1
|
Fuzi M. The fitness connection of antibiotic resistance. Front Microbiol 2025; 16:1556656. [PMID: 40276228 PMCID: PMC12020126 DOI: 10.3389/fmicb.2025.1556656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/12/2025] [Indexed: 04/26/2025] Open
Abstract
More than three decades ago multidrug-resistant (MDR) clones of the pathogens: Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Clostridioides difficile, Enterococcus faecium, Pseudomonas aeruginosa and Acinetobacter baumannii have started to disseminate across wide geographical areas. A characteristic feature of all these MDR lineages is the carriage of some mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase and topoisomerase IV which besides conferring resistance to fluoroquinolones are associated with a fitness benefit. Several lines of evidence strongly suggest that extra fitness conferred by these mutations facilitated the dissemination of the international MDR lineages. MDR pathogens require extra energy to cover the fitness cost conferred by the excess antibiotic resistance gene cargo. However, extra energy generated by upgraded metabolic activity was demonstrated to increase the uptake of antibiotics enhancing susceptibility. Accordingly, MDR bacteria need additional positive fitness schemes which, similarly to the QRDR advantage, will not compromise resistance. Some of these, not clone-specific effects are large genomes, the carriage of low-cost plasmids, the transfer of plasmid genes to the chromosome, the application of weak promoters in integrons and various techniques for the economic control of the activity of the integrase enzyme including a highly sophisticated system in A. baumannii. These impacts - among others - will confer a fitness advantage promoting the spread of MDR pathogens. However, even the potential of extra fitness generated by the combined effect of various schemes is not without limit and virulence-related genes or less relevant antibiotic resistance gene cargoes will often be sacrificed to permit the acquisition of high-priority resistance determinants. Accordingly major MDR clone strains are usually less virulent than susceptible isolates. In summary, a fitness approach to the research of antibiotic resistance is very useful since the fitness status of MDR bacteria seem to profoundly impact the capacity to disseminate in the healthcare setting.
Collapse
Affiliation(s)
- Miklos Fuzi
- Independent Researcher, Seattle, WA, United States
| |
Collapse
|
2
|
Habibi N, Mustafa AS, Nasser K, Al-Obaid I, Alfouzan W, Uddin S, Khan MW. Genomic characterization and identification of multiple drug resistance genes in clinical isolates of Acinetobacter baumannii through whole genome sequencing. Mol Biol Rep 2025; 52:233. [PMID: 39954144 DOI: 10.1007/s11033-025-10353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Acinetobacter baumannii is a notorious nosocomial pathogen universally in healthcare settings. Its natural competent characteristics for genetic recombination are responsible for acquired antibiotic resistance and render it untreatable through commonly used antibiotics. Hence, characterizing the A. baumannii genomes for multidrug resistance carriage is of paramount importance. The study aimed to characterize the whole genome of clinical isolates of A. baumannii to identify specifically the types of antibiotic resistance genes, drug classes and mobile genetic elements. We also aimed to determine the significant multi-locus sequence tags (MLSTs). The phylogeny of the isolates was established with other clinical strains distributed globally. METHODS AND RESULTS Fifteen clinical isolates (isolated from tracheal secretion, urine and bronchoalveolar lavage) were subjected to whole genome sequencing. Raw sequences were assembled using SPAdes and species were identified using KmerFinder 3.2. The assembled genomes were annotated using the Prokka v1.14.6. Resfinder 4.6.0 was used to determine antibiotic resistance genes. The sequences were aligned against seven housekeeping genes aka sequence tags (STs) available within the MLST database (v 2.0.9). MobileGeneticElement finder (v1.0.3) were used for profiling mobile genetic elements associated with the antibiotic resistance genes. The genomes of nosocomial A. baumannii were assembled with an average N50 of 23,480 and GC content of 38%. There were approximately 3700 CDs, 53 tRNA and 3 rRNA. About 80% of the isolates were ST2 type. The genomes possessed antibiotic resistance genes (n = 24) belonging to 17 drug classes. The predicted phenotype was multidrug resistant. Among the mobile genetic elements, 12 insertion sequences and 2 composite transposons were also found. The mode of antibiotic resistance was mostly through antibiotic inactivation in all the isolates. CONCLUSIONS The results imply the occurrence of multidrug resistant genes in clinical isolates of A. baumannii strains in the healthcare settings of Kuwait. A more comprehensive survey should be undertaken for antimicrobial resistance monitoring on a regular basis for surveillance, contact tracing, and potential mitigation in clinical settings.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait City, Kuwait.
