual patients.
Collapse
Affiliation(s)
- Conrad Izydorczyk
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Barbara Waddell
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brett D. Edwards
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jasper Greysson-Wong
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael G. Surette
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Harvey R. Rabin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - John M. Conly
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Deirdre L. Church
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| | - Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Health Services, Calgary, AB, Canada
| |
Collapse
|
21
|
Edwards BD, Somayaji R, Greysson-Wong J, Izydorczyk C, Waddell B, Storey DG, Rabin HR, Surette MG, Parkins MD. Clinical Outcomes Associated With Escherichia coli Infections in Adults With Cystic Fibrosis: A Cohort Study. Open Forum Infect Dis 2019; 7:ofz476. [PMID: 31976352 PMCID: PMC6966422 DOI: 10.1093/ofid/ofz476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Background Analysis of “emerging” pathogens in cystic fibrosis (CF) lung disease has focused on unique pathogens that are rare in other human diseases or are drug resistant. Escherichia coli is recovered in the sputum of up to 25% of patients with CF, yet little is known about the epidemiology or clinical impact of infection. Methods We studied patients attending a Canadian adult CF clinic who had positive sputum cultures for E coli from 1978 to 2016. Infection was categorized as transient or persistent (≥3 positive sputum cultures, spanning >6 months). Those with persistent infection were matched 2:1 with age, sex, and time-period controls without history of E coli infection, and mixed-effects models were used to assess pulmonary exacerbation (PEx) frequency, lung function decline, hospitalization, and intravenous antibiotic days. Results Forty-five patients (12.3%) had E coli recovered from sputum samples between 1978 and 2016, and 18 patients (40%) developed persistent infection. Nine patients (24%) had PEx at incident infection, and increased bioburden was predictive of exacerbation (P = .03). Risk factors for persistent infection included lower nutritional status (P < .001) and lower lung function (P = .009), but chronic infection with Pseudomonas aeruginosa was protective. There was no difference in annual lung function decline, need for hospitalization or intravenous antibiotics, or risk of PEx in patients with persistent infection. Conclusions Persistent E coli infection was frequent and was more common in CF patients with low nutritional status and lung function. However, this does not predict clinical decline. Multicenter studies would allow better characterization of the epidemiology and clinical impact of E coli infection.
Collapse
Affiliation(s)
- B D Edwards
- Department of Medicine, University of Calgary
| | - R Somayaji
- Department of Medicine, University of Calgary.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary.,Department of Community Health Sciences, University of Calgary
| | - J Greysson-Wong
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary
| | - C Izydorczyk
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary
| | - B Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary
| | - D G Storey
- Department of Biological Sciences, University of Calgary
| | - H R Rabin
- Department of Medicine, University of Calgary.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary
| | - M G Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary.,Department of Medicine, McMaster University.,Biochemistry and Biomedical Sciences, the Farncombe Family Digestive Health Research Institute, McMaster University
| | - M D Parkins
- Department of Medicine, University of Calgary.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary
| |
Collapse
|
22
|
Changes in the resistance and epidemiological characteristics of Pseudomonas aeruginosa during a ten-year period. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 54:261-266. [PMID: 31628088 DOI: 10.1016/j.jmii.2019.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/05/2019] [Accepted: 08/14/2019] [Indexed: 11/20/2022]
Abstract
PURPOSE The aim of this study was to investigate the changes over a ten-year period in the resistance and epidemiological characteristics of Pseudomonas aeruginosa strains isolated from the Department of Respiratory in Southwest Hospital. METHODS Antimicrobial resistance was detected using the plate double dilution method. PCR amplification and sequencing were performed to evaluate the carbapenemase genes and the oprD gene. Bacterial genotypes were analyzed by multilocus sequence typing (MLST). Quantitative real-time PCR experiments were performed to assess the expression of efflux pump (mexA and mexX) and ampC gene. RESULTS We collected 233 P. aeruginosa isolates in 2006-2007 and 128 isolates in 2016-2017. The resistance rate of P. aeruginosa strains to the tested antibiotics was significantly lower in 2016-2017 than in 2006-2007. The MLST results showed 27 genotypes in 2006-2007 and 18 genotypes in 2016-2017. ST235 was the most prevalent sequence type, and there was no significant change in the genotypes over the ten-year period. Both VIM-2 and IMP-4 genes were found in 2006-2007, whereas only IMP-4 was found in 2016-2017. The oprD mutational inactivation was the main factor responsible for carbapenem resistance, and the overexpression of mexX had a good correlation with aminoglycoside resistance. CONCLUSION These results indicated that the antibiotic resistance of P. aeruginosa in our respiratory department decreased. The loss of oprD gene was the main mechanism of carbapenem resistance, and mexX overexpression was the major contributing factor to aminoglycoside resistance.
Collapse
|
23
|
Clark ST, Guttman DS, Hwang DM. Diversification of Pseudomonas aeruginosa within the cystic fibrosis lung and its effects on antibiotic resistance. FEMS Microbiol Lett 2019; 365:4834010. [PMID: 29401362 DOI: 10.1093/femsle/fny026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
The evolution and diversification of bacterial pathogens within human hosts represent potential barriers to the diagnosis and treatment of life-threatening infections. Tremendous genetic and phenotypic diversity is characteristic of host adaptation in strains of Pseudomonas aeruginosa that infect the airways of individuals with chronic lung diseases and prove to be extremely difficult to eradicate. In this MiniReview, we examine recent advances in understanding within-host diversity and antimicrobial resistance in P. aeruginosa populations from the lower airways of individuals with the fatal genetic disease cystic fibrosis and the potential impacts that this diversity may have on detecting and interpreting antimicrobial susceptibility within these populations.
