1
|
Ou Y, Li D, Long X, He H, Qing L, Tian Y, Ren J, Zhou Q, Tan Y. Study on the early diagnostic value of nanopore sequencing in alveolar lavage fluid smear-negative pulmonary tuberculosis. Braz J Microbiol 2025; 56:365-372. [PMID: 39621292 PMCID: PMC11885687 DOI: 10.1007/s42770-024-01575-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/01/2024] [Indexed: 03/09/2025] Open
Abstract
The objective of this study was to investigate the early diagnostic value of nanopore sequencing in alveolar lavage smear-negative pulmonary tuberculosis (PTB). A prospective study was conducted on patients hospitalized at Zhuzhou Central Hospital from October 2021 to June 2022 and suspected to have PTB. Alveolar lavage fluid specimens were collected from these patients and simultaneously subjected to centrifugal bacterial collection smear method in a sandwich cup, bifidobacteria solid culture (referred to as culture), Mycobacterium tuberculosis-DNA (TB-DNA), and nanopore sequencing for detection of Mycobacterium tuberculosis. These patients were ultimately diagnosed with smear-negative PTB. The final clinical diagnosis was used as a reference to compare the diagnostic efficacy of Nanopore sequencing, culture, and TB-DNA for PTB. The results showed that the positive rates detected by nanopore sequencing, culture, and TB-DNA in the 103 suspected tuberculosis patients were 73.8%, 13.6%, and 33.0%, respectively. The sensitivity of nanopore sequencing was significantly higher than culture (P < 0.001) and TB-DNA (P < 0.001) for the identification of smear-negative PTB. Similarly, the positive rate of TB-DNA was also significantly higher than that of culture (P = 0.001). In conclusion, nanopore sequencing exhibited the highest sensitivity for the rapid diagnosis of Mycobacterium tuberculosis in alveolar lavage fluid specimens, using clinical diagnosis as a reference standard, and it could improve the PTB clinical diagnosis.
Collapse
Affiliation(s)
- Yangjing Ou
- Department of Infectious Diseases, Xiangya Medical College, Zhuzhou Central Hospital (Zhuzhou Hospital, Central South University), Zhuzhou, Hunan, 412007, China
| | - Dan Li
- Department of Infectious Diseases, Xiangya Medical College, Zhuzhou Central Hospital (Zhuzhou Hospital, Central South University), Zhuzhou, Hunan, 412007, China
| | - Xi Long
- Department of Public Health Management, Xiangya Medical College, Zhuzhou Central Hospital (Zhuzhou Hospital, Central South University), Zhuzhou, Hunan, 412007, China
| | - Huiyang He
- Department of Infectious Diseases, Xiangya Medical College, Zhuzhou Central Hospital (Zhuzhou Hospital, Central South University), Zhuzhou, Hunan, 412007, China
| | - Ling Qing
- Department of Infectious Diseases, Xiangya Medical College, Zhuzhou Central Hospital (Zhuzhou Hospital, Central South University), Zhuzhou, Hunan, 412007, China
| | - Yuqiu Tian
- Department of Infectious Diseases, Xiangya Medical College, Zhuzhou Central Hospital (Zhuzhou Hospital, Central South University), Zhuzhou, Hunan, 412007, China
| | - Jing Ren
- Department of Infectious Diseases, Xiangya Medical College, Zhuzhou Central Hospital (Zhuzhou Hospital, Central South University), Zhuzhou, Hunan, 412007, China
| | - Qing Zhou
- Department of Infectious Diseases, Xiangya Medical College, Zhuzhou Central Hospital (Zhuzhou Hospital, Central South University), Zhuzhou, Hunan, 412007, China
| | - Yingzheng Tan
- Department of Infectious Diseases, Xiangya Medical College, Zhuzhou Central Hospital (Zhuzhou Hospital, Central South University), Zhuzhou, Hunan, 412007, China.
- Department of Infectious Diseases, Zhuzhou Central Hospital (Zhuzhou Hospital Affiliated to Xiangya Medical College, Central South University), No. 116 Changjiang South Road, Tianyuan District, Zhuzhou, Hunan, 412007, China.
| |
Collapse
|
2
|
Uddin MKM, Cabibbe AM, Nasrin R, Ghodousi A, Nobel FA, Rahman SMM, Ahmed S, Ather MF, Razzaque SMA, Raihan MA, Modak PK, Berland JL, Gemert WV, Mohsin SMI, Cirillo DM, Banu S. Targeted next-generation sequencing of Mycobacterium tuberculosis from patient samples: lessons learned from high drug-resistant burden clinical settings in Bangladesh. Emerg Microbes Infect 2024; 13:2392656. [PMID: 39136526 PMCID: PMC11348811 DOI: 10.1080/22221751.2024.2392656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
Lack of appropriate early diagnostic tools for drug-resistant tuberculosis (DR-TB) and their incomplete drug susceptibility testing (DST) profiling is concerning for TB disease control. Existing methods, such as phenotypic DST (pDST), are time-consuming, while Xpert MTB/RIF (Xpert) and line probe assay (LPA) are limited to detecting resistance to few drugs. Targeted next-generation sequencing (tNGS) has been recently approved by WHO as an alternative approach for rapid and comprehensive DST. We aimed to investigate the performance and feasibility of tNGS for detecting DR-TB directly from clinical samples in Bangladesh. pDST, LPA and tNGS were performed among 264 sputum samples, either rifampicin-resistant (RR) or rifampicin-sensitive (RS) TB cases confirmed by Xpert assay. Resistotypes of tNGS were compared with pDST, LPA and composite reference standard (CRS, resistant if either pDST or LPA showed a resistant result). tNGS results revealed higher sensitivities for rifampicin (RIF) (99.3%), isoniazid (INH) (96.3%), fluoroquinolones (FQs) (94.4%), and aminoglycosides (AMGs) (100%) but comparatively lower for ethambutol (76.6%), streptomycin (68.7%), ethionamide (56.0%) and pyrazinamide (50.7%) when compared with pDST. The sensitivities of tNGS for INH, RIF, FQs and AMGs were 93.0%, 96.6%, 90.9%, and 100%, respectively and the specificities ranged from 91.3 to 100% when compared with CRS. This proof of concept study, conducted in a high-burden setting demonstrated that tNGS is a valuable tool for identifying DR-TB directly from the clinical specimens. Its feasibility in our laboratory suggests potential implementation and moving tNGS from research settings into clinical settings.
Collapse
Affiliation(s)
| | | | - Rumana Nasrin
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Arash Ghodousi
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Shahriar Ahmed
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | | | | | | | | | | | - Sardar Munim Ibna Mohsin
- Office of Population, Health, and Nutrition, U.S. Agency for International Development (USAID), Bangladesh
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sayera Banu
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| |
Collapse
|
3
|
Vo TTB, Nguyen DT, Nguyen TC, Nguyen HT, Tran HT, Nghiem MN. Exploring gene mutations and multidrug resistance in Mycobacterium tuberculosis: a study from the Lung Hospital in Vietnam. Mol Biol Rep 2024; 51:1084. [PMID: 39432118 DOI: 10.1007/s11033-024-10015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Drug-resistant tuberculosis not only diminishes treatment efficacy but also heightens the risk of transmission and mortality. Investigating Mycobacterium tuberculosis resistance to first-line antituberculosis drugs is essential to tackle a major global health challenge. METHODS AND RESULTS Using Sanger sequencing, this study investigates gene mutations associated with multidrug resistance in drug-resistant M. tuberculosis strains. Among 30 samples, mutations were found in genes linked to first-line anti-tuberculosis drug resistance. Rifampicin resistance was observed in 46.67% of the samples, with the most frequent mutation in the rpoB gene at codon 450 (S450L) occurring in 23.33% of cases. Similarly, isoniazid resistance was found in 86.67% of samples, with 33.33% of cases indicating the katG gene mutation at codon 315 (S315T). Additionally, streptomycin resistance was present in 76.67% of samples, and 30% of these cases were mainly linked to the rpsL gene mutation at codon 43 (K43R). CONCLUSION These findings illuminate the genetic mechanisms behind drug resistance in M. tuberculosis. By identifying specific genetic markers, this research enhances our ability to diagnose and treat drug-resistant Tuberculosis more accurately and efficiently.
Collapse
Affiliation(s)
- Thuy Thi Bich Vo
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam.
| | - Diem Thi Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Tuan Chi Nguyen
- Military Hospital 103, Vietnam Military Medical University, 261 Phung Hung, Ha Dong, Hanoi, 100000, Vietnam
| | - Hoan Thi Nguyen
- Military Hospital 103, Vietnam Military Medical University, 261 Phung Hung, Ha Dong, Hanoi, 100000, Vietnam
| | - Hop Thi Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| | - Minh Ngoc Nghiem
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, 100000, Vietnam
| |
Collapse
|
4
|
Ruixia L, Jiankang L, Hongmei S, Han W, Chang Z. Novel automated AIMLAM for diagnosis of Mycobacterium tuberculosis. Future Microbiol 2024; 19:783-793. [PMID: 38592488 PMCID: PMC11290776 DOI: 10.2217/fmb-2024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Aim: A rapid and precise diagnostic method is crucial for timely intervention and management of tuberculosis. The present study compared the diagnostic accuracy of a novel lipoarabinomannan (LAM) antigen test, AIMLAM, for tuberculosis in urine samples. Methodology: The study subjected 106 TB suspects to smear microscopy, MGIT, GeneXpert and AIMLAM. Results: Among 106, smear microscopy identified 36 as positive (33%) (sensitivity; 70.93%, 95% CI (60.14-80.22%), while MGIT showed 38 positive (36.8%). GeneXpert detected 59 positives (sensitivity; 96.83, 95% CI (89.00-99.61%)). AIMLAM declared 61 as positive (57.5%) (sensitivity; 100.00, 95% CI (94.13-100.00%) and 45 as negative (42.5%). Conclusion: Overall, AIMLAM demonstrated better diagnostic accuracy than GeneXpert Assay, smear microscopy and MGIT liquid culture in urine samples.