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Kother Nasser
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Inaam Al-Obaid
- Department of Medical Microbiology, Al Sabah Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Department of Medical Microbiology, Farwaniya Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Mohd Wasif Khan
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Lan M, Dongmei K, Guodong S, Haifeng Y, Guofeng C, Mengting C, Xiaoyun F. Risk factors for bacteremic pneumonia and mortality (28-day mortality) in patients with Acinetobacter baumannii bacteremia. BMC Infect Dis 2024; 24:448. [PMID: 38671347 PMCID: PMC11046916 DOI: 10.1186/s12879-024-09335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Patients infected with Acinetobacter baumannii (AB) bacteremia in hospital have high morbidity and mortality. We analyzed the clinical characteristics of pneumonia and nonpneumonia-related AB bloodstream infections (AB BSIs) and explored the possible independent risk factors for the incidence and prognosis of pneumonia-related AB BSIs. METHODS A retrospective monocentric observational study was performed. All 117 episodes of hospital-acquired AB bacteremia sorted into groups of pneumonia-related AB BSIs (n = 45) and nonpneumonia-related AB BSIs (n = 72) were eligible. Univariate/multivariate logistic regression analysis was used to explore the independent risk factors. The primary outcome was the antibiotic susceptibility in vitro of pneumonia-related AB BSIs group. The secondary outcome was the independent risk factor for the pneumonia-related AB BSIs group. RESULTS Among 117 patients with AB BSIs, the pneumonia-related group had a greater risk of multidrug resistant A. baumannii (MDRAB) infection (84.44%) and carbapenem-resistant A. baumannii (CRAB) infection (80%). Polymyxin, minocycline and amikacin had relatively high susceptibility rates (> 80%) in the nonpneumonia-related group. However, in the pneumonia-related group, only polymyxin had a drug susceptibility rate of over 80%. Univariate analysis showed that survival time (day), CRAB, MDRAB, length of hospital stay prior to culture, length of ICU stay prior to culture, immunocompromised status, antibiotics used prior to culture (n > = 3 types), endotracheal tube, fiberoptic bronchoscopy, PITT, SOFA and invasive interventions (n > = 3 types) were associated with pneumonia-related AB bacteremia. The multivariate logistic regression analysis revealed that recent surgery (within 1 mo) [P = 0.043; 0.306 (0.098-0.962)] and invasive interventions (n > = 3 types) [P = 0.021; 0.072 (0.008-0.671)] were independent risk factors related to pneumonia-related AB bacteremia. Multivariate logistic regression analysis revealed that length of ICU stay prior to culture [P = 0.009; 0.959 (0.930-0.990)] and recent surgery (within 1 mo) [P = 0.004; 0.260 (0.105-0.646)] were independent risk factors for mortality in patients with pneumonia-related AB bacteremia. The Kaplan‒Meier curve and the timing test showed that patients with pneumonia-related AB bacteremia had shorter survival time compared to those with nonpneumonia-related AB bacteremia. CONCLUSIONS Our study found that A. baumannii had a high rate of antibiotic resistance in vitro in the pneumonia-related bacteremia group, and was only sensitive to polymyxin. Recent surgery was a significantly independent predictor in patients with pneumonia-related AB bacteremia.
Collapse
Affiliation(s)
- Meng Lan
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Kang Dongmei
- International Medicine Depaterment, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Shen Guodong
- Anhui Province Key Laboratory of Geriatric Immunology and Nutrition Therapy, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yao Haifeng
- Information Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Cui Guofeng
- Anhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Chen Mengting
- Anhui Geriatric Institute, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, PR China
| | - Fan Xiaoyun
- Department of Geriatric Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230032, China.
| |
Collapse
|
4
|
Müller C, Reuter S, Wille J, Xanthopoulou K, Stefanik D, Grundmann H, Higgins PG, Seifert H. A global view on carbapenem-resistant Acinetobacter baumannii. mBio 2023; 14:e0226023. [PMID: 37882512 PMCID: PMC10746149 DOI: 10.1128/mbio.02260-23] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Carbapenem-resistant Acinetobacter baumannii are of increasing public health importance, as they are resistant to last-line antibiotics. International clones with well-characterized resistance genes dominate globally; however, locally, other lineages with different properties may be of importance to consider. This study investigated isolates from a broad geographic origin from 114 hospitals in 47 countries and from five world regions ensuring the greatest possible diversity in an organism known for its propensity for clonal epidemic spread and reflecting the current global epidemiology of carbapenem-resistant A. baumannii. In Latin America, a lineage different from other geographic regions circulates, with a different resistance gene profile. This knowledge is important to adjust local infection prevention measures. In a global world with migration and increasing use of antimicrobials, multidrug-resistant bacteria will continue to adapt and challenge our healthcare systems worldwide.
Collapse
Affiliation(s)
- Carina Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Medical Centre–University of Freiburg, Freiburg, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Kyriaki Xanthopoulou
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Danuta Stefanik
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
| | - Hajo Grundmann
- Institute for Infection Prevention and Hospital Epidemiology, Medical Centre–University of Freiburg, Freiburg, Germany
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Goldenfelsstr, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
5
|
Odih EE, Oaikhena AO, Underwood A, Hounmanou YMG, Oduyebo OO, Fadeyi A, Aboderin AO, Ogunleye VO, Argimón S, Akpunonu VN, Oshun PO, Egwuenu A, Okwor TJ, Ihekweazu C, Aanensen DM, Dalsgaard A, Okeke IN. High Genetic Diversity of Carbapenem-Resistant Acinetobacter baumannii Isolates Recovered in Nigerian Hospitals in 2016 to 2020. mSphere 2023; 8:e0009823. [PMID: 37067411 PMCID: PMC10286719 DOI: 10.1128/msphere.00098-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/22/2023] [Indexed: 04/18/2023] Open
Abstract