Collapse
Affiliation(s)
- Shawn T Clark
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada
| | - David S Guttman
- Department of Cell & Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.,Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - David M Hwang
- Toronto General Hospital Research Institute, University Health Network, 101 College Street, PMCRT - MaRS Centre, Toronto, Ontario M5G 1L7, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
24
|
Somayaji R, Parkins MD, Shah A, Martiniano SL, Tunney MM, Kahle JS, Waters VJ, Elborn JS, Bell SC, Flume PA, VanDevanter DR. Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: A systematic review. J Cyst Fibros 2019; 18:236-243. [PMID: 30709744 DOI: 10.1016/j.jcf.2019.01.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Antimicrobial susceptibility testing (AST) is a cornerstone of infection management. Cystic fibrosis (CF) treatment guidelines recommend AST to select antimicrobial treatments for CF airway infection but its utility in this setting has never been objectively demonstrated. METHODS We conducted a systematic review of primary published articles designed to address two PICO (patient, intervention, comparator, outcome) questions: 1) "For individuals with CF, is clinical response to antimicrobial treatment of bacterial airways infection predictable from AST results available at treatment initiation?" and 2) "For individuals with CF, is clinical response to antimicrobial treatment of bacterial airways infection affected by the method used to guide antimicrobial selection?" Relationships between AST results and clinical response (changes in pulmonary function, weight, signs and symptoms of respiratory tract infection, and time to next event) were assessed for each article and results were compared across articles when possible. RESULTS Twenty-five articles describing the results of 20 separate studies, most of which described Pseudomonas aeruginosa treatment, were identified. Thirteen studies described pulmonary exacerbation (PEx) treatment and seven described 'maintenance' of chronic bacterial airways infection. In only three of 16 studies addressing PICO question #1 was there a suggestion that baseline bacterial isolate antimicrobial susceptibility was associated with clinical response to treatment. None of the four studies addressing PICO question #2 suggested that antimicrobial selection methods influenced clinical outcomes. CONCLUSIONS There is little evidence that AST predicts the clinical outcome of CF antimicrobial treatment, suggesting a need for careful consideration of current AST use by the CF community.
Collapse
Affiliation(s)
| | | | - Anand Shah
- Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom; Imperial College London, United Kingdom
| | | | | | | | | | | | - Scott C Bell
- The Prince Charles Hospital and QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | | | | |
Collapse
|
25
|
Gallagher T, Phan J, Whiteson K. Getting Our Fingers on the Pulse of Slow-Growing Bacteria in Hard-To-Reach Places. J Bacteriol 2018; 200:e00540-18. [PMID: 30249702 PMCID: PMC6256019 DOI: 10.1128/jb.00540-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Chronic infections with slow-growing pathogens have plagued humans throughout history. However, assessing the identities and growth rates of bacteria in an infection has remained an elusive goal. Neubauer et al. (J. Bacteriol. 200:e00365-18, 2018, https://doi.org/10.1128/JB.00365-18) combine two cutting-edge approaches to make progress on both fronts: probing specific RNA molecules to assess the identity of actively transcribing microbes and measuring growth rates through incorporation of stable isotope labels. They found that growth rates of pathogens were relatively stable during antibacterial therapy. The article delves into a basic and unanswered question that gets to the heart of understanding infection: what are the microbial growth rates?
Collapse
Affiliation(s)
- Tara Gallagher
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Joann Phan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Katrine Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| |
Collapse
|
26
|
Refining the Application of Microbial Lipids as Tracers of Staphylococcus aureus Growth Rates in Cystic Fibrosis Sputum. J Bacteriol 2018; 200:JB.00365-18. [PMID: 30249710 DOI: 10.1128/jb.00365-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 02/04/2023] Open
Abstract
Chronic lung infections in cystic fibrosis (CF) could be treated more effectively if the effects of antimicrobials on pathogens in situ were known. Here, we compared changes in the microbial community composition and pathogen growth rates in longitudinal studies of seven pediatric CF patients undergoing intravenous antibiotic administration during pulmonary exacerbations. The microbial community composition was determined by counting rRNA with NanoString DNA analysis, and growth rates were obtained by incubating CF sputum with heavy water and tracing incorporation of deuterium into two branched-chain ("anteiso") fatty acids (a-C15:0 and a-C17:0) using gas chromatography-mass spectrometry (GC/MS). Prior to this study, both lipids were thought to be specific for Staphylococcaceae; hence, their isotopic enrichment was interpreted as a growth proxy for Staphylococcus aureus Our experiments revealed, however, that Prevotella is also a relevant microbial producer of a-C17:0 fatty acid in some CF patients; thus, deuterium incorporation into these lipids is better interpreted as a more general pathogen growth rate proxy. Even accounting for a small nonmicrobial background source detected in some patient samples, a-C15:0 fatty acid still appears to be a relatively robust proxy for CF pathogens, revealing a median generation time of ∼1.5 days, similar to prior observations. Contrary to our expectation, pathogen growth rates remained relatively stable throughout exacerbation treatment. We suggest two straightforward "best practices" for application of stable-isotope probing to CF sputum metabolites: (i) parallel determination of microbial community composition in CF sputum using culture-independent tools and (ii) assessing background levels of the diagnostic metabolite.IMPORTANCE In chronic lung infections, populations of microbial pathogens change and mature in ways that are often unknown, which makes it challenging to identify appropriate treatment options. A promising tool to better understand the physiology of microorganisms in a patient is stable-isotope probing, which we previously developed to estimate the growth rates of S. aureus in cystic fibrosis (CF) sputum. Here, we tracked microbial communities in a cohort of CF patients and found that anteiso fatty acids can also originate from other sources in CF sputum. This awareness led us to develop a new workflow for the application of stable-isotope probing in this context, improving our ability to estimate pathogen generation times in clinical samples.