Collapse
Affiliation(s)
- Liang Ruixia
- Henan Provincial Chest Hospital, Henan Infectious Diseases (TB) Clinical Research Center. No. 1, Weiwu Road, Zhengzhou, Henan Province
| | - Li Jiankang
- Henan Provincial Chest Hospital, Henan Infectious Diseases (TB) Clinical Research Center. No. 1, Weiwu Road, Zhengzhou, Henan Province
| | - Shi Hongmei
- Henan Provincial Chest Hospital, Henan Infectious Diseases (TB) Clinical Research Center. No. 1, Weiwu Road, Zhengzhou, Henan Province
| | - Wu Han
- Henan Provincial Chest Hospital, Henan Infectious Diseases (TB) Clinical Research Center. No. 1, Weiwu Road, Zhengzhou, Henan Province
| | - Zhao Chang
- Henan Provincial Chest Hospital, Henan Infectious Diseases (TB) Clinical Research Center. No. 1, Weiwu Road, Zhengzhou, Henan Province
| |
Collapse
|
5
|
Al-Mutairi NM, Ahmad S, Mokaddas E. Discordance in Phenotypic and Genotypic Susceptibility Testing for Streptomycin Due to Nonsynonymous/Nonsense/Deletion Frame-Shift Mutations in Gidb Among Clinical Mycobacterium tuberculosis Isolates in Kuwait. Med Princ Pract 2024; 33:000538584. [PMID: 38560979 PMCID: PMC11324218 DOI: 10.1159/000538584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
OBJECTIVE Increasing reports of resistance to newer anti-tuberculosis drugs have prompted the search for other alternative drugs. Streptomycin could be used for the treatment of drug-resistant tuberculosis if susceptibility of Mycobacterium tuberculosis isolate to streptomycin could be accurately detected. We performed phenotypic and genotypic drug susceptibility testing (DST) of 118 M. tuberculosis isolates for streptomycin. MATERIALS AND METHODS Fifty pansusceptible and 68 multidrug-resistant M. tuberculosis (MDR-TB) isolates were used. Phenotypic DST for streptomycin, rifampicin, isoniazid and ethambutol was performed by mycobacteria growth indicator tube (MGIT) 960 System. Genotypic DST was done by GenoTypeMTBDRplus assay for rifampicin and isoniazid and by PCR-sequencing of rpsL, rrs and gidB genes for streptomycin. MDR-TB isolates were genotyped by spoligotyping. RESULTS Phenotypic DST identified 50 isolates susceptible to all four drugs (pansusceptible). Sixty-one of 68 MDR-TB isolates were resistant to streptomycin. Genotypic testing for rifampicin and isoniazid yielded expected results. Fifty pansusceptible and 7 streptomycin-susceptible MDR-TB isolates contained no mutation in rpsL or rrs, while 47, 2 and 1 STR-resistant isolate contained rpsL, rrs and rpsL + rrs mutations, respectively. Of the remaining 11 STR-resistant MDR-TB, 9 isolates contained deletion frame-shift/nonsynonymous mutations in gidB. Surprisingly, 13 pansusceptible isolates also contained deletion frame-shift/nonsense/nonsynonymous mutations in gidB. Also, 30 of 68 MDR-TB but only 2 of 50 pansusceptible isolates belonged to the Beijing genotype. CONCLUSIONS Our data show that, like ifampicin, ethambutol and pyrazinamide, streptomycin also exhibits discordant phenotypic and genotypic DST results for some M. tuberculosis isolates. Hence, streptomycin should be included in therapy regimens only if both phenotypic and genotypic resistance testing indicate susceptibility to avoid amplification of resistance and drug toxicity.
Collapse
|
6
|
Maitre T, Baulard A, Aubry A, Veziris N. Optimizing the use of current antituberculosis drugs to overcome drug resistance in Mycobacterium tuberculosis. Infect Dis Now 2024; 54:104807. [PMID: 37839674 DOI: 10.1016/j.idnow.2023.104807] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Antibiotic-resistant tuberculosis continues to be one of the major threats to global tuberculosis control. After a hiatus of over 40 years in antituberculosis drug development, the last decade has seen a resurgence of research, yielding a number of promising compounds in the tuberculosis drug pipeline, with some that are now game changers in the treatment of MDRTB. Despite this progress, there are still obstacles restricting the use of these molecules as first-line drugs. The quick appearance of bacteria resistant to these new treatments highlights a continuing need to fuel the discovery and development of new molecules. With this in mind, alternative strategies aimed at optimizing the utilization of existing antituberculosis agents are currently under evaluation. They are focused on enhancing the efficacy of antibiotics against their bacterial targets, primarily by augmenting the quantity of antibiotic that engages with these targets. This objective can be achieved through two primary approaches: (1) Provided that toxicity concerns are not a limiting factor, increased dosing is a viable avenue, as demonstrated by rifampicin, isoniazid, and fluoroquinolones, for which escalated dosing has been effective; and (2) Employing enhancers such as drug activator boosters (ethionamide), efflux pump inhibitors, or hydrolytic enzyme inhibitors (kanamycin) can elevate the concentration of antibiotics in bacterial cells. These strategies offer the potential to mitigate antibiotic obsolescence and complement the discovery of new antibiotics.
Collapse
Affiliation(s)
- Thomas Maitre
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France; Service de Pneumologie et d'Oncologie Thoracique, Centre constitutif maladies rares, Hôpital Tenon, AP-HP, Sorbonne-Université, Paris, France.
| | - Alain Baulard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Alexandra Aubry
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France; AP-HP, Sorbonne-Universite, Hôpital Pitié Salpêtrière, Laboratoire de Bactériologie-Hygiene, Centre National de Référence des Mycobactéries, Paris France
| | - Nicolas Veziris
- Sorbonne Université, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, Paris, France; AP-HP, Sorbonne-Université, Hôpital Saint-Antoine, Département de Bactériologie, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Bonsa Z, Tadesse M, Balay G, Kebede W, Abebe G. Discordance between genotypic and phenotypic methods for the detection of rifampicin and isoniazid resistant Mycobacterium tuberculosis and the correlation with patient treatment outcomes. J Clin Tuberc Other Mycobact Dis 2024; 34:100410. [PMID: 38225941 PMCID: PMC10788488 DOI: 10.1016/j.jctube.2023.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Background Accurate drug susceptibility testing (DST) of Mycobacterium tuberculosis (MTB) is essential for proper patient management. We investigated discordance between genotypic (Xpert MTB/RIF and MTBDRplus) and phenotypic (MGIT 960) methods for the detection of rifampicin (RIF) and isoniazid (INH) resistant MTB and its correlation with patient treatment outcomes in Jimma, Southwest Oromia, Ethiopia. Methods A retrospective study was conducted on 57 stored MTB isolates with known Xpert RIF resistance status (45 RIF resistant and 12 RIF susceptible) at Jimma University Mycobacteriology Research Center from November 2, 2021, to December 28, 2022. We did MTBDRplus and phenotypic DST (using the Mycobacterial Growth Indicator Tube (MGIT) system). The Xpert and MTBDRplus results were compared using phenotypic DST as a reference standard method. The treatment outcome was determined as per national guideline. The discordance between the genotypic and phenotypic DST was calculated using GraphPad software. Results Among the 57 MTB isolates, six (10.5 %) had discordant results between the two DST methods. Xpert yielded five discordant results for RIF when compared with phenotypic DST (kappa coefficient (κ) = 0.76, 95 % confidence interval 0.56-0.96). The MTBDRplus compared with phenotypic DST gave three discordant results for RIF (κ = 0.86, 95 % confidence interval 0.71-1.00) and three for INH (κ = 0.86, 95 % confidence interval 0.70-1.00). Compared with Xpert, MTBDRplus yielded lower discordance with phenotypic DST for RIF. Out of six patients with discordant results, three had unfavorable outcomes while the other three were cured. Of the three patients with unfavorable outcomes, only one patient has received an inappropriate treatment regimen. There was no correlation between unfavorable outcomes and incorrect treatment regimens due to discordant results (Χ2 = 0.404; P = 0.525). Conclusions Discordance between genotypic and phenotypic DST for RIF or INH occurred in 10.5 % of isolates. Only one patient with discordant results has received an inappropriate treatment regimen, resulting in an unfavorable outcome. The impact of parallel use of rapid molecular assay with phenotypic DST on patient treatment outcomes requires further study.
Collapse
Affiliation(s)
- Zegeye Bonsa
- Mycobacteriology Research Center, Jimma University, Jimma, Oromia, Ethiopia
| | - Mulualem Tadesse
- Mycobacteriology Research Center, Jimma University, Jimma, Oromia, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| | - Getu Balay
- Mycobacteriology Research Center, Jimma University, Jimma, Oromia, Ethiopia
| | - Wakjira Kebede
- Mycobacteriology Research Center, Jimma University, Jimma, Oromia, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| | - Gemeda Abebe
- Mycobacteriology Research Center, Jimma University, Jimma, Oromia, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
8
|
Qadir M, Faryal R, Khan MT, Khan SA, Zhang S, Li W, Wei DQ, Tahseen S, McHugh TD. Phenotype versus genotype discordant rifampicin susceptibility testing in tuberculosis: implications for a diagnostic accuracy. Microbiol Spectr 2024; 12:e0163123. [PMID: 37982632 PMCID: PMC10783056 DOI: 10.1128/spectrum.01631-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
An accurate diagnosis of drug resistance in clinical isolates is an important step for better treatment outcomes. The current study observed a higher discordance rate of rifampicin resistance on Mycobacteria Growth Indicator Tube (MGIT) drug susceptibility testing (DST) than Lowenstein-Jenson (LJ) DST when compared with the rpoB sequencing. We detected a few novel mutations and their combination in rifampicin resistance isolates that were missed by MGIT DST and may be useful for the better management of tuberculosis (TB) treatment outcomes. Few novel deletions in clinical isolates necessitate the importance of rpoB sequencing in large data sets in geographic-specific locations, especially high-burden countries. We explored the discordance rate on MGIT and LJ, which is important for the clinical management of rifampicin resistance to avoid the mistreatment of drug-resistant TB. Furthermore, MGIT-sensitive isolates may be subjected to molecular methods of diagnosis for further confirmation and treatment options.
Collapse
Affiliation(s)
- Mehmood Qadir
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rani Faryal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Tahir Khan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, China
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sajjad Ahmed Khan
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
| | - Shulin Zhang
- School of Medicine, Department of Immunology and Microbiology, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dong Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Sabira Tahseen
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Nie Q, Sun D, Zhu M, Tu S, Chen N, Chen H, Zhou Y, Yao G, Zhang X, Zhang T, Yang C, Tao L. Phenotypic drug susceptibility characterization and clinical outcomes of tuberculosis strains with A-probe mutation by GeneXpert MTB/RIF. BMC Infect Dis 2023; 23:832. [PMID: 38012619 PMCID: PMC10680243 DOI: 10.1186/s12879-023-08509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/03/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND GeneXpert MTB/RIF (Xpert) assay was applied widely to detect Mycobacterium tuberculosis (MTB) and rifampicin resistance. METHODS Retrospectively investigated the association among treatment histories, phenotypic drug susceptibility testing (pDST) results, and clinical outcomes of patients infected with probe A absent mutation isolate confirmed by Xpert. RESULTS 63 patients with only probe A absent mutation and 40 with additional pDST results were analyzed. 24 (60.0%) patients had molecular-phenotypic discordant rifampicin (RIF) susceptibility testing results, including 12 (12/13, 92.3%) new tuberculosis (TB) patients and 12 (12/27, 44.4%) retreated ones. 28 (28/39, 71.8%) retreated patients received first-line treatment regime within two years with failed outcomes. New patients had better treatment outcomes than retreated ones (successful: 83.3% VS. 53.8%; P value = 0.02). The clinical results of RIF-susceptible TB confirmed by pDST were not better than RIF-resistant TB (successful: 62.5% VS. 50.0%; P value = 0.43). INH-resistant TB and INH-susceptible TB had similar treatment outcomes too (successful: 61.5% VS. 50.0%; P value = 0.48). 11 (11/12, 91.7%) new patients treated with the short treatment regimen (STR) had successful outcomes. CONCLUSIONS More than half of mono probe A absent isolates had RIF molecular-phenotypic discordance results, especially in new patients. Probe A mutations were significantly associated with unsuccessful clinical outcomes, whether the pDST results were RIF susceptible or not. STR was the best choice for new patients. TRIAL REGISTRATION retrospectively registered in Wuhan Jinyintan Hospital (No. 2021-KY-16).