Acinetobacter baumannii causes difficult-to-treat infections mostly among immunocompromised patients. Clinically relevant A. baumannii lineages and their carbapenem resistance mechanisms are sparsely described in Nigeria. This study aimed to characterize the diversity and genetic mechanisms of carbapenem resistance among A. baumannii strains isolated from hospitals in southwestern Nigeria. We sequenced the genomes of all A. baumannii isolates submitted to Nigeria's antimicrobial resistance surveillance reference laboratory between 2016 and 2020 on an Illumina platform and performed in silico genomic characterization. Selected strains were sequenced using the Oxford Nanopore technology to characterize the genetic context of carbapenem resistance genes. The 86 A. baumannii isolates were phylogenetically diverse and belonged to 35 distinct Oxford sequence types (oxfSTs), 16 of which were novel, and 28 Institut Pasteur STs (pasSTs). Thirty-eight (44.2%) isolates belonged to none of the known international clones (ICs). Over 50% of the isolates were phenotypically resistant to 10 of 12 tested antimicrobials. The majority (n = 54) of the isolates were carbapenem resistant, particularly the IC7 (pasST25; 100%) and IC9 (pasST85; >91.7%) strains. blaOXA-23 (34.9%) and blaNDM-1 (27.9%) were the most common carbapenem resistance genes detected. All blaOXA-23 genes were carried on Tn2006 or Tn2006-like transposons. Our findings suggest that a 10-kb Tn125 composite transposon is the primary means of blaNDM-1 dissemination. Our findings highlight an increase in blaNDM-1 prevalence and the widespread transposon-facilitated dissemination of carbapenemase genes in diverse A. baumannii lineages in southwestern Nigeria. We make the case for improving surveillance of these pathogens in Nigeria and other understudied settings. IMPORTANCE Acinetobacter baumannii bacteria are increasingly clinically relevant due to their propensity to harbor genes conferring resistance to multiple antimicrobials, as well as their ability to persist and disseminate in hospital environments and cause difficult-to-treat nosocomial infections. Little is known about the molecular epidemiology and antimicrobial resistance profiles of these organisms in Nigeria, largely due to limited capacity for their isolation, identification, and antimicrobial susceptibility testing. Our study characterized the diversity and antimicrobial resistance profiles of clinical A. baumannii in southwestern Nigeria using whole-genome sequencing. We also identified the key genetic elements facilitating the dissemination of carbapenem resistance genes within this species. This study provides key insights into the clinical burden and population dynamics of A. baumannii in hospitals in Nigeria and highlights the importance of routine whole-genome sequencing-based surveillance of this and other previously understudied pathogens in Nigeria and other similar settings.
Collapse
Affiliation(s)
- Erkison Ewomazino Odih
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anderson O. Oaikhena
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Anthony Underwood
- Centre for Genomic pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oyinlola O. Oduyebo
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abayomi Fadeyi
- Department of Medical Microbiology and Parasitology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Aaron O. Aboderin
- Department of Medical Microbiology and Parasitology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Veronica O. Ogunleye
- Department of Medical Microbiology and Parasitology, University College Hospital, Ibadan, Oyo State, Nigeria
| | - Silvia Argimón
- Centre for Genomic pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | | | - Phillip O. Oshun
- Department of Medical Microbiology and Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | | | | | | - David M. Aanensen
- Centre for Genomic pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iruka N. Okeke
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
6
|
Abstract
Infection by multidrug-resistant (MDR) Acinetobacter baumannii is one of the major causes of hospital-acquired infections worldwide. The ability of A. baumannii to survive in adverse conditions as well as its extensive antimicrobial resistance make it one of the most difficult to treat pathogens associated with high mortality rates. The aim of this study was to investigate MDR A. baumannii that has spread among pediatric cancer patients in the Children’s Cancer Hospital Egypt 57357. Whole-genome sequencing was used to characterize 31 MDR A. baumannii clinical isolates. Phenotypically, the isolates were MDR, with four isolates showing resistance to the last-resort antibiotic colistin. Multilocus sequence typing showed the presence of eight clonal groups, two of which were previously reported to cause outbreaks in Egypt, and one novel sequence type (ST), Oxf-ST2246. Identification of the circulating plasmids showed the presence of two plasmid lineages in the isolates, strongly governed by sequence type. A large number of antimicrobial genes with a range of resistance mechanisms were detected in the isolates, including β-lactamases and antibiotic efflux pumps. Analysis of insertion sequences (ISs) revealed the presence of ISAba1 and ISAba125 in all the samples, which amplify β-lactamase expression, causing extensive carbapenem resistance. Mutation analysis was used to decipher underlying mutations responsible for colistin resistance and revealed novel mutations in several outer membrane proteins, in addition to previously reported mutations in pmrB. Altogether, understanding the transmissibility of A. baumannii as well as its resistance and virulence mechanisms will help develop novel treatment options for better management of hospital-acquired infections. IMPORTANCEAcinetobacter baumannii represents a major health threat, in particular among immunocompromised cancer patients. The rise in carbapenem-resistant A. baumannii, and the development of resistance to the last-resort antimicrobial agent colistin, complicates the management of A. baumannii outbreaks and increases mortality rates. Here, we investigate 31 multidrug resistant A. baumannii isolates from pediatric cancer patients in Children’s Cancer Hospital Egypt (CCHE) 57357 via whole-genome sequencing. Multilocus sequence typing (MLST) showed the presence of eight clonal groups including a novel sequence type. In silico detection of antimicrobial-resistant genes and virulence factors revealed a strong correlation between certain virulence genes and mortality as well as several point mutations in outer membrane proteins contributing to colistin resistance. Detection of CRISPR/Cas sequences in the majority of the samples was strongly correlated with the presence of prophage sequences and associated with failure of bacteriophage therapy. Altogether, understanding the genetic makeup of circulating A. baumannii is essential for better management of outbreaks.