Collapse
|
27
|
Acosta N, Heirali A, Somayaji R, Surette MG, Workentine ML, Sibley CD, Rabin HR, Parkins MD. Sputum microbiota is predictive of long-term clinical outcomes in young adults with cystic fibrosis. Thorax 2018; 73:1016-1025. [PMID: 30135091 DOI: 10.1136/thoraxjnl-2018-211510] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Complex polymicrobial communities infect cystic fibrosis (CF) lower airways. Generally, communities with low diversity, dominated by classical CF pathogens, associate with worsened patient status at sample collection. However, it is not known if the microbiome can predict future outcomes. We sought to determine if the microbiome could be adapted as a biomarker for patient prognostication. METHODS We retrospectively assessed prospectively collected sputum from a cohort of 104 individuals aged 18-22 to determine factors associated with progression to early end-stage lung disease (eESLD; death/transplantation <25 years) and rapid pulmonary function decline (>-3%/year FEV1 over the ensuing 5 years). Illumina MiSeq paired-end sequencing of the V3-V4 region of the 16S rRNA was used to define the airway microbiome. RESULTS Based on the primary outcome analysed, 17 individuals (16%) subsequently progressed to eESLD. They were more likely to have sputum with low alpha diversity, dominated by specific pathogens including Pseudomonas. Communities with abundant Streptococcus were observed to be protective. Microbial communities clustered together by baseline lung disease stage and subsequent progression to eESLD. Multivariable analysis identified baseline lung function and alpha diversity as independent predictors of eESLD. For the secondary outcomes, 58 and 47 patients were classified as rapid progressors based on absolute and relative definitions of lung function decline, respectively. Patients with low alpha diversity were similarly more likely to be classified as experiencing rapid lung function decline over the ensuing 5 years when adjusted for baseline lung function. CONCLUSIONS We observed that the diversity of microbial communities in CF airways is predictive of progression to eESLD and disproportionate lung function decline and may therefore represent a novel biomarker.
Collapse
Affiliation(s)
- Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Alya Heirali
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael G Surette
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada.,Department of Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Christopher D Sibley
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
28
|
Characteristics and outcomes of oral antibiotic treated pulmonary exacerbations in children with cystic fibrosis. J Cyst Fibros 2018; 17:760-768. [PMID: 29921503 PMCID: PMC7105204 DOI: 10.1016/j.jcf.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/24/2022]
Abstract
Background Pulmonary exacerbations (PEx) in children with cystic fibrosis (CF) are frequently treated in the outpatient setting with oral antibiotics. However, little is known about the characteristics of PEx managed on an outpatient basis and the effectiveness of oral antibiotic therapy. We sought to prospectively evaluate clinical and laboratory changes associated with oral antibiotic treatment for PEx. Methods Children with CF between 8 and 18 years of age prescribed two weeks of oral antibiotics for a PEx were eligible to enroll. The study consisted of a visit within 48 h of starting antibiotics and a second visit within one week of antibiotic completion. Twenty-eight participants were evaluated by exacerbation score, quality of life measurements, lung function, sputum microbiology and inflammation. Results Oral antibiotic treatment was associated with a significant improvement in exacerbation score and quality of life measured by the CF Questionnaire-Revised (CFQ-R) respiratory domain. Following treatment, forced expiratory volume in 1 s (FEV1) % predicted increased [median (range)] 9% (−8%, 31%), and 22 (81%) subjects returned to 90% or higher of baseline FEV1. Bacterial density of the primary organism identified on sputum culture decreased significantly with a median (range) decrease of 0.8 log10 cfu/mL (−8 log10, 2 log10, p = 0.03). Sputum neutrophil elastase [−37 μg/mL (−464, 272), p = 0.02] and IL-1β [−2.8 × 103μg/mL (−6.9 × 104, 3.3 × 104), p = 0.03] decreased significantly following treatment in this cohort. Conclusions Treatment of PEx with oral antibiotics was associated with measurable improvements in patient reported outcomes, lung function, bacterial density and sputum inflammatory markers.
Collapse
|
29
|
The Evolving Cystic Fibrosis Microbiome: A Comparative Cohort Study Spanning 16 Years. Ann Am Thorac Soc 2018; 14:1288-1297. [PMID: 28541746 DOI: 10.1513/annalsats.201609-668oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE The cystic fibrosis (CF) airways are infected with a diverse polymicrobial community. OBJECTIVES Understanding how changes in the CF microbiome have occurred over time, similar to the observed changes in the prevalence of cultured pathogens, is key in understanding the microbiome's role in disease. METHODS Drawing from a prospectively collected and maintained sputum biobank, we identified 45 patients with sputum samples collected between the ages of 18 and 21 years in three successive cohorts of adults transitioning to our CF clinic: A (1997-2000), B (2004-2007), and C (2010-2013). Patient demographics, clinical status, and medications were collected from detailed chart review. Microbial communities were assessed by Ilumina MiSeq sequencing of the variable 3 (V3) region of the 16S rDNA. RESULTS The three cohorts were similar with respect to baseline demographics. There was a trend toward improved health and use of disease-modifying therapies in each successive cohort. Shannon diversity increased in the most recent cohort, suggesting an increase in the diversity of organisms between cohorts. Furthermore, the proportion of samples with Pseudomonas-dominated communities decreased over time, whereas Streptococcus increased. Although β-diversity was associated with transition cohort, the greatest predictor of diversity remained lung function. Furthermore, core microbiome constituents were preserved across cohorts. CONCLUSIONS Modest changes in the composition and structure of the microbiome of three successive cohorts of young adults with CF were observed, occurring in parallel with successive improvements in clinical status. Importantly, however, the core microbiome constituents were preserved across cohorts.