Collapse
Affiliation(s)
- Qi Nie
- College of Life Sciences and Health, Wuhan University of Science and Technology, Hubei, China
- Department of MDR/RR-TB, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Chinese Academy of Medical Sciences, Hubei, China
| | - Dan Sun
- Department of Interventional therapy, Wuhan Pulmonary Hospital, Hubei, China
| | - Muxin Zhu
- Department of MDR/RR-TB, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Chinese Academy of Medical Sciences, Hubei, China
| | - Shengjin Tu
- Department of MDR/RR-TB, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Chinese Academy of Medical Sciences, Hubei, China
| | - Nanshan Chen
- Department of MDR/RR-TB, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Chinese Academy of Medical Sciences, Hubei, China
| | - Hua Chen
- Department of MDR/RR-TB, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Chinese Academy of Medical Sciences, Hubei, China
| | - Yong Zhou
- Department of MDR/RR-TB, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Chinese Academy of Medical Sciences, Hubei, China
| | - Ge Yao
- Department of MDR/RR-TB, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Chinese Academy of Medical Sciences, Hubei, China
| | - Xiaoqing Zhang
- Department of MDR/RR-TB, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Chinese Academy of Medical Sciences, Hubei, China
| | - Tongcun Zhang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Hubei, China.
| | - Chengfeng Yang
- Hubei Provincial Center for Disease Control and Prevention, Hubei, China.
| | - Lixuan Tao
- Emergency Department, Puren Hospital, Wuhan University of science and technology, Hubei, China.
| |
Collapse
|
10
|
Rostamian M, Kooti S, Abiri R, Khazayel S, Kadivarian S, Borji S, Alvandi A. Prevalence of Mycobacterium tuberculosis mutations associated with isoniazid and rifampicin resistance: A systematic review and meta-analysis. J Clin Tuberc Other Mycobact Dis 2023; 32:100379. [PMID: 37389010 PMCID: PMC10302537 DOI: 10.1016/j.jctube.2023.100379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Tuberculosis (TB) is still one of the leading causes of worldwide death, especially following the emergence of strains resistant to isoniazid (INH) and rifampicin (RIF). This study aimed to systematically review published articles focusing on the prevalence of INH and/or RIF resistance-associated mutations of Mycobacterium tuberculosis isolates in recent years. Literature databases were searched using appropriate keywords. The data of the included studies were extracted and used for a random-effects model meta-analysis. Of the initial 1442 studies, 29 were finally eligible to be included in the review. The overall resistance to INH and RIF was about 17.2% and 7.3%, respectively. There was no difference between the frequency of INH and RIF resistance using different phenotypic or genotypic methods. The INH and/or RIF resistance was higher in Asia. The S315T mutation in KatG (23.7 %), C-15 T in InhA (10.7 %), and S531L in RpoB (13.5 %) were the most prevalent mutations. Altogether, the results showed that due to S531L in RpoB, S315T in KatG, and C-15 T in InhA mutations INH- and RIF-resistant M. tuberculosis isolates were widely distributed. Thus, it would be diagnostically and epidemiologically beneficial to track these gene mutations among resistant isolates.
Collapse
Affiliation(s)
- Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Kooti
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Ramin Abiri
- Fertility and Infertility Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Khazayel
- Deupty of Research and Technology Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepide Kadivarian
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Borji
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhooshang Alvandi
- Medical Technology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Aguilar-Pineda JA, Febres-Molina C, Cordova-Barrios CC, Campos-Olazával LM, Del-Carpio-Martinez BA, Ayqui-Cueva F, Gamero-Begazo PL, Gómez B. Study of the Rv1417 and Rv2617c Membrane Proteins and Their Interactions with Nicotine Derivatives as Potential Inhibitors of Erp Virulence-Associated Factor in Mycobacterium tuberculosis: An In Silico Approach. Biomolecules 2023; 13:biom13020248. [PMID: 36830617 PMCID: PMC9953637 DOI: 10.3390/biom13020248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/30/2022] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The increasing emergence of Mycobacterium tuberculosis (Mtb) strains resistant to traditional anti-tuberculosis drugs has alarmed health services worldwide. The search for new therapeutic targets and effective drugs that counteract the virulence and multiplication of Mtb represents a challenge for the scientific community. Several studies have considered the erp gene a possible therapeutic target in the last two decades, since its disruption negatively impacts Mtb multiplication. This gene encodes the exported repetitive protein (Erp), which is located in the cell wall of Mtb. In vitro studies have shown that the Erp protein interacts with two putative membrane proteins, Rv1417 and Rv2617c, and the impairment of their interactions can decrease Mtb replication. In this study, we present five nicotine analogs that can inhibit the formation of heterodimers and trimers between these proteins. Through DFT calculations, molecular dynamics, docking, and other advanced in silico techniques, we have analyzed the molecular complexes, and show the effect these compounds have on protein interactions. The results show that four of these analogs can be possible candidates to counteract the pathogenicity of Mtb. This study aims to combine research on the Erp protein as a therapeutic target in the search for new drugs that serve to create new therapies against tuberculosis disease.
Collapse
Affiliation(s)
- Jorge Alberto Aguilar-Pineda
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Camilo Febres-Molina
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago de Chile 8370134, Chile
| | - Cinthia C. Cordova-Barrios
- Departamento de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Lizbeth M. Campos-Olazával
- Facultad de Arquitectura e Ingeniería Civil y del Ambiente, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Bruno A. Del-Carpio-Martinez
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Flor Ayqui-Cueva
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
| | - Pamela L. Gamero-Begazo
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago de Chile 8370134, Chile
| | - Badhin Gómez
- Centro de Investigación en Ingeniería Molecular—CIIM, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Departamento de Ciencias Farmacéuticas, Bioquímicas y Biotecnológicas, Universidad Católica de Santa María, Urb. San José s/n, Umacollo, Arequipa 04013, Peru
- Correspondence: ; Tel.: +51-982895967
| |
Collapse
|
12
|
Al-Mutairi NM, Ahmad S, Mokaddas E, Al-Hajoj S. First insights into the phylogenetic diversity of Mycobacterium tuberculosis in Kuwait and evaluation of REBA MTB-MDR assay for rapid detection of MDR-TB. PLoS One 2022; 17:e0276487. [PMID: 36264939 PMCID: PMC9584360 DOI: 10.1371/journal.pone.0276487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Early detection of Mycobacterium tuberculosis (Mtb) in clinical specimens, its susceptibility to anti-TB drugs and disruption of infection transmission to new hosts are essential components for global tuberculosis (TB) control efforts. This study investigated major Mtb genotypes circulating in Kuwait and evaluated the performance of REBA MTB-MDR (REBA) test in comparison to GenoType MTBDRplus (gMTBDR+) assay for rapid detection of resistance of Mtb to isoniazid and rifampicin (MDR-TB). M. tuberculosis isolates (n = 256) originating predominantly from expatriate patients during a 6-month period were tested by spoligotyping and a dendrogram was created by UPGMA using MIRU-VNTRplus software. Phenotypic drug susceptibility testing (DST) was performed by MGIT 960 system. Genotypic DST for isoniazid and rifampicin was done by REBA and gMTBDR+ assays. Spoligotyping assigned 188 (73.4%) isolates to specific spoligotype international type (SIT) while 68 isolates exhibited orphan patterns. All major M. tuberculosis lineages were detected and EAI, CAS and Beijing families were predominant. Phylogenetic tree showed 131 patterns with 105 isolates exhibiting a unique pattern while 151 isolates clustered in 26 patterns. Fifteen isolates were resistant to one/more drugs. REBA and gMTBDR+ detected isoniazid resistance in 11/12 and 10/12 and rifampicin resistance in 4/5 and 4/5 resistant isolates, respectively. The diversity of SIT patterns are highly suggestive of infection of most expatriate patients with unique Mtb strains, likely acquired in their native countries before their arrival in Kuwait. Both, REBA and gMTBDR+ assays performed similarly for detection of resistance of Mtb to isoniazid and rifampicin for rapid detection of MDR-TB.
Collapse
Affiliation(s)
- Noura M. Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- * E-mail: ,
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait
- Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Special Hospital and Research Center (KFSH & RC), Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Xie NG, Zhang K, Song P, Li R, Luo J, Zhang DY. High-Throughput Variant Detection Using a Color-Mixing Strategy. J Mol Diagn 2022; 24:878-892. [PMID: 35718091 PMCID: PMC9379672 DOI: 10.1016/j.jmoldx.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Many diseases are related to multiple genetic alterations along a single gene. Probing for highly multiple (>10) variants in a single quantitative PCR tube is not possible because of a limited number of fluorescence channels and one variant per channel, so many more tubes are needed. Herein, a novel color-mixing strategy that uses fluorescence combinations as digital color codes to probe multiple variants simultaneously was experimentally validated. The color-mixing strategy relies on a simple intratube assay that can probe for 15 variants as part of an intertube assay that can probe for an exponentially increased number of variants. This strategy is achieved by using multiplex double-stranded toehold probes modified with fluorophores and quenchers; the probes are designed to be quenched or luminous after binding to wild-type or variant templates. The color-mixing strategy was used to probe for 21 pathogenic variants in thalassemia and to distinguish between heterozygous and homozygous variants in six tubes, with a specificity of 99% and a sensitivity of 94%. To support tuberculosis diagnosis, the same strategy was applied to simultaneously probe in Mycobacterium tuberculosis for rifampicin-resistance mutations occurring within one 81-bp region and one 48-bp region in the rpoB gene, plus five isoniazid-resistance mutations in the inhA and katG genes.
Collapse
Affiliation(s)
- Nina Guanyi Xie
- Department of Bioengineering, Rice University, Houston, Texas
| | - Kerou Zhang
- Department of Bioengineering, Rice University, Houston, Texas
| | - Ping Song
- Department of Bioengineering, Rice University, Houston, Texas
| | | | | | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, Texas.
| |
Collapse
|
14
|
Zamri HF, Ruzan IN, Ramli SR, Ahmad N. Predominance of the East-Asian Beijing genotype in a Mycobacterium tuberculosis drug-resistant population in Central Malaysia. J Glob Antimicrob Resist 2022; 30:302-307. [PMID: 35717019 DOI: 10.1016/j.jgar.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVES Previous diversity studies on local Mycobacterium tuberculosis (MTB) isolates with or without antibiotic resistance, showed predominance of Indo-Oceanic EAI strains. This study focused specifically on a drug-resistant MTB population from central Malaysia and aimed to investigate the genotypes and resistance patterns involved. METHODS Whole-genome sequencing was performed on 56 local MTB isolates with known rifampicin-resistance or multidrug-resistance towards 13 anti-TB agents. Analysis of each genome sequence was performed using the widely recognized online MTB genotyping platforms, TBProfiler and Mykrobe to determine lineage and genotypic drug-resistance profile. RESULTS Forty (71.4%) isolates were identified as East-Asian Beijing strains. Phenotypic to genotypic antibiotic resistance patterns differed in 33 isolates (58.9%), with one isolate showing extensive drug resistance (XDR) that was previously not detected by conventional drug-susceptibility testing. CONCLUSIONS This drug-resistance population study demonstrated predominance of the East-Asian Beijing strains and a newly detected extensively drug-resistant MTB (XDR-TB) isolate in Malaysia. Information regarding association between lineage and drug-resistance TB in Malaysia is scarce, and more studies are needed to determine significance of such association, if any, in our local settings.