Collapse
|
7
|
Peng L, Wang X, Dang H. Simultaneous determination of meropenem and imipenem in rat plasma by LC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2021; 35:e5185. [PMID: 34060114 DOI: 10.1002/bmc.5185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023]
Abstract
An efficient and reliable method using LC-MS/MS was established and validated for the simultaneous quantification of meropenem and imipenem in rat plasma. An electronic spray ion source in the positive multiple reaction monitoring mode was used for the detection and the transitions were m/z 384.6 → m/z 141.2 for meropenem, m/z 300.1 → m/z 141.8 for imipenem and m/z 423.4 → m/z 207.1 for matrine (IS). The calibration curves of meropenem and imipenem were linear in the range of 0.50-200 μg/mL. Satisfactory separation was achieved with a total run time of 3.0 min, the injection volume was 3 μl. The retention times of meropenem, imipenem and IS were 1.19, 1.14 and 1.13 min, respectively. Meropenem and imipenem are easily hydrolyzed in plasma. HEPES was used as a stabilizer and added to the plasma samples immediately after centrifugation. Extractions of meropenem, imipenem and IS were carried out by protein precipitation with acetonitrile. The specificity, precision and accuracy, stability, recovery and matrix effects were within acceptance limits. This method was successfully applied to investigate the pharmacokinetics of intravenous injection of meropenem and imipenem single administration or combined with sulbactam in rats. We found that sulbactam has no influence on the pharmacokinetics behavior of meropenem or imipenem.
Collapse
Affiliation(s)
- Li Peng
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xinyu Wang
- Institute of Clinical Pharmacology and Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hongwan Dang
- Institute of Clinical Pharmacology and Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Junges DSB, Delabeneta MF, Rosseto LRB, Nascimento BL, Paris AP, Persel C, Loth EA, Simão RCG, Menolli RA, Paula CR, Gandra RF. Antibiotic Activity of Wickerhamomyces anomalus Mycocins on Multidrug-Resistant Acinetobacter baumannii. MICROBIAL ECOLOGY 2020; 80:278-285. [PMID: 32072187 DOI: 10.1007/s00248-020-01495-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
To evaluate the susceptibility of multidrug-resistant Acinetobacter baumannii to mycocins produced by Wickerhamomyces anomalus and to verify the cytotoxicity of these compounds. Three culture supernatants of W. anomalus (WA40, WA45, and WA92), containing mycocins (WA40M1, WA45M2, and WA92M3), were tested on A. baumannii using broth microdilution methods, solid medium tests, and cytotoxicity tests in human erythrocytes and in Artemia saline Leach. W. anomalus was able to produce high antimicrobial mycocins, as even at high dilutions, they inhibited A. baumannii. In a solid medium, it was possible to observe the inhibition of A. baumannii, caused by the diffusion of mycocins between agar. Finally, the three supernatants were not cytotoxic when tested on human erythrocytes and Artemia salina. According to the evidence in this study, the mycocins of W. anomalus have been effective and could be used in the development of new antimicrobial substances.
Collapse
Affiliation(s)
- Daniele S B Junges
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Mateus F Delabeneta
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Lana Rubia B Rosseto
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Bruna L Nascimento
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Ana Paula Paris
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Cristiane Persel
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Eduardo A Loth
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil
| | - Rita C G Simão
- Center of Medical and Pharmaceutical Sciences, Western Paraná State University, Cascavel, Paraná, 85819-110, Brazil
| | - Rafael A Menolli
- Center of Medical and Pharmaceutical Sciences, Western Paraná State University, Cascavel, Paraná, 85819-110, Brazil
| | - Claudete R Paula
- Faculty of Odontology, University of São Paulo, Butantã, São Paulo, 05508-000, Brazil
| | - Rinaldo F Gandra
- Western Paraná University Hospital, Western Paraná State University, Cascavel, Paraná, 85806-470, Brazil.
| |
Collapse
|
9
|
Antibiotic Susceptibility, Clonality, and Molecular Characterization of Carbapenem-Resistant Clinical Isolates of Acinetobacter baumannii from Washington DC. Int J Microbiol 2020; 2020:2120159. [PMID: 32695174 PMCID: PMC7368205 DOI: 10.1155/2020/2120159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence of carbapenem-resistant (CR) strains of Acinetobacter baumannii is reported to contribute to the severity of several nosocomial infections, especially in critically ill patients in intensive care units. The present study aims to determine the antibiotic susceptibility, clonality, and genetic mechanism of carbapenem resistance in twenty-eight Acinetobacter baumannii isolates from four hospitals in Washington DC. The antibiotic susceptibility of the isolates was determined by VITEK 2 analyses, while PCR was used to examine the presence of antibiotic-resistant genes and mobile genetic elements. Trilocus multiplex-PCR was used along with pulsed-field gel electrophoresis (PFGE) for strain typing and for accessing clonal relationships among the isolates. Antimicrobial susceptibility testing indicated that 46% of the isolates were carbapenem-resistant and possessed MDR and XDR phenotypes. PFGE clustered the 28 isolates into seven clonal (C1–C7) complexes based on >75% similarity cut-off. Thirty-six percent of the isolates belonged to international clone II, while 29% were assigned to Group 4 by trilocus multiplex-PCR. Although the blaOXA-51-like gene was found in all the isolates, only 36% were positive for the blaOXA-23-like gene. PCR analysis also found a metallo-β-lactamase (MBL) gene (blaVIM) in 71% of the isolates. Of the 13 CR isolates, 8 were PCR positive for both blaVIM and blaOXA-23-like genes, while 5 harbored only blaVIM gene. This study revealed the emergence of VIM carbapenemase-producing A. baumannii isolates, which has not been previously reported in the United States.