Collapse
|
30
|
Skolnik K, Quon BS. Recent advances in the understanding and management of cystic fibrosis pulmonary exacerbations. F1000Res 2018; 7. [PMID: 29862015 PMCID: PMC5954331 DOI: 10.12688/f1000research.13926.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/09/2018] [Indexed: 11/24/2022] Open
Abstract
Pulmonary exacerbations are common events in cystic fibrosis and have a profound impact on quality of life, morbidity, and mortality. Pulmonary exacerbation outcomes remain poor and a significant proportion of patients fail to recover their baseline lung function despite receiving aggressive treatment with intravenous antibiotics. This focused review provides an update on some of the recent advances that have taken place in our understanding of the epidemiology, pathophysiology, diagnosis, and management of pulmonary exacerbations in cystic fibrosis as well as direction for future study.
Collapse
Affiliation(s)
- Kate Skolnik
- Division of Respirology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bradley S Quon
- Centre for Heart Lung Innovation, St Paul's Hospital, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
31
|
Woo TE, Lim R, Surette MG, Waddell B, Bowron JC, Somayaji R, Duong J, Mody CH, Rabin HR, Storey DG, Parkins MD. Epidemiology and natural history of Pseudomonas aeruginosa airway infections in non-cystic fibrosis bronchiectasis. ERJ Open Res 2018; 4:00162-2017. [PMID: 29930949 PMCID: PMC6004520 DOI: 10.1183/23120541.00162-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/13/2018] [Indexed: 01/20/2023] Open
Abstract
The natural history and epidemiology of Pseudomonas aeruginosa infections in non-cystic fibrosis (non-CF) bronchiectasis is not well understood. As such it was our intention to determine the evolution of airway infection and the transmission potential of P. aeruginosa in patients with non-CF bronchiectasis. A longitudinal cohort study was conducted from 1986-2011 using a biobank of prospectively collected isolates from patients with non-CF bronchiectasis. Patients included were ≥18 years old and had ≥2 positive P. aeruginosa cultures over a minimum 6-month period. All isolates obtained at first and most recent clinical encounters, as well as during exacerbations, that were morphologically distinct on MacConkey agar were genotyped by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). A total of 203 isolates from 39 patients were analysed. These were compared to a large collection of globally epidemic and local CF strains, as well as non-CF isolates. We identified four patterns of infection in non-CF bronchiectasis including: 1) persistence of a single strain (n=26; 67%); 2) strain displacement (n=8; 20%); 3) temporary disruption (n=3; 8%); and 4) chaotic airway infection (n=2; 5%). Patterns of infection were not significant predictors of rates of lung function decline or progression to end-stage disease and acquisition of new strains did not associate with the occurrence of exacerbations. Rarely, non-CF bronchiectasis strains with similar pulsotypes were observed in CF and non-CF controls, but no CF epidemic strains were observed. While rare shared strains were observed in non-CF bronchiectasis, whole-genome sequencing refuted patient-patient transmission. We observed a higher incidence of strain-displacement in our patient cohort compared to those observed in CF studies, although this did not impact on outcomes.
Collapse
Affiliation(s)
- Taylor E. Woo
- Dept of Biological Sciences, University of Calgary, Calgary, Canada
- Dept of Medicine, University of Calgary, Calgary, Canada
| | - Rachel Lim
- Dept of Medicine, University of Calgary, Calgary, Canada
| | - Michael G. Surette
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
- Dept of Medicine and Dept of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Barbara Waddell
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Joel C. Bowron
- Dept of Biological Sciences, University of Calgary, Calgary, Canada
| | - Ranjani Somayaji
- Dept of Medicine, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Jessica Duong
- Dept of Biological Sciences, University of Calgary, Calgary, Canada
| | - Christopher H. Mody
- Dept of Medicine, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Harvey R. Rabin
- Dept of Medicine, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Douglas G. Storey
- Dept of Biological Sciences, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Michael D. Parkins
- Dept of Medicine, University of Calgary, Calgary, Canada
- Dept of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| |
Collapse
|
32
|
The lung microbiome. Emerg Top Life Sci 2017; 1:313-324. [PMID: 33525774 DOI: 10.1042/etls20170043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/31/2017] [Accepted: 09/29/2017] [Indexed: 12/17/2022]
Abstract
Historically, our understanding of lung microbiology has relied on insight gained through culture-based diagnostic approaches that employ selective culture conditions to isolate specific pathogens. The relatively recent development of culture-independent microbiota-profiling techniques, particularly 16S rRNA (ribosomal ribonucleic acid) gene amplicon sequencing, has enabled more comprehensive characterisation of the microbial content of respiratory samples. The widespread application of such techniques has led to a fundamental shift in our view of respiratory microbiology. Rather than a sterile lung environment that can become colonised by microbes during infection, it appears that a more nuanced balance exists between what we consider respiratory health and disease, mediated by mechanisms that influence the clearance of microbes from the lungs. Where airway defences are compromised, the ongoing transient exposure of the lower airways to microbes can lead to the establishment of complex microbial communities within the lung. Importantly, the characteristics of these communities, and the manner in which they influence lung pathogenesis, can be very different from those of their constituent members when viewed in isolation. The lung microbiome, a construct that incorporates microbes, their genetic material, and the products of microbial genes, is increasingly central to our understanding of the regulation of respiratory physiology and the processes that underlie lung pathogenesis.