Collapse
Affiliation(s)
- Hana Farizah Zamri
- Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia.
| | - Izayu Nurfarha Ruzan
- Institute for Respiratory Medicine, Hospital Kuala Lumpur, Ministry of Health Malaysia
| | - Siti Roszilawati Ramli
- Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Norazah Ahmad
- Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| |
Collapse
|
15
|
Welekidan LN, Yimer SA, Skjerve E, Dejene TA, Homberset H, Tønjum T, Brynildsrud O. Whole Genome Sequencing of Drug Resistant and Drug Susceptible Mycobacterium tuberculosis Isolates From Tigray Region, Ethiopia. Front Microbiol 2021; 12:743198. [PMID: 34938276 PMCID: PMC8685502 DOI: 10.3389/fmicb.2021.743198] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tuberculosis, mainly caused by Mycobacterium tuberculosis (Mtb), is an ancient human disease that gravely affects millions of people annually. We wanted to explore the genetic diversity and lineage-specific association of Mtb with drug resistance among pulmonary tuberculosis patients. Methods: Sputum samples were collected from pulmonary tuberculosis patients at six different healthcare institutions in Tigray, Ethiopia, between July 2018 and August 2019. DNA was extracted from 74 Mtb complex isolates for whole-genome sequencing (WGS). All genomes were typed and screened for mutations with known associations with antimicrobial resistance using in silico methods, and results were cross-verified with wet lab methods. Results: Lineage (L) 4 (55.8%) was predominant, followed by L3 (41.2%); L1 (1.5%) and L2 (1.5%) occurred rarely. The most frequently detected sublineage was CAS (38.2%), followed by Ural (29.4%), and Haarlem (11.8%). The recent transmission index (RTI) was relatively low. L4 and Ural strains were more resistant than the other strains to any anti-TB drug (P < 0.05). The most frequent mutations to RIF, INH, EMB, SM, PZA, ETH, FLQs, and 2nd-line injectable drugs occurred at rpoB S450L, katG S315T, embB M306I/V, rpsL K43R, pncA V139A, ethA M1R, gyrA D94G, and rrs A1401G, respectively. Disputed rpoB mutations were also shown in four (16%) of RIF-resistant isolates. Conclusion: Our WGS analysis revealed the presence of diverse Mtb genotypes. The presence of a significant proportion of disputed rpoB mutations highlighted the need to establish a WGS facility at the regional level to monitor drug-resistant mutations. This will help control the transmission of DR-TB and ultimately contribute to the attainment of 100% DST coverage for TB patients as per the End TB strategy.
Collapse
Affiliation(s)
- Letemichael Negash Welekidan
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway.,Division of Biomedical Sciences, Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Solomon Abebe Yimer
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway.,Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Eystein Skjerve
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Tsehaye Asmelash Dejene
- Division of Biomedical Sciences, Department of Medical Microbiology and Immunology, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Håvard Homberset
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, Oslo, Norway.,Unit for Genome Dynamics, Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Ola Brynildsrud
- Department of Production Animal Medicine, Norwegian University of Life Sciences, Oslo, Norway.,Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
16
|
Borgio JF, Rasdan AS, Sonbol B, Alhamid G, Almandil NB, AbdulAzeez S. Emerging Status of Multidrug-Resistant Bacteria and Fungi in the Arabian Peninsula. BIOLOGY 2021; 10:biology10111144. [PMID: 34827138 PMCID: PMC8614875 DOI: 10.3390/biology10111144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The incidence and developing status of multidrug-resistant bacteria and fungi, as well as their related mortality, is reviewed by a systematic published literature search from nine countries in the Arabian Peninsula. In order to analyse the emerging status and mortality, a total of 382 research articles were selected from a comprehensive screening of 1705 papers. More than 850 deaths reported since 2010 in the Arabian Peninsula due to the infection of multidrug-resistant bacteria and fungi. Multidrug-resistant bacteria Acinetobacter baumannii, Mycobacterium tuberculosis, Staphylococcus aureus, and fungi Candida auris are the most prevalent and causing high deaths. To control these infections and associated deaths in the Arabian Peninsula, continuous preventive measures, accurate methods for early diagnosis of infection, active surveillance, constant monitoring, developing vaccines, eradicating multidrug resistance modulators, and data sharing among countries are required. Abstract We aimed to identify the prevalence and emerging status of multidrug-resistant bacteria and fungi and their associated mortality in nine countries in the Arabian Peninsula. Original research articles and case studies regarding multidrug-resistant bacteria and fungi in the Arabian Peninsula, published during the last 10 years, were retrieved from PubMed and Scopus. A total of 382 studies were included as per the inclusion and exclusion criteria, as well as the PRISMA guidelines, from a thorough screening of 1705 articles, in order to analyse the emerging status and mortality. The emerging nature of >120 multidrug-resistant (MDR) bacteria and fungi in the Arabian Peninsula is a serious concern that requires continuous monitoring and immediate preventive measures. More than 50% (n = 453) of multidrug-resistant, microbe-associated mortality (n = 871) in the Arabian Peninsula was due to MDR Acinetobacter baumannii, Mycobacterium tuberculosis and Staphylococcus aureus infection. Overall, a 16.51% mortality was reported among MDR-infected patients in the Arabian Peninsula from the 382 articles of this registered systematic review. MDR A. baumannii (5600 isolates) prevailed in all the nine countries of the Arabian Peninsula and was one of the fastest emerging MDR bacteria with the highest mortality (n = 210). A total of 13,087 Mycobacterium tuberculosis isolates were reported in the region. Candida auris (580 strains) is the most prevalent among the MDR fungal pathogen in the Arabian Peninsula, having caused 54 mortalities. Active surveillance, constant monitoring, the development of a candidate vaccine, an early diagnosis of MDR infection, the elimination of multidrug resistance modulators and uninterrupted preventive measures with enhanced data sharing are mandatory to control MDR infection and associated diseases of the Arabian Peninsula. Accurate and rapid detection methods are needed to differentiate MDR strain from other strains of the species. This review summarises the logical relation, prevalence, emerging status and associated mortality of MDR microbes in the Arabian Peninsula.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- Correspondence: or ; Tel.: +966-013-3330864
| | - Alia Saeed Rasdan
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
| | - Bayan Sonbol
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
| | - Galyah Alhamid
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| |
Collapse
|
17
|
Rifampicin-Monoresistant Tuberculosis Is Not the Same as Multidrug-Resistant Tuberculosis: a Descriptive Study from Khayelitsha, South Africa. Antimicrob Agents Chemother 2021; 65:e0036421. [PMID: 34460307 PMCID: PMC8522772 DOI: 10.1128/aac.00364-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rifampin monoresistance (RMR; rifampin resistance and isoniazid susceptibility) accounts for 38% of all rifampin-resistant tuberculosis (RR-TB) in South Africa and is increasing. We aimed to compare RMR-TB with multidrug-resistant TB (MDR-TB) in a setting with high TB, RR-TB, and HIV burdens. Patient-level clinical data and stored RR Mycobacterium tuberculosis isolates from 2008 to 2017 with available whole-genome sequencing (WGS) data were used to describe risk factors associated with RMR-TB and to compare RR-conferring mutations between RMR-TB and MDR-TB. A subset of isolates with particular RR-conferring mutations were subjected to semiquantitative rifampin phenotypic drug susceptibility testing. Among 2,041 routinely diagnosed RR-TB patients, 463 (22.7%) had RMR-TB. HIV-positive individuals (adjusted odds ratio [aOR], 1.4; 95% confidence interval [CI], 1.1 to 1.9) and diagnosis between 2013 and 2017 versus between 2008 and 2012 (aOR, 1.3; 95% CI, 1.1 to 1.7) were associated with RMR-TB. Among 1,119 (54.8%) patients with available WGS data showing RR-TB, significant differences in the distribution of rpoB RR-conferring mutations between RMR and MDR isolates were observed. Mutations associated with high-level RR were more commonly found among MDR isolates (811/889 [90.2%] versus 162/230 [70.4%] among RMR isolates; P < 0.0001). In particular, the rpoB L430P mutation, conferring low-level RR, was identified in 32/230 (13.9%) RMR isolates versus 10/889 (1.1%) in MDR isolates (P < 0.0001). Among 10 isolates with an rpoB L430P mutation, 7 were phenotypically susceptible using the critical concentration of 0.5 μg/ml (range, 0.125 to 1 μg/ml). The majority (215/230 [93.5%]) of RMR isolates showed susceptibility to all other TB drugs, highlighting the potential benefits of WGS for simplified treatment. These data suggest that the evolution of RMR-TB differs from MDR-TB with a potential contribution from HIV infection.
Collapse
|
18
|
Rando-Segura A, Aznar ML, Moreno MM, Espasa Soley M, Sulleiro Igual E, Bocanegra Garcia C, Gil Olivas E, Nindia Eugénio A, Escartin Huesca C, Zacarias A, Vegue Collado J, Katimba D, Vivas Cano MC, Gabriel E, López García MT, Pumarola Suñe T, Molina Romero I, Tórtola Fernández MT. Molecular characterization of rpoB gene mutations in isolates from tuberculosis patients in Cubal, Republic of Angola. BMC Infect Dis 2021; 21:1056. [PMID: 34641802 PMCID: PMC8507306 DOI: 10.1186/s12879-021-06763-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
Background The importance of Mycobacterium tuberculosis strains with disputed rpoB mutations remains to be defined. This study aimed to assess the frequency and types of rpoB mutations in M. tuberculosis isolates from Cubal, Angola, a country with a high incidence of tuberculosis. Methods All isolates included (n = 308) were analyzed using phenotypic drug susceptibility testing and GenoType MTBDRplus assay. DNA sequencing of the rpoB gene and determination of rifampicin MIC by macrodilution method were additionally performed on isolates yielding discordant results (n = 12) and those in which the mutation detected was not characterized (n = 8). Results In total, 85.1% (74/87) of rifampicin-resistant strains had undisputed rpoB mutations -S450L (49), D435V (15), H445D (3), H445Y (2), Q432ins (1), L449M plus S450F (1), S450F (1), S450W (1) and S450Y (1)-; 10.3% (9/87) had disputed rpoB mutations—L430P plus S493L (1), N437del (1), H445L (3), D435Y (2), L452P (2)-, 2.3% (2.3%) showed no rpoB mutations and 2.3% (2/87) showed heteroresistance—D435Y plus L452P and L430P plus S493L-. Conclusion Disputed rpoB mutations were common, occurring in 10.3% of rifampicin resistant isolates. Current phenotyping techniques may be unable to detect this resistance pattern. To increase their sensitivity, a lower concentration of RIF could be used in these tests or alternatively, rpoB mutations could be screened and characterized in all M. tuberculosis strains.