Collapse
|
10
|
Molecular Detection of Carbapenemase-Encoding Genes in Multidrug-Resistant Acinetobacter baumannii Clinical Isolates in South Africa. Int J Microbiol 2020; 2020:7380740. [PMID: 32612659 PMCID: PMC7306865 DOI: 10.1155/2020/7380740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023] Open
Abstract
Introduction Carbapenem-resistant Acinetobacter baumannii has been responsible for an increasing number of hospital-acquired infections globally. The study investigated the prevalence of carbapenemase-encoding genes in clinical multidrug-resistant A. baumannii strains. Materials and Methods A total of 100 nonduplicate multidrug-resistant A. baumannii strains were cultured from clinical samples obtained from healthcare facilities in the O. R. Tambo district. The strains were confirmed by detecting the intrinsic blaOXA-51-like gene. Antimicrobial susceptibility testing was performed by VITEK® 2 and autoSCAN-4 systems. The MIC of imipenem and meropenem was rechecked by E-test. Colistin MIC was confirmed by the broth microdilution method. Real-time PCR was performed to investigate the presence of carbapenemase-encoding genes. Results Most strains showed high resistance rates (>80%) to the antibiotics tested. Resistance to amikacin, tetracycline, and tigecycline were 50%, 64%, and 48%, respectively. All strains were fully susceptible to colistin. The blaOXA-51-like was detected in all strains whilst blaOXA-23-like, blaOXA-58-like, blaOXA-24-like, blaIMP-1, blaVIM, and blaNDM-1 were found in 70%, 8%, 5%, 4%, 3%, and 2% of strains, respectively. None of the tested strains harboured the genes blaSIM and blaAmpC. The coexistence of blaOXA-23-like, and blaIMP-1 or blaOXA-58-like was detected in 1% and 2% strains, respectively. A distinct feature of our findings was the coharbouring of the genes blaOXA-23-like, blaOXA-58-like, and blaIMP-1 in 2% strains, and this is the first report in the Eastern Cape Province, South Africa. The intI1 was carried in 80% of tested strains whilst ISAba1/blaOXA-51-like and ISAba1/blaOXA-23-like were detected in 15% and 40% of the strains, respectively. The detection of blaOXA-23-like, ISAba1/blaOXA-51-like, ISAba1/blaOXA-23-like, and blaOXA-23-like, blaOXA-58-like, and blaIMP-1 carbapenemases in strains had a significant effect on both imipenem and meropenem MICs. Conclusions Results showed a high level of oxacillinases producing A. baumannii circulating in our study setting, highlighting the need for local molecular surveillance to inform appropriate management and prevention strategies.
Collapse
|
11
|
Maboni G, Seguel M, Lorton A, Sanchez S. Antimicrobial resistance patterns of Acinetobacter spp. of animal origin reveal high rate of multidrug resistance. Vet Microbiol 2020; 245:108702. [PMID: 32456823 DOI: 10.1016/j.vetmic.2020.108702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023]
Abstract
Antimicrobial resistance has been declared by the World Health Organization as one of the biggest threats to public health and Acinetobacter baumannii is a notable example. A. baumannii is an important human nosocomial pathogen, being along with other multidrug resistant (MDR) bacteria, one of the biggest public health concerns worldwide. In Veterinary Medicine, resistance patterns of Acinetobacter species other than A. baumanii are unclear, and the scarce information available is limited and fragmented. We applied a statistical modeling approach to investigate the occurrence, clinical relevance and antimicrobial resistant phenotypes of Acinetobacter spp. originated from animals. Seven Acinetobacter species were identified in clinical specimens of more than 15 different domestic, zoo and exotic animal species. We found a high rate of MDR A. baumannii of canine origin with some of these isolates originating from serious systemic or wound infections, which highlights their potential pathogenic profile and spread in the human environment. Data also revealed different antimicrobial resistance patterns of animal-origin Acinetobacter species, emphasizing the necessity to implement specific antimicrobial susceptibility recommendations for animal isolates as there are no such clinical breakpoints currently in place. This study provides substantial advancing in our understanding of Acinetobacter spp. in animal clinical specimens, and highlights the role of animals in the dynamics of multidrug resistance in bacteria. The data presented here is a valuable source of information for further establishment of clinical breakpoints for susceptibility testing of animal-associated Acinetobacter isolates.
Collapse
Affiliation(s)
- Grazieli Maboni
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, USA.
| | - Mauricio Seguel
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Ana Lorton
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, USA
| | - Susan Sanchez
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Phenotypic Activity of Efflux Pumps by Carbonyl Cyanide M-Chlorophenyl Hydrazone (CCCP) and Mutations in GyrA and ParC Genes Among Ciprofloxacin-Resistant Acinetobacter baumannii Isolates. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.99435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Koirala J, Tyagi I, Guntupalli L, Koirala S, Chapagain U, Quarshie C, Akram S, Sundareshan V, Koirala S, Lawhorn J, Doi Y, Olson M. OXA-23 and OXA-40 producing carbapenem-resistant Acinetobacter baumannii in Central Illinois. Diagn Microbiol Infect Dis 2020; 97:114999. [PMID: 32059871 DOI: 10.1016/j.diagmicrobio.2020.114999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 01/23/2023]
Abstract
We reviewed susceptibility of 840 A. baumannii complex isolates at two academic medical centers and explored their mechanism of carbapenem resistance. Carbapenem resistance rates among A. baumannii increased from <5% before 2005 to 55% in 2011 and declined thereafter. We subjected 86 isolates for further antibiotic susceptibility testing using E-test, screened for MBL and carbapenemase production, and performed PCR for blaOXA genes. Statistical analyses included correlation of resistance genes with susceptibility. Sixty-one isolates were non-susceptible to carbapenems (MIC >2 μg/mL). Phenotypic screening showed carbapenemase production in 50 isolates, but none was positive for MBL. Among carbapenem non-susceptible isolates, the CHDL (group D carbapenemase) encoding genes blaOXA-23 (52%) and blaOXA-40 (28%) were the most frequent genes. In conclusion, carbapenem resistance rates in A. baumannii peaked in 2011 and have since declined in our region. Carbapenem resistance among A. baumannii was primarily associated with production of acquired CHDLs including OXA-23 and OXA-40.