Collapse
|
33
|
Skolnik K, Nguyen A, Thornton CS, Waddell B, Williamson T, Rabin HR, Parkins MD. Group B streptococcus (GBS) is an important pathogen in human disease- but what about in cystic fibrosis? BMC Infect Dis 2017; 17:660. [PMID: 28969684 PMCID: PMC5625721 DOI: 10.1186/s12879-017-2729-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is a common commensal capable of causing severe invasive infections. Most GBS infections occur in neonates (often as pneumonia). GBS can also cause infection in adults with diabetes and other immunological impairments but rarely leads to pneumonia in adults. GBS has occasionally been found in the sputum of Cystic Fibrosis (CF) patients, an inherited condition known for progressive lung disease. However, the epidemiology and clinical significance of GBS in CF are not understood. METHODS We retrospectively reviewed a large single-centre adult CF population with an associated comprehensive, prospectively collected bacterial biobank beginning in 1978. We identified all individuals with GBS isolated from their sputum on at least one occasion. The primary outcome was risk of pulmonary exacerbation (PEx) at the time of the first GBS isolate compared to the preceding visit. Secondary outcomes included determining: prevalence of GBS infection in a CF population, whether GBS infections where transient or persistent, whether GBS strains were shared among patients, change in % predicted FEV1 at the time of GBS isolate compared to the preceding visit, PEx frequency after the first GBS isolate, change in % predicted FEV1 after the first GBS isolate, and complications of GBS infection. RESULTS GBS was uncommon, infecting 3.5% (11/318) adults within our cohort. Only three individuals developed persistent GBS infection, all lasting > 12 months. There were no shared GBS strains among patients. PEx risk was not increased at initial GBS isolation (RR 5.0, CI 0.69-36.1, p=0.10). In the two years preceding initial GBS isolation compared to the two following years, there was no difference in PEx frequency (median 2, range 0-4 vs 1, range 0 to 5, respectively, p=0.42) or lung function decline, as measured by % predicted FEV1, (median -1.0%, range -19 to 7% vs median -6.0%, range -18 to 22%, p=0.86). There were no invasive GBS infections. CONCLUSION In adults with CF, GBS is uncommon and is generally a transient colonizer of the lower airways. Despite the presence of structural lung disease and impaired innate immunity in CF, incident GBS infection did not increase PEx risk, PEx frequency, rate of lung function decline, or other adverse clinical outcomes.
Collapse
Affiliation(s)
- Kate Skolnik
- Department of Medicine, University of Calgary, 7007 14th Street SW, Calgary, AB, T2V 1P9, Canada. .,Department of Community Health Sciences, University of Calgary, Third Floor TRW Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada.
| | - Austin Nguyen
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Christina S Thornton
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Barbara Waddell
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tyler Williamson
- Department of Community Health Sciences, University of Calgary, Third Floor TRW Building, 3280 Hospital Drive NW, Calgary, AB, T2N 4Z6, Canada
| | - Harvey R Rabin
- Department of Medicine, University of Calgary, 7007 14th Street SW, Calgary, AB, T2V 1P9, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Michael D Parkins
- Department of Medicine, University of Calgary, 7007 14th Street SW, Calgary, AB, T2V 1P9, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
34
|
Stefani S, Campana S, Cariani L, Carnovale V, Colombo C, Lleo MM, Iula VD, Minicucci L, Morelli P, Pizzamiglio G, Taccetti G. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol 2017; 307:353-362. [PMID: 28754426 DOI: 10.1016/j.ijmm.2017.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/15/2023] Open
Abstract
Multidrug-resistant (MDR) Pseudomonas aeruginosa is an important issue for physicians who take care of patients with cystic fibrosis (CF). Here, we review the latest research on how P. aeruginosa infection causes lung function to decline and how several factors contribute to the emergence of antibiotic resistance in P. aeruginosa strains and influence the course of the infection course. However, many aspects of the practical management of patients with CF infected with MDR P. aeruginosa are still to be established. Less is known about the exact role of susceptibility testing in clinical strategies for dealing with resistant infections, and there is an urgent need to find a tool to assist in choosing the best therapeutic strategy for MDR P. aeruginosa infection. One current perception is that the selection of antibiotic therapy according to antibiogram results is an important component of the decision-making process, but other patient factors, such as previous infection history and antibiotic courses, also need to be evaluated. On the basis of the known issues and the best current data on respiratory infections caused by MDR P. aeruginosa, this review provides practical suggestions to optimize the diagnostic and therapeutic management of patients with CF who are infected with these pathogens.
Collapse
Affiliation(s)
- S Stefani
- Department of Biomedical and Biotechnological Sciences, Division of Microbiology, University of Catania, Catania, Italy.
| | - S Campana
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| | - L Cariani
- Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - V Carnovale
- Department of Translational Medical Sciences, Cystic Fibrosis Center, University "Federico II", Naples, Italy
| | - C Colombo
- Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - V D Iula
- Department of Molecular Medicine and Medical Biotechnology, Federico II University Medical School, Naples, Italy
| | - L Minicucci
- Microbiology Laboratory, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - P Morelli
- Department of Paediatric, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - G Pizzamiglio
- Respiratory Disease Department, Cystic Fibrosis Center Adult Section, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - G Taccetti
- Department of Paediatric Medicine, Cystic Fibrosis Centre, Anna Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
35
|
Heirali AA, Workentine ML, Acosta N, Poonja A, Storey DG, Somayaji R, Rabin HR, Whelan FJ, Surette MG, Parkins MD. The effects of inhaled aztreonam on the cystic fibrosis lung microbiome. MICROBIOME 2017; 5:51. [PMID: 28476135 PMCID: PMC5420135 DOI: 10.1186/s40168-017-0265-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/12/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Aztreonam lysine for inhalation (AZLI) is an inhaled antibiotic used to treat chronic Pseudomonas aeruginosa infection in CF. AZLI improves lung function and quality of life, and reduces exacerbations-improvements attributed to its antipseudomonal activity. Given the extremely high aztreonam concentrations achieved in the lower airways by nebulization, we speculate this may extend its spectrum of activity to other organisms. As such, we sought to determine if AZLI affects the CF lung microbiome and whether community constituents can be used to predict treatment responsiveness. METHODS Patients were included if they had chronic P. aeruginosa infection and repeated sputum samples collected before and after AZLI. Sputum DNA was extracted, and the V3-hypervariable region of the 16S ribosomal RNA (rRNA) gene amplified and sequenced. RESULTS Twenty-four patients naïve to AZLI contributed 162 samples. The cohort had a median age of 37.1 years, and a median FEV1 of 44% predicted. Fourteen patients were a priori defined as responders for achieving ≥3% FEV1 improvement following initiation. No significant changes in alpha diversity were noted following AZLI. Furthermore, beta diversity demonstrated clustering with respect to patients, but had no association with AZLI use. However, we did observe a decline in the relative abundance of several individual operational taxonomic units (OTUs) following AZLI initiation suggesting that specific sub-populations of organisms may be impacted. Patients with higher abundance of Staphylococcus and anaerobic organisms including Prevotella and Fusobacterium were less likely to respond to therapy. CONCLUSIONS Results from our study suggest potential alternate/additional mechanisms by which AZLI functions. Moreover, our study suggests that the CF microbiota may be used as a biomarker to predict patient responsiveness to therapy suggesting the microbiome may be harnessed for the personalization of therapies.