Collapse
Affiliation(s)
- Ariadna Rando-Segura
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain.
| | - María Luisa Aznar
- Infectious Disease Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Hospital Nossa Senhora da Paz, Cubal, Angola
| | | | - Mateu Espasa Soley
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | - Elena Sulleiro Igual
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | - Cristina Bocanegra Garcia
- Infectious Disease Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Hospital Nossa Senhora da Paz, Cubal, Angola
| | - Eva Gil Olivas
- Infectious Disease Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Hospital Nossa Senhora da Paz, Cubal, Angola
| | | | - Carlos Escartin Huesca
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | | | - Josep Vegue Collado
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | | | - Maria Carmen Vivas Cano
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | | | | | - Tomas Pumarola Suñe
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | - Israel Molina Romero
- Infectious Disease Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Teresa Tórtola Fernández
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| |
Collapse
|
19
|
Mokaddas E, Ahmad S, Eldeen HS, Zaglul H, Al-Mutairi NM, Al-Otaibi A. First report of extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) infection in Kuwait. J Infect Public Health 2021; 14:1612-1613. [PMID: 34624715 DOI: 10.1016/j.jiph.2021.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait; Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait; Microbiology Laboratory, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait.
| | | | - Husam Zaglul
- Tuberculosis Department, Chest Diseases Hospital, Shuwaikh, Kuwait
| | - Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ahad Al-Otaibi
- Microbiology Laboratory, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
20
|
Ma P, Luo T, Ge L, Chen Z, Wang X, Zhao R, Liao W, Bao L. Compensatory effects of M. tuberculosis rpoB mutations outside the rifampicin resistance-determining region. Emerg Microbes Infect 2021; 10:743-752. [PMID: 33775224 PMCID: PMC8057087 DOI: 10.1080/22221751.2021.1908096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis has been observed to develop resistance to the frontline anti-tuberculosis drug rifampicin, primarily through mutations in the rifampicin resistance-determining region (RRDR) of rpoB. While these mutations have been determined to confer a fitness cost, compensatory mutations in rpoA and rpoC that may enhance the fitness of resistant strains have been demonstrated. Recent genomic studies identified several rpoB non-RRDR mutations that co-occurred with RRDR mutations in clinical isolates without rpoA/rpoC mutations and may confer fitness compensation. In this study, we identified 33 evolutionarily convergent rpoB non-RRDR mutations through phylogenomic analysis of public genomic data for clinical M. tuberculosis isolates. We found that none of these mutations, except V170F and I491F, can cause rifampin resistance in Mycolicibacterium smegmatis. The compensatory effects of five representative mutations across rpoB were evaluated by an in vitro competition assay, through which we observed that each of these mutations can significantly improve the relative fitness of the initial S450L mutant (0.97–1.08 vs 0.87). Furthermore, we observed that the decreased RNAP transcription efficiency introduced by S450L was significantly alleviated by each of the five mutations. Structural analysis indicated that the fitness compensation observed for the non-RRDR mutations might be achieved by modification of the RpoB active centre or by changes in interactions between RNAP subunits. Our results provide experimental evidence supporting that compensatory effects are exerted by several rpoB non-RRDR mutations, which could be utilized as additional molecular markers for predicting the fitness of clinical rifampin-resistant M. tuberculosis strains.
Collapse
Affiliation(s)
- Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Liang Ge
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Zonghai Chen
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Xinyan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Rongchuan Zhao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Wei Liao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
21
|
Foley DA, Phuong LK, Globan M, Fyfe JM, Lavender C, Williamson DA. The performance of the Xpert MTB/RIF Version G4 in a low tuberculosis incidence setting. Pathology 2021; 54:123-125. [PMID: 34218951 DOI: 10.1016/j.pathol.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/21/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Affiliation(s)
- David A Foley
- Mycobacterial Reference Laboratory, Victorian Infectious Diseases Reference Laboratory, Melbourne, Vic, Australia; Department of Infectious Diseases, Perth Children's Hospital, Nedlands, WA, Australia.
| | - Linny K Phuong
- Department of General Medicine, Infectious Diseases Unit, Royal Children's Hospital, Parkville, Vic, Australia; Murdoch Children's Research Institute, Parkville, Vic, Australia
| | - Maria Globan
- Mycobacterial Reference Laboratory, Victorian Infectious Diseases Reference Laboratory, Melbourne, Vic, Australia
| | - Janet M Fyfe
- Mycobacterial Reference Laboratory, Victorian Infectious Diseases Reference Laboratory, Melbourne, Vic, Australia
| | - Caroline Lavender
- Mycobacterial Reference Laboratory, Victorian Infectious Diseases Reference Laboratory, Melbourne, Vic, Australia
| | - Deborah A Williamson
- Mycobacterial Reference Laboratory, Victorian Infectious Diseases Reference Laboratory, Melbourne, Vic, Australia; Department of Microbiology, Royal Melbourne Hospital, Parkville, Vic, Australia; Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute, Melbourne, Vic, Australia
| |
Collapse
|
22
|
Mu J, Liu Z, Zhang C, Wang C, Du W, Lin H, Li K, Song J, Che N, Liu H. Performance of the MeltPro MTB Assays in the Diagnosis of Drug-Resistant Tuberculosis Using Formalin-Fixed, Paraffin-Embedded Tissues. Am J Clin Pathol 2021; 156:34-41. [PMID: 33438007 DOI: 10.1093/ajcp/aqaa203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES The MeltPro MTB assays for detection of resistance to antituberculosis (TB) drugs perform well in genotypic drug susceptibility testing (DST) of clinical samples, but their effectiveness with formalin-fixed, paraffin-embedded (FFPE) tissues is unknown. METHODS FFPE tissues were obtained from 334 patients with TB. Susceptibility to rifampicin (RIF), isoniazid (INH), and fluoroquinolones was examined using the MeltPro MTB assays, with Xpert MTB/RIF (Xpert) and/or phenotypic DST (pDST) results as references. Samples with discordant results were analyzed by multiplex polymerase chain reaction-targeted amplicon sequencing (MTA-seq). RESULTS With pDST as the reference, the MeltPro MTB assays sensitivity for RIF, INH, levofloxacin (LVX), and moxifloxacin (MXF) was 95.00%, 96.00%, 100%, and 100%, respectively, and the specificity was 95.15%, 95.92%, 94.69%, and 89.92%, respectively. Concordance was 99.08% between the MeltPro MTB and Xpert (κ = 0.956) for RIF and 95.12% (κ = 0.834), 95.93% (κ = 0.880), 95.12% (κ = 0.744), and 90.24% (κ = 0.367) between the MeltPro MTB and pDST for RIF, INH, LVX, and MXF, respectively. MTA-seq confirmed the discordancy between the MeltPro MTB and pDST for 26 (89.66%) of 29 samples. CONCLUSIONS The MeltPro MTB assays rapidly and efficiently predict Mycobacterium tuberculosis resistance to the main first- and second-line anti-TB drugs in FFPE tissues.
Collapse
Affiliation(s)
- Jing Mu
- Department of Pathology, Key Laboratory of Head and Neck Molecular Diagnosis Pathology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zichen Liu
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Chen Zhang
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Chongli Wang
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Weili Du
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Haifeng Lin
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Kun Li
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jing Song
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Nanying Che
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Honggang Liu
- Department of Pathology, Key Laboratory of Head and Neck Molecular Diagnosis Pathology, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Zeng MC, Jia QJ, Tang LM. rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates from rural areas of Zhejiang, China. J Int Med Res 2021; 49:300060521997596. [PMID: 33715498 PMCID: PMC7952843 DOI: 10.1177/0300060521997596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective The aim was to analyze genetic mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis isolates (RIFR-MTB) from Zhejiang, China. Methods We prospectively analyzed RIFR-associated mutations in 13 rural areas of Zhejiang. Isolates were subjected to species identification, phenotype drug susceptibility testing (DST), DNA extraction, and rpoB gene sequencing. Results A total of 103 RIFR isolates were identified by DST (22 RIFR only, 14 poly-drug resistant, 49 multidrug resistant, 13 pre-extensively drug resistant [pre-XDR], and 5 extensively drug resistant [XDR]) from 2152 culture-positive sputum specimens. Gene sequencing of rpoB showed that the most frequent mutation was S450L (37.86%, 39/103); mutations P280L, E521K, and D595Y were outside the rifampicin resistance-determining region (RRDR) but may be associated with RIFR. Mutations associated with poly-drug resistant, pre-XDR, and XDR TB were mainly located at codon 445 or 450 in the RRDR. Conclusions The frequency of rpoB RRDR mutation in Zhejiang is high. Further studies are needed to clarify the relationships between RIFR and the TTC insertion at codon 433 in the RRDR and the P280L and D595Y mutations outside the RRDR.
Collapse
Affiliation(s)
- Mei-Chun Zeng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Mei-Chun Zeng, Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79#, Shangcheng District, Hangzhou 310003, China.