Collapse
Affiliation(s)
- Janak Koirala
- Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Isha Tyagi
- Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lohitha Guntupalli
- Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Sameena Koirala
- Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Udita Chapagain
- Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Christopher Quarshie
- Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Sami Akram
- Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Vidya Sundareshan
- Division of Infectious Diseases, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Sajan Koirala
- Tulane University, School of Public Health, New Orleans, Louisiana, USA
| | - Jerry Lawhorn
- Department of Microbiology, Memorial Medical Center, Springfield, IL, USA
| | - Yohei Doi
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Olson
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
14
|
Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 2019; 8:e47612. [PMID: 31516122 PMCID: PMC6814407 DOI: 10.7554/elife.47612] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial populations vary in their stress tolerance and population structure depending upon whether growth occurs in well-mixed or structured environments. We hypothesized that evolution in biofilms would generate greater genetic diversity than well-mixed environments and lead to different pathways of antibiotic resistance. We used experimental evolution and whole genome sequencing to test how the biofilm lifestyle influenced the rate, genetic mechanisms, and pleiotropic effects of resistance to ciprofloxacin in Acinetobacter baumannii populations. Both evolutionary dynamics and the identities of mutations differed between lifestyle. Planktonic populations experienced selective sweeps of mutations including the primary topoisomerase drug targets, whereas biofilm-adapted populations acquired mutations in regulators of efflux pumps. An overall trade-off between fitness and resistance level emerged, wherein biofilm-adapted clones were less resistant than planktonic but more fit in the absence of drug. However, biofilm populations developed collateral sensitivity to cephalosporins, demonstrating the clinical relevance of lifestyle on the evolution of resistance.
Collapse
Affiliation(s)
- Alfonso Santos-Lopez
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Christopher W Marshall
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Michelle R Scribner
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Daniel J Snyder
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| | - Vaughn S Cooper
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| |
Collapse
|
15
|
The Landscape of Phenotypic and Transcriptional Responses to Ciprofloxacin in Acinetobacter baumannii: Acquired Resistance Alleles Modulate Drug-Induced SOS Response and Prophage Replication. mBio 2019; 10:mBio.01127-19. [PMID: 31186328 PMCID: PMC6561030 DOI: 10.1128/mbio.01127-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The emergence of fluoroquinolone resistance in nosocomial pathogens has restricted the clinical efficacy of this antibiotic class. In Acinetobacter baumannii, the majority of clinical isolates now show high-level resistance due to mutations in gyrA (DNA gyrase) and parC (topoisomerase IV [topo IV]). To investigate the molecular basis for fluoroquinolone resistance, an exhaustive mutation analysis was performed in both drug-sensitive and -resistant strains to identify loci that alter ciprofloxacin sensitivity. To this end, parallel fitness tests of over 60,000 unique insertion mutations were performed in strains with various alleles in genes encoding the drug targets. The spectra of mutations that altered drug sensitivity were found to be similar in the drug-sensitive and gyrA parC double-mutant backgrounds, having resistance alleles in both genes. In contrast, the introduction of a single gyrA resistance allele, resulting in preferential poisoning of topo IV by ciprofloxacin, led to extreme alterations in the insertion mutation fitness landscape. The distinguishing feature of preferential topo IV poisoning was enhanced induction of DNA synthesis in the region of two endogenous prophages, with DNA synthesis associated with excision and circularization of the phages. Induction of the selective DNA synthesis in the gyrA background was also linked to heightened prophage gene transcription and enhanced activation of the mutagenic SOS response relative to that observed in either the wild-type (WT) or gyrA parC double mutant. Therefore, the accumulation of mutations that result in the stepwise evolution of high ciprofloxacin resistance is tightly connected to modulation of the SOS response and endogenous prophage DNA synthesis.IMPORTANCE Fluoroquinolones have been extremely successful antibiotics due to their ability to target multiple bacterial enzymes critical to DNA replication, the topoisomerases DNA gyrase and topo IV. Unfortunately, mutations lowering drug affinity for both enzymes are now widespread, rendering these drugs ineffective for many pathogens. To undermine this form of resistance, we examined how bacteria with target alterations differentially cope with fluoroquinolone exposures. We studied this problem in the nosocomial pathogen A. baumannii, which causes drug-resistant life-threatening infections. Employing genome-wide approaches, we uncovered numerous pathways that could be exploited to raise fluoroquinolone sensitivity independently of target alteration. Remarkably, fluoroquinolone targeting of topo IV in specific mutants caused dramatic hyperinduction of prophage replication and enhanced the mutagenic DNA damage response, but these responses were muted in strains with DNA gyrase as the primary target. This work demonstrates that resistance evolution via target modification can profoundly modulate the antibiotic stress response, revealing potential resistance-associated liabilities.