Collapse
Affiliation(s)
- Alya A Heirali
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
| | | | - Nicole Acosta
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
| | - Ali Poonja
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
| | - Douglas G Storey
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
- Department of Biological Sciences, The University of Calgary, Calgary, AB, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
- Department of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
- Department of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada
| | - Fiona J Whelan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael G Surette
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, AB, Canada.
- Department of Medicine, The University of Calgary, 3330 Hospital Drive, NW, Calgary, AB, Canada.
| |
Collapse
|
36
|
Prevalence and Outcomes of Achromobacter Species Infections in Adults with Cystic Fibrosis: a North American Cohort Study. J Clin Microbiol 2017; 55:2074-2085. [PMID: 28446570 DOI: 10.1128/jcm.02556-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
Achromobacter species are increasingly being detected in cystic fibrosis (CF) patients, with an unclear epidemiology and impact. We studied a cohort of patients attending a Canadian adult CF clinic who had positive sputum cultures for Achromobacter species in the period from 1984 to 2013. Infection was categorized as transient or persistent (≥50% positive cultures for 1 year). Those with persistent infection were matched 2:1 with age-, sex-, and time-matched controls without a history of Achromobacter infection, and mixed-effects models were used to assess pulmonary exacerbation (PEx) frequency and lung function decline. Isolates from a biobank were retrospectively assessed, identified to the species level by nrdA sequencing, and genotyped using pulsed-field gel electrophoresis (PFGE). Thirty-four patients (11% of those in our clinic), with a median age of 24 years (interquartile range [IQR], 20.3 to 29.8 years), developed Achromobacter infection. Ten patients (29%) developed persistent infection. Persistence did not denote permanence, as most patients ultimately cleared infection, often after years. Patients were more likely to experience PEx at incident isolation than at prior or subsequent visits (odds ratio [OR], 2.7 [95% confidence interval {CI}, 1.2 to 6.7]; P = 0.03). Following persistent infection, there was no difference in annual lung function decline (-1.08% [95% CI, -2.73 to 0.57%] versus -2.74% [95% CI, -4.02 to 1.46%]; P = 0.12) or the odds of PEx (OR, 1.21 [95% CI, 0.45 to 3.28]; P = 0.70). Differential virulence among Achromobacter species was not observed, and no cases of transmission occurred. We demonstrated that incident Achromobacter infection was associated with a greater risk of PEx; however, neither transient nor chronic infection was associated with a worsened long-term prognosis. Large, multicenter studies are needed to clarify the clinical impact, natural history, and transmissibility of Achromobacter.
Collapse
|
37
|
Whelan FJ, Heirali AA, Rossi L, Rabin HR, Parkins MD, Surette MG. Longitudinal sampling of the lung microbiota in individuals with cystic fibrosis. PLoS One 2017; 12:e0172811. [PMID: 28253277 PMCID: PMC5333848 DOI: 10.1371/journal.pone.0172811] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/09/2017] [Indexed: 02/01/2023] Open
Abstract
Cystic fibrosis (CF) manifests in the lungs resulting in chronic microbial infection. Most morbidity and mortality in CF is due to cycles of pulmonary exacerbations-episodes of acute inflammation in response to the lung microbiome-which are difficult to prevent and treat because their cause is not well understood. We hypothesized that longitudinal analyses of the bacterial component of the CF lung microbiome may elucidate causative agents within this community for pulmonary exacerbations. In this study, 6 participants were sampled thrice-weekly for up to one year. During sampling, sputum, and data (antibiotic usage, spirometry, and symptom scores) were collected. Time points were categorized based on relation to exacerbation as Stable, Intermediate, and Treatment. Retrospectively, a subset of were interrogated via 16S rRNA gene sequencing. When samples were examined categorically, a significant difference between the lung microbiota in Stable, Intermediate, and Treatment samples was observed in a subset of participants. However, when samples were examined longitudinally, no correlations between microbial composition and collected data (antibiotic usage, spirometry, and symptom scores) were observed upon exacerbation onset. In this study, we identified no universal indicator within the lung microbiome of exacerbation onset but instead showed that changes to the CF lung microbiome occur outside of acute pulmonary episodes and are patient-specific.