| | - Qing-Jun Jia
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Lei-Ming Tang
- Department of Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
24
|
Al-Mutairi NM, Ahmad S, Mokaddas E. Increasing prevalence of resistance to second-line drugs among multidrug-resistant Mycobacterium tuberculosis isolates in Kuwait. Sci Rep 2021; 11:7765. [PMID: 33833390 PMCID: PMC8032671 DOI: 10.1038/s41598-021-87516-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular methods detect genetic mutations associated with drug resistance. This study detected resistance-conferring mutations in gyrA/gyrB for fluoroquinolones and rrs/eis genes for second-line injectable drugs (SLIDs) among multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates in Kuwait. Fifty pansusceptible M. tuberculosis and 102 MDR-TB strains were tested. Phenotypic susceptibility testing was performed by MGIT 960 system using SIRE drug kit. GenoType MTBDRsl version 1 (gMTBDRslv1) and GenoType MTBDRsl version 2 (gMTBDRslv2) tests were used for mutation detection. Results were validated by PCR-sequencing of respective genes. Fingerprinting was performed by spoligotyping. No mutations were detected in pansusceptible isolates. gMTBDRslv1 detected gyrA mutations in 12 and rrs mutations in 8 MDR-TB isolates. gMTBDRsl2 additionally detected gyrB mutations in 2 and eis mutation in 1 isolate. Mutations in both gyrA/gyrB and rrs/eis were not detected. gMTBDRslv1 also detected ethambutol resistance-conferring embB mutations in 59 isolates. Although XDR-TB was not detected, frequency of resistance-conferring mutations for fluoroquinolones or SLIDs was significantly higher among isolates collected during 2013–2019 versus 2006–2012. Application of both tests is warranted for proper management of MDR-TB patients in Kuwait as gMTBDRslv2 detected resistance to fluoroquinolones and/or SLIDs in 3 additional isolates while gMTBDRslv1 additionally detected resistance to ethambutol in 58% of MDR-TB isolates.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.,Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| |
Collapse
|
25
|
Low-Level Rifampin Resistance and rpoB Mutations in Mycobacterium tuberculosis: an Analysis of Whole-Genome Sequencing and Drug Susceptibility Test Data in New York. J Clin Microbiol 2021; 59:JCM.01885-20. [PMID: 32999007 DOI: 10.1128/jcm.01885-20] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/05/2020] [Indexed: 01/02/2023] Open
Abstract
Rapid and reliable detection of rifampin (RIF) resistance is critical for the diagnosis and treatment of drug-resistant and multidrug-resistant (MDR) tuberculosis. Discordant RIF phenotype/genotype susceptibility results remain a challenge due to the presence of rpoB mutations that do not confer high levels of RIF resistance, as have been exhibited in strains with mutations such as Ser450Leu. These strains, termed low-level RIF resistant, exhibit elevated RIF MICs compared to fully susceptible strains but remain phenotypically susceptible by mycobacterial growth indicator tube (MGIT) testing and have been associated with poor patient outcomes. Here, we assess RIF resistance prediction by whole-genome sequencing (WGS) among a set of 1,779 prospectively tested strains by both prevalence of rpoB gene mutation and phenotype as part of routine clinical testing during a 2.5-year period. During this time, 139 strains were found to have nonsynonymous rpoB mutations, 53 of which were associated with RIF resistance, including both low-level and high-level resistance. Resistance to RIF (1.0 μg/ml in MGIT) was identified in 43 (81.1%) isolates. The remaining 10 (18.9%) strains were susceptible by MGIT but were confirmed to be low-level RIF resistant by MIC testing. Full rpoB gene sequencing overcame the limitations of critical concentration phenotyping, probe-based genotyping, and partial gene sequencing methods. Universal clinical WGS with concurrent phenotypic testing provided a more complete understanding of the prevalence and type of rpoB mutations and their association with RIF resistance in New York.
Collapse
|
26
|
Cheng S, Hide M, Pheng SH, Kerléguer A, Delvallez G, Sam S, Mao TE, Nguyen TVA, Bañuls AL. Resistance to Second-Line Anti-TB Drugs in Cambodia: A Phenotypic and Genetic Study. Infect Drug Resist 2021; 14:1089-1104. [PMID: 33762833 PMCID: PMC7982564 DOI: 10.2147/idr.s289907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Due to the emergence of Mycobacterium tuberculosis (M.tb) clinical isolates resistant to most potent first-line drugs (FLD), second-line drugs (SLD) are being prescribed more frequently. We explore the genetic characteristics and molecular mechanisms of M.tb isolates phenotypically resistant to SLD, including pre-extensively drug-resistant (pre-XDR) and extensively drug-resistant (XDR) isolates. Methods Drug-resistant (DR) M.tb isolates collected from 2012 to 2017 were tested using sequencing and phenotypic drug susceptibility testing. Genotypes were determined to explore their links with SLD resistance patterns. Results Of the 272 DR M.tb isolates, 6 non-multidrug resistant (non-MDR) isolates were fluoroquinolones (FQ)-resistant, 3 were XDR and 16 were pre-XDR (14 resistant to FQ and 2 to second-line injectable drugs). The most frequent mutations in FQ-resistant and second-line injectable drugs resistant isolates were gyrA D94G (15/23) and rrs a1401g (3/5), respectively. Seventy-five percent of pre-XDR isolates and 100% of XDR isolates harbored mutations conferring resistance to pyrazinamide. All XDR isolates belonged to the Beijing genotype, of which one, named XDR+, was resistant to all drugs tested. One cluster including pre-XDR and XDR isolates was observed. Conclusion This is the first description of SLD resistance in Cambodia. The data suggest that the proportion of XDR and pre-XDR isolates remains low but is on the rise compared to previous reports. The characterization of the XDR+ isolate in a patient who refused treatment underlines the risk of transmission in the population. In addition, genotypic results show, as expected, that the Beijing family is the main involved in pre-XDR and XDR isolates and that the spread of the Beijing pre-XDR strain is capable of evolving into XDR strain. This study strongly indicates the need for rapid interventions in terms of diagnostic and treatment to prevent the spread of the pre-XDR and XDR strains and the emergence of more resistant ones.
Collapse
Affiliation(s)
- Sokleaph Cheng
- Institut Pasteur du Cambodge and Ministry of Health, Phnom Penh, Cambodia.,Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,LMI Drug Resistance in South East Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Mallorie Hide
- LMI Drug Resistance in South East Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,MIVEGEC, University of Montpellier, Institute of Research for Development, Centre National de la Recherche Scientifique, Montpellier, France.,CREES (Centre de Recherche En Écologie Et Évolution de la Santé), Montpellier, France
| | - Sok Heng Pheng
- National Center for Tuberculosis and Leprosy Control, Phnom Penh, Cambodia
| | - Alexandra Kerléguer
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Gauthier Delvallez
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sophan Sam
- Cambodian Health Committee, Phnom Penh, Cambodia
| | - Tan Eang Mao
- National Center for Tuberculosis and Leprosy Control, Phnom Penh, Cambodia
| | - Thi Van Anh Nguyen
- LMI Drug Resistance in South East Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Department of Bacteriology, National Institute of Hygiene and Epidemiology, Hanoi, Martinique, Vietnam
| | - Anne-Laure Bañuls
- LMI Drug Resistance in South East Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,MIVEGEC, University of Montpellier, Institute of Research for Development, Centre National de la Recherche Scientifique, Montpellier, France.,CREES (Centre de Recherche En Écologie Et Évolution de la Santé), Montpellier, France
| |
Collapse
|
27
|
Gopie F, Commiesie E, Baldi S, Kamst M, Kaur D, de Lange W, Pinas P, Stijnberg D, Wongsokarijo M, Zijlmans C, de Zwaan R, van Soolingen D, Vreden S, de Vries G. Should treatment of low-level rifampicin mono-resistant tuberculosis be different? J Clin Tuberc Other Mycobact Dis 2021; 23:100222. [PMID: 33598570 PMCID: PMC7869001 DOI: 10.1016/j.jctube.2021.100222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Rifampicin resistant tuberculosis (RR-TB) was frequently detected in Suriname after the introduction of Xpert MTB/RIF in 2012. Subsequent phenotypic drug-susceptibility testing (DST) was not conclusive at that moment, while RR-TB patients treated with first-line tuberculostatics had good treatment outcome. In our study, we analysed this interesting observation. Methods We collected demographic and clinical characteristics and treatment outcome of TB patients from May 2012-December 2018 and performed a univariate and multivariate analysis to assess possible associations with resistance to rifampicin. Secondly, we conducted whole genome sequencing on all available Mycobacterium tuberculosis isolates that had a rifampicin resistance in the Xpert MTB/RIF test and performed phenotypic DST on selected isolates. Findings RR-TB was detected in 59 (9.6%) patients confirmed by Xpert. These patients were treated with rifampicin-containing regimens in most (88%) of the cases. In all 32 samples examined, a D435Y mutation in the rpoB gene was identified; only one isolate revealed an additional isoniazid mutation. Phenotypic DST indicated low-level rifampicin resistance. In multivariate analysis, the Creole ethnicity was a factor associated with rifampicin resistance (aOR 3.5; 95%CI 1.9–6.4). The treatment success rate for patients with RR-TB (78.0%) was comparable to the treatment outcome in non-RR-TB patients 77.8%. Interpretation This study confirms a low-level rifampicin mono-resistance in TB patients of Suriname. These patients could benefit from a first-line regimen with high dose rifampicin (or rifabutin), rather than from the lengthy treatment regimens for rifampicin-resistant and multi-drug resistant TB, a concept of stratified medicine also advocated for the treatment of TB. Funding None.
Collapse
Affiliation(s)
- F.A. Gopie
- Academic Hospital Paramaribo, Paramaribo, Suriname
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
- Corresponding author at: Academic Hospital Paramaribo, Paramaribo, Suriname.
| | - E. Commiesie
- National Tuberculosis Program, Paramaribo, Suriname
| | - S. Baldi
- Central Laboratory, Paramaribo, Suriname
| | - M. Kamst
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - D. Kaur
- Massachusetts Supranational TB Reference Laboratory, University of Massachusetts Medical School, Jamaica Plane, MA, USA
| | - W.C.M. de Lange
- Department Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, the Netherlands
| | - P.S. Pinas
- Central Laboratory, Paramaribo, Suriname
| | - D. Stijnberg
- National Tuberculosis Program, Paramaribo, Suriname
| | | | - C.W.R. Zijlmans
- Faculty of Medical Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - R. de Zwaan
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - D. van Soolingen
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - G. de Vries
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
28
|
Umumararungu T, Mukazayire MJ, Mpenda M, Mukanyangezi MF, Nkuranga JB, Mukiza J, Olawode EO. A review of recent advances in anti-tubercular drug development. Indian J Tuberc 2020; 67:539-559. [PMID: 33077057 DOI: 10.1016/j.ijtb.2020.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis is a global threat but in particular affects people from developing countries. It is thought that nearly a third of the population of the world live with its causative bacteria in a dormant form. Although tuberculosis is a curable disease, the chances of cure become slim as the disease becomes multidrug-resistant and the situation gets even worse as the disease becomes extensively drug-resistant. After approximately 5 decades without any new TB drug in the pipeline, there has been some good news in the recent years with the discovery of new drugs such as bedaquiline and delamanid as well as the discovery of new classes of anti-tubercular drugs. Some old drugs such as clofazimine, linezolid and many others which were not previously indicated for tuberculosis have been also repurposed for tuberculosis and they are performing well.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Françoise Mukanyangezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda
| | | |
Collapse
|
29
|
Krishnakumariamma K, Ellappan K, Muthuraj M, Tamilarasu K, Kumar SV, Joseph NM. Molecular diagnosis, genetic diversity and drug sensitivity patterns of Mycobacterium tuberculosis strains isolated from tuberculous meningitis patients at a tertiary care hospital in South India. PLoS One 2020; 15:e0240257. [PMID: 33017455 PMCID: PMC7535050 DOI: 10.1371/journal.pone.0240257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculous meningitis (TBM) is the most severe form of Mycobacterium tuberculosis (Mtb) infection in humans and is a public health concern worldwide. We evaluated the performance of GeneXpert MTB/RIF (GeneXpert) for the diagnosis of TBM. In addition, genetic diversity and drug susceptibility profiling of Mtb strains isolated from TBM patients were also investigated. A total of 293 TBM suspected cerebrospinal fluid (CSF) samples were collected and subjected to GeneXpert and Mycobacterial Growth Indicator Tube (MGIT 960) culture, respectively. Sensitivity and specificity of GeneXpert was 72.7% and 98.5%, respectively by using MGIT 960 as a gold standard (GeneXpert (n = 20, 6.8%) vs MGIT 960 (n = 22, 7.5%)). All Mtb positive cultures were subjected to 24-locus Mycobacterial Interspersed Repetitive Unit Variable Number Tandem Repeat (MIRU-VNTR) typing, Line probe assay (LPA) and MGIT 960- Drug Susceptibility Testing (DST). The rpoB gene was amplified and sequenced for selected isolates. Among our TBM patients, East African Indian (EAI) lineage (n = 16, 72.7%) was most predominant followed by Beijing (n = 3, 13.6%), S-family (n = 2, 9.1%) and Delhi/CAS (n = 1, 4.5%). Three Mtb strains were found to be Isoniazid (INH) resistant by MGIT 960; however LPA revealed that two strains were INH resistant and one strain was multi drug resistant (MDR) (Resistant to Isoniazid and Rifampicin (RIF)). We identified rifampicin resistant isolate with the mutation D516F in rifampicin resistance-determining region (RRDR) and observed discordant results between LPA, GeneXpert and MGIT 960. In addition, GeneXpert showing false RIF resistance was identified (no mutation in RRDR). We conclude that GeneXpert is useful for the diagnostic confirmation of TBM; however a GeneXpert negative sample should be subjected to MGIT 960 culture or LPA to rule out TBM. EAI lineage was the most predominant among TBM patients in South India and associated with drug resistance. The discordance between GeneXpert, MGIT 960 and LPA with respect to rifampicin resistance has to be ruled out to avoid TB treatment failure or relapse.