Collapse
|
16
|
Luna BL, Garcia JA, Huang M, Ewing PJ, Valentine SC, Chu YM, Ye QZ, Xu HH. Identification and characterization of novel isothiazolones with potent bactericidal activity against multi-drug resistant Acinetobacter baumannii clinical isolates. Int J Antimicrob Agents 2018; 53:474-482. [PMID: 30593847 DOI: 10.1016/j.ijantimicag.2018.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/10/2018] [Accepted: 12/15/2018] [Indexed: 11/27/2022]
Abstract
Acinetobacter baumannii has emerged as a globally important nosocomial pathogen characterized by an increased multi-drug resistance (MDR), leaving limited options for treating its infection. To identify novel antibacterial compounds with activity against clinical isolates of A. baumannii, we performed high-throughput screening against a chemical library of 42,944 compounds using nonpathogenic Escherichia coli MG1655 and identified 55 hit compounds. The antibacterial activities of 30 pure compounds were determined against MDR clinical isolates of A. baumannii obtained from Los Angeles County hospitals. Two isothiazolones identified, 5-chloro-2-(4-chloro-3-methylphenyl)-4-methyl-3(2H)-isothiazolone (Compound 6) and 5-chloro-2-(4-chlorophenyl)-4-methyl-3(2H)-isothiazolone (Compound 7), possess novel structure and exhibited consistent, potent and cidal activity against all 46 MDR A. baumannii clinical isolates and reference strains. Additionally, structure-activity relationship analysis involving several additional isothiazolones supports the link between a chloro-group on the heterocyclic ring or a fused benzene ring and the cidal activity. Attempts to obtain isothiazolone resistant mutants failed, consistent with the rapid cidal action and indicative of a complex mechanism of action. While cytotoxicity was observed with Compound 7, it had a therapeutic index value of 28 suggesting future therapeutic potential. Our results indicate that high-throughput screening of compound libraries followed by in vitro biological evaluations is a viable approach for the discovery of novel antibacterial agents to contribute in the fight against MDR bacterial pathogens.
Collapse
Affiliation(s)
- Breanna L Luna
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Javier A Garcia
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Min Huang
- High Throughput Screening Laboratory and Department of Medicinal Chemistry, University of Kansas, 1501 Wakarusa Drive, Lawrence, KS 66045, USA
| | - Peter J Ewing
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Sonya C Valentine
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Yi-Ming Chu
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Qi-Zhuang Ye
- High Throughput Screening Laboratory and Department of Medicinal Chemistry, University of Kansas, 1501 Wakarusa Drive, Lawrence, KS 66045, USA; School of Medicine, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, Guangdong 518060, China
| | - H Howard Xu
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA.
| |
Collapse
|
17
|
Shahram SZ, Javadi R. Evaluation of Antibiotic Resistance Patterns and Frequency of Carbapenemase-Producing Acinetobacter baumannii Isolates by the Carbacineto NP Test. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.2.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
18
|
Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017; 30:409-447. [PMID: 27974412 DOI: 10.1128/cmr.00058-16] [Citation(s) in RCA: 724] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed.
Collapse
|
19
|
Munier AL, Biard L, Rousseau C, Legrand M, Lafaurie M, Lomont A, Donay JL, de Beaugrenier E, Flicoteaux R, Mebazaa A, Mimoun M, Molina JM. Incidence, risk factors, and outcome of multidrug-resistant Acinetobacter baumannii acquisition during an outbreak in a burns unit. J Hosp Infect 2017; 97:226-233. [PMID: 28751010 DOI: 10.1016/j.jhin.2017.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Multidrug-resistant Acinetobacter baumannii (MR-AB) can cause outbreaks in a burns unit. AIM To study the incidence, risk factors and outcome of MR-AB colonization during an outbreak. METHODS A prospective study was conducted from April to November 2014 in a burns unit in Paris. Weekly surveillance cultures of patients and their environment were performed. MR-AB acquisition, discharge, or death without MR-AB colonization were considered as competing events. To identify risk factors for colonization, baseline characteristics and time-dependent variables were investigated in univariate and multivariate analyses using Cox models. MR-AB strains were genotypically compared using multi-locus sequence typing. FINDINGS Eighty-six patients were admitted in the burns unit during the study period. Among 77 patients without MR-AB colonization at admission, 25 (32%) acquired MR-AB with a cumulative incidence of 30% at 28 days (95% CI: 20-40). Median time to MR-AB acquisition was 13 days (range: 5-34). In multivariate analysis, risk factors for MR-AB acquisition were ≥2 skin graft procedures performed [hazard ratio (HR): 2.97; 95% confidence interval (CI): 1.10-8.00; P = 0.032] and antibiotic therapy during hospitalization (HR: 4.42; 95% CI: 1.19-16.4; P = 0.026). A major sequence type of MR-AB (ST2) was found in 94% and 92% of patients and environmental strains, respectively, with all strains harbouring the blaOXA-23 gene. MR-AB colonization increased length of hospitalization (HR: 0.32; 95% CI: 0.17-0.58; P = 0.0002) by a median of 12 days. CONCLUSION A high incidence of MR-AB acquisition was seen during this outbreak with most strains from patients and their environment belonging to single sequence type. MR-AB colonization was associated with more skin graft procedures, antibiotic use, and prolonged hospitalization.
Collapse
Affiliation(s)
- A-L Munier
- Infectious Disease Department, St Louis Hospital, APHP and University Paris Diderot, Paris, France.