Collapse
Affiliation(s)
- Fiona J. Whelan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Alya A. Heirali
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, Canada
| | - Laura Rossi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Harvey R. Rabin
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, Canada
- Department of Medicine, The University of Calgary, Calgary, Canada
| | - Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, Canada
- Department of Medicine, The University of Calgary, Calgary, Canada
| | - Michael G. Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Department of Microbiology, Immunology and Infectious Diseases, The University of Calgary, Calgary, Canada
- Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
38
|
Poonja A, Heirali A, Workentine M, Storey DG, Somayaji R, Rabin HR, Surette MG, Parkins MD. Effect of freezing sputum on Pseudomonas aeruginosa population heterogeneity. J Cyst Fibros 2017; 16:353-357. [PMID: 28126444 DOI: 10.1016/j.jcf.2017.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa develops profound population heterogeneity in CF airways. How changes in these populations relate to clinical status is unknown. In order to facilitate this understanding, frequent sampling of this community is required. To determine if the collection and storage of sputum at home may pose a viable option, we collected sputum from ten patients. Sputum samples were partitioned in two, with half immediately processed on MacConkey agar and half assessed after freezing for one week in a home-freezer. From each sample, 88 isolates were assessed for antibiotic susceptibility and virulence factor production. Freezing resulted in a 103CFU/ml drop in P. aeruginosa. However, across 1760 isolates, no consistent difference in either antibiotic susceptibility nor virulence factors was observed suggesting freezing induced indiscriminate killing. Home collection and freezing of sputum will enable frequent and convenient assessment of P. aeruginosa population dynamics in CF.
Collapse
Affiliation(s)
- Ali Poonja
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada
| | - Alya Heirali
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada
| | - Matthew Workentine
- Department of Veterinary Sciences, University of Calgary, Calgary, AB, Canada
| | - Douglas G Storey
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada; Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ranjani Somayaji
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada; Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Harvey R Rabin
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada
| | - Michael G Surette
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada; Department of Biochemistry, McMaster University, Hamilton, ON, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Canada; Department of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
39
|
Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease. Transl Res 2017; 179:84-96. [PMID: 27559681 DOI: 10.1016/j.trsl.2016.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/01/2023]
Abstract
Significant advances in culture-independent methods have expanded our knowledge about the diversity of the lung microbial environment. Complex microorganisms and microbial communities can now be identified in the distal airways in a variety of respiratory diseases, including cystic fibrosis (CF) and the posttransplantation lung. Although there are significant methodologic concerns about sampling the lung microbiome, several studies have now shown that the microbiome of the lower respiratory tract is distinct from the upper airway. CF is a disease characterized by chronic airway infections that lead to significant morbidity and mortality. Traditional culture-dependent methods have identified a select group of pathogens that cause exacerbations in CF, but studies using bacterial 16S rRNA gene-based microarrays have shown that the CF microbiome is an intricate and dynamic bacterial ecosystem, which influences both host immune health and disease pathogenesis. These microbial communities can shift with external influences, including antibiotic exposure. In addition, there have been a number of studies suggesting a link between the gut microbiome and respiratory health in CF. Compared with CF, there is significantly less knowledge about the microbiome of the transplanted lung. Risk factors for bronchiolitis obliterans syndrome, one of the leading causes of death, include microbial infections. Lung transplant patients have a unique lung microbiome that is different than the pretransplanted microbiome and changes with time. Understanding the host-pathogen interactions in these diseases may suggest targeted therapies and improve long-term survival in these patients.
Collapse
|
40
|
Clinical Insights into Pulmonary Exacerbations in Cystic Fibrosis from the Microbiome. What Are We Missing? Ann Am Thorac Soc 2016; 12 Suppl 2:S207-11. [PMID: 26595741 DOI: 10.1513/annalsats.201506-353aw] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pulmonary exacerbations account for much of the decrease in lung function and consequently most of the morbidity and mortality in patients with cystic fibrosis. These events are driven by an acute inflammatory response to infection. Recent technological advancements in molecular profiling techniques have allowed for a proliferation of microbiome studies of the lower airways of patients with cystic fibrosis. But these methods may not provide a comprehensive and unbiased measure of the lung microbiota in these patients and molecular profiles do not always translate to quantitative microbiology. Furthermore, these studies have not yet been able to provide much in the way of mechanistic insights into exacerbations or to guide patient therapy. We propose a model in which pulmonary exacerbations may be driven by an active subpopulation of the lung microbiota, which may represent only a small portion of the microbiota measured in a clinical sample. Methodology should be focused on the ultimate goal, which is to use the best available approaches to provide accurate quantitative measures of the microbiome to inform clinical decisions and provide rapid assessment of treatment efficacy. These strategies would be relevant to other chronic lung diseases such as chronic obstructive pulmonary disease and neutrophilic asthma.
Collapse
|
41
|
Tetz G, Vikina D, Tetz V. Antimicrobial activity of mul-1867, a novel antimicrobial compound, against multidrug-resistant Pseudomonas aeruginosa. Ann Clin Microbiol Antimicrob 2016; 15:19. [PMID: 27001074 PMCID: PMC4802586 DOI: 10.1186/s12941-016-0134-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/14/2016] [Indexed: 02/07/2023] Open
Abstract
Background There is an urgent need for new antimicrobial compounds to treat various lung infections caused by multidrug-resistant Pseudomonas aeruginosa (MDR-PA). Methods We studied the potency of Mul-1867 against MDR-PA isolates from patients with cystic fibrosis, chronic obstructive pulmonary disease, and ventilator-associated pneumonia. The minimal inhibitory concentrations (MICs) and minimum biofilm eliminating concentrations (MBECs), defined as the concentrations of drug that kill 50 % (MBEC50), 90 % (MBEC90), and 100 % (MBEC100) of the bacteria in preformed biofilms, were determined by using the broth macrodilution method. Results Mul-1867 exhibited significant activity against MDR-PA and susceptible control strains, with MICs ranging from 1.0 to 8.0 µg/mL. Mul-1867 also possesses anti-biofilm activity against mucoid and non-mucoid 24-h-old MDR-PA biofilms. The MBEC50 value was equal to onefold the MIC. The MBEC90 value ranged from two to fourfold the MIC. Moreover, Mul-1867 completely eradicated mature biofilms at the concentrations tested, with MBEC100 values ranging between 16- and 32-fold the MIC. Mul-1867 was non-toxic to Madin-Darby canine kidney (MDCK) cells at concentrations up to 256 µg/mL. Conclusion Overall, these data indicate that Mul-1867 is a promising locally acting antimicrobial for the treatment and prevention of P. aeruginosa infections.