Collapse
Affiliation(s)
- Krishnapriya Krishnakumariamma
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Kalaiarasan Ellappan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Muthaiah Muthuraj
- Intermediate Reference Laboratory, Government Hospital for Chest Diseases, Pondicherry, India
| | - Kadhiravan Tamilarasu
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Saka Vinod Kumar
- Department of Pulmonary Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Noyal Mariya Joseph
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
- * E-mail:
| |
Collapse
|
30
|
Mahomed S, Mlisana K, Cele L, Naidoo K. Discordant line probe genotypic testing vs culture-based drug susceptibility phenotypic testing in TB endemic KwaZulu-Natal: Impact on bedside clinical decision making. J Clin Tuberc Other Mycobact Dis 2020; 20:100176. [PMID: 32793816 PMCID: PMC7414011 DOI: 10.1016/j.jctube.2020.100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The recommendations for Mycobacterium tuberculosis drug susceptibility testing include both phenotypic and genotypic methods. This concurrent use of differing testing platforms has created an emerging challenge of discordant results, creating a diagnostic dilemma for the laboratorians as well as attending clinicians. We undertook a retrospective study to determine the prevalence of discordant results between the MTBDRplus line probe assay and solid culture-based drug susceptibility testing for rifampicin and isoniazid. The analysis was conducted for the period January 2013 and December 2015 at the Inkosi Albert Luthuli Central Hospital. Rifampicin and isoniazid resistance testing data were "paired" on 8273 isolates for culture-based drug susceptibility testing and line probe assay. The latter method showed high sensitivity and specificity of 93% and 95% respectively for isoniazid testing. For rifampicin testing, sensitivity and specificity were 95% and 75%. Overall, discordance was 14.6% for rifampicin and 7.2% for isoniazid. This report is not intended to determine superiority of one method over another. It is merely to show that discordance does exist between different methods of testing. Given the burden of HIV and Tuberculosis in Sub-Saharan Africa, these findings have clinical significance and huge public health implications. Clinicians should understand the limitations of phenotypic testing methods.
Collapse
Affiliation(s)
- Sharana Mahomed
- Centre for the AIDS Programme of Research in South Africa, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Koleka Mlisana
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
- National Health Laboratory Service, Durban, South Africa
| | - Lindiwe Cele
- Sefako Makgatho Health Sciences University, Department of Public Health, Epidemiology and Biostatistics Unit, South Africa
| | - Kogieleum Naidoo
- Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
31
|
Zhao ZL, Chen L, Zhang H. Successful Treatment of a Multidrug-Resistant Tuberculosis Patient with a Negative Xpert MTB/RIF Test for Rifampicin-Resistant Tuberculosis in Guizhou Province of China: A Case Report. Infect Drug Resist 2020; 13:1351-1355. [PMID: 32440172 PMCID: PMC7217305 DOI: 10.2147/idr.s245219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/26/2020] [Indexed: 11/23/2022] Open
Abstract
The Xpert MTB/RIF (Xpert) assay recommended by the World Health Organization (WHO) can be used to simultaneously detect Mycobacterium tuberculosis complex (MTBC) and rifampicin (RIF) resistance associated mutations. However, if Xpert testing results are negative for RIF resistance because mutations outside the RIF resistance-determining region (RRDR) are not detectable by the assay, patients with RIF-resistant/multidrug-resistant tuberculosis (RR/MDR-TB) will be treated inappropriately for several weeks prior to obtaining the drug susceptibility testing (DST) results. Here, we report a rare case of TB in Guizhou Province of China that was identified as RIF-susceptible by the Xpert MTB/RIF assay, but later was confirmed as MDR-TB by DST, and its successful treatment with effective second-line anti-TB drugs. We detected a rare rpoB mutation (Ile572Phe) in clinical samples of this patient, highlighting the importance of using other methods such as PCR and sequencing to complement the Xpert MTB/RIF assay for the routine diagnosis of RR/MDR-TB because of the limited scope of the assay. These complementary methods allow for the detection of rare rpoB mutations outside the RRDR and can be beneficial when used in geographical locations where such rpoB mutations are frequently reported. However, these methods may not be feasible for resource-limited settings.
Collapse
Affiliation(s)
- Zhao-Liang Zhao
- Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Ling Chen
- Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China
| | - Hong Zhang
- Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, People's Republic of China.,Z-BioMed, Inc., Rockville, MD 20855, USA
| |
Collapse
|
32
|
Kukhtin AV, Norville R, Bueno A, Qu P, Parrish N, Murray M, Chandler DP, Holmberg RC, Cooney CG. A Benchtop Automated Sputum-to-Genotype System Using a Lab-on-a-Film Assembly for Detection of Multidrug-Resistant Mycobacterium tuberculosis. Anal Chem 2020; 92:5311-5318. [PMID: 32142258 PMCID: PMC7354060 DOI: 10.1021/acs.analchem.9b05853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Automated genotyping of drug-resistant Mycobacterium tuberculosis (MTB) directly from sputum is challenging for three primary reasons. First, the sample matrix, sputum, is highly viscous and heterogeneous, posing a challenge for sample processing. Second, acid-fast MTB bacilli are difficult to lyse. And third, there are hundreds of MTB mutations that confer drug resistance. An additional constraint is that MTB is most prevalent where test affordability is paramount. We address the challenge of sample homogenization and cell lysis using magnetic rotation of an external magnet, at high (5000) rpm, to induce the rotation of a disposable stir disc that causes chaotic mixing of glass beads ("MagVor"). Nucleic acid is purified using a pipet tip with an embedded matrix that isolates nucleic acid ("TruTip"). We address the challenge of cost and genotyping multiple mutations using 203 porous three-dimensional gel elements printed on a film substrate and enclosed in a microfluidic laminate assembly ("Lab-on-a-Film"). This Lab-on-a-Film assembly (LFA) serves as a platform for amplification, hybridization, washing, and fluorescent imaging, while maintaining a closed format to prevent amplicon contamination of the workspace. We integrated and automated MagVor homogenization, TruTip purification, and LFA amplification in a multisample, sputum-to-genotype system. Using this system, we report detection down to 43 cfu/mL of MTB bacilli from raw sputum.
Collapse
Affiliation(s)
- Alexander V Kukhtin
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Ryan Norville
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Arial Bueno
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Peter Qu
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Nicole Parrish
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Megan Murray
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Darrell P Chandler
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Rebecca C Holmberg
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| | - Christopher G Cooney
- Akonni Biosystems, Inc., 400 Sagner Avenue, Suite 300, Frederick, Maryland 21701, United States
| |
Collapse
|
33
|
Islam MM, Tan Y, Hameed HMA, Liu Y, Chhotaray C, Cai X, Liu Z, Lu Z, Wang S, Cai X, Su B, Li X, Tan S, Liu J, Zhang T. Prevalence and molecular characterization of amikacin resistance among Mycobacterium tuberculosis clinical isolates from southern China. J Glob Antimicrob Resist 2020; 22:290-295. [PMID: 32142951 DOI: 10.1016/j.jgar.2020.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/22/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVES Amikacin is the only second-line injectable antituberculosis (anti-TB) drug still recommended for multidrug-resistant tuberculosis (MDR-TB) treatment when a short MDR-TB regimen is designed. Mutations in rrs and eis are reported to be associated with resistance to amikacin. In this study, we investigated the incidence of rrs, eis, tap and whiB7 mutations in amikacin-resistant Mycobacterium tuberculosis clinical isolates to find the proportion of different mutations related to amikacin resistance. METHODS A total of 395 clinical isolates of M. tuberculosis were used for phenotypic drug susceptibility testing (DST) to 10 drugs with the Löwenstein-Jensen (L-J) method. We sequenced rrs, eis, tap and whiB7 genes in 178 M. tuberculosis clinical isolates (89 amikacin-resistant isolates and 89 of 306 amikacin-susceptible isolates). RESULTS Our data showed that 22.53% (89/395) M. tuberculosis clinical isolates were resistant to amikacin. Of the 89 amikacin-resistant isolates, 89.89% (80/89) were MDR-TB, of which 12.36% (11/89) were pre-extensively drug-resistant TB (pre-XDR-TB) and 77.53% (69/89) were XDR-TB. The rrs mutations were found in 82% (73/89) in amikacin-resistant M. tuberculosis clinical isolates. The A1401G alteration in the rrs gene was the most dominant mutation (80.90%; 72/89). Five mutations were detected as new in rrs, tap and whiB7. Notably, 13.48% (12/89) amikacin-resistant isolates had no known mutation in these genes. CONCLUSIONS Our data reveal that the rrs mutation is a predominant molecular marker of amikacin resistance in southern China. Analysis of the rrs gene mutations will significantly reduce the time and cost to diagnose amikacin resistance in TB patients. Other unknown amikacin resistance mechanism(s) exist.