| | - L Biard
- Department of Biostatistics, St Louis Hospital, APHP and University Paris Diderot, Paris, France
| | - C Rousseau
- Microbiology Department, St Louis Hospital, APHP and EA4065, University Paris Descartes, Paris, France
| | - M Legrand
- Department of Anesthesiology, Critical Care and Burn Unit, St Louis Hospital, APHP and University Paris Diderot, Paris, France; INSERM U942, France
| | - M Lafaurie
- Infectious Disease Department, St Louis Hospital, APHP and University Paris Diderot, Paris, France
| | - A Lomont
- Microbiology Department, St Louis Hospital, APHP and EA4065, University Paris Descartes, Paris, France
| | - J-L Donay
- Microbiology Department, St Louis Hospital, APHP and EA4065, University Paris Descartes, Paris, France
| | - E de Beaugrenier
- Pharmacy Department, St Louis Hospital, APHP and University Paris Diderot, Paris, France
| | - R Flicoteaux
- Department of Biostatistics, St Louis Hospital, APHP and University Paris Diderot, Paris, France
| | - A Mebazaa
- Department of Anesthesiology, Critical Care and Burn Unit, St Louis Hospital, APHP and University Paris Diderot, Paris, France
| | - M Mimoun
- Plastic Surgery Department, St Louis Hospital, APHP and University Paris Diderot, Paris, France
| | - J-M Molina
- Infectious Disease Department, St Louis Hospital, APHP and University Paris Diderot, Paris, France
| |
Collapse
|
20
|
Dahdouh E, Gómez-Gil R, Sanz S, González-Zorn B, Daoud Z, Mingorance J, Suárez M. A novel mutation in pmrB mediates colistin resistance during therapy of Acinetobacter baumannii. Int J Antimicrob Agents 2017; 49:727-733. [PMID: 28438568 DOI: 10.1016/j.ijantimicag.2017.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/20/2017] [Accepted: 01/28/2017] [Indexed: 11/29/2022]
Abstract
Acinetobacter baumannii is a highly versatile nosocomial pathogen. Multidrug resistance among A. baumannii isolates led to the use of colistin, subsequently giving rise to colistin-resistant strains. In this study, the genetic and phenotypic profiles of two colistin-resistant A. baumannii isolates were investigated. Two A. baumannii isolates were obtained from Patient 1 (C071 and C440) and three isolates were obtained from Patient 2 (C080, C314 and C428). Susceptibility profiles were determined by VITEK®2 and Etest. Clonality was determined by RAPD analysis and trilocus multiplex PCR. The pmrCAB operon was sequenced and common carbapenemase genes were screened for by PCR. Doubling times, haemolysis, surface motility, biofilm formation, siderophore production and proteolytic activity were phenotypically determined. Finally, whole-genome sequencing was performed for all five isolates. Isolates C440 and C428 were resistant to colistin and were clonally identical to their sensitive counterparts. The cause of colistin resistance was traced to the previously described P233S mutation in pmrB of C440 and to a novel ΔI19 mutation in pmrB of C428. blaOXA-58-like and blaGES-5 from the strains of Patients 1 and 2, respectively, were also detected. C440 had attenuated proteolytic activity and was positive for siderophore production compared with C071. No difference in in vitro virulence was detected between isolates C080, C314 and C428. In conclusion, one common and one novel mutation were encountered in pmrB from two distinct colistin-resistant A. baumannii isolates. These mutations caused colistin resistance during therapy in two distinct clones, and only one of them had altered in vitro virulence.
Collapse
Affiliation(s)
- Elias Dahdouh
- Faculty of Veterinary, Department of Animal Health, Universidad Complutense de Madrid, Laboratory 206, Puerta de Hierro s/n, 28040 Madrid, Spain.
| | - Rosa Gómez-Gil
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Sonia Sanz
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Bruno González-Zorn
- Faculty of Veterinary, Department of Animal Health, Universidad Complutense de Madrid, Laboratory 206, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Ziad Daoud
- Faculty of Medicine, Department of Clinical Microbiology, University of Balamand, Balamand, Lebanon
| | - Jesús Mingorance
- Servicio de Microbiología, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Monica Suárez
- Faculty of Veterinary, Department of Animal Health, Universidad Complutense de Madrid, Laboratory 206, Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
21
|
Biglari S, Hanafiah A, Mohd Puzi S, Ramli R, Rahman M, Lopes BS. Antimicrobial Resistance Mechanisms and Genetic Diversity of Multidrug-Resistant Acinetobacter baumannii Isolated from a Teaching Hospital in Malaysia. Microb Drug Resist 2016; 23:545-555. [PMID: 27854165 DOI: 10.1089/mdr.2016.0130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii has increasingly emerged as an important nosocomial pathogen. The aim of this study was to determine the resistance profiles and genetic diversity in A. baumannii clinical isolates in a tertiary medical center in Malaysia. The minimum inhibitory concentrations of carbapenems (imipenem and meropenem), cephalosporins (ceftazidime and cefepime), and ciprofloxacin were determined by E-test. PCR and sequencing were carried out for the detection of antibiotic resistance genes and mutations. Clonal relatedness among A. baumannii isolates was determined by REP-PCR. Sequence-based typing of OXA-51 and multilocus sequence typing were performed. One hundred twenty-five of 162 (77.2%) A. baumannii isolates had MDR phenotype. From the 162 A. baumannii isolates, 20 strain types were identified and majority of A. baumannii isolates (66%, n = 107) were classified as strain type 1 and were positive for ISAba1-blaOXA-23 and ISAba1-blaADC and had mutations in both gyrA and parC genes at positions, 83 and 80, resulting in serine-to-leucine conversion. REP-PCR analysis showed 129 REP types that generated 31 clones with a 90% similarity cutoff value. OXA-66 variant of the blaOXA-51-like genes was predominantly detected among our A. baumannii clinical isolates belonging to ST195 (found in six clones: 1, 8, 9, 19, 27, and 30) and ST208 (found in clone 21). The study helps us in understanding the genetic diversity of A. baumannii isolates in our setting and confirms that international clone II is the most widely distributed clone in Universiti Kebangsaan Malaysia Medical Centre, Malaysia.
Collapse
Affiliation(s)
- Shirin Biglari
- 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur, Malaysia
| | - Alfizah Hanafiah
- 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur, Malaysia
| | - Shaliawani Mohd Puzi
- 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur, Malaysia
| | - Ramliza Ramli
- 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur, Malaysia
| | - Mostafizur Rahman
- 1 Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre , Kuala Lumpur, Malaysia
| | - Bruno Silvester Lopes
- 2 Department of Medical Microbiology, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen , Aberdeen, United Kingdom
| |
Collapse
|