Collapse
Affiliation(s)
- George Tetz
- TGV-Laboratories LLC, 303 5th avenue, # 2012, New York, NY, 10016, USA.
| | - Daria Vikina
- Institute of Human Microbiology, New York, NY, 10016, USA
| | - Victor Tetz
- Institute of Human Microbiology, New York, NY, 10016, USA
| |
Collapse
|
42
|
Duong J, Booth SC, McCartney NK, Rabin HR, Parkins MD, Storey DG. Phenotypic and Genotypic Comparison of Epidemic and Non-Epidemic Strains of Pseudomonas aeruginosa from Individuals with Cystic Fibrosis. PLoS One 2015; 10:e0143466. [PMID: 26599104 PMCID: PMC4657914 DOI: 10.1371/journal.pone.0143466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/05/2015] [Indexed: 11/18/2022] Open
Abstract
Epidemic strains of Pseudomonas aeruginosa have been found worldwide among the cystic fibrosis (CF) patient population. Using pulse-field gel electrophoresis, the Prairie Epidemic Strain (PES) has recently been found in one-third of patients attending the Calgary Adult CF Clinic in Canada. Using multi-locus sequence typing, PES isolates from unrelated patients were found to consistently have ST192. Though most patients acquired PES prior to enrolling in the clinic, some patients were observed to experience strain replacement upon transitioning to the clinic whereby local non-epidemic P. aeruginosa isolates were displaced by PES. Here we genotypically and phenotypically compared PES to other P. aeruginosa epidemic strains (OES) found around the world as well as local non-epidemic CF P. aeruginosa isolates in order to characterize PES. Since some epidemic strains are associated with worse clinical outcomes, we assessed the pathogenic potential of PES to determine if these isolates are virulent, shared properties with OES, and if its phenotypic properties may offer a competitive advantage in displacing local non-epidemic isolates during strain replacement. As such, we conducted a comparative analysis using fourteen phenotypic traits, including virulence factor production, biofilm formation, planktonic growth, mucoidy, and antibiotic susceptibility to characterize PES, OES, and local non-epidemic isolates. We observed that PES and OES could be differentiated from local non-epidemic isolates based on biofilm growth with PES isolates being more mucoid. Pairwise comparisons indicated that PES produced significantly higher levels of proteases and formed better biofilms than OES but were more susceptible to antibiotic treatment. Amongst five patients experiencing strain replacement, we found that super-infecting PES produced lower levels of proteases and elastases but were more resistant to antibiotics compared to the displaced non-epidemic isolates. This comparative analysis is the first to be completed on a large scale between groups of epidemic and non-epidemic CF P. aeruginosa isolates.
Collapse
Affiliation(s)
- Jessica Duong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Sean C. Booth
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nathan K. McCartney
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Harvey R. Rabin
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Douglas G. Storey
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
43
|
Tiddens HAWM, Stick SM, Wild JM, Ciet P, Parker GJM, Koch A, Vogel-Claussen J. Respiratory tract exacerbations revisited: ventilation, inflammation, perfusion, and structure (VIPS) monitoring to redefine treatment. Pediatr Pulmonol 2015; 50 Suppl 40:S57-65. [PMID: 26335955 DOI: 10.1002/ppul.23266] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022]
Abstract
For cystic fibrosis (CF) patients older than 6 years there are convincing data that suggest respiratory tract exacerbations (RTE) play an important role in the progressive loss of functional lung tissue. There is a poor understanding of the pathobiology of RTE and whether specific treatment of RTE reduces lung damage in the long term. In addition, there are limited tools available to measure the various components of CF lung disease and responses to therapy. Therefore, in order to better understand the impact of RTE on CF lung disease we need to develop sensitive measures to characterize RTE and responses to treatment; and improve our understanding of structure-function changes during treatment of RTE. In this paper we review our current knowledge of the impact of RTE on the progression of lung disease and identify strategies to improve our understanding of the pathobiology of RTE. By improving our knowledge regarding RTE in CF we will be better positioned to develop approaches to treatment that are individualized and that can prevent permanent structural damage. We suggest the development of a ventilation, perfusion, inflammation and structure (VIPS)-MRI suite that supplies the clinician with data on ventilation, inflammation, perfusion, and structure in one MRI session. VIPS-MRI could be an important step to better understand the factors that contribute to and limit treatment efficacy of RTE.
Collapse
Affiliation(s)
- Harm A W M Tiddens
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Radiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Stephen M Stick
- Telethon Institute for Child Health Research, The University of Western Australia, Perth, Australia.,School of Paediatrics and Child Health Research, The University of Western Australia, Perth, Australia
| | - Jim M Wild
- Department of Academic Radiology, University of Sheffield, UK
| | - Pierluigi Ciet
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Radiology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Geoffrey J M Parker
- Centre for Imaging Sciences, The University of Manchester, Manchester, UK.,Biomedical Imaging Institute, The University of Manchester, Manchester, UK.,Bioxydyn Limited, Manchester, UK
| | - Armin Koch
- Department of Biometry, Hannover Medical School, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|