Collapse
Affiliation(s)
- Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Xiaoyin Cai
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
| | - Xingshan Cai
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Biyi Su
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, China; Guangdong Hong Kong Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China.
| |
Collapse
|
34
|
Vedithi SC, Rodrigues CHM, Portelli S, Skwark MJ, Das M, Ascher DB, Blundell TL, Malhotra S. Computational saturation mutagenesis to predict structural consequences of systematic mutations in the beta subunit of RNA polymerase in Mycobacterium leprae. Comput Struct Biotechnol J 2020; 18:271-286. [PMID: 32042379 PMCID: PMC7000446 DOI: 10.1016/j.csbj.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 11/26/2022] Open
Abstract
Rifampin resistance in leprosy may remain undetected due to the lack of rapid and effective diagnostic tools. A quick and reliable method is essential to determine the impacts of emerging detrimental mutations in the drug targets. The functional consequences of missense mutations in the β-subunit of RNA polymerase (RNAP) in Mycobacterium leprae (M. leprae) contribute to phenotypic resistance to rifampin in leprosy. Here, we report in-silico saturation mutagenesis of all residues in the β-subunit of RNAP to all other 19 amino acid types (generating 21,394 mutations for 1126 residues) and predict their impacts on overall thermodynamic stability, on interactions at subunit interfaces, and on β-subunit-RNA and rifampin affinities (only for the rifampin binding site) using state-of-the-art structure, sequence and normal mode analysis-based methods. Mutations in the conserved residues that line the active-site cleft show largely destabilizing effects, resulting in increased relative solvent accessibility and a concomitant decrease in residue-depth (the extent to which a residue is buried in the protein structure space) of the mutant residues. The mutations at residue positions S437, G459, H451, P489, K884 and H1035 are identified as extremely detrimental as they induce highly destabilizing effects on the overall protein stability, and nucleic acid and rifampin affinities. Destabilizing effects were predicted for all the clinically/experimentally identified rifampin-resistant mutations in M. leprae indicating that this model can be used as a surveillance tool to monitor emerging detrimental mutations that destabilise RNAP-rifampin interactions and confer rifampin resistance in leprosy. Author summary The emergence of primary and secondary drug resistance to rifampin in leprosy is a growing concern and poses a threat to the leprosy control and elimination measures globally. In the absence of an effective in-vitro system to detect and monitor phenotypic resistance to rifampin in leprosy, diagnosis mainly relies on the presence of mutations in drug resistance determining regions of the rpoB gene that encodes the β-subunit of RNAP in M. leprae. Few labs in the world perform mouse food pad propagation of M. leprae in the presence of drugs (rifampin) to determine growth patterns and confirm resistance, however the duration of these methods lasts from 8 to 12 months making them impractical for diagnosis. Understanding molecular mechanisms of drug resistance is vital to associating mutations to clinically detected drug resistance in leprosy. Here we propose an in-silico saturation mutagenesis approach to comprehensively elucidate the structural implications of any mutations that exist or that can arise in the β-subunit of RNAP in M. leprae. Most of the predicted mutations may not occur in M. leprae due to fitness costs but the information thus generated by this approach help decipher the impacts of mutations across the structure and conversely enable identification of stable regions in the protein that are least impacted by mutations (mutation coolspots) which can be a potential choice for small molecule binding and structure guided drug discovery.
Collapse
Affiliation(s)
| | - Carlos H M Rodrigues
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia.,Structural Biology and Bioinformatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Stephanie Portelli
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia.,Structural Biology and Bioinformatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Marcin J Skwark
- Department of Biochemistry, University of Cambridge, Tennis Court Rd., CB2 1GA, UK
| | - Madhusmita Das
- Molecular Biology Laboratory, Schieffelin Institute of Heath-Research and Leprosy Center, Karigiri, Vellore, Tamil Nadu 632106, India
| | - David B Ascher
- Department of Biochemistry, University of Cambridge, Tennis Court Rd., CB2 1GA, UK.,Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Parkville, VIC 3052, Australia.,Structural Biology and Bioinformatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Rd., CB2 1GA, UK
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Tennis Court Rd., CB2 1GA, UK
| |
Collapse
|
35
|
Al-Mutairi NM, Ahmad S, Mokaddas EM. Molecular characterization of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates identifies local transmission of infection in Kuwait, a country with a low incidence of TB and MDR-TB. Eur J Med Res 2019; 24:38. [PMID: 31806020 PMCID: PMC6894303 DOI: 10.1186/s40001-019-0397-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Increasing incidence of multidrug-resistant Mycobacterium tuberculosis infections is hampering global tuberculosis control efforts. Kuwait is a low-tuberculosis-incidence country, and ~ 1% of M. tuberculosis strains are resistant to rifampicin and isoniazid (MDR-TB). This study detected mutations in seven genes predicting resistance to rifampicin, isoniazid, pyrazinamide, ethambutol and streptomycin in MDR-TB strains. Sequence data were combined with spoligotypes for detecting local transmission of MDR-TB in Kuwait. Methods Ninety-three MDR-TB strains isolated from 12 Kuwaiti and 81 expatriate patients and 50 pansusceptible strains were used. Phenotypic drug susceptibility was determined by MGIT 460 TB/960 system. Mutations conferring resistance to rifampicin, isoniazid, pyrazinamide, ethambutol and streptomycin were detected by genotype MTBDRplus assay and/or PCR sequencing of three rpoB regions, katG codon 315 (katG315) + inhA regulatory region, pncA, three embB regions and rpsL + rrs-500–900 regions. Spoligotyping kit was used, spoligotypes were identified by SITVIT2, and phylogenetic tree was constructed by using MIRU-VNTRplus software. Phylogenetic tree was also constructed from concatenated sequences by MEGA7 software. Additional PCR sequencing of gidB and rpsA was performed for cluster isolates. Results Pansusceptible isolates contained wild-type sequences. Mutations in rpoB and katG and/or inhA were detected in 93/93 and 92/93 MDR-TB strains, respectively. Mutations were also detected for pyrazinamide resistance, ethambutol resistance and streptomycin resistance in MDR-TB isolates in pncA, embB and rpsL + rrs, respectively. Spoligotyping identified 35 patterns with 18 isolates exhibiting unique patterns while 75 isolates grouped in 17 patterns. Beijing genotype was most common (32/93), and 11 isolates showed nine orphan patterns. Phylogenetic analysis of concatenated sequences showed unique patterns for 51 isolates while 42 isolates grouped in 16 clusters. Interestingly, 22 isolates in eight clusters by both methods were isolated from TB patients typically within a span of 2 years. Five of eight clusters were confirmed by additional gidB and rpsA sequence data. Conclusions Our study provides the first insight into molecular epidemiology of MDR-TB in Kuwait and identified several potential clusters of local transmission of MDR-TB involving 2–6 subjects which had escaped detection by routine surveillance studies. Prospective detection of resistance-conferring mutations can identify possible cases of local transmission of MDR-TB in low MDR-TB settings.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman M Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| |
Collapse
|
36
|
Reply to Murray et al., “Comparative Performance of BD MAX MDR-TB and Cepheid Xpert MTB/RIF Assays”. J Clin Microbiol 2019; 57:57/9/e00984-19. [DOI: 10.1128/jcm.00984-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Comparative Performance of BD MAX MDR-TB and Cepheid Xpert MTB/RIF Assays. J Clin Microbiol 2019; 57:57/9/e00779-19. [PMID: 31451572 DOI: 10.1128/jcm.00779-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Chen CJ, Yang YC, Huang HH, Chang TC, Lu PL. Evaluation of a membrane hybridization array for detection of Mycobacterium tuberculosis complex and resistance to isoniazid and rifampin in sputum specimens, mycobacterial liquid cultures, and clinical isolates. Kaohsiung J Med Sci 2019; 35:615-623. [PMID: 31433118 DOI: 10.1002/kjm2.12119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/16/2019] [Indexed: 11/07/2022] Open
Abstract
The gold standard of antituberculosis susceptibility testing is based on culture method which takes weeks. Rapid detection of resistance to isoniazid (INH) and rifampin (RIF) to avoid inappropriate regimens and to prevent transmission of resistant strains are important. A membrane array (BluePoint MTBDR) was developed to identify Mycobacterium tuberculosis complex (MTBC) and the genetic mutations responsible for resistance to RIF and INH. We aimed to evaluate the performance of this array for diagnosing drug-resistant MTBC. A total of 261 acid-fast bacilli positive sputum specimens, 1025 positive mycobacteria growth indicator tube (MGIT) cultures and 544 clinical isolates were analyzed. Antituberculosis susceptibility testing was the gold standard and was performed on MTBC isolated from positive MGIT cultures and on 544 clinical isolates. The sensitivity and specificity of the array to detect MTBC were 62.2% and 88.1% for sputum specimens, 100% and 97.9% for MGIT cultures. For detection of drug-resistant MTBC in positive MGIT tubes, the sensitivities of the array were 100% for RIF and 97.1% for INH, while the specificities were 99.7% and 100%, respectively. Interestingly, we noticed four genotypically RIF-resistant but phenotypically RIF-susceptible isolates and eight genotypically INH resistant but phenotypically INH-susceptible isolates. Comparing with conventional culture methods for species identification and drug susceptibility testing, the BluePoint MTBDR assay demonstrated to be a rapid test with high sensitivity and specificity to identify MTBC and to detect isoniazid and rifampin resistance when it is applied to broth culture specimens and clinical isolates.
Collapse
Affiliation(s)
- Chao-Ju Chen
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yuan-Chieh Yang
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hsin-Hui Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung Chain Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Liang Lu
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Hu P, Zhang H, Fleming J, Zhu G, Zhang S, Wang Y, Liu F, Yi S, Chen Z, Chen Z, Liu B, Gong D, Wan L, Wang X, Tan Y, Bai L, Bi L. Retrospective Analysis of False-Positive and Disputed Rifampin Resistance Xpert MTB/RIF Assay Results in Clinical Samples from a Referral Hospital in Hunan, China. J Clin Microbiol 2019; 57:e01707-18. [PMID: 30674578 PMCID: PMC6440781 DOI: 10.1128/jcm.01707-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/16/2019] [Indexed: 11/20/2022] Open
Abstract
Concerns about the specificity of the Xpert MTB/RIF (Xpert) assay have arisen, as false-positive errors in the determination of Mycobacterium tuberculosis complex (MTBC) infection and rifampin (RIF) resistance in clinical practice have been reported. Here, we investigated 33 cases where patients were determined to be RIF susceptible using the Bactec MGIT 960 (MGIT) culture system but RIF resistant using the Xpert assay. Isolates from two of these patients were found not to have any mutations in the rifampin resistance determining region (RRDR) region of rpoB and had good treatment outcomes with first-line antituberculosis (anti-TB) drugs. The remaining 31 patients included 5 new cases and 26 previously treated patients. A large number of well-documented disputed mutations, including Leu511Pro, Asp516Tyr, His526Asn, His526Leu, His526Cys, and Leu533Pro, were detected, and mutations, including a 508 to 509 deletion and His526Gly, were described here as disputed mutations for the first time. Twenty-one (81%) of the 26 previously treated patients had poor treatment outcomes, and isolates from 19 (90%) of these 21 patients were resistant to isoniazid (INH) as determined using the MGIT culture system. Twenty-seven of the 31 isolates with disputed rpoB mutations were phenotypically resistant to INH, 21 (78%) being predicted by GenoType MTBDRplus to have a high level of INH resistance. Most (77.4%) of the isolates with disputed mutations were of the Beijing lineage. These findings have implications for the interpretation of false-positive and disputed rifampin resistance Xpert MTB/RIF results in clinical samples and provide guidance on how clinicians should manage patients carrying isolates with disputed rpoB mutations.
Collapse
Affiliation(s)
- Peilei Hu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Hongtai Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Joy Fleming
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guofeng Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shuai Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yaguo Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fengping Liu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Songlin Yi
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Zhongnan Chen
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Zhenhua Chen
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Binbin Liu
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Daofang Gong
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Li Wan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xingyun Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunhong Tan
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Liqiong Bai
- Clinical Laboratory, Hunan Chest Hospital, Changsha, China
| | - Lijun Bi
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, China
- Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan, Guangdong, China
| |
Collapse
|